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Abstract—FlexRay is an automotive network communication
protocol. It provides support to transmit time-sensitive messages
in automobiles. FlexRay transmits periodic messages in a static
segment and aperiodic messages in a dynamic segment. To
improve transmission reliability, FlexRay offers hybrid data man-
agement schemes for both static and dynamic segments. However,
existing approaches only schedule static segment and dynamic
segment separately, leading to poor bandwidth utilization and
transmission delay. Moreover, due to the bandwidth limitation,
existing best-effort retransmission for all segments fails to achieve
high reliability. To address these two concerns, we propose a
novel and efficient scheduling scheme, called CoEfficient. The
idea behind CoEfficient is to cooperatively schedule the static
and dynamic segments, while judiciously stealing the selective
slacks for reliable transmission based on practical fault models.
CoEfficient schedules both static and dynamic segments in the
dual-channel manner based on practical fault models. Extensive
experiments based on real-world case studies demonstrate that
CoEfficient meets the needs of both real-time transmission and
reliability requirements, and delivers significant performance
improvements.

I. INTRODUCTION

The paradigm of vehicular systems is shifting. Automobile
manufacturers have already begin investigating new power
train, chassis, and by-wire control systems. They require a
very fast, deterministic, and fault-tolerant protocol that meets
the needs of the speed, reliability, and safety of such appli-
cations as brake-by-wire and steer-by-wire. Conventional in-
vehicle networking solutions, such as Controller Area Network
(CAN) [1], do not meet these requirements. FlexRay [2] has
been developed to provide higher data rates and better fault
tolerance to support automotive applications.

FlexRay provides communication infrastructure for future
generation real-time control applications in vehicles. These ap-
plications are mostly real-time and safety-critical [1], [3]–[5].
Existing automotive real-time control systems include Anti-
lock Braking System (ABS), electronic steering system, and
Electronic Stability Control (ESC) system. These systems work
in the backgrounds, involving large amounts of sensors, actu-
ators and Electronic Control Units (ECU) working together.
This highly sophisticated interaction heavily relies on a com-
munication system that connects different parts in an efficient

manner [3], [6], [7]. Although FlexRay has been used as an
in-vehicle communication network, its applicability is severely
hindered in high-speed safety-critical control systems [8]–[11].
The reason is that real-time safety-critical control applications
require data integrity even with the occurrence of transient
faults.

The faults in a FlexRay network often occur due to radi-
ation, interference and temperature variation. We can classify
these faults into two types, i.e., permanent and transient
faults [12]. Specifically, physical damages generally cause
the permanent faults that incur long-term malfunctioning.
Moreover, the transient faults lead to the miscalculations in
the logic and data corruption. The corruption often lasts for a
short duration. A FlexRay generally contains a large fraction
of transient faults.

The number of rich electronic devices in cars significantly
increases. For example, 70 ECUs in luxury cars need to
exchange around 2500 signals [1], [13]). Hence, how to deal
with transient faults becomes important and requires efficient
fault-tolerant techniques to improve communication reliability.
Unfortunately, in spite of such reliability concerns, existing
frame packing techniques assume a fault-free transmission of
frames over the transmission bus. To address this problem,
FlexRay is used, and however it is not efficient in practice due
to two main challenges.

Challenge 1: Separate scheduling upon heterogeneous
segments. FlexRay messages transmit in the heterogeneous
form of static and dynamic segments. Existing work sched-
ules either static segments [3], [4], [14], [15] or dynamic
segments [16]–[18]. Since they overlook the fact that both
static and dynamic segments transmit together in one frame,
the separate scheduling exacerbates the performance in terms
of bandwidth utilization and transmission latency. Specifically,
the scheduling on the dynamic segments relies on the priority-
based policy, which potentially causes heavy delays and even
data loss for low-priority frames. On the other hand, static seg-
ments generally consume a large fraction of available frames.
These frames often contain idle slacks that unfortunately can
not used by dynamic segments. Hence, cooperative scheduling
becomes very important to the performance improvements of
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the entire FlexRay system.

Challenge 2: Best-effort retransmission for alleviating
potential faults. In order to offer communication reliability,
FlexRay leverages static and pre-defined schedules that con-
tain redundant transmission tasks. This scheme, in practice,
fails to efficiently improve the reliability, since it does not
support acknowledgement or retransmission schemes. In order
to alleviate the inefficiency of scheduling real-time and burst
segments in the presence of faults, performing the retransmis-
sion of FlexRay’s static and dynamic segments is a simple
and easy-to-use approach. Existing work [4], [9] performs
the retransmissions in a best-effort way. However, due to the
fact of the limited bandwidth, the best-effort retransmission
for all segments is hardly implemented, while leading to
severe inefficiency in the data transmission and communication
reliability. The reason comes from overlooking the fact that
not all segments will fail at the same time and the potential
failure of the segments occurs with some probability. Hence,
it is unnecessary to retransmit all segments. Instead, we can
select some segments, which have higher failure probability,
for retransmission.

In order to address the above challenges, we propose a
novel and efficient scheduling scheme, called CoEfficient. The
design goals of CoEfficient are twofold: (1): Guarantee the
desired reliability goals against transient faults; (2): Satisfy
the real-time transmission requirements. Existing real-time
scheduling schemes can offer fault-tolerant services well for
either scheduling homogenous data segments or managing a
single channel, which failing to meet the needs of FlexRay’s
real-time scheduling requirements. By proposing a selective
slack stealing technique, CoEfficient becomes the first work,
to the best of our knowledge, that schedules both static and
dynamic segments in the dual-channel manner, while providing
fault tolerance and delivering real-time performance. Specifi-
cally, we make the following contributions.

