2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA) | 978-1-6654-7652-2/23/$31.00 ©2023 1IEEE | DOI: 10.1109/HPCA56546.2023.10071003

2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

Root Crash Consistency of SGX-style Integrity
Trees in Secure Non-Volatile Memory Systems

Jianming Huang and Yu Hua™
Wuhan National Laboratory for Optoelectronics
School of Computer, Huazhong University of Science and Technology
“Corresponding Author: Yu Hua (csyhua@ hust.edu.cn)

Abstract—Data integrity is important for non-volatile memory
(NVM) systems that maintain data even without power. The
data integrity in NVM may be compromised by integrity at-
tacks, which can be defended against by integrity verification
via integrity trees. After NVM system failures and reboots,
the integrity tree root is responsible for providing a trusted
execution environment. However, updating the root incurs latency
to propagate the modifications from leaf nodes to the root.
If system crashes occur during the propagation process, the
root is inconsistent with the updated leaf nodes, resulting in
misreporting the attacks after the system reboots. In this paper,
we propose a ShortCut UpdatE scheme, called SCUE, which is
an efficient and low-latency scheme to instantaneously update
the root on the SGX-style integrity tree (SIT) by judiciously
overlooking the updates upon most intermediate tree nodes. The
idea behind SCUE explores and exploits the observation that
consistent leaf nodes and root are enough to ensure data integrity
after system failures and reboots. Moreover, SIT is difficult to be
reconstructed from the leaf nodes since updating one tree node
needs its parent node as input. Root in SIT thus cannot verify
the data after the system crashes and reboots even though the
root is correctly updated. To provide the ability of verification
via root in SIT, we use a counter-summing approach to efficiently
reconstructing the SIT from leaf nodes. Extensive evaluation
results show that compared with the state-of-the-art integrity
tree update schemes, our SCUE delivers high performance while
ensuring data integrity.

I. INTRODUCTION

Non-Volatile Memory (NVM) has demonstrated the salient
features of non-volatility, low power consumption and high
performance. To guarantee the data security and confidential-
ity, we need to encrypt the data in NVM. Moreover, the data
integrity is also important, which is interpreted that the data
cannot be illegally tampered [38]. The encrypted data need
to be further verified to ensure the integrity, which requires
security metadata, i.e., counter blocks in counter mode encryp-
tion [49] and tree nodes in integrity tree verification [21]. Due
to the persistence of NVM, these security metadata need to be
crash consistent and recoverable, to guarantee that the NVM
systems continue to run safely and efficiently after system
failures and reboots [53].

To ensure data confidentiality, existing designs use the
counter mode encryption (CME) [49] to encrypt the data in
NVM. CME uses counters to generate the one-time paddings
(OTPs) and XORs the OTPs with the plaintext/encrypted
data to generate the encrypted/plaintext data. The generation
of OTPs is in parallel with reading the data from NVM.

978-1-6654-7652-2/23/$31.00 ©2023 IEEE

Therefore, the latency of decryption is hidden by that of
reading data. The data integrity is generally verified by the
integrity trees, such as Merkle Tree (MT) [18], [25], [33],
Bonsai Merkle Tree (BMT) [7], [17], [36], [38] and SGX-
style Integrity Tree (SIT) [4], [14], [28]. In the integrity tree,
the user data are iteratively hashed to generate the keyed-Hash
Message Authentication Codes (HMACsS) in the intermediate
tree nodes (in MT/BMT), or connected with the intermediate
nodes via the counters and HMACs (in SIT). The changes in
the root of the integrity tree reflect the modifications of the
user data.

Compared with BMT, SIT demonstrates high performance
(updating nodes in parallel) [53], high security (one counter
protected by two HMACSs) [5], and low storage overheads
(more than 8 counters compressed in one node) [39], [44].
However, efficiently using SIT to protect data integrity still
suffers from two problems: the recovery failure due to the root
crash inconsistency (§1II-B) and high persistent overheads due
to the complicated dependencies (§11I-D) among SIT nodes.

The root in the integrity tree is the only trusted base to
verify the integrity of data [17]. Since the root is stored in
the non-volatile register on-chip, the root cannot be attacked
in our threat model (§1I-A). Unlike the root, other tree nodes
need to be flushed into NVM and are possibly tampered by
the attackers. The tree nodes in NVM are hence not trusted.
When running the system, the cached intermediate tree nodes
are regarded as the trusted bases since they are verified by
the root. However, when the system failures occur, the cached
intermediate nodes are lost or flushed into NVM, and only
the on-chip root is trusted. For verifying data after the system
reboots, we need to instantaneously update the root during
system running.

When the updated leaf nodes are persisted, the modifica-
tions of leaf nodes need to be propagated to the root for
verification after system failures and reboots. Propagating the
modifications needs to iteratively hash the data in the tree
nodes. One hash computation has to consume 40 cycles [18],
[31], [41]. This becomes exacerbated due to the high integrity
tree in large NVM, e.g., tens of levels in the integrity tree for
the 64GB NVM. Propagating the modifications thus requires
tens of hash computations, which incurs a long latency in the
systems. The latency of propagating modifications from leaf
nodes to root is called the root crash inconsistency window,
or crash window. Fortunately, SIT can update these HMACs

152

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 31,2023 at 03:13:34 UTC from IEEE Xplore. Restrictions apply.

in parallel to significantly reduce the propagating latency [5],
[53]. But the crash window in SIT still exists. When crashes
occur during the crash window, the propagation process of
the modifications aborts. Therefore, the root stored in the
on-chip non-volatile register is not updated. After system
recovery, the un-updated root does not match the updated
leaf nodes in NVM, causing the root crash inconsistency
problem. Specifically, the integrity tree is reconstructed from
the updated leaf nodes, and a new root is reconstructed. Since
the un-updated root stored in the non-volatile register on-chip
is not the same as the reconstructed root, the recovery fails
even though no attacks occur.

Intel Asynchronous DRAM Refresh (ADR) technique [1]
flushes data from write pending queue (WPQ) in memory
controller into NVM when the system crashes. Moreover,
Intel recently proposed Extended ADR (eADR) [2], [3], [15]
to flush the data from CPU caches into NVM after system
crashes. By using ADR/eADR, the on-chip caches and WPQ
become persistent domains.

The use of eADR is assumed to improve the performance
and security of the system [17]. However, in eADR, the
root crash inconsistency problem, although mitigated but not
addressed, still exists. eADR is used to flush data into NVM
after system crashes without the ability to read and process
data from NVM. However, updating root upon crashes needs
to read the intermediate nodes from NVM and compute the
HMAC:s in the propagation path, which is not supported by
eADR after system crashes. When crashes occur, the root is
not updated and does not match the leaf nodes after a reboot
even with eADR.

Root crash consistency has been discussed by PLP [16] and
BMF [17]. However, PLP and BMF only focus on BMT due
to the complicated dependencies among SIT nodes. In BMT,
one node is constructed by hashing its child nodes. But in
SIT, updating one node needs its parent node as input, i.e.,
low-level nodes depend on high-level nodes. Only consistently
persisting leaf nodes and updating root are not enough to
protect data integrity after system crashes and reboots. SIT
cannot be recovered from the leaf nodes. Even if we correctly
update the root, the system does not know whether the leaf
nodes are attacked or not via checking the stored SIT root [53].
For SIT, PLP and BMF fetch, update and persist all nodes in
the branch from leaf node to root to ensure crash consistency
with large overheads [16], [17].

We observe that in SIT, increasing the child counter causes
the increment of the parent counter. The parent counter hence
is the sum of the corresponding child counters. Moreover,
the counter in the root is the sum of all corresponding leaf
counters. Based on this observation, to address the root crash
inconsistency problem, we focus on SIT and propose the
ShortCut UpdatE scheme (SCUE) to correctly and efficiently
update the root of SIT with low overheads. The idea behind
SCUE is that only the consistent leaf nodes and root are
required for recovery after system crashes. Our SCUE also
provides a counter-summing approach to decoupling the com-
plicated dependencies among SIT nodes. Thus, SIT can be

reconstructed from leaf nodes up like the BMT.

To evaluate the performance of our proposed scheme, we
use Gem5 [11] with NVMain [34] to implement SCUE.
We evaluate 5 typical persistent workloads, and 8 macro-
benchmarks from the SPEC2006 [20] which have been widely
used and well-recognized in the community [13], [21], [23],
[24], [30], [37], [54]. Our experimental results show that
SCUE only incurs 7% performance overhead even if compared
with the insecure baseline system.

In summary, this paper makes the following contributions:

o Shortcut update scheme for root crash consistency. We
propose a new update scheme to instantaneously update the
root of the integrity tree without propagating the modifica-
tions on the intermediate tree nodes.

o Decoupling the complicated dependencies among SIT
nodes. We analyze the dependencies of child and parent
nodes in SIT, and decouple them into BMT-like dependen-
cies via a counter-summing approach. Thus, SIT can be
recovered from the consistent leaf nodes, which allows SIT
to continue protecting data after system crashes and reboots.

