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Abstract—Electric vehicles (EVs) play a significant role in the
current transportation systems. The main factor that affects the
acceptance of existing EV models is the range anxiety problem
caused by limited charging stations and long recharge times.
Recently, the solar-powered EV has drawn many attentions
due to being free of charging limitations. However, the solar-
powered EVs may still struggle with the limited use because of
unpredictable solar availability. For example, shadings caused
by buildings and trees also possibly decrease the solar panel
cell efficiency. To address this, we propose a route planning
method for solar-powered EVs to balance the energy harvesting
and consumption subject to time constraint. The idea behind
our solution is to offer power-aware optimal routing, which
maximizes the on-road energy input given solar availability on
each road segment. We first build a solar access estimation
model using 3D geographic data and then employ a multi-criteria
search method to generate a set of Pareto candidate routes. In
order to reduce the size of the set, we leverage the bisect k-
means clustering algorithm to extract the most representative
Pareto routes with better solar availability. In the evaluation, we
developed a validation platform on the vehicle and leveraged
mobile sensing techniques to examine our proposed model in
real road environments. We conducted simulations to evaluate
our proposed route planning algorithm using real life scenarios.
Experimental results demonstrate that our solar input model is
robust to real road scenarios, and the routing algorithm has great
potential to provide efficient services for solar-powered EV in the
future.

Index Terms—Route Planning, Solar Power, Electric Vehicle.

I. INTRODUCTION

The market share of Electric vehicle (EV) has significantly

increased over the past few years, which is considered as one of

the most promising transportation tools of the future. In 2015,

there has been over 1 million EVs on the road, and a 20%

steady increase of annual growth rate of the global EV market

is predicted before 2020. Compared with gasoline-powered

vehicles, EVs take advantages of the ability to obtain electricity

from a broad range of regenerative energy sources, such as tidal

power, solar power and wind power. However, electric vehicles

on the market today still face several challenges despite the

wide acceptance. Small battery capacity and sparse availability

of charging stations are considered to be major factors that

limit the range of EVs, which is so-called the range anxiety

problem [1], [2]. Though a number of charging facilities have

been designed and installed such as home charging point and

workplace charging facility [11] [24]. These charging facilities

may increase the infrastructure cost and hour-scale recharge

time is not able to meet the consumer demand.

Due to the flexibility to integrate different energy generators,

EVs can power accessories (e.g., light and audio system),

fuel the battery or direct the energy straight to the electric

motor partly or totally relying on solar energy [3]. As a

special class of EV models, the solar-powered EV has been

considered as a solution to the range anxiety problem and

drawn many attentions from both academia and industry. Solar-

powered EVs use the solar panels installed on the car to collect

energy, which can convert the solar energy into electricity

not only at parking but also travelling on the road. Although

successfully being freed from charging limitations (e.g., limited

charging resources, long charging time), the solar-powered

EV may still struggle with inefficient energy input due to

unpredictable solar availability. Especially in urban areas, solar-

powered EVs can hardly harness enough solar energy due

to intermittent shadings caused by buildings and road-side

trees. Several routing algorithms have been proposed to solve

the range anxiety problem for ordinary EVs [4], [5]. They

aim to minimized the EV energy cost for a given trip by

selecting an optimal route. However, the problem of route

optimization for a solar-powered EV is even more challenging

due to solar access variations as well as time constraints. A

previous study [1] seeks to optimally plan the speed for solar-

powered EVs on different road segments (i.e., illuminated road

and shaded road) to balance energy harvesting and consumption,

which enables the driver to reach the destination in the shortest

time. Unfortunately, authors do not consider the EV route

planning problem with real urban street restrictions. Different

routes have different lengths, levels of congestion and solar

availability, all of which would significantly affect the vehicle

speed, fuel consumption and solar energy input efficiency.

The system should be able to select a route for the driver that

maximize the solar power collection with less extra energy/time

costs.

Moving along this direction, in this paper we propose a route

planning algorithm for solar-powered EVs, which aims to help

the driver to complete a given trip in urban areas with maximal

solar availability. The basic idea of our approach is to define

the route planning as a multi-objective optimization problem

that incorporates three major factors including travel time,

solar-input/access quantity and EV energy consumption. By

integrating the solar access model and traffic flow information,
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we employ a multi-criteria search algorithm to find a set of

Pareto routes between two locations. Finally, we could offer

better routing plans to drivers based on different personal

preferences/demands (e.g., travel time, EV model type).

To implement the proposed route planning algorithm, we

addressed several challenges in practice. Firstly, there might be

a large number of Pareto routes generated by the multi-criteria

algorithm. While we only need a small set of candidate routes

(e.g., 2-3 routes). The comparison between each pair of routes is

time consuming and many of them have similar properties (e.g.,

90% nodes and edges). Secondly, due to efficiency limitations,

an EV may deplete the energy faster than the solar input. We

need to verify that the selected route can produce more energy

input than the consumption on extra travel distance compared to

shortest-time path. Thirdly, urban solar input/access estimation

is a challenging task. Since the on-road solar input information

is not accessible via any public database. A large-scale solar

radiation sensing network is not affordable [6]. Finally, there

is no solar-powered EV model on the market. The evaluation

of the solar input model and our proposed route planning

algorithm is not an easy task.

Specifically, we make the following contributions:

1) We proposed a multi-criteria route optimization algorithm

for the solar-powered EV, which considers travel time,

solar access availability and EV energy consumption. We

propose a novel route merging method, which leverages

the bisect k-means clustering algorithm to extract the most

representative Pareto routes. We also define the candidate

route selection scheme to determine the driving path.