Cooperative Scheduling with Selective Dual-channel
Slacks. By taking into account the properties of data segments,
we respectively model the transmission of static, retransmitted
and dynamic segments, respectively as hard-deadline periodic,
hard-deadline aperiodic and soft-deadline aperiodic schedul-
ing tasks. These models make the FlexRay transmission practi-
cal due to their ease-of-use and simplicity. CoEfficient further
employs a novel slack stealing scheme to pilfer selective,
rather than any available, slacks to schedule both static and
dynamic segments in a unified manner. The selective slack
stealing scheme first determines which segments should be
retransmitted in order to meet the reliability goal and then
steals the idle slacks whose timing lengths are larger than the
segments to be retransmitted. We can significantly reduce the
computation overhead on the limited, not all, idle slacks. Fast
and accurate slack computation allows CoEfficient to capture
available slacks that can be pilfered by the tasks of transmitting
hard-deadline aperiodic and soft-deadline aperiodic segments.
Idle slacks are minimized. As a result, CoEfficient achieves
high transmission efficiency and bandwidth utilization.

Differentiated Retransmission for Guaranteed Reliabil-
ity. Guaranteed reliability refers to the ability to meet the needs
of predefined reliability goals. CoEfficient offers the reliability
guarantee by leveraging the differentiated retransmission of
segments. The differentiated retransmission is adaptive and ef-

ficient to select and retransmit the segments based on the anal-
ysis of failure probabilities. Different reliability goals may pro-
duce different sets of retransmitted segments. Compared with
conventional best-effort retransmission for all segments, the
differentiated retransmission not only achieves the reliability
goal, but also obtains significant performance improvements in
terms of bandwidth utilization and transmission latency. In the
meantime, CoEfficient is compliant with and complementary
to existing schemes for scalable fault tolerance, and focuses
on cooperatively scheduling the fault-tolerant segments and
efficiently optimizing bandwidth utilization.

Real System Implementation. In order to comprehen-
sively examine the performance of our proposed CoEfficient
scheme in the FlexRay network, we implement CoEfficient
in a prototype testbed. The real prototype contains all the
mentioned components and functionalities of CoEfficient. We
use real-world case studies from the automotive industry to
evaluate the system performance in terms of overall running
time, bandwidth utilization, transmission latency and deadline
miss ratios for the transmitted segments. By the comparisons
with state-of-the-art FlexRay based scheduling schemes, ex-
perimental results demonstrate the efficiency and efficacy of
CoEfficient.

The rest of this paper is organized as follows. Sec-
tion II introduces the backgrounds of FlexRay scheduling.
Section III describes the cooperative scheduling and slack
stealing schemes. We present the performance evaluation and
related work respectively in Sections IV and V. Section VI
concludes our paper.

II. FLEXRAY NETWORK

In this section, we present real-time signals and hybrid
segments of FlexRay to support data transmission. We further
describe the FlexRay architecture.

A. Real-time Signals and Hybrid Segments

In a FlexRay network, the communications among N Elec-
tronic Control Units (ECU) {E1,E2, . . . ,EN} are multiplexed
over one or more shared buses. An ECU generates multiple
signals. For example, the ith ECU generates Ni signals, i.e.,
Si = {si

1,s
i
2, . . . ,s

i
Ni
}. The ECU signals consist of four parts,

i.e., period, offset, deadline and length. Specifically, the period
(Pi

j) is the rate at which the node Ei produces signal si
j. The

offset (Oi
j) is the time after which the node Ei produces the

first instance of signal si
j. The deadline (Di

j) is the time by

which the transmission of the signal si
j must be completed.

The length (W i
j) is the size of the signal si

j in bits.

In order to transmit and schedule real-time signals, FlexRay
leverages time-triggered and event-triggered messages. By
using these messages, FlexRay supports the transmission of
periodic messages in Static Segments (SS) and offers the
priority-based scheduling upon event-triggered messages in
Dynamic Segments (DS). Moreover, the periodic messages
are transmitted in the unique static slots of SS according to
Time Division Multiple Access (TDMA), which is similar to
the operations in Time-Triggered Protocol (TTP) [19]. On the
other hand, aperiodic messages are sent in the dynamic slots
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of DS, which is similar to ByteFlight [20] and uses Flexible
TDMA (FTDMA).

FlexRay transmits data by using both static and dynamic
segments. These segments leverage different scheduling poli-
cies to transmit periodic and aperiodic messages in the com-
munication slots. Specifically, a static communication slot
is an interval of time that can be exclusively used by a
specific node for transmitting a frame. The static segment in
a communication cycle can support the transmission of time-
critical messages according to a periodic cycle. Within this
cycle, a time slot is always reserved to the same network
node. This node can use fixed length and locate in a given
position. In a static slot, the frame ID corresponds to the slot.
Each static communication slot contains a constant number
of macroticks to support data transmission. Moreover, in the
static segment, all communication slots are identical and can
be statically configured.

Unlike the configuration and scheduling on static segments,
the dynamic segments offer more flexible scheduling scheme
for aperiodic messages. The communication slot of transmit-
ting dynamic segments contains one or more minislots. The
minislots can be interpreted as the smallest time unit, which
can be represented and measured by the value of gdMinislot.
Different from a static communication slot, the duration of
a dynamic communication slot can vary by considering the
length of the frame. A variable vSlotCounter contains the ID
of the current dynamic slot that starts from a pre-configured
initial value. A dynamic slot can transmit a frame with the cor-
responding ID. Furthermore, FlexRay determines the duration
of the dynamic slot via the computation of the length of the
transmitted frame. In some cases, the duration of a dynamic
communication slot becomes one minislot when no frames are
sent in the FlexRay network.

