
Silo: Speculative Hardware Logging for Atomic
Durability in Persistent Memory

Ming Zhang and Yu Hua*

Wuhan National Laboratory for Optoelectronics, School of Computer
Huazhong University of Science and Technology

*Corresponding Author: Yu Hua (csyhua@hust.edu.cn)

Abstract—Persistent memory (PM) provides data persistency.
Due to this property, guaranteeing atomic durability becomes
important for applications running on PM in order to ensure the
crash consistency for a group of updates. To this end, hardware
logging has received many attentions by overlapping the log
operations and transaction execution. Unfortunately, existing
approaches regard logs as backups, which inevitably increases
the log writes to PM, thus exacerbating the limited endurance
of PM and imposing constraints on the write ordering.

This paper proposes Silo, a speculative hardware logging
design to ensure atomic durability with ultra-low overheads.
Unlike existing studies, Silo exploits a speculative methodology
and regards logs as data to make the common case fast. In
practice, system crashes or power failures rarely occur for a
machine. Hence, we do not need to write logs to back up data
in most of the running time. Based on this observation, Silo
temporarily maintains the undo+redo logs on chip during trans-
action execution. After the transaction commits, Silo leverages
the new data in these on-chip logs to in-place update the PM
data region, instead of conservatively writing logs as useless
backups in common cases where no crash occurs. In this way,
Silo significantly reduces the write overheads. If a crash occurs,
Silo still efficiently flushes these on-chip logs to PM for recovery
without any loss of correctness. Experimental results demonstrate
that Silo significantly improves the transaction throughput by
4.3×, and reduces the memory writes by 76.5% compared with
state-of-the-art designs.

I. INTRODUCTION

Persistent memory (PM) [3], [7], [23], [53] provides salient
properties, such as non-volatility, high density, and DRAM-
like performance. By using PM, applications can directly
access the persistent data using load and store instructions
without serializing data to the file systems or invoking expen-
sive system calls. Nevertheless, a fundamental requirement
needs to be satisfied when using PM, i.e., guaranteeing the
atomic durability. Due to non-volatility, the data in PM are
not lost even if a system crash or power failure occurs. As
a result, the persistent data could be partially updated to
cause inconsistency. To provide data consistency, we need to
guarantee the atomic durability, which requires that either all
or none of the updates are applied to PM in case of a crash.

To ensure atomic durability, hardware logging has received
many attentions [2], [16], [25], [27], [28], [38], [46], [52].
These approaches offload log operations to hardware to over-
lap logging with transaction execution, as long as the logs are
persisted before the updated data to support crash recovery.
However, designing an efficient hardware logging scheme is

non-trivial. Due to conservatively writing logs to the PM log
region in each transaction, legacy hardware logging schemes
incur high overheads in two aspects, as presented below.

1) Heavy Writes. Most of existing hardware logging
approaches consume 2–3× memory writes by additionally
backing up the data in the log entries. In particular, the undo,
redo, and undo+redo log entries respectively record the old,
new, and old+new data. Writing logs supports crash recovery,
but the write traffic significantly increases, which exacerbates
the write endurance of PM and hence shortens the PM lifetime.

2) Ordering Constraints. When writing logs and updated
data to PM, prior hardware logging studies suffer from or-
dering constraints. Specifically, the undo loggings [28], [46]
wait for persisting all the updated data before the transaction
commits. In the redo loggings [16], [25], [27], the new data
cannot be in-place updated until all the logs are persisted. For
undo+redo loggings, FWB [38] forces logs to PM before the
updated data for each write. MorLog [52] waits for flushing
all logs in the L1 cache and log buffers to PM before commit
to guarantee durability. Such ordering constraints increase the
latency and lead to performance degradation.

Existing studies do not efficiently address the above chal-
lenges. To reduce log writes, ATOM [28] packs the log
metadata into one cacheline, ReDU [25] supports log coa-
lescing, and MorLog [52] eliminates unnecessary redo logs.
However, these schemes still need to write logs to PM in
each transaction. Proteus [46] adopts a log pending queue to
discard undo logs, but the transaction commit needs to wait
for flushing the updated cachelines, and the last log entry in
each transaction is flushed to indicate the commit. ASAP [2]
relaxes the durability requirement to asynchronously persist
the undo logs and data after commit, but it needs to record
the data and control dependencies in hardware. Moreover, the
logs still cause extra PM writes.

In practice, a single machine normally runs without crash
or power failure in most of the time [6], [18]. We refer to
this situation as common failure-free case. We observe that
in such case all the logs written to PM are truncated after
the transaction commits. Although these logs are not used,
they incur high write overheads. Furthermore, we observe that
it is unnecessary to write logs in common failure-free cases,
since the data in PM will not be partially updated. Instead,
we can write logs in a speculative manner, i.e., only writing
logs to PM upon crashes for recovery. In this way, we avoid

978-1-6654-7652-2/23/$31.00 ©2023 IEEE

2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

651

20
23

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
H

ig
h-

Pe
rf

or
m

an
ce

 C
om

pu
te

r A
rc

hi
te

ct
ur

e
(H

PC
A

) |
 9

78
-1

-6
65

4-
76

52
-2

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

H
PC

A
56

54
6.

20
23

.1
00

71
03

4

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 30,2023 at 12:59:31 UTC from IEEE Xplore. Restrictions apply.

the logging overheads in common failure-free cases, but also
guarantee the recoverability even if a crash occurs.

Based on the above observations, we propose Silo, a
speculative hardware logging design to ensure atomic dura-
bility for PM. Unlike prior studies that conservatively write
logs to the PM log region for backing up data, Silo leverages a
novel idea of “Log as Data”, which utilizes the on-chip logs to
directly in-place update the PM data region in common failure-
free cases. Only in rare cases (e.g., crashes), Silo flushes
the on-chip logs to the PM log region for recovery. Such a
speculative logging makes the common case fast.

Silo maintains the undo+redo logs from one transaction in a
small log buffer in memory controller. These logs are merged
to reduce the space overhead of the log buffer. We observe that
the new data recorded in logs already contain all the updates
of a transaction. Hence, in common failure-free cases, Silo
flushes these new data to in-place update the data region after
commit, thus ensuring durability. Other contents recorded in
logs are simply discarded on chip. The new data are further
coalesced in an internal buffer in PM DIMM to reduce the
write amplification to the physical media. Due to not writing
log entries to back up data, Silo efficiently mitigates the write
traffic caused by log writes. Moreover, since Silo exploits the
logs for in-place updates, the transaction commit does not need
to wait for writing logs (and modified cachelines) to the PM
log (and data) regions, thus removing the ordering constraints.

Apart from making the common case fast, Silo also guaran-
tees the correctness in two rare cases. First, if the logs overflow
from the on-chip log buffer, Silo flushes the overflowed undo
logs to the PM log region in a batch manner. These undo
logs ensure the atomicity. Flushing the overflowed logs and
adding new logs are performed in parallel to reduce the overall
latency. Second, if a crash occurs, Silo selectively flushes the
necessary on-chip logs to PM log region for correct recovery.
Specifically, if the crash occurs before commit, Silo flushes
the undo logs to revoke the partial updates to ensure atomicity.
However, if the crash occurs after commit, Silo flushes the redo
logs to replay all the transaction updates to ensure durability.
Therefore, Silo still guarantees atomic durability in rare cases.
To support the log flushing upon a crash, we implement the
log buffer to be persistent by using a small battery [5].