2) In order to build daytime solar access model, we use

the ArcGIS 3D scene tools to capture local (City of

Montreal) shading scenes while at the same time using

computer vision algorithms to measure solar availability

on roads. By integrating the solar access data and traffic

flow information, we are able to estimate the solar energy

input on each road segment.

3) We conduct real-road driving experiments and simulations

to evaluate our proposed method. We also developed a

solar perception prototype to validate the solar input

map estimation on real-road driving. We studied two

driving scenarios in the simulation to examine the routing

performance of our proposed algorithm. Experimental

results show that our solar input estimation model, as well

as the route planning algorithm are robust to real road

scenarios, and has great potential to provide desirable

services for solar-powered EV in the future.

Additionally, we do not consider the speed planning problem

for solar-powered EVs in our design. It has been well studied

by Lv’s work [1]. In case where it is required, two works

can be integrated to achieve the goal. We also acknowledge

that existing ordinary EVs are not equipped with solar panels.

In addition, the energy consumption of EV is much higher

than solar energy input due to cell limitations especially in

high speed modes. However, the purpose of our solution is to

provide driving routes with better solar availability to drivers,

the EV can arrive the destination in time while receive the

extra energy input. It could be more useful in the future on

new solar-powered EVs where solar panels serve as the main

or minor energy input.

The reminder of the paper is organized as follows. Section II

reviews the related work. Section III gives a brief view of the

problem considerations and the algorithm design. Section IV

presents the proposed route planning algorithm and our solar

access model. Section V presents real driving experiments and

simulation results. Section VI discusses the future work to

improve the system performance and Section VII concludes

the paper.

II. RELATED WORK

There has been active research work addressing electric

vehicles (EVs) path planning problems with the objective of

minimizing energy consumption. Most of the path planning

problems can be summarized into the Constrained Shortest Path

(CPS) category [7]. Several approaches have been proposed to

address EV routing problem [8], [9], [10], which are subject

to trip constraints such as travel time, energy capacity and

charging station distribution, etc.. However, their solutions do

not consider the solar energy input during the trip. In addition,

some research work also focuses on the energy recuperation

scenario, Artmeier et al. [11] studied optimal routing for

electrical vehicles with rechargeable batteries within a graph-

theoretic context. They formalized the routing problem as a

special case of the constrained shortest path problem (CSP) with

several hard and soft constraints and used a family of search

algorithms to address these constraints. To further speedup

the performance of algorithm for path planning problem with

recuperation, Baum et al. [12] presented a dynamic method

for Customizable Routing Problem (CRP), which is capable

of updating the energy matrix in real time as the vehicles

storage solar energy during trip. The recuperation process in

their models is similar to the solar energy input on illuminated

roads, which could resemble and inspire our design. The major

difference between our work and these research is that the

energy collected via recuperation is assumed to be a fixed

value on each road segment, while the solar energy input value

is affected by travel time and solar radiation.

On the other hand, the studies of maximizing solar energy

harvest in UAVs (Unmanned Arial Vehicles) path planning

problem [13], [14], [15] have emerged in the last decade.The

mathematical models are targeted at aircrafts instead of automo-

biles, and so their dynamics include back angle control variable

which is different from vehicle models. Take a glance at the

competition of solar-powered EV design, the models presented

by the competitors in the American Solar Challenge [16] mainly

focus on optimizing the EV shape to decrease the wind drag, as

well as expanding the effective area of solar panels to maximize

energy input. Nevertheless, the EV routing problem are not

considered in the competition.

Towards the most related work in solar-powered EVs path

planning problem, Plonski et al. [17] addressed the minimal-
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energy path planning problem for solar-powered mobile robots.

The authors estimate the overall solar distribution of a certain

bounded testing area based on the sampling data of certain

points, and calculate the minimal energy consumption path

using the estimates in solar map. However, the path planning

model can be less practical if one considers the change of

shadows as the sun moves in the sky, or extends the robots to

automobile and takes the numerous and complex urban streets

constraints into consideration. Sorrentino et al. [18] presented

a genetic algorithm to calculate the path with minimal fuel

consumption for hybrid solar vehicles. The solar energy are

collected from a stationary photovoltaic plant, which did not

consider shaded road segments in the course of data requisition.

Moreover, Lv et al. [1] proposed a dynamic programming

method to compute the optimal speed assignment on each path

segment to minimize the total travel time. The computation

overhead is notably decreased compared with standard non-

linear programming solver and the estimates are proved to be

fit well with the real data from physical EV. However, their

solution is built upon speed planning. A driver can not select

an optimal path to maximize the solar energy collection. In our

design, we aim to find the most energy-wise path with optimal

tradeoff between the solar energy input and the additional

energy cost for the trip.

III. DESIGN CONSIDERATIONS

In this section, we discuss the technical considerations

underpin the design of solar-powered EV routing while the

detailed algorithm design is presented in Section IV.

Fig. 1: The Solar-Powered EV Routing Problem

A. The Route Planning Problem

The route planning problem can be explained using the

example as shown in Figure 1. When a user starts a trip from

home A to the workplace/school B. There will be three types

of path options, P1 the shortest-time path but little solar energy

input, P2 a little longer travel time with higher solar energy

input and P3 maximal solar energy input in an acceptable

arrival time. In this work, we assume that the vehicle speed is

constant on each road segment, the travel time mainly depends

on the traffic flow and the route length.

If the driver is late for work/class and the arrival time is

the first priority, he/she drives a gasoline or ordinary battery-

powered electric vehicle. Without considering traffic situation,

the shortest path P1 would be the best option. However, P1

has many shaded road segments caused by buildings and trees,

which has limited solar energy input. If the vehicle battery

totally relies on the solar power, it may not have enough energy

to reach the destination. Comparably, other longer paths (P2
and P3) are more feasible if the driver have enough time.