B. FlexRay Architecture and Data Segments

In order to describe a FlexRay architecture, we need to
study the cluster topology and node structures. A FlexRay
cluster consists of multiple nodes that are connected. The
connection model depends on the topology. For example, a
bus topology uses direct communication channel, while a star
topology uses star couplers. In order to support various appli-
cations, FlexRay allows a cluster to flexibly configure network
topology. The topology includes bus, star or hybrid connection.
Moreover, each node in a FlexRay cluster contains a host and
a Communication Controller (CC). These two components are
connected by a Controller-Host Interface (CHI). CHI becomes
a buffer between the host and CC. In general, the host is a
part of an ECU and can carry out the application software to
deal with incoming messages and generate outgoing messages.
The functions of offering FlexRay protocol services can be
implemented and executed in the communication controller.

A bus driver contains a transmitter and a receiver. In order
to improve the real-time efficiency of transmitting messages,
FlexRay offers inter-node connection, in which a bus driver can
connect with the communication controller to one communica-
tion channel. To further guarantee the synchronization perfor-
mance, the bus driver needs to contain clock synchronization
with other nodes, while constructing and checking cyclic
redundancy code verification. The periodic and aperiodic real-

time messages can be transmitted in FlexRay communication
cycles via multiple network nodes.

One salient feature of a FlexRay network is the high
transmission reliability via the design of dual-channel com-
munication. The node architecture supports the scheduling
on static and dynamic segments in a dual-channel manner.
Specifically, each node contains a schedule table. The schedule
table maintains the scheduling sequences of transmitting the
messages within the static segments. The priority queues serve
for scheduling the dynamic segments.

In practice, due to the distinct functions and design princi-
ples, the static and dynamic segments have different scheduling
schemes. Specifically, in order to schedule static segments, we
need to maintain a timing based sequence, i.e., the number
of cycles and slots, as well as the associated message in
the schedule table. Moreover, in order to schedule dynamic
segments, we need to define the slot number to each node. In
the meantime, we schedule all messages in each priority queue
in the fixed priority manner. In order to improve scheduling
efficiency, we require a buffer in the CHI to maintain the
messages that can be written by the host and read by the
communication controller.

The important problem in scheduling FlexRay messages
is to determine which messages are transmitted during the
allocated slots in an efficient manner. We use different schemes
respectively for scheduling static and dynamic messages. For
scheduling static messages, a schedule table is used to maintain
the transmission time in each network node. We further place
a given message into its associated static buffer in the CHI. On
the other hand, for scheduling dynamic messages, a node in
the FlexRay is able to send different messages using the same
dynamic Frame ID. We schedule two or more messages with
the same frame ID to be sent in the same bus cycle based on the
comparisons in terms of their priorities. In order to guarantee
the data transmission quality, FlexRay sends the message from
the head of the priority queue in the current bus cycle. FlexRay
also needs to insert the messages with the same Frame ID into
a local output queue.

III. COOPERATIVE SCHEDULING UPON FAULT-TOLERANT

FLEXRAY SEGMENTS

This section presents the cooperative scheduling scheme
upon fault-tolerant segments in a dual-channel manner. The
scheduling tasks are classified into periodics and aperiodics to
transmit various data segments. We also present the fault model
and probability analysis. Selective slacks are further computed
to support efficient FlexRay communications.

A. Periodic and Aperiodic Tasks

In order to improve communication reliability and optimize
the bandwidth utilization, we use a fault-tolerant cooperative
scheduling upon the static and dynamic segments in the
FlexRay network. Specifically, we model the transmission of
static, retransmitted and dynamic segments respectively as hard
deadline periodic, hard deadline aperiodic and soft deadline
aperiodic tasks. The design goal is to schedule both periodic
and aperiodic tasks to meet all periodic deadlines and achieve
the reliability goal ρ .
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1) Periodic Tasks: Consider a FlexRay network with H
periodic tasks, τ1,τ2, · · · ,τH . Each task, τi,1 ≤ i ≤ H, has a
worst-case computation requirement Ci, a period Ti, an offset
relative to time origin φi where 0≤ φi≤ Ti, and a hard deadline
di (di ≤ Ti). We assume that the parameters Ci, Ti, φi and di,
are known. The tasks with smaller value of di are allocated
higher priority. For a periodic task τi, it leads to an infinite
sequence of jobs. The kth job, represented as τik, operates at
time φi +(ki− 1)Ti and needs to be completed by φi +(ki−
1)Ti +di.

2) Aperiodic Tasks: For the aperiodic tasks, we need to
place them into a queue. A slot value is associated with the
enqueued aperiodic task to demonstrate how many additional
slots can be allocated to facilitate its processing, while its
deadline is still met. In general, for an aperiodic task Jk, it
has an associated arrival time αk, a processing requirement pk
and a hard deadline Dk. Moreover, if the deadline is not hard,
we set Dk = ∞ and need to minimize the response time. The
aperiodic tasks can be indexed such that 0≤ αk ≤ αk+1,k≥ 1.
A cumulative aperiodic workload process, W (t) = ∑k|αk≤t pk,
accumulates all the aperiodic work that arrives in the interval
[0, t].

Since periodic tasks generally require static and pre-defined
scheduling, we mainly present the schemes for soft and hard
aperiodics respectively for scheduling dynamic and retransmit-
ted segments.