« Extensive experiments. We have implemented SCUE and
evaluated the designs via micro- and macro-benchmarks.
The experimental results demonstrate that our proposed
scheme delivers high performance while ensuring the system
integrity.

II. BACKGROUND
A. Threat Models

Existing designs [6], [8], [30], [38], [49], [50], [53] assume
that only the on-chip domain in the computer system is safe,
including the processor, cache and memory controller, which
we follow in our threat model. The NVM can be attacked
to reveal the data, such as stolen DIMM and bus snooping
attacks [53], [54]. The encryption scheme [12] can defend
the data confidentiality attacks. The memory tampering attacks
modify the data in NVM to compromise the data integrity,
including data replay attacks [42], i.e., attackers can use the
old data to replace the new data. These integrity attacks can
be detected by the integrity trees [8], [16], [17], [53], which
we focus on. Other attacks are beyond the scope of this paper.

B. Counter Mode Encryption

The counter mode encryption (CME) has been widely used
in state-of-the-art security systems [6], [43], [S51], [55]. In
general, to encrypt the data, direct AES encryption is used,
which however places the decryption on the read critical path.

Major

Minor ctr
ctr

| |

I
Major Minor Line
Counter | Address 4’

Counter
J'OTP

Encrypted line ’ @ Plaintext line

Fig. 1. The Counter Mode Encryption scheme.

153

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 31,2023 at 03:13:34 UTC from IEEE Xplore. Restrictions apply.

Moreover, due to the unchanged secret key, the AES can
be broken via the dictionary attacks [10]. To deliver high
performance and improve the security of the systems, the
counter mode encryption is used as shown in Fig. 1. CME uses
the counter and line address to generate the one-time-padding
(OTP). When writing data, the ciphertext is generated by
XORing the plaintext and OTP. When reading data, since the
counter blocks are cached in the memory controller, systems
generate the OTP and read the encrypted data in parallel. The
encrypted data is decrypted by XORing the ciphertext and
OTP. Therefore, the decryption latency is masked by the read
latency.

For security considerations, the OTPs cannot be reused.
CME uses the line address as one input of OTP generation
to ensure that different data lines have different OTPs. When
one modified data is persisted into NVM, the corresponding
minor counter increases by 1. For the same data, the OTP is
not reused in each write since the counters are different. One
counter block contains one 64-bit major counter and 64 7-bit
minor counters. When the minor counter overflows, the major
counter increases by 1, all minor counters in the counter block
are reset to 0, and 64 corresponding user data blocks need to
be re-encrypted.

C. Integrity Verification

Data integrity verification is important for system security.
An attacker may tamper with the user data without autho-
rization, i.e., integrity attacks. In general, systems use keyed-
Hash Message Authentication Codes (HMACs) to verify the
integrity of data [9], [32], [45]. HMACs are generated by
hashing the data, address and secret key. When reading data,
systems verify the data integrity via comparing the stored and
recomputed HMAC:s. If the two HMAC:s are different, systems
detect the unauthorized modifications. Due to the lack of secret
keys, attackers fail to construct the matched HMACs of the
modified data and cannot pass the integrity checking.

However, attackers may record the old data and HMAC, and
use the old tuple to replace the new data and HMAC, i.e., data
replay attacks. By only using HMAC, systems cannot detect
the replay attacks, since the old HMAC matches the old data.
To defend against the replay attacks, an integrity tree is used,
including the Merkle Tree (MT), Bonsai Merkle Tree (BMT)
and SGX-style Integrity Tree (SIT) [14], [18], [38], [44], to
protect data.

D. Integrity Tree

1) Merkle Tree: Merkle trees are used to protect the data
integrity by constructing the entire tree from the user data that
are the leaf nodes in the MT. In an 8-ary MT, 8 data are hashed
to generate the upper-level node that consists of 8 HMACs,
called parent node of the hashed data. The upper-level nodes
are also hashed to generate the higher-level nodes, and finally,
the root is generated by iteratively hashing the leaf nodes. As
shown in Fig. 2, the leaf nodes are in Level-0, i.e., leaf level,
and they are iteratively hashed to construct the Level-1 and
higher-level nodes. Systems store the root on the chip so that
the root cannot be tampered by attackers in our threat model.

[1] Root
Level - (n-1)

H|H H{H H|H| Level-1
Level - 0
(o] [om] (o] [on] (o] [omm] 20

Fig. 2. The merkle tree constructed from user data.

[T Root
Level - 1

Level -0
or leaflevel
[oow | [oow] [oew] - [oaw] [oam]

[1]

lclcle]e] elele]e] [elcle[e] [elc]c[e]

Fig. 3. The bonsai merkle tree constructed from counter blocks.

Modifying one user data results in the modification of its
parent node in the MT, and the modification will propagate
to the root by iteratively modifying the intermediate nodes,
which are the nodes between leaf nodes and root. If attackers
aim to replay one user data, they need to replay the Level-1
node. Otherwise, the replay attacks are detected by the Level-
1 node. However, modifying the Level-1 nodes is detected
by Level-2 parent nodes, and so on. Finally, achieving replay
attacks needs to modify the on-chip root that is invulnerable
to attackers. Therefore, the replay attacks cannot succeed in
the MT-based memory systems.

2) Bonsai Merkle Tree: In NVM, due to the large capacity
for storing user data, the number of leaf nodes in MT is large,
causing a high MT. The overheads of storing tree nodes and
propagating modifications from leaf nodes to root are expen-
sive. To reduce the overheads and ensure data confidentiality
and integrity, MT is combined with the CME in the secure
NVM systems. The counter blocks in CME are leaf nodes
in the integrity tree, and iteratively hashed to generate the
root as shown in Fig. 3. This integrity tree is called Bonsai
Merkle Tree (BMT) [38]. Since one counter block covers 64
data blocks, the number of the leaf nodes and the height of
BMT are much smaller than those in MT. In BMT, since the
data are connected with counters via the HMAC:S, if attackers
replay data, they need to replay the counters. Therefore, the
replay attacks are detected by BMT like that in MT.

3) SGX-style Integrity Tree: SGX-style Integrity Trees
(SIT) [14], [39], [44] also combines MT with CME. Unlike the
nodes consisting of HMACs in the BMT, as shown in Fig. 4,
one tree node in SIT often consists of eight 56-bit counters
and one 64-bit HMAC. The count range of a 56-bit counter,
ie., 2°6x106, is much larger than the endurance of NVM,
i.e., 107102 [26], [27], [35], [52]. Therefore, in general, the
counter does not overflow during the lifetime of an NVM.
In SIT, one tree node has eight child nodes corresponding to
eight counters in the node one by one. Moreover, the SIT node
can contain more counters [39]. Without loss of generality,
we follow the configurations in existing schemes [5], [53]
to store 8 counters in one node in SIT. The counter blocks
in CME are leaf nodes in SIT. The counter blocks (i.e.,

154

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 31,2023 at 03:13:34 UTC from IEEE Xplore. Restrictions apply.

{

Address HASH

Intermediate nodes' [c[c[c[c[c]cc[c] H]-+[c[c[c[c]c[c[cc[H

HASH j

[clc]cfefe]c]c]efn] [c[e[c[c[c[c[c[c[H]
Encrypt/Decrypt
\Data\ \Data\"' \Data\ \Data\ User data

Address

Leaf nodes
(counter blocks)

\ Data \

Fig. 4. The SGX-style integrity tree (SIT).

leaf nodes) and other integrity tree nodes are called security
metadata, which are stored in NVM and partly cached into the
metadata cache in the memory controller during the running
time for improving system performance. As shown in Fig. 4,
we compute the HMAC in the node by hashing the address
of the node, all counters in this node, and one corresponding
counter in the parent node. Persisting one modified node in
SIT causes the corresponding counter in its parent node to
increase by one, and the HMAC is also recomputed. Unlike
other SIT nodes, the root is always in the on-chip domain, and
does not contain HMAC.

4) Eager and lazy update schemes of integrity tree: For
updating the root, BMT and SIT demonstrate two update
schemes: eager and lazy schemes [5]. The eager scheme forces
to propagate the modifications from the leaf nodes to the
root once the modified leaf nodes are persisted. In the eager
scheme, persisting one modified leaf node incurs the changes
on all nodes in the branch, including the root. For BMT, all
HMAC:s in the propagation path are re-hashed, and for SIT
the corresponding counters and HMACs in these nodes are
updated. In the lazy scheme, when one node of SIT/BMT
is flushed into NVM, the system only updates its parent
node by modifying the corresponding counter/HMAC. Other
ancestor nodes, including the root, are only updated when their
child nodes are flushed into NVM. Therefore, the root is not
immediately updated in the lazy scheme.

Both eager and lazy schemes ensure the integrity of user
data during running time. Since the cache is in the secure
domain, the cached nodes are treated as the trusted bases like
the root to verify other data. To implement the transmission
of the trusted base from root to the cached nodes, each data
entering cache must be verified. When reading data, systems
read the ancestor nodes until one ancestor node has already
existed in cache. These ancestor nodes are iteratively verified
to ensure the security of the read data.