Moreover, since many paths have similar length (e.g., no more

than 100 meters) in urban areas, the energy cost on P2 could

be very close to P1. Then P2 is a better choice than P1 if

the user drives a solar-powered EV which requires more solar

energy input.

B. Multi-Criteria Routing Path Model

In this paper, the vehicle route network can be represented as

a directed weighted graph G = (V, E, c), where V is the set of

nodes, and each node on the map corresponds to an intersection

with geographic coordinates (i.e., latitude and longitude). The

edge set E = (u, v)|(u, v ∈ V) ∧ (u �= v) represents the road

segments on real roads that connect two intersection nodes.

An example of road segments in a path is shown in Figure 2,

given a start point A and an end point B, the path from A to

B is composed of consecutive road segments (edges) that can

be defined as follows:

P(A, B) =< Sstart, S1, S2, ...Sn, Send > (1)

where Sstart and Send are the road segments from start

the point A and the end point B to their nearest neighbour

intersections (I1 and I3), and Si(i = 1, 2, ..., n) are road

segments (edges) that between connected intersections (nodes).

In addition, one road segment may also be composed of several

illuminated segments and shaded segments. But we do not

further divide a single road segment into smaller segments

(illuminated/shaded segments), because a driver can not change

the path between two neighbour intersection nodes (e.g., I1
and I2 in Figure 2).

Fig. 2: An Example of the Path from A to B, I1 is the neighbour

intersection to A and I3 is the neighbour intersection to B.

As we consider the EV route planning as a multi-criteria prob-

lem, the cost on each edge is represented as a k-dimensional

vector of criteria c = (ctt, csi, ..., ck). Since we have two

attributes to be taken into consideration, i.e., road distance

and solar-input, we define k = 3. The solution of the multi-

criteria vehicle routing problem is a full Pareto set of routes

π, each route in this set with a vector of cost value c(πp) is

non-dominated by any other solutions (a solution πp dominates
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another solution πq i f f ci(πp) ≤ ci(πq) for all 1 ≤ i ≤ k,

and cj(πp) < cj(πq), for at least one j, 1 ≤ j ≤ k).

C. Solar Access Model

1) Solar Road Segments: In this paper, we compute the route

planning for solar-powered EVs in urban areas, where shadows

cast by trees and buildings can limit the solar input/access

on road. Since each road (edge) consists of illuminated

segments and shaded segments [1]. We consider EVs equipped

with solar panels which can only collect solar energy on

illuminated/solar road segments (e.g., during the trip or at the

parking lot). Extracting the information of solar road segments

from existing public databases (e.g. ArcGIS[3], Google Maps)

is a challenging task.

2) Solar Travel Time: Nowadays, different types of solar

panel products could have different cell efficiency [1], and

it is difficult to build a standard solar energy map for all

solar-powered EVs due to lack of industrial information and

solar-powered EV. According to [1], on an illuminated road

segment with length SSolar with a constant cruising speed V,

the actual power output of a solar panel is a fraction of the

total solar power, which can be expressed by Equation 2,

EnergySolar = C · SSolar
V

, (2)

where C is the power input of solar panel on illuminated

segments. In this paper, we assume C is constant in short trips

and there will be a value update every 15 minutes (discussed in

Section IV-B). We estimate the solar power input C based on

the average cell efficiency of commercial solar panel products

(around 20%) [1]. Therefore, the solar-energy availability of

each path only relies on the length of illuminated road segments

SSolar and the vehicle speed V, which can be expressed as the

EV travel time on solar road segments tSolar (Equation 3).

tSolar =
SSolar

V
, (3)

In this paper, tSolar is called solar travel time. We measure

the tSolar instead of validating the solar energy input value on

candidate driving paths to select proper routes for solar-powered

EVs.

3) Solar Road Length and Radiation: Given a road segment

edge en (1 < n < m) in the path, the road length sn is the

sum of illuminated length sSolar
n and shaded length sShadow

n .

The illuminated road length SSolar of the entire path can be

expressed by Equation IV-B2,

SSolar =
m

∑
n=1

sSolar
n . (4)

The value of solar length sSolar can be measured by subtract-

ing the shading segments sShadow from the road. Shading seg-

ments that casted by buildings/trees can be predicted/estimated

by applying the ray-tracing technique (e.g., ArcGIS [3] tools)

given the current time (to compute solar path and position) and

building/tree information (e.g., height, size, location). However,

shading segments on roads fails to (or very less likely) obtain

regular shapes and change significantly throughout a day. It is

because that shadows rotate around the objects (e.g. buildings

and trees) that cast them during the daytime along with different

sun’s positions (Earth rotates). For example, the shadow casted

by one high building at an intersection may cover two or three

roads in the morning and dim one entire street in the afternoon.

What is more, the amount of solar radiation incident on

the EV’s flat panel changes with the position of the sun

(i.e.elevation angle). The selected paths have different solar

energy accesses at different times of the day. Figure 4 shows

an example of the daily value of the local solar radiation. We

observe that the solar radiation value is low in the morning

and evening while reaches the highest level at noon. Therefore,

estimating solar access is a very challenging task which may

require a large-scale radiation sensing network on urban roads.

In this paper, we propose a vision-based solution to measure

street-level solar input/access. The detailed description of the

algorithm is presented in IV-B.

D. Solar-Oriented Routing

A longer driving path will deplete more vehicle energy. The

routing algorithm for solar-powered EVs should be able to

manage the balance between the EV energy consumption and

solar energy input (as shown by Equation 5). Compare with

the shortest path P1, a driver has to collect enough solar energy

for extra energy cost on path Pi,

EnergyExtra
i = (EnergySolar

i − EnergySolar
1 )

−(EnergyOut
i − EnergyOut

1 ) > 0,
(5)

in Lv’s work [1], the energy consumption of EV Ei
Out on

path Pi can be expressed by Equation 6.