B. Soft Aperiodics Tasks for Scheduling Dynamic Segments

We schedule dynamic segments as soft aperiodic tasks.
Specifically, at time t, we need to determine the largest amount
of aperiodic processing at priority level k,1≤ k≤ n, when there
exist n priorities. We add the aperiodic processing capacity to
the system workload, while not causing any deadlines of any
periodic tasks to be missed. For example, if a lower priority
level is chosen, the task may be delayed by higher-priority
periodic processing. In general, aperiodic processing at priority
level k generally does not delay periodic tasks with priority
levels k− 1 or higher. We need to examine the scheduling
latency upon the periodic tasks with the priority k through n.

In the FlexRay network, we describe the scheduling scheme
by using the following representation. Specifically, the priority
level i is defined as k ≤ i ≤ n. Ci(t) denotes the cumulative
aperiodic processing consumed during [0, t] at level i or higher.
Ii(t) is the processing of level i inactivity during [0, t] for 1≤
i ≤ n and t ≥ 0. ri(t) is the number of jobs of τi completed
by time t. We use Ai j to denote the total aperiodic processing
available in an interval. Ci denotes aperiodic processing time
already consumed. At time t, the task τiri(t) has been completed
and however the task τi(ri(t)+1) has not. During [0, t], we use
Ai(ri(t)+1) to represent aperiodic processing units that can be
done at level k without causing any miss of deadlines at level
i.

At time t, we add an aperiodic task with priority i of size
Si,t without missing the deadlines of τi. Si,t represents the
amount of slacks available for aperiodic processing at priority
level i or higher, and is defined as Si,t =Ai(ri(t)+1)−Ci(t)−Ii(t).

In order to meet the needs of all deadlines of periodic
tasks with priority level k or lower, we need to minimize Si

over k ≤ i≤ n. The largest aperiodic task with priority k that
can be added to the system at time t is given by S�k , where
S�k,t = mink≤i≤n Si,t .

C. Hard Aperiodics Tasks for Retransmitted Segments

In order to efficiently schedule the retransmitted segments
that are used for improving the reliability, we need to determine
whether there exists sufficient time available during the interval
between the arrival time and the completion deadline. In
the meantime, all the guaranteed tasks, including periodics
and previously guaranteed but not yet completed aperiodics,
needs to meet their deadlines. Formally, for an aperiodic
task Jk, its arrival time, processing requirement, and deadline
are respectively αk, pk, and Dk. We need to determine an
appropriate priority level to process the task.

In order to compute the soft deadline aperiodics, we need to
take into account the previously guaranteed aperiodics and the
processing in a series of intervals, rather than a single interval.
Hence, we compute the total aperiodic processing available
at priority level i during [αk,αk +Dk]. A new aperiodic task
arrives at a time in which there are no pending aperiodic tasks
that have been guaranteed but have not yet completed.

In practice, in the interval [ta, tb] (ta =αk and tb =αk+Dk),
we compute the maximum amount of slacks that are available
for aperiodic processing at the highest priority level. In order to
maintain the history information and facilitate the computation,
we use an aperiodic processing time accumulator, θ , that has
an initial value of 0. At time ta, we compute the slack that is
immediately available, say θ �. We then add min{θ �, tb− ta} to
θ . We leverage the minimization to guarantee that aperiodic
processing time θ � does not exceed the time available to
execute that processing. The slack is immediately used since
aperiodic tasks are serviced at the highest priority.

Aperiodic processing will not occur until the job at the
lowest priority level without slacks. For example, τL, at priority
level L, completes. At its worst-case finishing time, FL = tβ ,
this task will complete. Based on the analysis, we argue that
there is no slack available for aperiodic processing in the
interval [ta+θ �, tβ ]. Hence, it is not necessary to recompute the
slack θ � at any other time t in the interval [ta, tβ ]. Furthermore,
due to the processing activity in the interval [ta, tβ ], performing
the computation of the slack available at time tβ becomes
difficult. In order to obtain correct results, we need to update
the variables that have been changed in terms of task slack
values and level i inactivity. We hence consider every task with
priority L or higher, which is either active at time ta or arrives
during [ta, tβ ]. Each of these tasks needs to be completed along
with τL by the time no later than tβ .

The FlexRay schedules hard aperiodics by executing tasks
τk. This task contains the level i inactivity to be accumulated
at higher priority levels. In order to compute level i inactivity,
we need to determine the total execution time in each priority
level. In fact, there exist multiple jobs of one task that executes
during the interval. The slack, that is obtained when each task
completes, can be added to the slack for its corresponding
priority level. The execution time moves to tβ when the
appropriate computation of the slack and level i inactivity at
each level i complete. The same computation can be used
for the interval [tβ , tb], in which the computation process
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continues until tβ ≥ tb. We finally obtain the available aperiodic
processing time in [ta, tb].

D. The Dual-channel Design for FlexRay Segments

In order to improve transmission reliability, FlexRay spec-
ification [2] leverages a dual-channel design. This design
supports flexible choices to transmit the static and dynamic
segments. The scheduling on static segments occurs in each
network node. We need to respectively maintain a slot counter
variable SlotCounter(A) for channel A and a slot counter
variable SlotCounter(B) for channel B to schedule segments in
channels A and B. These slot counters have the initial value of 1
at the beginning of each communication cycle. FlexRay further
increases the slot values until the end of each communication
slot in scheduling the segments.