SIT uses counters and HMACs to protect data. When the
user data and HMAC are read, systems recompute the HMAC
by hashing the address, the data and the parent counter in
counter block to verify the integrity of data. Attackers also
replay the counter block when persisted in NVM. However,
the parent node of the counter block is updated in cache. The
replayed counter block needs to be verified by the updated
parent node when the counter block re-enters the cache. In
the worst case, attackers tamper with all nodes in a branch
to execute the replay attacks. However, since the root always
resides in the chip, the updated root is used to iteratively verify

- Un-updated l:l Updated
Old Root on Chip Reconstructed Root Old Root on Chip Reconstructed Root
- .
& [rowacs [
Reconsthuct ¢ Reconsthuct
[HMAGs] [HMACs | -+ [HMACs | [HMAGs | ¢ HMAGs | [HMACs -+ [HMACs | [HMACs |

‘ Data H Data H Data “ Data H Data " ‘ Data H Data H Data “ Data H Data ‘

(a) Comparing roots for security (b) Root crash inconsistency

Fig. 5. The integrity tree w/o and w/ root crash inconsistency. (a) The system
compares the reconstructed and old roots to verify the recovery process. (b)
When crashes occur during Crash Window, the upper nodes and root are not
updated. The un-updated root cannot verify the recovery process.

the integrity of the user data.

In SIT, once counters have been increased, the HMACs of
different nodes in the branch can be computed in parallel while
BMT sequentially computes the HMACs. Moreover, as shown
in Fig. 4, one counter in SIT is protected by 2 HMACs, i.e.,
the HMACs in the node itself and child node. SIT is more
secure than BMT [5]. Therefore, in this paper we focus on
SIT instead of BMT to protect data integrity.

III. THE PROBLEM OF UPDATING ROOT IN SIT
A. The Trust Base of Integrity Verification

In the integrity tree, only the root is always stored in the
secure on-chip domain. Other tree nodes may be flushed into
NVM and illegally modified by attackers. Therefore, the root
is the trust base of integrity verification.

In DRAM, since the data are lost after system crashes,
existing integrity trees are discarded. A new integrity tree
is further constructed from the new data in DRAM. Unlike
DRAM, due to the non-volatility of NVM, after system crashes
and recovery, the data are still maintained in the NVM, and
the integrity trees are also used to verify the data. Therefore,
the integrity trees need to be recovered from system crashes.
The root of an integrity tree in the on-chip non-volatile register
plays the role of trust base during system recovery.

Existing schemes have widely discussed how to recover the
integrity trees [5], [8], [21], [53]. The basic idea of recovering
the integrity tree is to reconstruct the tree from leaf nodes
up and compare the reconstructed root with existing tree root.
As shown in Fig. 5(a), we take an MT as an example. The
system iteratively hashes the user data in NVM to reconstruct
the integrity tree. The old root in the on-chip non-volatile
register is the root of the integrity tree before system crashes.
The reconstructed root is further compared with the old root
to verify the correctness of the recovery process. If attackers
illegally modify the data, the reconstructed root does not match
the stored one, and the system reports the attacks.

Existing schemes [5], [21], [53] propose different ap-
proaches to speeding up the recovery process of the integrity
tree and do not need to reconstruct the tree from leaf nodes.
However, they also rely on a side-tree to verify the correctness
of recovery, which needs to reconstruct the tree and compare
the reconstructed root with the old one, e.g., the shadow tree
in Anubis and Phoenix [5], [53], and cache tree in STAR [21].

155

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 31,2023 at 03:13:34 UTC from IEEE Xplore. Restrictions apply.

B. The Problem of Root Crash Inconsistency

After system crashes and recovery, the root of the integrity
tree is important for system security. However, the root cannot
be used as the trust base after system crashes due to the root
crash inconsistency, which is described below.

Persisting user data from cache into NVM results in the
modification of their corresponding leaf nodes of the integrity
tree in cache. Propagating the modifications from the leaf
nodes to the root needs a long time to update all intermediate
nodes on the propagation path. The propagation time is called
the root crash inconsistency window, or crash window. As
shown in Fig. 5(b), if a system failure occurs during the crash
window, the propagation process of the modifications aborts.
The new user data are persisted into NVM, but the root of the
integrity tree is not updated. The root is inconsistent with the
user data upon crashes, i.e., root crash inconsistency. Once
system recovery, the tree is reconstructed from the leaf nodes,
and a new root is constructed via the updated user data. The
old un-updated root stored on-chip is not equal to the new
root, thus leading to recovery failure.

Both lazy and eager update schemes suffer from the root
crash inconsistency problem. For a lazy update scheme, the
root is lazily updated and always inconsistent with the user
data upon crashes. For an eager update scheme, it is potential
to achieve root crash consistency due to immediately updating
the root. However, although the latency of propagating mod-
ifications from leaf nodes to root is low due to computing
the HMAC:s in parallel in SIT (about 40 cycles [16], [17]), a
system failure occurring during the 40-cycle crash window
incurs the root crash inconsistency problem as shown in
Fig. 5(b).

Due to the root crash inconsistency, the root cannot be used
as trust base during system recovery. As shown in Fig. 5(b), the
system reconstructs the integrity tree based on the updated data
in NVM. However, the reconstructed root does not match the
un-updated root in the on-chip non-volatile register. Therefore,
the system reports attacks, and the recovery always fails even
though no attacks occur.

Existing designs, say PLP [16] and BMF [17], discuss how
to ensure the root crash consistency in BMT. But PLP and
BMF do not focus on SIT due to the complicated dependencies
(described in §III-D) among SIT nodes [16], [17].

C. Discussions about ADR/eADR

Intel has proposed eADR [2] in their new processor. The
eADR, together with ADR, has the ability to flush the data
from caches (including CPU caches and metadata cache) and
write pending queue (WPQ) into NVM upon system crashes.
However, when crashes occur during crash window as shown
in Fig. 5(b), the leaf nodes and some low-level intermediate
nodes are updated, but the high-level nodes and root are not
updated. The leaf nodes and intermediate nodes (no matter
whether they are updated or not) in cache are flushed into
NVM by the support of eADR, but the root is still not
updated as described in §III-B. For updating the root upon
system crashes, the intermediate nodes need to be read into the

cache from NVM to propagate the modifications after system
crashes, which are not supported by eADR. Even if we have
read all intermediate nodes on the propagation path into a large
cache before crashes, updating the root needs to compute the
HMAG: in the intermediate nodes after crashes, which is not
supported by eADR. Hence, to address the problem of root
crash inconsistency, instantaneously updating the root is still
necessary even in the eADR systems.

Reading data and computing HMACSs upon system crashes
via the energy of eADR seem promising. However, eADR
is not only the backup energy but also a mechanism on the
OS [2], [3] to detect crashes, flush data to correct location in
NVM, etc. Updating the root upon crashes is not supported
by current eADR and requires significant modifications in the
OS-level mechanism of eADR.

D. The Problem of Reconstructing Root in SIT

Due to high security and performance [5], in this paper
we focus on SIT to protect the security of data in NVM.
However, we observe that SIT root cannot be reconstructed
from leaf nodes due to the complicated dependencies among
SIT nodes [16], [17], [53], and SIT cannot continue to protect
data after system crashes and recovery.

In BMT, one node is computed by its child nodes, i.e., high-
level nodes depend on low-level nodes. Thus, BMT can be
reconstructed from leaf nodes up. Unlike BMT, as shown in
Fig. 4, constructing one tree node in SIT needs its parent node
as input, i.e., low-level nodes depend on high-level nodes.
Since some intermediate nodes have not been updated even
if using eADR upon system crashes, the whole tree of SIT
and the root cannot be reconstructed from the leaf nodes
after the system reboots [8], [16], [17], [53]. STAR [21] and
Anubis [53] propose to recover SIT, but they do not consider
root crash consistency. PLP [16] and BMF [17], which ensure
root crash consistency of BMT, choose to update the root,
intermediate nodes, and leaf nodes in an atomic approach to
ensure the crash consistency in SIT with high overheads.

Without the reconstructed root, the stored root on-chip
cannot be used to detect the attacks in leaf nodes. Therefore,
even if the root in SIT is correctly updated in time, the
system cannot use the root to verify the data integrity
after the system reboots. In this paper, we decouple the
complicated dependencies among SIT nodes. Thus, the SIT
can be reconstructed from leaf nodes up like BMT. The
consistent leaf nodes and root are enough to ensure data
integrity after system failures and reboots.

In summary, when using SIT, there are two problems, i.e.,
how to ensure root crash consistency, and how to reconstruct
the tree (including root) from leaf nodes. To improve system
performance and correctly update the root, we propose SCUE,
a low-overhead shortcut update scheme based on SIT, to ensure
the root crash consistency by instantaneously updating the
root. SCUE also decouples complex dependencies between
SIT nodes and their parent nodes so that SIT can be recon-
structed from leaf nodes.

156

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 31,2023 at 03:13:34 UTC from IEEE Xplore. Restrictions apply.