EnergyOut = S(aV2 + b), (6)

where parameters a and b are determined by the vehicle

itself and the road conditions. Thus, based on Equations 5, 2

and 6, we can select the best path from candidate routes that

meets the requirements.

Therefore, the intuitions and experience in planning trip for

traditional combustion engine vehicles and ordinary battery-

powered electric vehicle fail to be used for solar-powered EVs.

The situation could become even more complex due to various

solar availability during the daytime. In order to make the driver

successfully complete the trip and meet timing requirements,

the route of the trip must be systematically planned according

to complex road situations and solar input/access conditions.

So in this paper, we study the travel route planning which

enables the solar-powered EV to collect more energy input

within acceptable travel time.

IV. SOLAR-ORIENTED ROUTE PLANNING ALGORITHM

In this section, we present how to generate the properties

of the routes. There are three criteria taken into account, i.e.,

the route distance and the solar-input. Then we illustrate how
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to address the multi-criteria routing problem via the multi-

label correcting algorithm. At last, a set of Pareto routes are

displayed and the optimal route is selected from the Pareto set.

A. Road-Segment Distance Calculation

As mentioned in Section III-B, we represent the vehicle road

network as a directed weighted graph. Each edge (u, v) ∈ E
in the graph represents a road segment. Since each node has

a geographic coordinate, thus we apply Haversine formula to

calculate the geographic length of a road segment [19]. Eq. 7

displays how to use the latitude and longitude to compute the

distance between two nodes,

d =2r arcsin(
√

A + B), A = sin2(
ϕ2 − ϕ1

2
),

B = cos(ϕ1)cos(ϕ2)sin2(
λ2 − λ1

2
),

(7)

where ϕ1 and ϕ2 are the latitude and longitude of node

u, λ1 and λ2 are the latitude and longitude of node v, r is

the radius of the sphere. We use this equation to obtain the

distance of all edges.

B. On-Road Solar Input Modeling

1) Solar Input Map: Instead of deploying a large-scale

solar radiation sensing network [6], we present an efficient

method using vision-based techniques to estimate the solar

access on urban roads. The basic idea of our method is to

build a solar input map by measuring the length of shaded

and illuminated areas of each road segment based on ArcGIS

3D local scenes [20] and solar radiation datasets [21]. 3D

scene in ArcGIS is the primary framework for geo-information

modeling. It contains the building layer (3D modeling) and

sunlight/daylight features, which allows us to generate on-road

shadows by integrating and combining the 2D basemap.

We first select the 3D scene of the city (Montreal) and use

the time as the input to simulate the sunlight conditions in

ArcGIS. We then take the 2D imagery (map) (top-down view)

of 3D scenes (Figure 3) and analyze shaded/illuminated road

segments in the map using vision-based methods. Based on the

shadow information extracted from 3D scenes, we are able to

estimate the solar access of different paths on real roads and

help drivers to select proper routes for their solar-powered EVs.

In addition, shadows rotate around objects (e.g., buildings) due

to different positions of the sun (Section III-C). As shown in

Figure 3a and 3b, shaded regions in 3D scenes have different

shapes at different times (at 9:15 a.m. and 3:15 p.m.). To collect

daytime shadow data we take 3D scene images throughout one

consistently sunny day (from 8:00 a.m. to 6:30 p.m. in the test).

According to our real-road test and solar radiation data [21], we

choose 15 minutes as the sampling interval of the imagery data,

which could draw a balance between the computation workload

and the estimation quality of our planned paths (shaded road

segments do not change significantly).

2) Solar Road Length Estimation: Measuring the length

of shadows for a given road segment Si in 3D scenes is

very challenging (It is hard to select endpoints.). Instead, we

first calculate the area ratio rarea of shaded parts AShaded
i to

the target road segment Ai in selected images. Based on the

basic geometry, the road area ratio is very close to the road

length ratio if the road width does not change significantly.

Thus, the road area ratio (AShaded
i to Ai) in the image can

be considered as an approximation to the length ratio rlength
of shaded segments LShaded

i to the target road segment Li.

We then calculate the shaded road length LShaded
i based on

the area ratio rarea in 3D scenes and the road length Li (Li
is measured based on the real location information), which

indicates the probability of solar loss when we drive through

the road segment Si as follows:

rarea =
AShaded

i
Ai

≈ rlength =
LShaded

i
Li

, (8)

LShaded
i ≈ Li · rarea, (9)

To measure the area of a road segment in the image, we

employ the binarization method to extract the road region

and calculate the amount of pixels in it. We then leverage

a Probabilistic Hough-line transformation to identify the line

segment for each road and locate intersection points/nodes in

the map. Based on the geographic information in the graph G,

we are able to build the solar map with nodes corresponding to

real physical intersections on road and assign the value (length

and area) to each road segment/edge in the model. Finally,

the illuminated segment length of each road can be estimated

using the solar map. In addition, the Hough-line transformation

may not be able to achieve 100% accuracy, we also manually

add and correct intersection points/nodes on images.
3) Solar Radiation and Traffic Flow: Given one road

segment Si with a fixed solar length LSolar
i (constant in 15

minutes), the amount of solar energy that a EV can collect

relies on the travel time tSolar
i and current solar irradiance

Pt. In urban areas, the vehicle speed Vi is largely affected by

the traffic low. Since we do not consider the speed planning

problem in this paper, we choose the EV speed based on the

traffic flow information provided by Google Maps [22]. Thus,

we can estimate the EV travel time tSolar
i on a selected solar

road segment using the current traffic speed and the solar road

length produced by the last Section IV-B2.