In summary, this paper makes the following contributions:
• We propose Silo, a hardware logging design that makes

the common case fast to mitigate the write traffic and
ordering constraints with the atomic durability guarantee.

• We employ the new data recorded in on-chip logs to in-
place update the PM data region in common failure-free
cases, instead of conservatively writing these logs to the
PM log region as useless data backups.

• We efficiently handle rare cases including log overflow
and system crashes by only flushing necessary logs to PM
without compromising the correctness and recoverability.

• We conduct extensive experiments. The results demon-
strate that Silo improves the transaction throughput by
4.3×, and reduces 76.5% of memory writes over the state-
of-the-art design [52].

Tx_begin
 create log
 write log
 clwb log
 sfence
 write data

 clwb data
 sfence
Tx_end

Tx_begin
 write data

Tx_end

(a) Software logging (b) Hardware logging

Can be

avoided

using eADR

Fig. 1. The example codes of (a) software logging, and (b) hardware logging.

II. BACKGROUND AND MOTIVATION

A. Atomic Durability for PM

Due to offering data persistency in PM, it is critical to ensure
atomic durability for crash consistency. Atomicity requires
that a group of updates are applied to PM in an all-or-
nothing manner in case of crashes, and durability requires
that these updates must be persisted in PM after commit [10].
Commodity hardware has provided instructions for atomic
update. However, the granularity of atomic CPU write is only
8B in 64-bit CPUs [32], and the atomic instructions (e.g., CAS)
in concurrent programming are used for single writes.

To overcome these limitations, existing PM systems employ
the concept of transaction from the database community to
ensure atomic durability for a group of updates [25], [52]. A
transaction wraps multiple reads and writes together by using
the pair of Tx_begin and Tx_end interfaces. A transaction
must succeed or fail as a complete unit. Due to offering simple
programming model and strong guarantees, the transaction
becomes an important building block for PM applications,
which has been widely recognized in both industry [24], [39]
and academia [14], [25], [27], [34], [38], [48], [52], [56].

B. Why Hardware Logging

To implement the atomic durability in transactions, write-
ahead logging (WAL) [36] is widely employed. WAL first
backs up data in persistent logs, and then allows in-place
updates. Hence, even if a crash occurs in the middle of a
transaction, we can use logs to recover the corrupted data.
WAL perfectly meshes with PM since logging works at a fine
granularity (e.g., word) for a set of scattered writes [48], which
fits the byte-addressability property of PM.

WAL can be performed in software or hardware. As shown
in Fig. 1a, software logging needs to persist logs (e.g., using
clwb) before the corresponding data. The durability order
is controlled by memory barriers (e.g., using sfence). All
log operations exist on the critical path, which decreases
the transaction throughput by up to 70% [28]. Different
from software logging, Fig. 1b shows that hardware logging
only needs to annotate the transaction boundaries using the
Tx_begin and Tx_end interfaces for general-purpose use.
All log operations and data persistence are performed by hard-
ware in the background. By overlapping log operations with
transaction execution, hardware logging significantly improves
the performance over software logging schemes [38].

C. Using eADR for Software Logging is Expensive

Recently, Intel proposes eADR [22] that uses a large battery
to make the entire CPU cache become persistent. Hence, by

652

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 30,2023 at 12:59:31 UTC from IEEE Xplore. Restrictions apply.

MC

DR LR

PM

Log GenCache

MC

DR

PM

Log GenCache

MC

DR LR

PM

Log GenCache

MC

DR LR

PM

Log GenCache

(a) ATOM, DHTM, FWB,

MorLog, ASAP

(b) WrAP (c) ReDU (d) Proteus (e) Our Silo

Log Gen: The log generator that produces log entries MC: The memory controller DR: The data region in PM LR: The log region in PM

DRAM

MC

DR LRPM

Log GenCache

Log as Data

LR

Fig. 2. The comparisons of the logging designs among existing hardware logging studies (a–d) and our Silo (e).

using eADR, the clwb and even sfence in Fig. 1a can be
avoided in the Intel x86 TSO model [20], [45]. However, it is
non-trivial to use eADR for software logging to support atomic
durability due to two reasons. First, to support atomicity,
the programmers need to write logs to the CPU cache to
back up data, which unfortunately increases cache writes and
pollutes the cache. Specifically, the logs are generated in an
append manner, and hence have different physical addresses.
Therefore, these logs cannot be merged in cache to reduce the
number of logs, even if they record the same data’s updates.
Note that in common failure-free cases, the substantial cached
logs are useless due to no need of recovery. However, these
logs frequently write the CPU cache and cause random data
evictions, which incurs heavy cache accesses and exacerbates
the application locality, leading to low performance [8].

Second, to support durability, eADR requires a large-
capacity battery for the entire cache, which significantly in-
creases the energy consumption, hardware cost, and system
maintenance burdens, as reported by existing works [5], [15],
[57]. Hence, the ADR platform is still in its lifetime, and
both ADR and eADR platforms will co-exist to support PM
systems, as pointed out by Intel [45]. In line with recent studies
on PM [2], [13], [15], [57], our work is based on the ADR
platform, in which the CPU cache is volatile.

Given the above considerations, we leverage hardware log-
ging, instead of relying on eADR, to support atomic durability.
Hardware logging can control the ways to store and write logs
without the overheads of cache pollutions and large batteries.

D. Ordering Constraints in Hardware Logging

Different types of hardware loggings exhibit various order-
ing constraints, as shown in Fig. 3.
Undo. The hardware undo logging allows the updated data
(e.g., Data A) to be persisted after the log (e.g., Ulog A).
As the old data are backed up in undo logs, the system can
recover by revoking the partial updates after crashes. But the
transaction commit needs to wait for persisting all the updated
data to guarantee durability. Otherwise, the new values are lost
in case of a crash.
Redo. The hardware redo logging allows the transaction to
commit after all the redo logs have been persisted. As the
new data are backed up in redo logs, the system can recover
by replaying these updates. However, to guarantee atomicity,
the in-place data cannot be updated until all the redo logs
are persisted. Otherwise, the in-place old data are partially
overwritten if a crash occurs in the middle of the transaction.

Undo

Tx_begin

write A

write B

Tx_end

Redo

Time

Undo+RedoTransaction

Ulog A

Ulog B

Data B

Rlog A

Rlog BData A

Data B

Data A

URlog A

URlog B

Data B

Data A

Commmit:

Fig. 3. The comparisons of the persist orderings among hardware undo, redo,
and undo+redo loggings.

Undo+Redo. By backing up old+new data, the hardware
undo+redo logging enables the data to persist after logs,
and allows the transaction to commit without waiting for
persisting all the updated data. Nevertheless, legacy undo+redo
designs still suffer from extra ordering overheads. Specifically,
FWB [38] forces the logs to PM before the updated data for
each write. MorLog [52] waits for flushing all the logs in
L1 cache and log buffer before the transaction commits to
guarantee durability. Moreover, due to backing up old+new
data, the undo+redo logging increases the write traffic to PM.