Update root for root
crash consistency

D modified

root ‘

Update root for root

root ‘ Running_root Recovery_root crash consistency
I

[clc[clcl@ce]c]; [clelclclccleld] {c[cldcleclelc)
oos \ “ee \ CTTTTTT e T !
verif?ca:ic?npg;ir;r;:t:d %de ‘verifiaiisnpzf”:)r;r;:teed :\;de m ‘ Update parent node for iU i
777777777777777777777777777777777777 verification of persisted node | YNNe
[SEEEEEEEL | EECEEEE) | Neldeededn]]
l | | 1 Overlook most
[clc]c[clelc]c[c[H] | | integpiediate nodes

(a) Lazy update

(b) Eager update

(c) Shortcut update

Fig. 6. The Lazy, Eager and SCUE schemes in SIT. (a) Lazy update scheme modifies the parent node for integrity verification. (b) Eager update scheme
modifies the intermediate nodes and root. (c) SCUE leverages two roots, which actively overlooks most intermediate nodes and only modifies parent node

and Recovery_root.

IV. THE DESIGN OF SCUE

The crash consistency among user data, counter blocks, and
HMACs in user data has been widely researched by legacy
designs [16], [17], [44], [50], [54]. Unlike them, we focus
on the root crash consistency in SIT by proposing SCUE
to instantaneously update the root (§1V-A) and decouple the
complex dependencies among SIT nodes (§IV-B). SCUE is
orthogonal to these crash consistency schemes [44], [50], [54]
(except PLP and BMF [16], [17] that only focus on BMT).

A. Update the Root in a Shortcut Manner

Although all HMACs in the updating branch of SIT can
be updated in parallel in about 40 cycles [16], [17], the 40-
cycle crash window still exists in the modification propagation
path from leaf node to root, leading to crash inconsistency
problem. Moreover, propagating the modifications needs to
read the intermediate nodes in the propagation path from NVM
into cache (if they are not in cache due to the limited size of
cache), which extends the crash window. We call the latency of
calculating HMAC:s in the propagation path the hash_latency,
and the latency of reading intermediate nodes from NVM to
cache the read_latency, both of which together constitute the
crash window.

To eliminate the crash window, we propose a low-overhead
ShortCut UpdatE (SCUE) scheme. The idea of SCUE is to
efficiently remove the computations of HMACs and the reads
of the intermediate tree nodes from the write critical path in
SIT. Moreover, since the root is always lazily updated, root
crash inconsistency is inevitable in a lazy update scheme. Our
SCUE focuses on the eager update scheme to instantaneously
update the root.

1) Lazy computing in SCUE: We observe that in one SIT
node, the HMACs are used to verify the node itself, and the
counters are used to verify the child nodes. When reading data
from NVM into cache, the counters in the cached ancestor
tree nodes and HMACs in the read data are used to verify
the integrity of the read data. Since the on-chip data are
invulnerable to attackers in our threat model, the integrity
of the cached tree nodes does not need to be verified, and
the HMACs in the cached data are not used. To verify the
integrity of the data the next time they are read, we increase
the counters in the cached ancestor tree nodes when the user
data are persisted, but updating HMAC:s is unnecessary. Only

Dummy Rﬂ".@
Counter § 1
//\\

| o

Fig. 7. Dummy counter is generated by summing all counters in the tree
node.

the HMAC: in the persisted data need to be updated to defend
against attacks that occur in NVM.

We propose Lazy Computing in SCUE to remove the
hash_latency in the propagation path from leaf nodes to root.
When one leaf node is persisted, the HMAC in the leaf node
is computed to facilitate the verification of the following read.
The counters in the ancestor tree nodes (including the root)
are updated by increasing 1, but the HMACs of the ancestor
tree nodes are only computed when the nodes are flushed into
NVM via the cache replacement policy.

2) Remove the reads of tree nodes: Propagating the modifi-
cations from leaf nodes to root needs to read the ancestor nodes
of the leaf nodes with long read_latency. We now describe
how to reduce the read_latency. As shown in Fig. 6(a), the lazy
update scheme only updates the parent node of the persisted
node for verification as described in §II-D4. The root is not
updated in the lazy update scheme, thus suffering from root
crash inconsistency problem. In SIT, the root consists of eight
counters, and the counter values are related with the leaf
nodes. In the eager update scheme as shown in Fig. 6(b),
when one leaf node is modified, its ancestor nodes are updated.
Specifically, all corresponding counters in nodes increase by
1, including the counter in root. Therefore, if one modified
leaf node is persisted into NVM, the corresponding counter in
root increases by 1. To eliminate the crash window described
in §III-B, as shown in Fig. 6(c), we propose the SCUE with a
Running_root and a Recovery_root (stored in the non-volatile
register on-chip) for system running and recovery respectively.
SCUE updates the parent nodes for verifying the persisted
node without HMAC computation, and directly increases the
counter in Recovery_root for root crash consistency without
reading the intermediate tree nodes in the propagation path.

When the cached tree nodes are flushed into NVM due
to cache replacement policy, their parent nodes need to be
read to compute the HMACs of the persisted nodes, which
possibly incurs iterative reads of ancestor nodes to execute
the integrity verification. To reduce the number of these reads,

[c]clc]clc]c]c]c

157

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 31,2023 at 03:13:34 UTC from IEEE Xplore. Restrictions apply.

SCUE proposes the dummy counter as shown in Fig. 7. In the
eager scheme, when any counter in one node increases by 1,
the corresponding counter in the parent node (called parent
counter) also increases by 1, i.e., the parent counter is the
sum of all counters in the child node. When flushing one tree
node from cache into NVM, the system generates a dummy
counter by summing all counters in the flushed tree node with
low overheads. Therefore, the dummy counter becomes the
parent counter of the flushed node to compute the HAMC.
By using dummy counter, in our SCUE, the parent node of
the persisted node does not need to be read when flushing
tree nodes. The iterative reads of the ancestor nodes on write
critical path are also removed.

When writing a leaf node, our SCUE generates the dummy
counter to compute the HMAC of the persisted leaf node, and
forces to directly update the Recovery_root (i.e., increasing the
corresponding counter by 1) by overlooking the intermediate
nodes. After updating the Recovery_root, the write operation
is completed. We then update the parent node of the persisted
data using the dummy counter. The updates of intermediate
nodes in SCUE are similar to the lazy scheme described
in §II-D4, i.e., when one modified node is persisted from
cache into NVM, the parent counter is updated to the sum
of all 8 counters of the persisted node. Specifically, assuming
a leaf node A is to be persisted into NVM, SCUE generates
the dummy parent counter to compute the HMAC of node A
(if its parent node B is not in cache), and the corresponding
counter in Recovery_root increases by 1 at the same time.
The crash window is thus removed. Moreover, after the flush
of A has been completed, we force to read B with iterative
reads of the ancestor nodes (the B is verified by the ancestor
nodes). The parent node B is thus updated via the generated
dummy counter. These operations are off the critical path of
data write and do not extend the crash window. In SCUE,
the node is updated when its child node is flushed into NVM
like the lazy update scheme. The only difference is that the
lazy update scheme updates the parent counter of the flushed
node by increasing the value of the old parent counter by
1, but SCUE updates the parent counter via the sum of 8
child counters. In most cases, after increasing the old parent
counter, the value of the parent counter is equal to the sum of
8 child counters, unless the child counters have been modified
more than once before the child node is flushed from cache
into NVM. The Running_root is also updated by summing 8
counters of its modified child node (i.e., the dummy counter)
when its child nodes are persisted into NVM, like the lazy
update scheme.

In summary, in SCUE, the root is instantaneously updated
by increasing the corresponding counter in root by 1 when the
leaf node is persisted. Thus, the crash window is completely

removed.
3) Security analysis: SCUE updates the Running_root and

integrity tree like the lazy update scheme, i.e., updating the
parent nodes when persisting data. Therefore, our SCUE pro-
vides the same security guarantee as the lazy update scheme.
In our SCUE, if attacks occur in the data in NVM, the attacked

Root
i,
—

+++ Level-(n-1) nodes

FEEEEEEEE
=,
—

[clcIclclclclclc) [H]
+

Level-2 nodes

Level-1 nodes

—
\C\C|C\C|C|C\C\C\H\ \SCounters\H\--~\8counters\H\ -+ Leaf nodes

Fig. 8. Reconstructing the SIT from leaf nodes.

data are verified by the updated parent node in cache. When
reading data, SCUE uses Running_root to iteratively verify
the read data if all ancestor nodes are not in cache. The
Running_root is used for data security during system running,
and the Recovery_root is used for the integrity tree recovery
as shown in §IV-B.

B. Reconstruct the SIT

As described in §III-D, low-level nodes depend on high-
level nodes in SIT. Even if the consistency among root and
leaf nodes is guaranteed, SIT fails to be reconstructed from
the leaf nodes [5], [16], [53], since reconstructing one SIT
node requires its parent node as input. The root thus cannot
verify the integrity of leaf nodes after the system crashes and
reboots. In this section we decouple the dependencies among
SIT nodes.