To obtain the solar irradiance information, we make use

of the solar radiation datasets which were retrieved from a

system composed of 17 units (each unit has two irradiance

sensors) at one of Canadian sites located in Quebec (very close

to Montreal). The system measured the ground-level solar

variability on a network of sensors distributed over a given

surface. The measurement was performed at a high frequency

(up to once every 10 milliseconds), which can record high

ramp-rate events and help simulate the solar radiation in urban

areas. Figure 4 shows the solar radiation data for a day in July,

we can see that the solar irradiance achieves maximum value

(around 1150 W/m2) in the middle of the day and become
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(a) On-road Shading (9:15 AM). (b) On-road Shading (3:15 PM).

Fig. 3: Examples of Shading Segments on Urban roads.

lower in the early morning and evening (less than 300 W/m2).

The solar radiation data is from Natural Resources Canada [21].

The surges in the measured irradiance on a unit were mainly

caused by obstructions (e.g., birds) passing over or variable

cloud cover conditions.

Fig. 4: An Example of Solar Radiation Value for One Day in

Quebec.

C. Multi-label Correcting Algorithm

In this paper, we use the multi-label correcting algo-

rithm to compute the full set of Pareto routes [23], which

operates on labels that have multiple values, one per op-

timization criterion. To execute the algorithm, we define

variable structures for each node u ∈ V, label L(u) :=
(u, (ltt(u), lsi(u), ..., lk(u)), LP(u)), which is composed of the

node cost values with respect to each criterion, and the label

LP(u) represents L(u)’s predecessor. We define k = 3 in our

route planning algorithm, where ltt, lsi and lec represents the

travel time, solar energy input and EV energy consumption,

respectively. In addition, each label has a sequence number

starting from 0. A priority queue QueueL is created to store all

labels built during the search. Since each node may be searched

multiple times, we define a set structure Bago f Label(u) for

each node to maintain the non-dominated labels at u.

The main steps of multi-label correcting algorithm (pseu-

docode of Algorithm 1) are shown as follows:

(1) For a three-criterion optimization problem, we first do

the initialization,

Algorithm 1: Multi-Criteria Routing Algorithm

Input: vehicle route graph G = (V, E, c), origin node s,

target node t
Output: full Pareto routes set P(t)
Initialization:
Initialize the label of origin node L(s) ;

Q.add(L(s)) ;

P(s).add(L(s)) ;

while Q is not empty do
current := Q.pop min() ;

u := getNode(current) ;

(ltt(u), lsi(u), lec(u)) := getCost(current) ;

LP(u) = getPredecessorLabel(current) ;

foreach edge (u, v) do
to insert := ComputeNewCosts()

end
foreach Label L(v) ∈ P(v) do

to insert := CheckDomination()

end
if to insert == True then

next := (v, (Ctt(v), Csi(v), Cec(v)), Lcurrent) ;

P(v).add(next) ;

Q.add(next) ;

end
end

• we initialize the label at the start point

L(origin) := (uo, (0, 0, 0), preL(origin)), where

preL(origin) is NULL;

• insert the initial label L(origin) into QueueL and

Bago f Label(origin).
(2) Secondly, we need to extract the minimum label (in

lexicographic order) at current step Lcurrent from the priority

queue QueueL. For each edge (u, v) out of node u:

a. Compute new cost values ctt(v), csi(v), cec(v) from u to

node v. Specifically, unlike other EV energy saving cases, we

expect the maximum value of solar energy input. We compute

the csi(v) by calculating the EV travel time on shaded road

segments. Since less shadows means more solar input.

b. If the new cost values are not dominated by

any label L(v) ∈ Bago f Label(v), create a new label

(v, (ctt(v), csi(v), cec(v)), Lcurrent) for node v and then insert

this new label into QueueL and Bago f Label(v).
c. If any label L(v) ∈ Bago f Label(v) is dominated by the

new cost values (ctt(v), csi(v), cec(v)), remove the label from

the priority queue QueueL and Bago f Label(v).
(3) Finally, if the priority queue QueueL becomes empty,

exit the loop; otherwise, go to (2) and continue.

D. Optimal Route Selection

The multi-label correcting algorithm may generate a large set

of Pareto routes, many of which may have the same properties

and do not interest the users. We therefore need a method

to select a small representative subset of Pareto routes. We
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employ the bisect k-means clustering algorithm on the whole

Pareto routes set to automatically decide the number of clusters.

The Manhattan distance is used as the distance measure.

The bisect k-means algorithm works as follows. Initially,

there is only one cluster which contains all the routes. The

algorithm iteratively picks one cluster with the worst quality,

then splits this cluster into two clusters. In our case, the cluster

quality of a cluster C = routelabel1, ..., routelabeln is defined

as q(C) = 1
n ∑n

i=1 |route labeli − c| where c is the centroid

of C, i.e., 1
n ∑n

i=1 route labeli. A smaller q(C) indicates

better cluster quality. The algorithm terminates when ∀C :
[q(C) < δ] where δ is predefined threshold for the cluster

quality.

After route clustering, we need to select a small number

of representative routes from these clusters. Route selection

proceeds in two steps. In the first step, we select the so-called

single− costoptimum Pareto routes, i.e., routes that the lowest

cost value for one of the three criteria. In the second step, we

only consider the clusters that did not contain any of the single-

cost optimum routes. For each of the remaining clusters, we

select one route that is closest to its cluster centroid. Thus,

at the end, we have at least one route (e.g., the shortest-time

path) from each of the clusters. If there are more than one

routes, we then calculate the extra travel time and energy input

EnergyExtra on each route compared to the the shortest-time

path. The routes with the positive value of EnergyExtra will

be selected as the final outputs.

V. EVALUATION

In this section, we present our experiments as follows:

1) We developed a solar illumination perception platform

(on a normal vehicle) to validate our on-road solar access

estimation model in real driving environments.