E. Log As Data
Existing hardware logging studies adopt different log-

ging designs. Fig. 2a–d outline each of these designs. (a)
ATOM [28], DHTM [27], FWB [38], MorLog [52], and
ASAP [2] write the logs to the log region to back up data,
and write the modified cachelines to the data region to install
the transaction updates. (b) WrAP [16] writes redo logs to the
log region and reads these logs to update the data region, thus
causing extra reads. (c) To avoid such reads, ReDU [25] uses
DRAM to buffer the modified cachelines. After commit, these
cachelines directly update the data region. The redo logs are
still written to the log region. (d) Proteus [46] buffers the undo
logs on chip and these logs (except the last one) are discarded
after commit. However, the transaction commit needs to wait
for writing the modified cachelines to the data region. Such
ordering constraints decrease the performance.

In general, existing designs follow the traditional “Log as
Backup” methodology to conservatively write logs to PM as
data backups for crash recovery. However, since in practice
the crash rarely occurs for a single machine [6], [18], the logs
are written in vain, which increases write traffic and imposes
ordering constraints, as analyzed in § I.

Unlike prior studies, our proposed Silo leverages a novel
“Log as Data” idea to use the new data in on-chip logs to
update the PM data region after commit in common cases
(i.e., no crash occurs), as shown in Fig. 2e. In this way, it
is unnecessary to write logs as data backups, thus reducing
the write traffic. Moreover, the transaction commit does not

653

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 30,2023 at 12:59:31 UTC from IEEE Xplore. Restrictions apply.

0

100

200

300

400

500

600
W

ri
te

 S
iz

e
 (

B
)

p
e

r
T

ra
n

sa
ct

io
n

Array Btree Hash Queue RBtree TPCC YCSB Rtree Ctrie AverageTATP Bank

Fig. 4. The write size (in bytes) in one transaction.

need to wait for: 1) flushing the modified cachelines to the
data region, and 2) flushing the logs to the log region, thus
mitigating the ordering constraints. If a crash occurs, Silo
flushes the logs to log region for recovery. In such a speculative
logging manner, Silo significantly reduces the overheads to
accelerate the transaction commit in common cases.

To support the “Log as Data” idea, we store the logs in
an on-chip log buffer during transaction execution. After the
transaction commits, these logs are flushed to the data region
for in-place updates. Furthermore, to support the functionality
of flushing logs on a crash, we implement the log buffer as
a persistent buffer, which is backed by a small battery. This
implementation is compatible with existing works that require
on-chip persistent buffers for different purposes, e.g., storing
metadata [28] and tracking dependencies [2].

The log buffer needs to be small due to the limited on-chip
space. We leverage the applications in Table III, the workloads
from PMDK [24] (i.e., Radix tree or Rtree and Crit-bit trie or
Ctrie that perform insert operations), a telecom application
transaction processing (TATP) benchmark [21], and a banking
application [4], to evaluate the write size in one transaction.
As shown in Fig. 4, the write size is generally less than 0.5
KB per transaction. The transactions in many real-world PM
applications modify small amounts of data (referred as small
write set in this paper). There are two reasons behind this
observation: 1) A small write set reduces the overheads of
enforcing persistency and resolving write conflicts. Hence, the
online transaction processing (OLTP) applications typically
involve a small write set [31], [40], [60]. Note that we do not
care about the size of the read set in transactions, since the
read operations do not produce logs. 2) Transactions are also
used to wrap the critical code regions for concurrency control
(e.g., in HTM [27]). To achieve high concurrency, the critical
code region is small to efficiently mitigate blocking. Based
on the above reasons, using a small log buffer is sufficient
to maintain the logs in one transaction, since small write sets
commonly exist. Even if the logs overflow from the buffer
in some large transactions, we efficiently handle this issue by
flushing undo logs without any transaction abort (§ III-F).

III. THE SILO DESIGN

A. Assumption

Like existing studies [25], [28], [38], [46], [52], we assume
that the atomic durability is based on hardware logging in the
ACID transactions. The isolation between conflicting transac-
tions is supported by software mechanisms in programs, such
as fine-grained locking [11]. Moreover, we currently do not
support nested transactions since they are orthogonal to atomic
durability [25], [52].

Memory Controller

Last Level Cache

L1 Log Generator

Core

L1...

...

Write Pending
Queue

Log Buffer

New data in logs

Log Entry

Persistent Memory

Processor

Core

Log Controller

......

Logs
in rare
cases

Cachelines

Data Region

Log Region

Fig. 5. The architecture of Silo.

Flush-bit

8 bits 1 word16 bits 48 bits1 bit 1 word

Log Metadata Log Data

TID TxID Addr Old Data New Data

Fig. 6. The structure of the log entry.

B. Architecture

Fig. 5 illustrates the architecture of Silo. The key hardware
components are presented as follows.
Log Entry. We design the undo+redo log entry to record the
log metadata and log data (including the old and new data),
as shown in Fig. 6. Log entries are generated and controlled
by hardware. The 8-bit tid and 16-bit txid respectively record
the thread ID and transaction ID [38], [52]. The 48-bit addr
records the physical address of the log data. The flush-bit
avoids unnecessary writes, as presented in § III-D. The size
of the old or new data is 1 word (e.g., 8B in 64-bit CPUs) to
record the data change made by a CPU store instruction.
Log Generator. Silo designs a log generator in each L1 data
cache (L1D) controller to generate log entries when the L1D is
updated during a transaction. When Tx_begin is executed,
the log generator records the current tid, and increases the
value stored in a specific register as the txid [52]. When a
cacheline is modified, the log generator captures the new data
and its physical address from the in-flight write request. The
old data is simultaneously obtained from L1D. Reading the old
data does not incur extra latency since it is overlapped with the
tag matching of the in-flight write [33]. After obtaining the log
data, the log generator encapsulates them with tid, txid, and log
data’s address into a log entry (the flush-bit is 0), and assigns
a physical address for this log entry in the PM log region.
Afterwards, the log generator sends the log entry to a log
buffer in the memory controller. The CPU store completes
without waiting for sending the log entry, since sending log
entries is independent on the next instruction execution. When
Tx_end is executed, the log generator stops producing logs.
Log Buffer. Each CPU core has a small private battery-backed
log buffer to maintain the log entries from one transaction.
Each core’s log buffer contains 20 entries based on the results
in § VI-D. Beside each entry, a 64-bit hardware comparator [1]
is used for fast address comparisons. The logs are written to
the log buffer in order. After a transaction commits, the entries
in log buffer are deallocated to serve the next transaction.

654

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 30,2023 at 12:59:31 UTC from IEEE Xplore. Restrictions apply.

Log Gen MetaA A1 A2A = A0
B = B0

Tx_begin
A = A1
B = B1
A = A2
Tx_end

Transaction

PC

Addr

MetaB B0 B1
MetaA A0 A1

Comparators
0

1

Log Buffer

Merge

L1D

A1:A2

...

B1

Fig. 7. The logs are merged in the log buffer.