1) Counter-summing for reconstructing SIT: In SCUE, al-
though the Recovery_root is instantaneously updated, due to
failing to reconstruct the integrity tree from the leaf nodes, the
up-to-date Recovery_root in SIT fails to verify the leaf nodes
after system reboots. To provide efficient integrity verification
for SCUE, we re-think the relationships between parent nodes
and child nodes in SIT, and use the counter-summing recovery
to reconstruct the SIT.

In SIT, each tree node contains eight counters and has
eight child nodes. We observe that in eager update scheme,
when one child node is modified, i.e., any counter in the
node increases by 1, its parent counter also increases by 1.
Therefore, the parent counter becomes equal to the sum of all
8 counters in the child nodes. The root counter further becomes
equal to the sum of all counters in the leaf nodes covered by
the root counter. Now we can use the sum of counters in
the child node to update the parent counter in our SCUE as
described in §IV-A2. As shown in Fig. 7, the dummy counter
is generated according to this observation. After the system
reboots, we reconstruct the tree from the bottom up via the
dummy counter.

We first reconstruct the Level-1 nodes (which are parent
nodes of leaf nodes) from the consistent leaf nodes. Recon-
structing one SIT node requires correct counters and HMAC
in the node.

As shown in Fig. 8, to reconstruct the counters, we generate
the dummy counters from all leaf nodes. We aggregate the
8Kth to 8 K +7th (K is a natural number) dummy counters to
form the K'th Level-1 node, thus constructing counters in the
reconstructed nodes. We then use the HMAC:s in the persistent

158

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 31,2023 at 03:13:34 UTC from IEEE Xplore. Restrictions apply.

leaf nodes to verify the correctness of the reconstructed
counters in Level-1 nodes. The HMAC is recomputed by
hashing the reconstructed counter in the Level-1 node and
all counters in the corresponding leaf node. The mismatches
of recomputed and stored HMACsS in the leaf nodes indicate
the attacks occurring during system recovery. All counters
in the Level-1 nodes can be reconstructed via summing the
corresponding counters in the child leaf nodes.

For recomputing HMACs in Level-1 nodes, the counters
in Level-2 nodes (which are parent nodes of Level-1 nodes)
need to be reconstructed by generating the dummy counters
from Level-1 nodes. The HMACs in the Level-1 nodes are
recomputed by hashing the corresponding counters in the
Level-2 nodes and all counters in the Level-1 nodes as shown
in Fig. 8. Therefore, the counters and HMACsS in the Level-1
nodes are reconstructed. We use the same way to reconstruct
the whole tree from the bottom up. Finally, the dummy
Recovery_root counters are generated. If the dummy Recov-
ery_root counters are different from the stored Recovery_root
counters, the SIT reconstruction fails, and attacks occur during
recovery. Otherwise, SIT is successfully reconstructed. The
reconstruction process is similar to that of MT/BMT, i.e., one
tree node is recovered from its all child nodes.

In summary, SCUE decouples the dependencies among
nodes in SIT by exploring and exploiting the observation that
the parent counter is the sum of the child counters, which
allows to efficiently reconstruct the parent nodes from the child

nodes.
2) Security analysis: We analyze the security of the pro-

posed counter-summing recovery approach in SIT. We focus
on the Recovery_root and leaf nodes since the intermediate
tree nodes are lost or stale when failures occur, which need
to be reconstructed from the persistent leaf nodes. Moreover,
since the Recovery_root is on chip, attackers cannot tamper
with the Recovery_root, and only the leaf nodes in NVM are
attacked.

We use the HMACs in the leaf nodes and the on-chip
Recovery_root to detect the attacks that occur during system
recovery. All attacks in the leaf nodes can be divided into two
types: roll-forward and roll-back attacks. Specifically, the roll-
forward attacks tamper with the counter value in the leaf nodes
to a larger value. On the contrary, the roll-back attacks tamper
with the counter value in the leaf nodes to a smaller value.
The replay attack is a special roll-back attack that replaces the
counters and HMACs with the old tuple.

As shown in Table I, the roll-forward attacks are detected
by the HMACs in the leaf nodes. The parent counters are
reconstructed from the leaf nodes, and the HMACs of the
leaf nodes are recomputed. Without the secret key, attackers
cannot calculate the correct HMACs using new counters. The
mismatches between the recomputed and stored HMACs in
leaf nodes indicate the existence of attacks.

HMAC:s detect roll-back attacks (except the replay attacks)
due to not matching the tampered counters. We discuss how
to detect the replay attacks, which pass the verification of
HMAC since the old HMAC matches the old counters. Since

TABLE I
THE ATTACKS CAN BE DETECTED BY HMACS AND ROOT.

Roll-forward Roll-back Roll-forward
attacks attacks + roll-back attacks
HMAC S in leaf nodes detected detected detected
Recovery_root / detected /
TABLE 11

THE CONFIGURATIONS OF THE EVALUATED NVM SYSTEM.

Processor
8 cores, X86-64 processor, 2 GHz
64KB, 2-way, LRU, 64B Block
Private L2 cache 512KB, 8-way, LRU, 64B Block
Shared L3 cache 4MB, 8-way, LRU, 64B Block
DDR-based PCM Main Memory
16GB
tRCD/tCL/tCWD/tFAW/tWTR/tWR
=48/15/13/50/7.5/300 ns
64 entries with tags for user data,
10 entries without tags for security metadata
Secure Parameters
Security metadata cache | 256KB, 8-way, 64B Block, in MC
SIT 9 levels, 8-ary, 64B Block
Hash latency {20, 40, 80, 160} cycles (default 40)

CPU
Private L1 cache

Capacity

PCM latency model

Write queue

increasing counters in the leaf nodes causes the increment
of counters in Recovery_root, one Recovery_root counter
becomes equal to the sum of all counters in the corresponding
leaf nodes. For example, the value of the first counter in the
Recovery_root is the sum of all counters’ values in the first 1/8
of the nodes in the leaf level since they are covered by the first
root counter. Rolling back counters in leaf nodes causes the
counter in the reconstructed Recovery_root to mismatch the
counter in the stored Recovery_root. Therefore, the attacks are
detected. Moreover, attackers may roll back and roll forward
some counters in the leaf nodes at the same time to mislead
the Recovery_root, but rolling forward counters is detected by
the HMACs as shown in Table I.

The detection process of SCUE is similar to that of
MT/BMT, i.e., the correctness of reconstructing the tree is
verified after reconstructing the whole integrity tree and com-
paring the reconstructed Recovery_root with the stored one.

V. PERFORMANCE EVALUATION
A. Evaluation Methodology

To evaluate the performance of SCUE, we model the system
in Gem5 [11] and NVMain [34] which is a cycle-accurate
main memory simulator for NVM technologies. NVMain is
co-compiled with the Gem5 and takes over the memory part
of Gem5. This Gem5-NVMain co-simulator has been widely
used in existing works [21], [22], [29], [46], [47], [54], [55].
The main parameters are shown in Table II. The metadata
cache in the memory controller is 256KB for storing counter
blocks and integrity tree nodes. We model the PCM technolo-
gies by using 16GB capacity. The PCM latency is modeled like
existing designs [21], [48], [54]. In general, the hash latency
to generate the HMAC is 40 cycles [16], [17]. In our sensitive
study, we vary the hash latencies (from 20 to 160 cycles [18],
[31], [41]) to analyze the impacts on performance. Our SCUE
is compared with PLP [16] and BMF [17]. To facilitate fair
comparisons, we use 8 representative applications from CPU

159

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 31,2023 at 03:13:34 UTC from IEEE Xplore. Restrictions apply.

SPEC2006 benchmarks [20], which have been used in PLP
and BMF. These applications come from integer and floating-
point fields with different programming languages (C, C++,
and Fortran) and contain about 50% memory instruction (load
and store). They are fast forwarded to representative regions,
and we further run 5 billion instructions for each application
after 10 million instructions warm-up in the syscall emulation
(SE) mode of Gem5. Moreover, for comprehensive evaluation,
we also use 5 persistent workloads to evaluate the systems. The
persistent workloads, i.e., array, btree, hash, queue and rbtree,
are widely used in existing schemes of persistent memory [13],
[21], [23], [24], [30], [37], [54].

To comprehensively examine the performance of our pro-
posed SCUE, we evaluate and compare the following schemes.

o Persist Level Parallelism (PLP). PLP [16] focuses on BMT
to provide root crash consistency. PLP is an eager update
scheme to propagate the modifications from leaves to root
in pipeline. Due to the complicated inter-level dependence
in SIT, PLP needs to update and persist the ancestor nodes
of the persisted leaf nodes when leveraged in SIT, incurring
high overheads.

o Ideal case of BMF (BMF-ideal). BMF [17] chooses some
intermediate nodes to be stored in the non-volatile metadata
cache (nvMC) as persistent roots. BMF updates the tree
nodes until the node is in nvMC. In the ideal case of BMF,
the size of nvMC is unlimited and all counter blocks’ parent
nodes exist in the nvMC, i.e., all of them are persistent roots.
When used in SIT, BMF needs to persist all intermediate
nodes from leaf to root for verification after system reboots.

o Lazy scheme (Lazy). The lazy scheme updates the parent
nodes of the written data in the integrity tree but does not
propagate the modifications to the root. It also needs to
read the ancestor nodes to verify the parent node when
writing data. Lazy scheme does not guarantee root crash
consistency.

e Our shortcut update scheme (SCUE). SCUE directly
updates the root without propagating the modifications from
leaf nodes to root and ensures the root crash consistency. In
SCUE, the dependencies among SIT nodes are decoupled
into the BMT-like dependencies.

o Insecure baseline system (Baseline). Insecure baseline
system only contains the counter mode encryption to encrypt
the user data without integrity verification.