The lengths of dynamic segments are important to deliver
high performance in transmitting message of practical FlexRay
networks. FlexRay uses the number of “minislots” to represent
the length of the dynamic segment. The number of “minislots”,
in fact, is equal to gNumberO f Minislots. When transmitting
dynamic segments, their lengths in the corresponding slot are
generally small. Moreover, if there are messages to be sent
during a slot, the transmission length in the dynamic slot is
equal to the number of minislots, thus transmitting the whole
message in an efficient manner.

The efficiency of transmitting dynamic messages relies
on the network configuration and states. In a communication
cycle, in order to initialize the network configurations, FlexRay
needs to reset the counters of slots and minislots in the
communication controller of a node. After examining exist
messages to be transmitted in the controller, FlexRay allows to
configure them into the frames. Furthermore, when there are
sufficient idle slots before completing the dynamic segment,
FlexRay can transmit the selected messages in the dynamic
segment of the bus cycle.

FlexRay makes use of parameter management in the real
implementations to schedule the segments. If the dynamic slot
counter is equal to the value of the Frame ID of the transmitted
message, a parameter pLatestT x is used. FlexRay compares
the current value of the minislot counter with pLatestT x. Each
network node uses a fixed value pLatestT x that is tightly
associated with the size of the largest dynamic frame.

E. Fault Model and Probability Analysis

FlexRay networks leverage signals as elementary com-
munication units from one ECU to another in automotive
applications. These automotive signals can be packed together
into frames. FlexRay further transmits these frames via the
communication bus. In practice, the frames on the bus are
possible to lose due to the potential transient faults. Electronic
devices hence become increasingly vulnerable.

Automotive industry proposes an international standard
(IEC61508 [21], [22]) for functional safety of electronic safety-
related systems, which has been well-recognized and widely
used as the fault model in the research community [4], [7],
[9], [23]. The standard consists of multiple levels of system
reliability. For each level, the standard specifies the probability
of system level failure in a time unit, u. Furthermore, we

leverage γ to determine the maximum probability of a system
failure. Given γ , we define ρ = 1− γ as the reliability goal.

The design goal, in essence, represents quantitative mea-
sure with respect to transient faults. Each message Mz(1 ≤
z ≤ N) has the failure probability, pz. In order to compute
this failure probability, we consider the message’s size, Wz,
and leverage existing fault-injection tools, such as Vector [24]
and Elektrobit [25] that can be used to compute Bit Error
Rates (BER). For a BER, pz can be computed as pz =
1− (1−BER)Wz . Given the reliability goal ρ over a time unit
u, we aim to derive the probability that all messages can be
successfully transmitted.

Theorem 1: The Probability of Successful Transmission.
Given a time unit u, the probability that all messages’ deadlines

are met is ∏N
z=1(1− pkz+1

z )
u
Tz . Each message has the retrans-

mission number, kz, and the failure probability, pz.

Proof: In a FlexRay network, the transmission failure
means that one instance of a message Mz fails to transmit in
the first transmission and the following kz retransmissions. This

probability is pkz+1
z . Moreover, the probability that the message

Mz has at least one transmission without faults is 1− pkz+1
z .

When extending the analysis from one instance to the entire
time unit u, the message Mz occurs in a period Tz for u

Tz
times.

Hence, for all instances of the message Mz, the probability that
at least one transmission without faults over time interval u is
(1− pkz+1

z )
u
Tz . This is actually the probability of successful

transmission of message Mz. Finally, when considering all
messages and their instances, the successful probability is

∏N
z=1(1− pkz+1

z )
u
Tz .

In a practical FlexRay network, the system reliability goal

ρ needs to be satisfied, i.e., ∏N
z=1(1− pkz+1

z )
u
Tz ≥ ρ . In order to

achieve this goal, CoEfficient needs to select the retransmitted
frames by computing the successful transmission probability.
In the meantime, our cooperative scheduling, that uses the
slack stealing, needs to judiciously choose the slacks whose
lengths match the sizes of the retransmitted frames.

F. Reliability-aware Slack Computation

The dual-channel structure in a FlexRay network offers the
opportunity to significantly improve network transmission re-
liability. However, the dual channels, in the meantime, need to
consume more network resources. A suitable tradeoff between
reliability and system optimization becomes more important
in a practical FlexRay network. In this paper, we make use
of reliability-aware slack stealing scheme to improve network
resource utilization without any loss of system reliability.

Conventional slack stealing algorithms [26], [27] have
the salient property of optimizing bandwidth utilization and
reducing transmission latency. The idea is to allocate the same
priority to periodic tasks. The slack stealing can hence meet
the needs of satisfying all periodic task deadlines and dealing
with the aperiodic tasks in the FIFO order.

In order to accurately and efficiently support cooperative
scheduling on the static and dynamic segments, we need
to determine the maximum amount of stolen slacks without
violating hard timing constraints. CoEfficient hence constructs
a slot stealer that uses fixed priority preemptive dispatcher to
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meet the deadlines of hard periodics and minimize the response
time of soft aperiodic tasks.

In order to facilitate the computation of selective slacks,
CoEfficient handles the hard periodic tasks by examining the
selective slacks between the deadlines on calling a task and
the next. We further use a table to store and maintain the
identified values. A set of counters can be helpful to keep
track of the selective slacks, which have larger probability to be
used at different priority levels. By using this table, CoEfficient
decreases the values of these counters that can be executed
or updated. We identify the maximum amount of processing
time from calling a hard deadline task in order to guarantee
the reliability.