Log Controller. We design a log controller in each memory
controller to manipulate the logs in the log buffer. The log
controller merges logs during transaction execution (§ III-C).
After commit, the new data in log entries are flushed to the PM
data region for in-place updates in common failure-free cases
(§ III-D). These new data are coalesced in an on-PM buffer
before being written to the PM media (§ III-E). Moreover, if
a rare case occurs, e.g., a crash happens or the log overflows
from the log buffer, the log controller flushes log entries to
the PM log region for correct recovery (§ III-F and § III-G).
Log Region. In the log region, Silo leverages a distributed log
scheme [49], in which each thread maintains its own log area
to avoid contentions on writing logs across threads.

C. On-Chip Log Reduction

As the on-chip area is expensive, Silo leverages two
schemes based on program behaviors to reduce the number
of logs in the log buffer to alleviate the space overhead.
Log Ignorance. In some cases, a single CPU write does
not actually modify the word, e.g., data copy and value
assignment [47]. Due to no data change, it is unnecessary to
generate a log entry. The log generator ignores this write.
Log Merging. Due to temporal locality in programs, multiple
CPU writes could modify the data at the same physical
address. In this case, we only need to record the oldest and
newest data, since they are sufficient to recover the PM data to
a none or all state after a crash. To this end, Silo merges the
log entries that record the same data’s changes into one log
entry. Fig. 7 presents the log merging process. When a new
log entry (e.g., LogA1+A2) arrives, the log controller searches
for an existing log entry that matches the addr in the new
log entry. Specifically, the 64-bit comparator beside each log
entry compares the addr in existing log entry with the addr
in the new log entry. If a matched log entry is found (e.g.,
LogA0+A1), Silo leverages the new data in LogA1+A2 (i.e.,
A2) to replace the new data in LogA0+A1 (i.e., A1), and then
discards the new log entry. If there is no match, Silo appends
the new log entry to the log buffer. This matching process in
very fast since all the 64-bit comparators compare the addrs in
parallel, and locate the matched log entry in less than 1 ns [1].
Silo merges logs without crossing threads or transactions. The
merging operation is processed in the background without
affecting the transaction execution.

D. Exploiting Logs for In-Place Updates

Based on our “Log as Data” idea, Silo leverages a log-
update scheme to exploit logs to in-place update the data
region in common failure-free cases. During transaction ex-
ecution, the undo+redo logs recording the old+new data are

A = A0
B = B0

Tx_begin
A = A1
B = B1
A = A2
Tx_end

Transaction

PC

A0 A2

B0 B1

MetaA

MetaB1

Flush-bit

0

Log Buffer

LogB

LogA

Data
Region

Log
Region

PM

Log ControllerL1D

A2

...

B1 (evicted)

Fig. 8. Silo leverages the new data in logs to in-place update the data region.

stored in the log buffer. After commit, Silo flushes the new
data in logs to update the data region, and then deletes other
information in logs on chip. The old data in logs are only used
in rare cases to guarantee the atomicity, as presented in § III-F
and § III-G. Hence, Silo does not need to write the log entries
to the log region, thus reducing the write traffic.

During transaction execution, Silo does not block any cache-
line evictions. If a cacheline has been evicted to PM, flushing
the new data in logs after commit causes unnecessary writes.
To avoid this, Silo sets the flush-bit of the log entry to 1. It
means that the new data in this log is simply discarded after
commit. Once the write pending queue receives an evicted
cacheline (e.g., cl) in transaction execution, the log controller
simultaneously checks if there are logs that record the updates
in cl. To achieve this, the comparators in the log buffer
compare the line addresses of the log data (i.e., shifting the
addr field) with the address of cl. If equal, the flush-bits of
the matched logs are set to 1. All comparators work in parallel
for fast comparisons. In consequence, Silo allows the new data
in logs or cachelines to update the data region to reduce writes.

After a transaction (e.g., Tx1) commits, even if the modified
cachelines in Tx1 are evicted to PM, they will not incur
redundant writes. The reason is that existing bit-level write
reduction schemes, such as data-comparison-write [62], only
apply the changed bits to the PM media. Since the new data
of Tx1 have been written to the data region, and the evicted
cachelines contain the same words as these new data, these
words will not be redundantly overwritten in the PM media,
because the bits in these words are not changed.

Fig. 8 depicts the log-update scheme. During transaction
execution, LogA is merged once. Data B has been evicted
from cache and the flush-bit of LogB is set to 1. At commit,
Silo only needs to flush the new data in LogA (i.e., A2) to
the data region according to its addr in the log metadata.

Silo strictly guarantees the durability after the transaction
commits. When the final update in a transaction completes,
the log entry is sent to the log buffer in parallel with the
next instruction execution. When Tx_end is executed, the
log generator notifies the log controller that the transaction
starts to commit. Hence, the final log entry arrives earlier than
the commit notification. Once being notified, the log controller
acknowledges the log generator and simultaneously flushes the
new data. After the log generator receives the ACK, Tx_end
completes and the CPU continues to execute the following
codes. Such on-chip control message passing between the log
generator and log generator only consumes several cycles [18].
After executing Tx_end, all logs containing the new data are
in a persistent state, thus strictly guaranteeing the durability.

Our log-update scheme eliminates the ordering constraints,

655

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 30,2023 at 12:59:31 UTC from IEEE Xplore. Restrictions apply.

i.e., the transaction commit does not need to wait for persisting
the logs to the log region or persisting the updated cachelines
to the data region. The reasons are threefold. 1) The logs
are generated in parallel with cacheline updates and sent to
the log buffer by bypassing the CPU caches. Hence, the logs
are ensured to be persisted earlier than cachelines. 2) Silo
uses logs for in-place updates, and thus it is unnecessary to
wait for persisting logs to the log region before commit. 3)
The transaction commit does not need to wait for flushing
the new data, since these new data are not lost in the log
buffer (backed by battery), thus enabling the data region to be
lazily updated in the background. In consequence, Silo avoids
the ordering constraints caused by writing the logs and the
updated cachelines to PM.

In a multi-threaded scenario, Silo does not incur the syn-
chronization overheads that involve cache coherence and mul-
tiple memory controllers (MCs), as analyzed below.
Cache Coherence. In Silo, the path of writing logs (i.e., from
the log generator to the log controller) completely bypasses
the CPU cache hierarchy. Hence, our logging scheme does
not incur the overhead of cache coherence.
Multiple MCs. The efficiency of our log-update scheme is
not affected by the number of MCs. When using multiple
MCs, each MC serves the whole memory [30] and contains
a log controller. A thread executes an entire transaction. The
log generator sends the logs from the same transaction to the
same MC. Hence, the logs and in-place updates end up at the
same MC. In this way, it is unnecessary to coordinate different
MCs to execute the same transaction, and Silo still reduces the
overheads of log writes and ordering constraints.

E. Coalescing Writes to PM

Silo writes the new data in logs to PM in word granularity.
In 64-bit CPUs, a word is 8B, which matches the 64-bit
width of the processor-memory bus. Hence, each new data
is atomically written to PM without wasting the bus width.

In general, a PM DIMM contains an internal buffer [50],
[52], [55], [58] to temporarily store the written data to the
underlying physical media for high access efficiency. We refer
to this buffer as on-PM buffer, in which all the data will survive
a crash by using ADR [58]. In Silo, the new data in logs are
first written to the on-PM buffer before reaching the media.
The line size of the on-PM buffer is larger (e.g., 256B [58])
than the size of new data (8B). Hence, these writes are applied
to the media via read-modify-write operations, which could
incur write amplification to the media [50], [55].