B. Results and Analysis

Propagating the modifications from leaf nodes to the root on
the write critical path needs to read and update the intermediate
nodes in the branch, incurring a long latency. We evaluate the
write latencies and execution time on different schemes.

Fig. 9 shows the write latencies on different schemes. PLP
is inefficient in SIT. In addition to computing multiple hash
calculations in parallel (40 cycles), PLP needs to read, update
and persist the shadow copies of intermediate nodes when
writing data in the SIT-based system. On average, the write
latency in PLP is 2.74x than that in Baseline. The Lazy scheme
needs to read the parent and ancestor nodes of the evicted

b
=3
1

2
2

BMF-ideal

b
@
L

Normalized write latency

@
=3
1

PLP

I
o
1

g
=3
L

Normalized execution time
= o
. i

=
@
L

=
=3
I

NI \e}"‘ IS 0@ I S e SR] ¥
) O« O

TR R L L& &

R Ry SRS &

O :

& ¥

Fig. 10. The execution time on different workloads (normalized to Baseline).

data, and calculate the HMAC:s in the evicted data and parent
nodes on the write critical path. Since all counter blocks’
parent nodes are persistent roots, BMF-ideal does not need
to flush intermediate nodes like PLP, and only updates the
counter blocks and parent nodes when writing data. Our SCUE
generates a dummy counter and only computes one HMAC,
without reading any nodes when writing data. Therefore,
the write latency in SCUE becomes lower than that in the
Lazy/BMF-ideal scheme. On average, the write latencies in
the Lazy/BMF-ideal/SCUE scheme are 1.29x/1.21x/1.12x than
that in Baseline.

As shown in Fig. 10, SCUE shows lower execution time
than the PLP, Lazy and BMF-ideal schemes. Specifically, the
PLP leads to a 1.96x slowdown than Baseline on average due
to persisting the shadow copies of the updated intermediate
nodes, while SCUE produces to a 1.07x slowdown. SCUE also
delivers higher performance than the Lazy scheme in terms
of execution time. The average execution time in the Lazy
scheme is 1.17x than that in Baseline, while SCUE is able
to verify the integrity after the system reboots and the Lazy
scheme fails. Like the write latency in Fig. 9, for different
workloads, BMF-ideal demonstrates different performance.
But on average, BMF-ideal shows a similar execution time
to our SCUE, i.e., 1.11x slowdown than Baseline.

The improvements in terms of write latency and execution
time in SCUE compared with other schemes come from re-
moving the reads and writes of intermediate nodes on the write
critical path. In SCUE, writing a leaf node requires computing
the HMAC in the leaf node and instantaneously increasing the
corresponding counter in the root. Unlike SCUE, PLP needs

160

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 31,2023 at 03:13:34 UTC from IEEE Xplore. Restrictions apply.

[120_hash 40_hash 80_hash XX 160_hash

> N
[$) 4
e 1.2 d <5 8 R N [
- B\ H rl N
T 1.0 R W\
Q
€ 0.81
B
Q0.6+
N
‘© 0.4
£
O 0.2

0.0 9 & O D NY X @ ® @

Q S N3 G S P& &
& ¢ &\{}‘o ,.ﬂoQ & @ &\0 ,\‘0\& A@@
& %
&
Fig. 11. The write latencies of using different hash computations in SCUE.

The 20_hash, 40_hash, 80_hash and 160_hash respectively represent the
needed 20/40/80/160 cycles (normalized to the 20_hash).

[CJ20_hash 40_hash 80_hash [160_hash]
N

1.2 y
P N
S] it ol 0 9] il 1 d y _<S P o\
1.0 iR K X
© AN X
2 0.8 1K b
g K (
S X X
0.6 I N
B N X
N 1 \]
= 0.4 N z
g N (
E i X
502 NS (]
: il]
0.0 &
b & N dF O & DN PSP e
-Q FF T OESE &F S PE &
T L L T T F
& &

Fig. 12. The execution time of using different hash computations in SCUE.
The 20_hash, 40_hash, 80_hash and 160_hash respectively represent the
needed 20/40/80/160 cycles (normalized to the 20_hash).

to read the ancestor nodes to propagate the modifications to
the root. Lazy and BMF-ideal need to read the parent node
to compute HMAC in the persisted leaf node and ancestor
nodes for verifying the parent node. Due to the complicated
dependencies in SIT, the updated intermediate nodes need to
be persisted for crash consistency [16], [17].

C. The Sensitivity to the Hash Latency

Existing configurations allow the hash latency to generate
the HMACs to be 40 cycles. To further examine the perfor-
mance in the larger scale, we set the hash latency from 20
cycles to 160 cycles like existing works [18], [31], [41].

As shown in Fig. 11, increasing the hash latency (from 20
to 160 cycles) incurs on average 1.20x (up to 1.36x) write
latency increase in SCUE. Fig. 12 shows the execution time
when adjusting the hash latency. Since we reduce the number
of hash calculations to one when writing data, the execution
time only increases by 1.14x when the hash latency is 160
cycles. This result shows that even if we use more secure
hash algorithms with higher computation latency (e.g., 160
cycles) [19], SCUE not only protects systems, but also delivers
comparable performance.

D. Time overhead of recovering SIT in SCUE

In our SCUE, the parent node in SIT can be constructed
from child nodes like MT/BMT. Our SCUE for SIT is hence
orthogonal to the BMT/SIT recovery designs [5], [8], [21],
[53]. For example, we can leverage the bitmap lines in
STAR [21] to indicate the stale nodes in the SIT of SCUE

©

C al

S015] [SCUE-STAR

% SCUE-AGIT

£

© 0.10

£ .

[

E(J 05]

1) R

@ g.00 HEA—2 : '
® © ~ A . |
N 0 = 3 s |
I~ 3 2 g

N
Metadata Cache Size in KB

Fig. 13. The recovery time when leveraging STAR/AGIT to recover the SIT
in SCUE.

with small write overheads (SCUE-STAR), and generate the
dummy counter from child nodes to reconstruct the stale nodes.
As shown in Fig. 13, for a 4MB metadata cache, the recovery
time is about 0.05s. We can also leverage the shadow table
(ST) block in Anubis [53] to record the addresses of stale
nodes in our SCUE (SCUE-AGIT). Since our SCUE is able
to reconstruct the tree from leaf nodes up, although SCUE is
designed for SIT, the ST block only records the addresses with-
out the contents of stale nodes like AGIT (Anubis for General
Integrity Tree) not ASIT (Anubis for SGX-style Integrity Tree)
in Anubis (the stale node is reconstructed from child node via
dummy counter like BMT) with small overheads instead of 2x
write overheads [21], [53]. The recovery time is about 0.17s
for a 4MB metadata cache. The evaluation of recovery time
is similar to existing works [21], [50], [53], i.e., we assume
that fetching one metadata from NVM consumes 100ns, and
the latencies of reading metadata from NVM dominate the
recovery time. Note that the recovery time of SCUE-AGIT
in Fig. 13 is shorter than that reported in Anubis, since one
node in SIT of SCUE contains only 8 counters instead of 64
counters in the General Integrity Tree (GIT) in Anubis.

However, STAR/Anubis needs a cache tree/shadow tree
(called side tree) to ensure the correctness of the recovery
process [21], [53]. These side trees need to be reconstructed
from leaf nodes up and compare the reconstructed root with the
old one to verify the recovery process [21], [53], which may
fail since the root is inconsistent with the persistent leaf nodes
after crashes as described in §III-B, leading to the recovery
failures in STAR and Anubis. We use SCUE to ensure the root
crash consistency.

In this paper, we do not consider the fast recovery since
existing fast recovery designs [5], [8], [21], [53] are orthogonal
to our SCUE. We aim to address the problem of root crash
inconsistency.

E. The number of memory accesses

Memory accesses consist of user data and security metadata
memory accesses. Due to the use of metadata cache, user
data accesses dominate the memory accesses. The numbers
of user data memory accesses in all schemes are the same
when running the same applications. For security metadata,
although our SCUE removes the metadata reads from the write
critical path, SCUE demonstrates the approximate numbers
of memory accesses to the Lazy scheme. The reason is that
when reading user data, the ancestor nodes need to be read in

161

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 31,2023 at 03:13:34 UTC from IEEE Xplore. Restrictions apply.