In the context of CoEfficient design, li,t is the time when
task i was last released, and xi,t is the earliest possible next
release of task i, xi,t = li,t + Ti. di,t is the next deadline on
calling task i, and ci,t is the remaining execution time for
currently calling task i. In practice, we define that li,t ,xi,t
and di,t are all measured relative to time t. When task i
completes, we have di,t = xi,t +Di. In fact, di,t is the deadline
following the next release. In addition, we obtain the value of
ci,t by subtracting the execution time used from the worst case
execution time, Ci. We obtain ci,t = 0 if task i completes at
time t.

Reliability-aware slack computation needs to identify Smax
i,t

that is the maximum amount of selective slack time in the
interval [t, t +di,t). This slack has the larger probability to be
stolen at priority level i. In the meantime, task i should meet its
deadline. In order to efficiently compute the maximum slack
time, Smax

i,t , we examine the interval [t, t + di,t) by studying
a number of level i busy and idle periods. For a level i busy
period, it is a continuous time interval and we can place one or
more tasks of priority level i or higher in the execution queue.
On the other hand, a level i idle period is a time interval.
The corresponding execution queue is free of level i or higher
priority tasks.

CoEfficient can obtain the level i idle time between the
completion of task i and its deadline for task i computation
without causing the deadline to be missed. Furthermore, since
Smax

i,t is equal to the overall level i idle time in the interval,
we can compute the maximum slack. We describe the main
parameters in Table I.

TABLE I. PARAMETERS IN THE SCHEDULING SCHEME.

Parameters Description
pz Failure probability of message Mz
Wz The size of message Mz
kz Retransmission number
u Entire time unit

di,t The next deadline on calling task i
Si,t The level i slot processing released at t
wi,t The length of a level i busy period from t

In order to achieve the reliability goal, we need to compute
the retransmission number kz by using the known parameters.
This scheme works for the retransmitted segments, when kz ≥
1. To drive the recurrence to continue, a parameter ε is used
to represent the granularity of time. Specifically, we use Si,t to
denote the selective slack that is possible to be stolen. Its initial
value is zero. Performing the computation obtains the end of

a busy period in the interval [t, t+di,t). Moreover, we increase
the selective slack processing, Si,t , by using the amount of
idle time found in the last step. We can obtain the maximum
selective slack, represented as Si,t , once task i has reached its
deadline. Otherwise, the above operations need to be repeated.

IV. PERFORMANCE EVALUATION

In this section, we show the experimental results of our
proposed CoEfficient running on multiple datasets.

A. Experiments Configuration

We perform the experiments in 10 FlexRay nodes that are
connected to a bus analysis tool. This tool can help record
the information of message transmission. We implement and
configure the FlexRay nodes by using multiple networked
boards. These boards consist of a 16-bit Flash-based controller
unit to support the FlexRay protocol operations. We also make
use of FlexRay-enabled transceivers to support the physical
layer of the FlexRay bus. To order to examine the real-time
transmission performance, an independent module is used to
receive and maintain all messages that are transmitted on the
FlexRay bus.

In order to comprehensively evaluate the performance, we
configure the communication cycles that contain both static
and dynamic segments. FlexRay partitions available bus band-
width into multiple communication cycles in a time-triggered
manner. The communication cycle, which is periodically re-
peated, is an instance of FlexRay communication structure.

For static segments, the datasets consist of synthetic test
cases and two real-world scenarios. The synthetic test cases are
generated by randomly changing message parameters, such as
periods and deadlines, to represent various possible scenarios.
Specifically, we define the periods varying from 5ms to 50ms,
and the deadlines varying from 1ms to 20ms. By considering
the experiences from the real-world industry [15], we set the
FlexRay communication cycle period to be 5ms and the static
cycle length to be 3ms. Moreover, we use two real-world
applications, i.e., Brake-By-Wire (BBW) and Adaptive Cruise
Controller (ACC). Tables II and III respectively show the
details of the used parameters.

For dynamic segments, we define the values of the used
parameters and add the dynamic segments into the communi-
cation cycles. Our experiments make use of a suitable timing
property in terms of aperiodic messages by studying a message
set from Society for Automotive Engineers [28]. We hence set
aperiodic messages to be a period and a deadline to be 50ms.
Moreover, we use 30 aperiodic messages with the IDs 81 to
110 or 121 to 150, respectively corresponding to the number
of 80 and 120 slots.

The configuration parameters for dynamic segments can
be summarized as follows. The values of gdMacrotick [μs],
gdMinislot(macrotick), gdSymbolWindow(macrotick), gdDy-
namicSlotIdlePhase(minislot) and gdMinislotActionPointOff-
set(macrotick) are respectively 1, 8, 0, 1 and 2. The gNum-
berOfStaticSlots(macrotick) are 80 and 120. The values of
gdCycle [μs], gdStaticSlot(macrotick) and gdMacroPerCycle
are 5000, 40 and 5000.
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TABLE II. BRAKE-BY-WIRE MESSAGE PARAMETERS.

Message Offset (ms) Period (ms) Deadline (ms) Size (bits)

1 0.28 8 8 1292

2 0.76 8 8 285

3 0.58 1 1 1574

4 0.72 1 1 552

5 0.87 1 1 348

6 0.92 1 1 469

7 0.34 1 1 1184

8 0.28 8 8 875

9 0.75 8 8 759

10 0.52 8 8 932

11 0.95 8 8 1261

12 0.62 8 8 633

13 0.72 8 8 452

14 0.85 8 8 342

15 0.91 8 8 856

16 0.47 8 8 1578

17 0.56 1 1 1742

18 0.58 1 1 553

19 0.92 1 1 1172

20 0.68 1 1 878

TABLE III. ADAPTIVE CRUISE CONTROLLER MESSAGE PARAMETERS.