Silo leverages a write coalescing scheme in the on-PM
buffer to reduce the write amplification to the media. This
can be interpreted as three cases, as shown in Fig. 9. After
commit, 6 words (W1–W6) are written to PM in order.
Case 1: W1–W3 have the same physical line address in PM,
but the bytes in W3 overlap with those in W1 and W2. Such
overlapping cannot be eliminated by log merging since the
physical addresses of these new data are different. However,
Silo coalesces these writes in the on-PM buffer, i.e., the low
4B and high 4B in W3 respectively overwrite the high 4B in

On-PM Buffer

Cachelines
W1 (addr: 16), W2 (addr: 24), W3 (addr: 20),

W4 (addr: 400), W5 (addr: 410), W6 (addr: 600)

New data in logs

Physical Media

½ W1 W ¾ W1, W2 W ¿ W1Low4B|W3Low4B, W3High4B|W2High4B

À W4 W Á W4, W5

Cachelines Â W6 Cachelines

PM Controller

PM

... ...

Fig. 9. The new data and cachelines are coalesced in the on-PM buffer.

W1 and the low 4B in W2. The correctness is guaranteed since
the log entries are added to the log buffer in order and these
new data are flushed in the same order. The latter updated data
will correctly overwrite the former one to ensure the freshness.
Case 2: W4 and W5 have the same line address without
overlapped bytes. Silo coalesces W4 and W5 by storing them
together in the same line without writing the media twice.
Case 3: W6 does not have the same line address with other
new data. Silo stores W6 with other cachelines. Silo allows
the cachelines to share the on-PM buffer with the new data in
logs. The 64B cachelines and 8B new data are coalesced in
the same line to be written to the media together.

The two update paths in Fig. 9, i.e., cacheline eviction (CE)
and in-place update (IPU) by using logs, do not cause any race
risk, since the evicted cachelines and the new data in logs
contain the same data values. To demonstrate the correctness,
we summarize all three timing scenarios as follows.

1) CE occurs earlier than IPU before commit: The flush-bit
in log is set to 1, and the log is discarded on chip. In this case,
CE updates the PM data region.

2) CE occurs in parallel with IPU during commit: The new
data in log is merged into the evicted cacheline in the on-PM
buffer shown in Fig. 9. Hence, CE updates the PM data region.

3) CE occurs later than IPU after commit: Since the words
in PM data region have already been updated by the new
data in logs. These words would not be repeatedly updated
by the evicted cacheline thanks to bit-level write reduction
schemes [62], as mentioned in § III-D. In this case, IPU
updates the words in the PM data region.

In summary, Silo orchestrates the two update paths, i.e., CE
and IPU, to ensure that the PM data exist at the newest state
and are never partially updated to guarantee the correctness.

F. Handling Log Overflow

If the log buffer cannot store all the logs in a large transac-
tion, the log overflow occurs. Silo handles this by evicting the
undo logs (FIFO) to the log region. 1) If the flush-bit of an
evicted log is 1, the cacheline has been flushed. Silo flushes the
undo logs to ensure atomicity, and the new data are discarded
on chip. 2) If the flush-bit is 0, Silo sets it to 1 and flushes the
undo logs to ensure atomicity, and simultaneously writes the
new data to the data region to ensure durability. Hence, the log
overflow does not break the atomic durability guarantee. The
overflowed logs are deleted after commit if no crash occurs.

Silo flushes overflowed undo logs in a batch manner to
improve the efficiency. We observe that if one log entry

656

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 30,2023 at 12:59:31 UTC from IEEE Xplore. Restrictions apply.

overflows, the next log entry could also overflow. Hence,
Silo flushes several undo logs at a time to make room for
subsequent log entries. As the physical addresses of log entries
are adjacent and each undo log entry is only 18B (including
the log metadata and the old data), Silo flushes a batch of
undo logs together, so that these logs can be stored in one
line of the on-PM buffer to reduce the write amplification to
the physical media. The number (N) of the batched log entries
depends on the line size (S bytes) of the on-PM buffer, i.e.,
N = ⌊ S

18⌋. For example, if S = 256 [58], Silo writes 14 log
entries in a batch upon a log overflow.

Log overflow does not heavily decrease the performance.
The reasons are threefold. First, flushing the overflowed logs
and adding subsequent logs to the log buffer are performed
in parallel, which does not severely hamper the throughput.
Second, there is no ordering constraint between flushing the
undo logs and new data, since they are not lost in the log
buffer and flushed to PM without any ordering requirement.
Third, the write traffic does not significantly increase, since
the overflowed logs are flushed in a batch manner to mitigate
the write amplification to the PM media. The experimental
results in § VI-F demonstrate the above analysis.

In general, log overflow is a rare case, since the write set of
transactions is small (§ II-E), and Silo reduces the number of
on-chip log entries (§ III-C). However, even if the log overflow
occurs, Silo efficiently handles it without aborting transactions.
Some prior schemes [25], [27] restrict the transaction size due
to hardware limitations. Unlike them, Silo does not limit the
transaction size to improve the generality and portability.

G. Selective Log Flushing for Crash Recovery

If a system crash or power failure occurs, Silo leverages
a selective log flushing scheme to only flush the logs that are
necessary for recovery according to the transaction states. 1) If
a transaction fails to commit upon the crash, we need to ensure
the atomicity to avoid partial updates in the data region. To
achieve this, Silo flushes all the undo logs to the log region.
The new data are discarded on chip. 2) If a transaction already
commits upon a crash but the new data in logs have not been
flushed, we need to guarantee the durability to ensure all the
updates are not lost. To this end, Silo only flushes the redo
logs whose flush-bits are 0 and an ID tuple (tid, txid) to the
log region. Silo leverages simple gates and multiplexers to
implement the selective flushing logic in hardware. We use a
small battery to supply the power to flush logs upon a crash.

After crashes, Silo recovers the data region by using logs. In
the log region, the ID tuples record the committed transactions.
For the remaining logs, Silo checks whether their (tid, txid)
exist in the ID tuples. 1) If not, the logs are undo logs, which
belong to the transactions that fail to commit. Silo reads the
old data to revoke the partial updates in the data region. 2) If
found, the transactions have committed and the logs are redo
logs. Silo replays these redo logs to update the data region. In
this case, even if some overflowed undo logs exist, Silo easily
identifies and discards them, since the flush-bits in redo logs
are 0. But in the overflowed undo logs, the flush-bits are 1.

TABLE I
THE HARDWARE OVERHEAD OF SILO.

Components Types Sizes
Log buffer SRAM 20 entries, 680B per core

64-bit comparators CMOS cells 20 comparators per log buffer
Battery Lithium thin-film 2.125×10−4mm3 per log buffer

Log head and tail Flip-flops 16B per core

IV. PUTTING IT ALL TOGETHER

Fig. 10 illustrates an example on how our designs in § III
work together to process transactions (Txs) and handle rare
cases. Thread1 (T1) in core1 executes Tx1 and Tx3, and
thread2 (T2) in core2 simultaneously executes Tx2. Data A–H
are stored in different physical addresses. Their initial values
are respectively A0–H0 in PM.

• Fig. 10a: Data A, B, and D are updated. Their log entries
are respectively stored in core1’s and core2’s log buffers.