SCUE and Lazy. For PLP, since it needs to read and persist the
intermediate nodes when being leveraged in SIT, PLP incurs
about 7.04x memory accesses than Lazy on average for our
9-level SIT. For BMF-ideal, since all parent nodes of counter
blocks are roots, BMF-ideal eliminates the memory accesses
of ancestor nodes. However, BMF-ideal still needs to read and
write counter blocks, which dominates the security metadata
memory access [5]. BMF-ideal reduces about 8.7% memory
access compared with Lazy on average.

F. Space and hardware overheads

Besides security metadata cache that is required in every
secure NVM system [5], [8], [16], [17], [21], [53], our SCUE
leverages two 64B on-chip non-volatile registers (128B) to
store the Running_root and Recovery_root in §IV-A2. PLP
relies on PTT (616B) and ETT (48b) to respectively support
pipelined and out-of-order (OOO) tree updates.

The BMF-idea requires a large non-volatile metadata cache
(nvMC) to store the counter’s parent nodes as the persistent
roots. For a 16GB NVM, the size of nvMC in BMF-idea is
256MB. In BMF’s paper [17], they also reported 512b to 16MB
nvMC in the non-ideal BMF scheme.

VI. DISCUSSIONS

The on-chip overheads of BMF. Bonsai Merkle Forests
(BMF) [17] divides a big BMT into multiple small BMTs. In
the ideal case of BMF (BMF-ideal), these small trees are two-
level, i.e., eight leaf nodes and one root without intermediate
nodes. BMF-ideal does not need to propagate the modifications
and persist the intermediate nodes, thus demonstrating similar
performance to our SCUE. However, for security, the roots
of these small trees are always stored in the on-chip cache
(Section 4.4 in BMF paper [17]). The cache composed of
SRAM with eADR is not enough since the roots in the
cache will be persisted into NVM upon crashes, thus violating
the security requirement. The nvMC in BMF needs to be
composed of high-speed non-volatile registers, with high on-
chip overheads.

Importance of decoupling the complicated dependen-
cies in SIT. The complicated dependencies limit the use of
SIT [16], [17], [53]. In this paper, we decouple the complicated
dependencies in SIT into BMT-like dependencies. The BMT-
based optimizations [8], [16], [17], [53] can be applied in SIT.
Therefore, we strongly argue that SIT can completely replace
BMT with high performance [53], high security [5], and low
storage overheads [39], [44].

VII. RELATED WORK

Security metadata recovery. Security metadata include
counter blocks and integrity tree nodes. For improving per-
formance, security metadata are cached in a volatile on-
chip buffer in the memory controller. After system failures,
some updates of security metadata are lost due to not being
instantaneously persisted into NVM. To recover the counter
blocks, Osiris [50] relaxes the persistence of counter blocks,
and retrieves the counters from the stale state in NVM.

Supermem [54] uses a write-through scheme to ensure the
consistency of counter blocks. When the counter blocks are
modified, they are directly flushed into NVM. To recover the
BMT, Triad-NVM [8] persists low-level tree nodes with user
data. After failures, the systems can reconstruct the BMT from
the persistent low-level nodes. Anubis [53] records the address
and contents of the modified cached metadata in the shadow
table in NVM. According to the shadow table, Anubis recovers
both BMT and SIT. STAR [21] persists the modifications of
SIT in the MAC fields without extra memory writes.

Our SCUE is orthogonal to the security metadata recovery
works. Osiris [50] and Supermem [54] can be used in SCUE
to ensure the consistency between counter blocks and user
data. Moreover, SCUE leverages STAR [21]/Anubis [53] to
fast recover SIT as shown in §V-D.

Security metadata organization. The security metadata
are organized in multiple ways to improve the performance
of accessing metadata. VAULT [44] reduces the height and
space overhead of SIT by storing more than § counters in one
node. Based on VAULT, MorphCtr [39] observes that when
one counter overflows, either less than a quarter of counters
or all the counters are used. The MorphCtr scheme provides
a scalable solution to store 128 counters in one node and
further reduces the height of the tree. Synergy [40] places
the HMAC inside the ECC chip in a 9-chip ECC-DIMMs and
demonstrates that HMAC can be used to detect not only data
tampering but also memory errors.

Unlike existing schemes, our SCUE instantaneously up-
dates the root, removes the crash window by overlooking
the intermediate nodes and decouple the dependencies in SIT.
Therefore, SCUE delivers high performance in NVM systems
while ensuring root crash consistency.

VIII. CONCLUSION

In order to consistently and correctly update the root of
the integrity tree with low overheads, this paper proposes the
low-latency and shortcut updated scheme, called SCUE. The
idea behind SCUE is that only the updates in persistent leaf
nodes and on-chip root are necessary and sufficient to ensure
the system integrity after system recovery. Propagating the
modifications from leaf nodes to root incurs a long crash
window. When crashes occur during the crash window, the
root is inconsistent with leaf nodes. We instantaneously update
the root in the SIT to remove the crash window. A counter-
summing recovery approach is further proposed to decouple
the dependencies in SIT, and provide the ability of SIT to
be recovered from the consistent leaf nodes up after system
reboots. Compared with state-of-the-art designs, the SCUE
significantly reduces the system execution time while offering
integrity verification after system failures and reboots.

ACKNOWLEDGEMENTS

This work was supported in part by National Natural Sci-
ence Foundation of China (NSFC) under Grant No. 62125202
and U22B2022 and Key Laboratory of Information Storage
System, Ministry of Education of China.

162

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 31,2023 at 03:13:34 UTC from IEEE Xplore. Restrictions apply.

[4]

[5]

[6

[}

[7

—

[8

=

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 31,2023 at 03:13:34 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

“A. m. rudo. 2016. deprecating the pcommit instruction.”
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-
instruction.

“eadr: New opportunities for persistent memory applications.”
https://software.intel.com/content/www/us/en/develop/articles/eadr-
new-opportunities- for-persistent-memory-applications.html.

M. Alshboul, P. Ramrakhyani, W. Wang, J. Tuck, and Y. Solihin, “BBB:
Simplifying persistent programming using battery-backed buffers,” in
2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). 1EEE, 2021, pp. 111-124.

M. Alwadi, A. Mohaisen, and A. Awad, “Promt: optimizing integrity tree
updates for write-intensive pages in secure nvms,” in Proceedings of the
ACM International Conference on Supercomputing, 2021, pp. 479-490.
M. Alwadi, K. Zubair, D. Mohaisen, and A. Awad, “Phoenix: Towards
ultra-low overhead, recoverable, and persistently secure nvm,” [EEE
Transactions on Dependable and Secure Computing, 2020.

A. Awad, P. Manadhata, S. Haber, Y. Solihin, and W. Horne, “Silent
shredder: Zero-cost shredding for secure non-volatile main memory
controllers,” ACM SIGOPS Operating Systems Review, vol. 50, no. 2,
pp. 263-276, 2016.

A. Awad, S. Suboh, M. Ye, K. A. Zubair, and M. Al-Wadi, “Persistently-
secure processors: Challenges and opportunities for securing non-volatile
memories,” in 2019 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). 1EEE, 2019, pp. 610-614.

A. Awad, M. Ye, Y. Solihin, L. Njilla, and K. A. Zubair, “Triad-nvm:
Persistency for integrity-protected and encrypted non-volatile memo-
ries,” in Proceedings of the 46th International Symposium on Computer
Architecture. ACM, 2019, pp. 104-115.

M. Bellare, R. Canetti, and H. Krawczyk, “Message authentication using
hash functions: The hmac construction,” RSA Laboratories’ CryptoBytes,
vol. 2, no. 1, pp. 12-15, 1996.

M. Bellare, D. Pointcheval, and P. Rogaway, “Authenticated key ex-
change secure against dictionary attacks,” in International conference
on the theory and applications of cryptographic techniques. Springer,
2000, pp. 139-155.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, and S. Sardashti, “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp- 1-7, 2011.

S. Chhabra and Y. Solihin, “i-nvmm: a secure non-volatile main memory
system with incremental encryption,” in 2011 38th Annual international
symposium on computer architecture (ISCA). 1EEE, pp. 177-188.

J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala,
and S. Swanson, “Nv-heaps: making persistent objects fast and safe with
next-generation, non-volatile memories,” ACM Sigplan Notices, vol. 47,
no. 4, pp. 105-118, 2012.

V. Costan and S. Devadas, “Intel sgx explained.” JACR Cryptology ePrint
Archive, vol. 2016, no. 086, pp. 1-118.

Z. Dang, S. He, P. Hong, Z. Li, X. Zhang, X.-H. Sun, and G. Chen,
“Nvalloc: rethinking heap metadata management in persistent memory
allocators,” in Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2022, pp. 115-127.

A. Freij, S. Yuan, H. Zhou, and Y. Solihin, “Persist-level parallelism:
Streamlining integrity tree updates for secure non-volatile memory,” in
Proceedings of the 53nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2020.

A. Freij, H. Zhou, and Y. Solihin, “Bonsai merkle forests: Efficiently
achieving crash consistency in secure persistent memory,” in 2021
54rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2021.