Message Offset (ms) Period (ms) Deadline (ms) Size (bits)

1 0.42 16 16 1024

2 0.62 16 16 1024

3 0.58 16 16 1024

4 0.25 16 16 1024

5 0.39 16 16 1024

6 0.48 24 24 1024

7 0.22 24 24 1024

8 0.51 24 24 1024

9 0.32 24 24 1024

10 0.47 24 24 1024

11 0.65 24 24 1024

12 0.42 24 24 1024

13 0.31 32 32 1280

14 0.56 32 32 1280

15 0.48 32 32 1280

16 0.32 32 32 256

17 0.66 32 32 256

18 0.42 32 32 256

19 0.26 32 32 1280

20 0.35 32 32 256

The experiments uniformly distribute the aperiodic mes-
sages into 10 FlexRay nodes. In each network node, the
aperiodic messages are generated by using an interrupt-based
routine running as the host process. One a 16-bit reload
timer is used to count down the time. Moreover, we use
gNumberO f Minislots to determine the minimum length of
dynamic segment. We evaluate the performance of transmitting
dynamic segments by using 50 and 100 minislots. The value
of parameter gNumberO f MiniSlots can be adjusted to show
the changes of the length of dynamic segment. Moreover, we
examine the performance for BER = 10−7 and BER = 10−9,
which correspond to different reliability goals. The commu-
nication cycle is 1ms and the static segment timing length is
0.75ms, based on industrial and academic experiences [2], [4],
[6], [9], [23], [29].

B. Evaluation Results

We compare CoEfficient with the standard implementation
of FlexRay specification (FSPEC) [2], in terms of overall run-
ning time, bandwidth utilization, average transmission latency
for static and dynamic segments, and deadline miss ratios.

1) Running Time: We examine the running time of Brake-
By-Wire (BBW), Adaptive Cruise Controller (ACC) scenarios

and synthetic test cases under BER = 10−7 and BER = 10−9,
which are respectively shown in Figures 1 and 2. These
results demonstrate the average running time with respect to
the increasing number of messages. Specifically, BBW and
ACC scenarios describe relatively light overhead as shown in
Figure 1(a) and 2(a).

When BER= 10−7, the proposed CoEfficient scheme com-
pletes the message transmission within 76.2 seconds (for 80
slots) or 92.3 seconds(for 120 slots), which are much smaller
than 1670 or 1910 seconds of the standard FSPEC. The reason
is that CoEfficient can efficiently schedule both static and
dynamic segments in a dual-channel manner.

When BER = 10−9, we obtain the similar observations
as shown in Figure 2. In order to offer higher reliability,
the number of retransmitted segments increases and hence
the overall transmission delays are larger, compared with
BER = 10−7. Moreover, since the 120-slot data incur more
idle slots and decrease the bandwidth utilization, the running
time for 120 slots is larger than that for 80 slots.

The scalability of the proposed CoEfficient scheme is im-
portant to offer efficient and reliable transmission service in the
FlexRay network. The cooperative scheduling upon synthetic
test is examined due to its larger-scale message set, as shown
in Figure 1(b). Compared with FSPEC, CoEfficient significant
decreases the latency. We obtain the similar observations in
Figure 2(b) when BER = 10−9. These experimental results
demonstrate that the running time of CoEfficient is much
smaller than that of the standard FSPEC.

2) Bandwidth Utilization: The metric of bandwidth uti-
lization describes the ratio of the bandwidth that is actually
used to the whole bandwidth. CoEfficient provides reliable
and efficient scheduling services and obtains significant per-
formance improvements upon bandwidth utilization with the
aid of the selective slack stealing technique. Figure 3 shows
the bandwidth utilization of CoEfficient and FSPEC from
25 to 100 minislots. We observe that CoEfficient improves
56.2%, 55.3%, 53.8% and 52.2% bandwidth utilization over
the standard FSPEC, respectively in 25, 50, 75 and 100
minislots. CoEfficient can therefore significantly improve the
bandwidth utilization.

3) Transmission Latency: In the context of FlexRay
scheduling, we compute the transmission latency from the
generation time to the ending time. Figure 4 shows the average
transmission latency of both static and dynamic segments
(50 and 100 minislots) under BER = 10−7 and BER = 10−9.
Specifically, we examine the transmission latency respectively
in the synthetic cases, BBW and ACC scenarios. First, Fig-
ure 4(a) shows the latency of transmitting static segments
(from 1 to 80 ID) in synthetic test cases. Although CoEfficient
and FSPEC attempt to provide hard transmission guarantee to
static segments, FSPEC incurs larger transmission latency than
CoEfficient. The delays of FSPEC are on average 8.2ms and
5.8ms respectively in 50 and 100 minislots when BER = 10−7,
and those of CoEfficient are 4.7ms and 3.8ms. When BER =
10−9, the delays of FSPEC are on average 12.9ms and 10.7ms
respectively in 50 and 100 minislots, and those of CoEfficient
are 9.6ms and 7.8ms. The main reason is that FSPEC makes
use of best-effort retransmission for all segments, which often
fail in the limited bandwidth. Unlike FSPEC, CoEfficient
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(a) BBW and ACC messages.
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(b) Synthetic test cases.

Fig. 1. Running time for real-world application and synthetic test cases when
BER = 10−7.

achieves the reliability goal by leveraging statistical analysis to
execute selective transmission, while efficiently improving the
bandwidth utilization. In the meantime, we obtain the similar
observations from the delays of BBW and ACC as shown in
Figure 4(b).