• Fig. 10b: Tx1 commits. The new data in logs, i.e., A1
and B1, in-place update the data region. Tx2 updates E.

• Fig. 10c: Tx2 updates F. The cacheline containing D1 is
evicted, and hence the flush-bit of LogD is set to 1.

• Fig. 10d: A new transaction (Tx3) updates A again. The
log entry records A1 as the old data and A2 as the new
data. Moreover, Tx2 updates E again. The log controller
merges the logs to only record E0 and E2.

• Fig. 10e: Tx3 updates C and LogC is created. In Tx2, the
cacheline containing F1 is evicted and LogF’s flush-bit
is set to 1. Moreover, the undo log of D overflows.

• Fig. 10f: A crash or power failure occurs. Since Tx3 has
committed, Silo flushes the redo logs with flush-bit of 0,
and an ID tuple (T1, Tx3) to the log region. Moreover,
Tx2 fails to commit and all the undo logs are flushed.

• Fig. 10g: During recovery, Silo identifies that Tx3 in T1
has committed, and hence all the log entries satisfying
(tid = 1, txid = 3, flush-bit = 0) are the redo logs. Silo
leverages them to replay transaction updates, i.e., A1→A2
and C0→C1. Apart from these redo logs, other logs are
undo logs that belong to the uncommitted transactions.
Silo reads them to revoke the partially updated data, i.e.,
D1→D0 and F1→F0.

• Fig. 10h: After recovery, the PM data region is in a con-
sistent state. The updates in the committed transactions
(Tx1 and Tx3) are persisted to guarantee durability. More-
over, the partial updates in the uncommitted transactions
(Tx2) are discarded to guarantee atomicity.

Hardware Overhead. Table I summarizes the major hardware
overhead of Silo in the processor. We adopt a 20-entry log
buffer (i.e., 680B) for each core to store log entries from
one transaction based on the results in § VI-D. A 64-bit
comparator is associated with each log entry. Silo guarantees
the persistence of log buffer by using batteries. Table IV shows
that the required battery is very small. Moreover, Silo uses two
8B registers for each core to record the head and tail physical
addresses of the thread-local log area in the PM log region.

Adding hardware components does not incur extra schedul-
ing overheads due to two reasons. 1) Silo does not block or
reorder the cacheline evictions, which are written to PM as

657

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 30,2023 at 12:59:31 UTC from IEEE Xplore. Restrictions apply.

The flush-bit is 0An undo log records the old data A0 A redo log records the new data A1 1U A0 R A1 0 A0 Unmodified data in PM A1 Modified data in PMThe flush-bit is 1

Thread 2Thread 1Thread 2Thread 1

Tx1_begin

 A = A1

 B = B1

Tx1_end

Tx3_begin

 A = A2

 C = C1

Tx3_end

Tx2_begin

 D = D1

 E = E1

 F = F1

 E = E2

 G = G1

 H = H1

Tx2_end

Thread 2Thread 1

Thread 2Thread 1Thread 2Thread 1

Tx2 fails to

commit

(Revoke)

Thread 2Thread 1

Tx1 and Tx3

commit

(Replay)

The writes in

Tx2 are

discarded

Thread 2Thread 1

The writes in

Tx1 and Tx3

are persisted

(b) Tx1 commits. Tx2 writes E (d) Tx3 writes A. Tx2 writes E again

(f) A crash or power failure occurs (g) During recovery (h) After recovery

PM data region

PM log region

U D01Log overflow

U E00 R E2
U F01 R F1
U G0 R G10

Evictd
E2

G0 W G1

C0 W C1
B1
A2

Core1 - L1D Core2 - L1D

U D0 R D1
U E00 R E1

0

E0 W E1
D1

B1
A1

Core1 - L1D Core2 - L1D

U A0 R A1
U B00 R B1

0

U D01
0 R C1

R A20
U E00
U F0

U G00
(T1, Tx3)

PM data region

PM log region

U E00 R E2
U F01 R F1
U G0 R G10

System crash or
power failure occurs

Core1 - L1D Core2 - L1D

1

U D0 R D1
U E00 R E1

1

U F00 R F1

F0 W F1
E1

Evicted
B1
A1

Core1 - L1D Core2 - L1D

A1 B1 C0 D1
E0 F1 G0 H0

U D01
0 R C1

R A20
U E00
U F0

U G00
(T1, Tx3)

PM data region

PM log region

Core1 - L1D Core2 - L1D

1

F1
E1 W E2B1

A1 W A2
Core1 - L1D Core2 - L1D

A2 B1 C1 D0
E0 F0 G0 H0

PM data region

PM log region

Core1 - L1D Core2 - L1D

Thread 2Thread 1

(a) Tx1 writes A and B. Tx2 writes D

PM data region

PM log region

D0 W D1
B0 W B1

A1
Core1 - L1D Core2 - L1D

Core1 - log buffer Core2 - log buffer

Tx1_begin

 A = A1

 B = B1

Tx1_end

Tx3_begin

 A = A2

 C = C1

Tx3_end

Tx1_begin

 A = A1

 B = B1

Tx1_end

Tx3_begin

 A = A2

 C = C1

Tx3_end

Tx1_begin

 A = A1

 B = B1

Tx1_end

Tx3_begin

 A = A2

 C = C1

Tx3_end

Tx1_begin

 A = A1

 B = B1

Tx1_end

Tx3_begin

 A = A2

 C = C1

Tx3_end

Tx1_begin

 A = A1

 B = B1

Tx1_end

Tx3_begin

 A = A2

 C = C1

Tx3_end

Tx2_begin

 D = D1

 E = E1

 F = F1

 E = E2

 G = G1

 H = H1

Tx2_end

Tx2_begin

 D = D1

 E = E1

 F = F1

 E = E2

 G = G1

 H = H1

Tx2_end

Tx2_begin

 D = D1

 E = E1

 F = F1

 E = E2

 G = G1

 H = H1

Tx2_end

Tx2_begin

 D = D1

 E = E1

 F = F1

 E = E2

 G = G1

 H = H1

Tx2_end

Tx2_begin

 D = D1

 E = E1

 F = F1

 E = E2

 G = G1

 H = H1

Tx2_end

(c) Tx3 begins. Tx2 writes F

(e) Tx3 writes C. Tx2 writes G

A1 B1 C0 D1
E0 F1 G0 H0
A1 B1 C0 D1
E0 F1 G0 H0

A1 B1 C0 D1
E0 F1 G0 H0
A1 B1 C0 D1
E0 F1 G0 H0

A1 B1 C0 D0
E0 F0 G0 H0
A1 B1 C0 D0
E0 F0 G0 H0

A0 B0 C0 D0
E0 F0 G0 H0
A0 B0 C0 D0
E0 F0 G0 H0

A1 B1 C0 D1
E0 F0 G0 H0
A1 B1 C0 D1
E0 F0 G0 H0

A1 B1 C0 D1
E0 F0 G0 H0
A1 B1 C0 D1
E0 F0 G0 H0

U D0 R D10U A0 R A1
U B00 R B1

0 U D0 R D1
U E00 R E2

1

U F00 R F1

U D0 R D1
U E00 R E2

1

U F00 R F1

U A1 R A20 U A1 R A20

Core1 - log buffer Core2 - log buffer Core1 - log buffer Core2 - log buffer Core1 - log buffer Core2 - log buffer

Core1 - log buffer Core2 - log buffer Core1 - log buffer Core2 - log buffer Core1 - log buffer Core2 - log buffer Core1 - log buffer Core2 - log buffer

PM log region PM log region PM log region

PM data region PM data region PM data region

U A1 R A2
U C00 R C1

0 U A1 R A2
U C00 R C1

0

Fig. 10. An example of dealing with transaction execution, log overflow, and crash recovery in Silo.

unmodified systems. 2) The log entry records the physical data
address. Hence, there is no address aliasing problem between
processes. We do not need to save states on the context switch.