B. Gassend, G. E. Suh, D. Clarke, M. Van Dijk, and S. Devadas, “Caches
and hash trees for efficient memory integrity verification,” in The Ninth
International Symposium on High-Performance Computer Architecture,
HPCA-9. Proceedings. 1EEE, 2003, pp. 295-306.

S. Gueron, S. Johnson, and J. Walker, “Sha-512/256,” in 2011 Eighth
International Conference on Information Technology: New Generations.
IEEE, 2011, pp. 354-358.

J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM SIGARCH
Computer Architecture News, vol. 34, no. 4, pp. 1-17, 2006.

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

(36]

(371

[38]

163

J. Huang and Y. Hua, “A write-friendly and fast-recovery scheme
for security metadata in non-volatile memories,” in The 27th IEEE
International Symposium on High-Performance Computer Architecture
(HPCA-27), 2021.

M. Imran, T. Kwon, and J.-S. Yang, “Adapt: A write disturbance-
aware programming technique for scaled phase change memory,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 41, no. 4, pp. 950-963, 2021.

A. Kolli, V. Gogte, A. Saidi, S. Diestelhorst, P. M. Chen,
S. Narayanasamy, and T. F. Wenisch, “Language-level persistency,”
in ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA). 1EEE, 2017, pp. 481-493.

A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley, S. Liu, P. M. Chen,
and T. F. Wenisch, “Delegated persist ordering,” in The 49th Annual
IEEE/ACM International Symposium on Microarchitecture. 1EEE Press,
2016, p. 58.

D. Koo, Y. Shin, J. Yun, and J. Hur, “Improving security and reliability
in merkle tree-based online data authentication with leakage resilience,”
Applied Sciences, vol. 8, no. 12, p. 2532, 2018.

H. Lee, Y. Chen, P. Chen, P. Gu, Y. Hsu, S. Wang, W. Liu, C. Tsai,
S. Sheu, and P. Chiang, “Evidence and solution of over-reset problem
for hfo x based resistive memory with sub-ns switching speed and high
endurance,” in International Electron Devices Meeting, 2010.

M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B.
Kim, C.-J. Kim, D. H. Seo, and S. Seo, “A fast, high-endurance and
scalable non-volatile memory device made from asymmetric ta 2 o 5-
x/tao 2- x bilayer structures,” Nature materials, vol. 10, no. 8, p. 625,
2011.

M. Lei, F. Wang, D. Feng, F. Li, and J. Xu, “An efficient persistency
and recovery mechanism for sgx-style integrity tree in secure nvm,” in
2020 Design, Automation & Test in Europe Conference & Exhibition
(DATE). 1IEEE, 2020, pp. 702-707.

G. Liu, K. Li, Z. Xiao, and R. Wang, “Ps-oram: efficient crash consis-
tency support for oblivious ram on nvm,” in Proceedings of the 49th
Annual International Symposium on Computer Architecture, 2022, pp.
188-203.

S. Liu, A. Kolli, J. Ren, and S. Khan, “Crash consistency in encrypted
non-volatile main memory systems,” in /EEE International Symposium
on High Performance Computer Architecture (HPCA). 1EEE, 2018, pp.
310-323.

S. Liu, K. Seemakhupt, G. Pekhimenko, A. Kolli, and S. Khan, “Janus:
Optimizing memory and storage support for non-volatile memory sys-
tems,” in 2019 ACM/IEEE 46th Annual International Symposium on
Computer Architecture (ISCA). 1IEEE, 2019, pp. 143-156.

H. E. Michail, A. P. Kakarountas, A. Milidonis, and C. E. Goutis,
“Efficient implementation of the keyed-hash message authentication
code (hmac) using the sha-1 hash function,” in Proceedings of the
2004 11th IEEE International Conference on Electronics, Circuits and
Systems, 2004. ICECS 2004. IEEE, 2004, pp. 567-570.

D. Naor, A. Shenhav, and A. Wool, “One-time signatures revisited:
Practical fast signatures using fractal merkle tree traversal,” in 2006
IEEE 24th Convention of Electrical & Electronics Engineers in Israel.
IEEE, 2006, pp. 255-259.

M. Poremba, T. Zhang, and Y. Xie, “Nvmain 2.0: A user-friendly
memory simulator to model (non-) volatile memory systems,” IEEE
Computer Architecture Letters, vol. 14, no. 2, pp. 140-143, 2015.

M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali, “Enhancing lifetime and security of pcm-based main
memory with start-gap wear leveling,” in Proceedings of the 42nd annual
IEEE/ACM international symposium on microarchitecture. ACM, 2009,
pp. 14-23.

J. Rakshit and K. Mohanram, “Assure: Authentication scheme for secure
energy efficient non-volatile memories,” in Proceedings of the 54th
Annual Design Automation Conference 2017, 2017, pp. 1-6.

J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutiu, “Thynvm:
Enabling software-transparent crash consistency in persistent memory
systems,” in 48th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO). 1EEE, 2015, pp. 672—685.

B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Using address
independent seed encryption and bonsai merkle trees to make secure
processors os-and performance-friendly,” in Proceedings of the 40th An-
nual IEEE/ACM International Symposium on Microarchitecture. 1EEE
Computer Society, 2007, pp. 183-196.

[39] G. Saileshwar, P. Nair, P. Ramrakhyani, W. Elsasser, J. Joao, and
M. Qureshi, “Morphable counters: Enabling compact integrity trees for
low-overhead secure memories,” in 5/st Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). IEEE, 2018, pp.
416-4217.

[40] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, and M. K.
Qureshi, “Synergy: Rethinking secure-memory design for error-
correcting memories,” in IEEE International Symposium on High Per-
formance Computer Architecture (HPCA). 1EEE, 2018, pp. 454-465.

[41] G.E. Suh, D. Clarke, B. Gasend, M. Van Dijk, and S. Devadas, “Efficient
memory integrity verification and encryption for secure processors,”
in Proceedings. 36th Annual IEEE/ACM International Symposium on
Microarchitecture, 2003. MICRO-36. 1EEE, 2003, pp. 339-350.

[42] Y. Sung-Ming and L. Kuo-Hong, “Shared authentication token secure
against replay and weak key attacks,” Information Processing Letters,
vol. 62, no. 2, pp. 77-80, 1997.

[43] S. Swami, J. Rakshit, and K. Mohanram, “Secret: Smartly encrypted
energy efficient non-volatile memories,” in 53nd ACM/EDAC/IEEE
Design Automation Conference (DAC). IEEE, 2016, pp. 1-6.

[44] M. Taassori, A. Shafiee, and R. Balasubramonian, “Vault: Reducing
paging overheads in sgx with efficient integrity verification structures,”
in ACM SIGPLAN Notices, vol. 53, no. 2. ACM, 2018, pp. 665-678.

[45] J. M. Turner, “The keyed-hash message authentication code (hmac),”
Federal Information Processing Standards Publication, vol. 198, no. 1,
2008.

[46] X. Wei, D. Feng, W. Tong, J. Liu, and L. Ye, “Morlog: Morphable
hardware logging for atomic persistence in non-volatile main memory,”
in 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). 1EEE, pp. 610-623.

[47] X. Xin, Y. Guo, Y. Zhang, and J. Yang, “Sam: Accelerating strided
memory accesses,” in MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, 2021, pp. 324-336.

[48] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang,
S. Yu, and Y. Xie, “Overcoming the challenges of crossbar resistive
memory architectures,” in IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA). 1EEE, 2015, pp. 476—
488.

[49] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin,
“Improving cost, performance, and security of memory encryption
and authentication,” in ACM SIGARCH Computer Architecture News,
vol. 34, no. 2. IEEE Computer Society, 2006, pp. 179-190.

[50] M. Ye, C. Hughes, and A. Awad, “Osiris: A low-cost mechanism to
enable restoration of secure non-volatile memories.” in MICRO, 2018,
pp. 403-415.

[51] V. Young, P. J. Nair, and M. K. Qureshi, “Deuce: Write-efficient
encryption for non-volatile memories,” ACM SIGPLAN Notices, vol. 50,
no. 4, pp. 3344, 2015.

[52] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy
efficient main memory using phase change memory technology,” in ACM
SIGARCH computer architecture news, vol. 37, no. 3. ACM, 2009, pp.
14-23.

[53] K. A. Zubair and A. Awad, “Anubis: ultra-low overhead and recovery
time for secure non-volatile memories,” in Proceedings of the 46th
International Symposium on Computer Architecture. ACM, 2019, pp.
157-168.

[54] P. Zuo, Y. Hua, and Y. Xie, “Supermem: Enabling application-
transparent secure persistent memory with low overheads,” in Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2019.

[55] P. Zuo, Y. Hua, M. Zhao, W. Zhou, and Y. Guo, “Improving the
performance and endurance of encrypted non-volatile main memory
through deduplicating writes,” in 5/st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 1EEE, 2018, pp. 442-454.

164

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 31,2023 at 03:13:34 UTC from IEEE Xplore. Restrictions apply.