2) We conducted simulations to compare the performance

of our proposed method (multi-criteria route planning)

and the shortest-path (shortest travel time) algorithm. We

selected different start points and end points based on

the real geographic information (i.e., OpenStreetMap and

Google Maps).

To evaluate our solar input model in real-road driving

situations, we conducted a validation platform on a petrol

engine vehicle (there is no solar-powered EV in the market).

Since it may be not safe/legal to add solar panels on a traditional

vehicle, we focused on validating the travel time on solar road

segments instead of measuring the solar energy input value. We

developed a solar illumination perception system leveraging

mobile sensing techniques. We employed smartphone light

sensors to monitor solar illuminance and detect when a vehicle

enters or exits an illuminated/solar area while at the same time

using the GPS units (embedded in smartphones) to record the

vehicle location information. In order to avoid system glitches

and variances caused by different sensor view angles [24],

we ran the sensing applications on two Android smartphones

(Google Nexus 6) simultaneously and mounted them at different

positions (windshield and sunroof) in the vehicle, as shown in

Figure 5. Each smartphone is equipped with a Quad-core 2.7

GHz Krait 450 CPU, 3GB RAM.

To validate the proposed route planning solution to be used

on existing ordinary EVs, our simulations were conducted based

on real geographic/traffic data and EV energy consumption

data. We collected road properties and traffic information from

OpenStreetMap [25] and Google Maps [22]. In addition, we

used the solar-powered EV prototype built in Lv’s work [1] and

the Tesla Model S (85kWh) as the testing EV models which

are discussed in Section V-B. We use the pair of nodes (i.e., the

start point and the end point) ID as the algorithm inputs and

performed our proposed route planning algorithm to output a

set of Pareto routes. We compared the solar availability on each

route with the results generated by the shortest-path (shortest

travel time) algorithm. Both algorithms were implemented and

run within Python on a CentOS 7 server which has the Intel

i5 CPU and 8GB memory.

A. Real Road Solar Access

We carried out real-road experiments in July and August

at different time of the day: in the morning 10:00 - 11:00, at

noon 12:30 - 13:30 and in the afternoon 16:00 - 16:30. We

select 6 urban driving paths in Downtown Montreal and ran

the validation experiments on two sunny days and one mostly

sunny day. The system can determine whether the vehicle was

on an illuminated/solar road segment by checking the average

value of two smartphone readings. Based on the testing data,

we are able to calculate the travel time that a vehicle took on

solar road segment of each path and validate our estimation

model. The results are the average value of three experiments

which are shown in Table I.

Fig. 5: On-road Solar Access Experiment Setup.

Fig. 6: Real Road Solar Distance Validation.
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Fig. 7: Real Road Travel Time Validation.

In Table I, RSD and MSD refer to the real road solar

length and the solar length estimated by our model, RSTT

and MSTT refer to the total travel time on solar road segments

and the travel time estimated by our model, respectively. TS

refers to the average speed of current traffic estimated by

using Google Maps. Though there is slight difference in solar

length and travel time between real driving and our estimation,

the proposed solar input model can work well in real road

environments.

For the solar length estimation, the differences are mainly

caused by GPS errors on real road and the missing information

in 3D scenes [20], since some roadside trees and other

obstructions (may be temporarily built) that may cause shadows

are not recorded in the database. For the travel time differences,

a vehicle generally has different travel times on the same road

segment. This is because a driver can not maintain a constant

speed due to less accurate traffic flow prediction, different

sensitivities of the acceleration pedal and personal driving

style, etc.. For example, a driver may frequently drive faster

than the average/predicted traffic speed, as we observe that

in Table I the travel time in real test are all less than the

estimation. Advanced automated and self-driving vehicles will

be likely to perform stabilizing speed and follow the routing

plan to collect proper solar energy.

To handle above issues, we may use mobile crowdsensing

techniques to get the solar information from on-road vehicles

and roadside units, which helps build a more accurate model

and estimate real-time solar availability. The detailed plan is

discussed in Section VI.

B. Solar Routing Simulation Results

In our simulations, we evaluated the proposed route planning

algorithm using two real life scenarios: 1. Normal driving

scenario; 2. One-day driving scenario. In the normal driving

scenario, we analyze the solar energy input and travel time for

driver one-way trips at different time of the day with different

solar position and radiation. Since many people may need

to drive all day such as food/mail delivery, Uber and Taxi

services. We provide the one-day driving scenario to examine

the amount of extra solar energy that a solar-powered EV can

collect during the daytime.

We conducted the driving scenarios based on the real location

data [25]. The length of each path generated in the simulations

(for both scenarios) is 1 - 2.5 km, and the average vehicle

speed on road segments is 14 - 17 km/h based on the traffic

flow data. The solar radiation value will be updated every 15

minutes. To calculate the energy consumption, the parameters

for the EV power output function is needed (e.g., a and b in

Equation 6). According to Lv’s tests [1], we set the precise

values a = 0:01 and b = 33 for their solar-powered EV prototype.

Since Tesla Model S is a much larger and heavier passenger

car which aims to provide good road performance. Instead of

using Lv’s model, we estimate the energy consumption based

on the official efficiency and range data [26].

Fig. 8: Examples of Start and End Points for Real Road

Experiments.

1) The Normal Driving Scenario: In the normal driving

scenario, we present 3 driving cases with different solar

radiations at different times of the day: case 1 (10:00 a.m.),

case 2 (12:00 p.m.), and case 3 (4:00 p.m.), the solar inputs

were set to 200W, 210W and 160W based on solar radiation

datasets [21], respectively. We selected 4 different pairs of start

and end points which correspond to real locations in the map,

as shown in Figure 8.