V. DISCUSSIONS

eADR and BBB Using Battery-Backed Caches. eADR [22]
and BBB [5] leverage batteries to make the CPU caches
persistent. Hence, they support durability for single updates,
i.e., these updates are forced to PM if a crash occurs. However,
they do not guarantee atomicity. The data can be partially
updated after a crash. Different from the goal of eADR and
BBB, Silo supports both atomicity and durability for a group
of updates. Table IV shows that Silo requires much smaller
batteries than eADR/BBB to flush the on-chip logs on a crash.
Logless Atomic Durability. Instead of logging, LAD [18]
buffers the updated cachelines in memory controller (MC)
until committed to PM to guarantee atomic durability. LAD
and Silo leverage MC as a persistent domain, but our logging
design is significantly different from LAD in three aspects.
1) The transaction commit in LAD needs to wait for flushing
the updated L1 cachelines to LLC and finally to MC, which
stalls the CPU. Even if using an ideal proactive flushing
scheme [26], [29], the transaction throughput improves by
only 4% [18]. Unlike LAD, our log-update scheme enables the

transaction to commit without waiting for flushing the updated
cachelines. The results in Fig. 12 demonstrate our benefits. 2)
LAD stores the entire cacheline in MC even if only one word is
modified, which wastes the expensive space in MC and hence
easily causes overflows. Unlike LAD, Silo stores log entries
at the word granularity to improve the space efficiency. 3) If
a cacheline overflow occurs, LAD needs to read the old data
from PM to generate undo logs and flush them. These read
operations incur high latency, causing LAD to fall back to
a slow mode. Unlike LAD, Silo directly flushes the on-chip
undo logs upon a log overflow without any PM read.
Hardware Logging Using Persistent Buffers. Some hard-
ware logging studies adopt an on-chip persistent buffer (e.g.,
by using the ADR domain [44]) for different purposes.
ATOM [28] uses the buffer to store the metadata to manage
logs. MorLog [52] uses the buffer to reduce the persist latency
for logs and data. ASAP [2] buffers the dependency lists and
log headers. However, these studies still incur log writes to the
log region in each transaction. Proteus [46] stores the undo
logs on chip until commit. However, the transaction commit
needs to wait for flushing the updated cachelines to cause
ordering constraints. All these studies follow a traditional
logging method to regard logs as backups, thus inevitably in-
creasing the overheads even if using on-chip persistent buffers.

658

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 30,2023 at 12:59:31 UTC from IEEE Xplore. Restrictions apply.

TABLE II
THE CONFIGURATIONS OF THE SIMULATED SYSTEM.

Processor
Cores 8 cores, x86-64, 2 GHz

L1 I/D Cache Private, 64B per line, 32KB, 8-way, 4 cycles
L2 Cache Private, 64B per line, 256KB, 8-way, 12 cycles
L3 Cache Shared, 64B per line, 8MB, 16-way, 28 cycles

Memory Controller FRFCFS, 64-entry queue in ADR domain [44]
Log Buffer 680B per core, FIFO, 8 cycles, battery backed

Persistent Memory
Capacity 16GB phase-change memory
Latency Read / Write: 50 / 150 ns [10]

TABLE III
THE USED BENCHMARKS.

Micro-benchmarks [2], [27], [28], [38], [46], [52]
Array Randomly swap two elements in an array
Btree Randomly insert elements in a B-tree
Hash Randomly insert elements in a hash table

Queue Randomly enqueue and dequeue elements in a queue
RBtree Randomly insert elements in a red-black tree

Macro-benchamarks [25], [37], [52]
TPCC OLTP workload, all the five transaction types
YCSB 20%/80% of read/update for the key-value items

Unlike them, our Silo regards logs as data, and leverages the
new data in on-chip logs to update the data region to make
the common case fast. We use a persistent log buffer to ensure
the logs can be flushed to PM for recovery in rare cases (e.g.,
crashes), which has a different purpose from the above studies.

VI. PERFORMANCE EVALUATION

A. Experiment Configurations

We leverage Gem5 simulator [9] with NVMain [43] to
implement and evaluate Silo. The system configurations are
shown in Table II. We run the benchmarks in Table III
for performance comparisons. The micro-benchmarks are
widely used in hardware logging studies [2], [27], [28],
[38], [46], [52]. The size of data element is 64B in each
micro-benchmark. The macro-benchmarks from Whisper [37]
include two well-known real-world transactional workloads,
i.e., TPCC and YCSB, which are configured like MorLog [52]:
we run the New-Order transaction from TPCC, and set the
read/update ratio in YCSB to 20%/80%. Considering different
transaction types in real systems, we run all the five transaction
types in TPCC to evaluate the capacity of log buffer in § VI-D.
We use 8 cores (1 thread per core) to execute 10k transactions
for each benchmark. The evaluated designs are shown below.
ADR [44] is enabled for all the designs for fast persistency.

• Base: A hardware logging baseline that flushes an
undo+redo log entry and the corresponding updated
cacheline for each write.

• FWB: The logging design of FWB. The time interval of
cache force write-back is set to 3,000,000 cycles [38].

• MorLog: The morphable logging scheme of MorLog.
The delay-persistence commit protocol is disabled to
ensure durability after the transaction commits [52].

• LAD: The logless atomic durability design of LAD [18].
LAD commits a transaction in two phases. The Prepare
phase flushes the updated L1 cachelines to MC, and
the Commit phase only sends messages. The proactive
flushing scheme [26], [29] is enabled on LAD.

0

0.2

0.4

0.6

0.8

1

Array Btree Hash Queue RBtree TPCC YCSB Average

Base FWB MorLog LAD Silo

0

0.2

0.4

0.6

0.8

1

Array Btree Hash Queue RBtree TPCC YCSB Average

Base FWB MorLog LAD Silo

0

0.2

0.4

0.6

0.8

1

Array Btree Hash Queue RBtree TPCC YCSB Average

Base FWB MorLog LAD Silo

0

0.2

0.4

0.6

0.8

1

Array Btree Hash Queue RBtree TPCC YCSB Average

Base FWB MorLog LAD Silo

(a) 1 core

(b) 2 cores

(c) 4 cores

(d) 8 cores

N
o

rm
a

li
ze

d
 W

ri
te

 T
ra

ff
ic

N
o

rm
a

li
ze

d
 W

ri
te

 T
ra

ff
ic

N
o

rm
a

li
ze

d
 W

ri
te

 T
ra

ff
ic

N
o

rm
a

li
ze

d
 W

ri
te

 T
ra

ff
ic

Fig. 11. The normalized write traffic to PM on different number of cores.