For dynamic segments, Figure 4(c) shows the transmission
latency of the synthetic test cases. When BER = 10−7, we ob-
serve that CoEfficient produces on average 67.5% and 59.3%
smaller latencies than the standard FSPEC, respectively in 50
and 100 minislots. In the BBW and ACC, those are 51.6% and
42.5%. When BER = 10−9, CoEfficient produces on average
43.2% and 38.7% smaller latencies than the standard FSPEC,
respectively in 50 and 100 minislots. In BBW and ACC,
those are 33.6% and 30.1%. By leveraging the selective slack
stealing, CoEfficient not only obtains significant performance
improvements in terms of transmission latency, but also offers
real-time transmission for the dynamic segments.

4) Deadline Miss Ratios: The metric of deadline miss ratio
describes the number of missing-deadline messages divided
by the total number of the transmitted messages. Figure 5
demonstrates the deadline miss ratio when taking into account
the minislots from 25 to 100. Since CoEfficient significantly
reduces the transmission delay and improves the bandwidth
utilization, the average ratios of missed messages of CoEffi-
cient are 4.8% when BER= 10−7 and 3.2% when BER= 10−9,
while those are respectively 21.3% and 19.5% in the FSPEC
scheme.
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(a) BBW and ACC messages.
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(b) Synthetic test cases.

Fig. 2. Running time for real-world application and synthetic test cases when
BER = 10−9.
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Fig. 3. Bandwidth utilization.

V. RELATED WORK

We categorize related work of FlexRay into protocol
improvements, segments transmission efficiency and fault-
tolerance management.

A. Protocol Improvements

For protocol improvements, Controller Area Network
(CAN) [1] provides the bounded delay communication at data
rates between 125kb/s and 1Mb/s. However, it is not suitable
for FlexRay that is hard real time in essence and requires
high-speed, robust, and predictable communication. Recent
attempts to meet these demands include Time-Triggered CAN
(TTCAN [30]), Time-Triggered Protocol (TTP [19]), and Byte-
Flight [20]. TTCAN and TTP are time-triggered technology
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(a) Static segments in synthetic test cases.
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(b) Static segments in BBW and ACC messages.
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(c) Dynamic segments in synthetic test cases.
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(d) Dynamic segments in BBW and ACC messages.

Fig. 4. Average transmission latency of both static and dynamic segments, when dynamic segments respectively have 50 and 100 minislots. For simplicity, we
use BER−7 and BER−9 to respectively denote BER = 10−7 and BER = 10−9.
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Fig. 5. Deadline miss ratio. For simplicity, we use BER−7 and BER−9 to
respectively denote BER = 10−7 and BER = 10−9.

with predictable medium access, while ByteFlight is based on
FTDMA.

B. Segments Transmission Efficiency

For segments transmission, existing work mainly considers
the schemes for scheduling either static segments or dynamic
segments. A frame packing algorithm [31] can efficiently
minimize bandwidth consumption in the dynamic segments

by packing different signals into a message frame. Scheduling
static segments [14] and dynamic segments [16] can be sep-
arately formulated into nonlinear integer programming prob-
lem to maximize their own bandwidth utilization. Moreover,
slot multiplexing [10] offers schedulability analysis for the
dynamic segments of FlexRay. Based on mixed-integer linear
programming, an optimization framework [3] is proposed to
schedule the transactions that consist of tasks and signals
in a FlexRay-based system. A schedulability analysis [32]
determines the timing properties of transmitted messages.
Furthermore, although HOSA [7] uses the dual channel for
data transmission, its best-effort retransmission consumes sub-
stantial bandwidth to support fault tolerance.

C. Fault-tolerance Management

For fault-tolerance management, optimizing bandwidth uti-
lization [4] is formulated into constraint logic programming
to support fault-tolerant schedule in the presence of transient
and intermittent faults. A systematic probabilistic analysis
is used to provide formal guarantee on desired reliability
levels. However, this work only considers the static segments
of FlexRay. Moreover, the problem of scheduling FlexRay
segments is formulated as a mixed integer linear programming
algorithm [23]. Its design goal however is to retransmit as
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many faulty messages as possible, which can not offer reliabil-
ity guarantee due to choosing the retransmitted messages in an
ad-hoc manner. The retransmission may improve the reliability
with extra loads in the transmission bandwidth and additional
communication latency. In its optimizing application-level ac-
knowledgement and retransmission scheme, transmission time
is allocated on top of an existing schedule. Unlike them,
CoEfficient provides cooperative scheduling upon both static
and dynamic segments, while using real-world fault models
and providing transmission reliability.

VI. CONCLUSION

The reliability of transmitting messages is important to the
efficiency and performance in the FlexRay networks since the
rapid growth of hybrid segments need to be transmitted in an
efficient and reliable manner. While most existing work fails to
efficiently offer scalable fault tolerance, our work identifies this
important problem to meet the needs of reliability and deliver
high performance. In order to meet the needs of transmission
efficiency and reliability, this paper proposes a cooperative
and efficient scheme, called CoEfficient. CoEfficient offers
comprehensive solution and delivers high performance. It
supports fault-tolerant scheduling on both static and dynamic
segments by considering real-world fault models. CoEffi-
cient significantly decreases transmission latency and improves
bandwidth utilization and reliability, using the improved slack
stealing technique. By the comparisons with state-of-the-art
FlexRay based scheduling schemes, extensive experimental re-
sults based on real-world test cases demonstrate the efficiency
and efficacy of the proposed CoEfficient scheme.
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