Tables I, II, and III summarize the detailed results of route

planning including the total road lengths (TL), total travel time

(TT), total energy solar input (EI), total energy consumption of

Lv’s EV (EC1) and total energy consumption of Tesla Model

S (EC2). In Table I, II, and III, we first show the shortest-

time path from the start point Ai to the end point Bi, which

is also one of candidate routes generated by our algorithm.

Then we show other routes which achieved better extra energy

input EnergyExtra, if there is no better route, we selected

the shortest-time path as the routing result. The differences of

energy input and consumption are listed in the tables. Since the

multi-label correcting algorithm may output multiple candidate

driving routes even after the optimal route selection (IV-D),

we only present the most representative ones. The total number

of candidate driving routes is listed in this table.

In Table II, the time is set to 10:00 in the morning. For

A1-B1, we can not find any better route than the shortest-time

path to get more solar input. But for A2-B2, which is nearly a

reverse way of A1-B1 has two better routes. Since A2-B2 has

a larger number of one-way road segments than A1-B1, which
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TABLE I: Routing Simulation 10:00 AM

Paths TL (m) TT (s) EI (Wh) EC1 (Wh) EC2 (Wh)
A1 to B1 3 candidate Pareto routes

Shortest Time 1852 441.7 15.96 65.28 173.63
Better Solar 1852 441.7 15.96 65.28 173.63

A2 to B2 9 candidate Pareto routes
Shortest Time 1992 474.3 16.51 70.22 186.75
Better Solar 1 1993 474.5 +0.97 +0.04 +0.09
Better Solar 2 2086 486.6 +6.41 +3.31 +8.81

A3 to B3 4 candidate Pareto routes
Shortest Time 1624 386.7 13.70 57.25 152.25
Better Solar 1657 394.5 +1.34 +1.16 +3.09

A4 to B4 4 candidate Pareto routes
Shortest Time 1433 341.2 10.21 50.51 134.34
Better Solar 1 1454 346.2 +4.08 +0.74 +1.97
Better Solar 2 1455 346.4 +5.92 +0.78 +2.06

TABLE II: Routing Simulation 12:00 PM

Paths TL (m) TT (s) EI (Wh) EC1 (Wh) EC2 (Wh)
A1 to B1 3 candidate Pareto routes

Shortest Time 1852 430.7 20.68 65.76 181.99
Better Solar 1852 430.7 20.68 65.76 181.99

A2 to B2 4 candidate Pareto routes
Shortest Time 1992 463.2 22.42 70.51 195.75
Better Solar 2037 473.7 +2.02 +1.59 +4.42

A3 to B3 9 candidate Pareto routes
Shortest Time 1624 377.7 15.75 57.48 159.59
Better Solar 1 1627 378.4 +0.93 +0.11 +0.29
Better Solar 2 1626 378.1 +0.76 +0.07 +0.19
Better Solar 3 1693 393.7 +3.03 +2.44 +6.78

A4 to B4 4 candidate Pareto routes
Shortest Time 1433 333.2 16.07 50.72 140.82
Better Solar 1457 338.8 +1.44 +0.85 +2.34

could generate more candidate Pareto routes (3 for A1-B1 and

9 for A2-B2). The solar energy input EI in the first route of

A2-B2 achieves 0.97 Wh more than the shortest-time path

while only consuming 0.04 Wh and 0.09 Wh more energy

for Lv’s EV and Tesla Model S, respectively. It is a better

choice for both EVs. However, the second route only has a

better extra energy input for Lv’s EV (6.41 > 3.31), while it

does not meet the requirement for Tesla model (6.41 < 8.81).

The output for A3-B3 is similar to the second route in A2-B2,

which meets the need of Lv’s EV but misses Tesla model’s.

For A4-B4, we have two better solar routes that works well

for both EVs. It is mainly because that the system could find

more road segments with lower/less buildings to achieve better

solar energy input without significant changes in total distance.

In Table III, since the sun position becomes higher at noon,

the routing conditions changed especially for A2-B2 and A3-

B3. The direction of the route for A2-B2 is west-east and

south-north, while for A3-B3 is west-east and north-south. The

total length of solar road segments for A2-B2 decreased due

to shadow rotations compared to other trips. The system could

not find a proper path in A2-B2 for both Lv’s EV and the

Tesla model anymore, but there are two more better routes

in A3-B3 compare with the results in Table II. In Table III,

since solar power decreases in the afternoon there is less solar

energy input (from 200/210W to 160W). We cannot find any

better route for Tesla model S in all 4 cases and there are less

better routes for Lv’s EV. Thus driving in the morning or the

TABLE III: Routing Simulation 4:00 PM

Paths TL (m) TT (s) EI (Wh) EC1 (Wh) EC2 (Wh)
A1 to B1 5 candidate Pareto routes

Shortest Time 1852 440.9 10.13 65.35 173.65
Better Solar 1852 440.9 10.13 65.35 173.65

A2 to B2 8 candidate Pareto routes
Shortest Time 1992 474.2 12.14 70.29 186.77
Better Solar 2037 485.1 +2.38 +1.58 +4.21

A3 to B3 4 candidate Pareto routes
Shortest Time 1624 386.7 10.65 57.30 152.25
Better Solar 1624 386.7 10.65 57.30 152.25

A4 to B4 3 candidate Pareto routes
Shortest Time 1433 341.2 10.21 50.51 134.34
Better Solar 1455 345.1 +1.31 +0.77 +2.07

(a) Extra Solar Energy Input. (b) Extra Travel Time.

Fig. 9: One Day Driving Scenario Case 1.

middle of the day may have more chances to achieve better

solar energy input for solar-powered EVs.

As shown in Tables I, II, and III, our proposed route planning

algorithm performed well in most cases, which could provide

better options for solar-powered EVs with more energy input.

For the cases that our algorithm fails to output a better route, the

main reason is that the low panel cell efficiency can not meet

the vehicle energy requirements as discussed in Section I. In

addition, the route planning may also be limited by the structure

of urban roads, and there may be only one or two paths from the

start point to the end point. The evaluation results demonstrate

that our system is robust to real road environments, and has

great potential to help EV drivers achieve better on-road solar

availability in the future.

2) The One-Day Driving Scenario: In the one-day driving

scenario, we evaluated our route planning algorithm by using

two sets of trips for two EV models through the daytime (from

9:00 a.m. to 5:00 p.m.). Each set contains 20 different pairs

of start and end points. The solar radiation is determined by

the time (from 160W to 210W) based on the datasets [21]. In

Figures 9 and 10, we present the extra solar energy input and

travel time of selected routes compared to the shortest-time

paths for each case. Though there may be several candidate

routes for a given trip, we only select the one which can

maximize the extra solar energy input. Because it can show the

worst case of extra travel time and give a better understanding

of the routing algorithm performance. If there is no route with

better solar energy input, we selected the shortest-time path

for the trip as same as the case in the normal driving scenario.

As illustrated in Figures 9 and 10, for both Lv’ EV model

and Tesla Model S, the proposed algorithm is capable of

providing better routes to collect extra solar energy in the
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(a) Extra Solar Energy Input. (b) Extra Travel Time.

Fig. 10: One Day Driving Scenario Case 2.

daytime. Compared to the shortest-time paths, the maximum

extra travel time is from 60 seconds to 80 seconds which is

acceptable. According to the results, the amount of extra solar

energy input increased fast in the morning (driving trips 1 -

4). It is because that the sun kept raising across the sky, there

were many shadows on roads which changed significantly in a

short time. Meanwhile, the solar radiation value is relatively

high (180W - 200 W), thus there is a higher probability to

find routes with better solar access. At noon, the sun reached

the highest position in the sky and most of the road segments

were illuminated. Due to the low solar panel cell efficiency,

current EV models will consume more energy than the solar

input to keep moving at a normal speed. The shortest-time

path would be the only option for a trip at this time which

did not/hardly gain the extra solar energy input (driving trips

5 - 11). In the afternoon, the shadows were back on roads but

the solar radiation is lower than the value in the morning. The

algorithm can find routes with better solar access, however,

they produced less solar energy than the driving trips in the

morning (the curve for trips 1-4 is sharper than trips 15-20).

As we can see in Figures 9a and 10a, the Tesla Model S

collected less solar energy than the Lv’s EV model in one-day

driving. Unlike Lv’s EV model, it is more challenging to find

better routes for Tesla Model S since it has a much higher

energy consumption rate. In some trips, the route produced extra

solar energy for Lv’s model however can not meet the need of

the Tesla model. In addition, we increased the physical distance

between start and end points in case 2 (Figures 10). As a result,

both EV models in case 2 collected higher extra solar energy

inputs compared to case 1, which increased 42.7% for Lv’s

model (Figure 9a) and 109.7% for Tesla model (Figure 10a).

Meanwhile, as shown in Figures 9b and 10b, the travel time

for Lv’s EV Model and Tesla Model S do not increase as

significantly as the solar energy input, which are 18.6% and

36.3%, respectively. Therefore, our proposed routing algorithm

could perform even better when the travel distance become

longer, which offers more solar energy input with less extra

travel time costs. To further prove our observations, we also

consider the long-distance driving scenarios (e.g. 10 - 20 km)

in the future.

VI. DISCUSSIONS AND FUTURE WORK

Though our proposed route planning solution achieved good

performance in the evaluation, it can still be further improved

by enhancing the solar access model accuracy. In this paper,

we estimate the on-road shadow length by using vision-based

methods on the 3D map data. The condition of illuminated

and shaded road segments can be affected by roadside trees,

temporary obstructions (e.g. construction areas) or clouds.

For example, the shadows caused by trees will be larger

during summer time due to overgrowth leaves and become

sparse in the winter. Passing by clouds will change the solar

radiation in a specific area and reduce the power input efficiency.

However, such real-time information is not accessible via public

databases, which will make the solar access estimation and

route planning outputs less accurate especially for long-distance

trip scenarios. Thus an on-road sensing platform that provides

real-time solar access data is desirable.

On the other hand, smartphone-based sensing platforms

are becoming more and more popular. Smartphones are easy

accessible and affordable for everyone, which are widely used

to facilitate traffic safety, together with other technologies such

as autonomous driving and vehicular communications [27].

Inspired by the existing work [28], [29], we would like to seek

solutions for real-time solar access measurement by leveraging

crowdsensing technologies via smartphones. For example,

a driver can mount the smartphone on the windshield for

navigation while at the same time capturing the on-road shadow

conditions using its front-facing cameras. By collecting the real-

time shadow information across thousands of phones in moving

vehicles, we are able to draw a comprehensive solar input map.

The system can also record the traffic flow information to aid

the calculation of energy input and consumption .

VII. CONCLUSION

In this paper, we study the route planning problem for solar-

powered EVs to offer power-aware optimal routing. We define

the route planning as a multi-objective optimization problem

that incorporates three major factors including travel time, solar-

input/access quantity and EV energy consumption. Based on

the solar access model and traffic flow information, we are able

to estimate the solar access on roads and run a multi-criteria

search algorithm to find a set of Pareto candidate routes. We

extract the most representative outputs from Pareto routes by

leveraging the bisect k-means clustering algorithm. The results

in both real-road experiments and simulations demonstrate

that our proposed solar input model and routing algorithm

are robust to real life scenarios, which have great potential to

provide efficient services for solar-powered EV drivers.
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