• Our proposed Silo: We reduce the number of logs in
the log buffer (§ III-C), and leverage the log-update
scheme to update the data region by using on-chip logs
(§ III-D). The writes are coalesced in the on-PM buffer
(§ III-E). Moreover, if a log overflow occurs, Silo flushes
the overflowed logs in batch and in parallel (§ III-F).

Silo is not comparable with a recent study ASAP [2], since
ASAP works on the customized atomic region instead of the
ACID transaction. ASAP relaxes the durability requirement,
i.e., the updated data and logs are not guaranteed to be
persisted after the atomic region commits. In contrast, all
the above evaluated designs strictly ensure the durability for
transactions after commit. Moreover, FWB has demonstrated
that it outperforms software (and hardware) undo or redo
loggings. Hence, we do not repeatedly compare Silo with these
schemes, since Silo outperforms FWB as shown in Fig. 11–12.
B. Write Traffic to PM

Fig. 11 shows the number of write requests to the PM
physical media. The results are normalized to Base. Due to
flushing the log and modified cacheline for each write, Base
suffers from the highest write traffic. MorLog and FWB back
up data to the log region, which incurs redundant writes. Their
log metadata also increase the number of writes. MorLog
reduces the writes by 30% over FWB due to mitigating the
intermediate redo logs. LAD exhibits low write traffic due
to only writing cachelines. By using logs to update the data
region, Silo avoids writing logs to the log region. Moreover,
by coalescing the writes of new data in the on-PM buffer, Silo

659

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 30,2023 at 12:59:31 UTC from IEEE Xplore. Restrictions apply.

0

2

4

6

8

10

Array Btree Hash Queue RBtree TPCC YCSB Average

Base FWB MorLog LAD Silo

0

1

2

3

4

5

Array Btree Hash Queue RBtree TPCC YCSB Average

Base FWB MorLog LAD Silo

0

1

2

3

4

5

6

7

Array Btree Hash Queue RBtree TPCC YCSB Average

Base FWB MorLog LAD Silo

0

2

4

6

8

10

Array Btree Hash Queue RBtree TPCC YCSB Average

Base FWB MorLog LAD Silo

12.7

8.2

13.115.2

(a) 1 core

(b) 2 cores

(c) 4 cores

(d) 8 cores

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

Fig. 12. The normalized transaction throughput on different numbers of cores.

alleviates the write amplification to the PM media, and hence
exhibits approximate write traffic with LAD. Silo reduces the
writes by 76.5%/82% over MorLog/FWB on 8 cores, thus
significantly improving the lifetime of PM.
C. Transaction Throughput

Fig. 12 presents the transaction throughput of all bench-
marks running on 1–8 cores. The results are normalized to
Base, which shows the lowest throughput due to the heavy
overheads on logging and cacheline flushes. On 8 cores, Mor-
Log outperforms FWB by 1.5× via reducing the intermediate
redo data. Due to not producing logs, LAD shows higher
throughput than FWB and MorLog.

When using more CPU cores, Silo achieves higher through-
put improvements, since our log-update scheme removes the
ordering constraints to improve the scalability. On 8 cores,
Silo respectively improves the throughput by 1.5×/4.3×/6.4×
compared with LAD/MorLog/FWB. Although the write traffic
of LAD is close to that of Silo, LAD shows lower throughput
than Silo, since LAD suffers from a long write path to commit
the data updates (i.e., L1 → LLC → MC). In other words,
LAD consumes more time to wait for flushing the modified L1
cachelines to MC before commit, while Silo does not need to
wait for flushing any cacheline, thus accelerating the commit.
Moreover, Silo significantly outperforms LAD on Array and
Queue, since these workloads exhibit low spatial locality,
causing many dirty cachelines per transaction. As a result,
LAD needs to wait for flushing substantial dirty cachelines to
MC before commit, thus decreasing the performance.

52

37 40

19

6

22
18

28

4
9

20

9
5

13
8 10

0

10

20

30

40

50

60

Array Btree Hash Queue RBtree TPCC YCSB Average

The number of total log entries

The number of remaining log entries

T
h

e
 N

u
m

b
e

r
o

f
Lo

g
s

Fig. 13. The number of total and remaining on-chip logs per transaction.

TABLE IV
THE BATTERY REQUIREMENTS OF DIFFERENT SYSTEMS (8 CORES).

eADR [22] BBB [5] Our Silo
Flush Size (KB) 10,496 16 5.3125

Flush Energy (µJ) 54,377 194 62
Cap (mm3; mm2) 151; 28.4 0.54; 0.66 0.17; 0.31
Li (mm3; mm2) 1.51; 1.32 0.0054; 0.031 0.0017; 0.014

D. The Capacity of Log Buffer
To evaluate the capacity of the log buffer, we check the

number of on-chip logs per transaction. Fig. 13 shows the
number of the total and remaining log entries per transaction
of each core. Our log reduction schemes in § III-C mitigate
64.3% of the logs on average. Array produces many logs,
since each data element is 64B, which involves multiple words.
However, many words are not actually modified and 90.4% of
logs are ignored. As the maximum number of remaining log
entries is 20 in Hash, we reserve 20 entries in each core’s log
buffer. In 64-bit CPUs, each undo+redo log entry is 26B, and
has an 8B physical address. Hence, we configure the capacity
of the log buffer for each core to be 680B (i.e., 20×(26+8)).
In our 8-core configuration, the total buffer size is 5,440B.
E. Energy and Battery Requirements for Log Buffer

We leverage the battery-backed SRAM to implement the
log buffer. To evaluate the energy for flushing the on-chip logs
after a crash, we use the energy consumption model from [5],
[41], i.e., moving one byte from the log buffer to PM consumes
11.228 nJ. Hence, we require 62 µJ to flush a 5,440B log
buffer. To supply the required energy, we evaluate two types of
batteries, i.e., supercapacitors (Cap) [63] and lithium thin-film
batteries (Li) [42]. The energy density of Cap/Li is 10−4/10−2

Wh cm−3 [54]. We hence obtain the volumes (mm3) and areas
(mm2 in cubic shapes) of Cap and Li, as shown in Table IV.

For comparisons, Table IV also presents the required energy
and battery for BBB [5] and eADR [22], although their design
goals are different from Silo, as discussed in § V. BBB flushes
the 16KB buffers of 8 cores (each core has 32 64B entries).
eADR flushes the dirty blocks (45%) in the 10,496KB CPU
caches in Table II. The results show that eADR/BBB consume
888.2×/3.2× (91.6×/2.1×) larger volume (area) of Cap than
Silo. Hence, the battery overhead of our log buffer is very low.

F. Processing Large Transactions

In rare cases, the logs could overflow from the log buffer
when processing large transactions. To study how Silo per-
forms in large transactions, we set the write set of a transaction
to be 1–16× larger than the size of log buffer. For each
benchmark, the transaction throughput and PM write traffic
are normalized to the 1× configuration. Fig. 14a shows that
the throughput decreases by only 7.4% on average when
processing 16× larger transactions, since Silo enables the

660

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 30,2023 at 12:59:31 UTC from IEEE Xplore. Restrictions apply.

0

0.2

0.4

0.6

0.8

1

Array Btree Hash Queue RBtree TPCC YCSB Average

1x 2x 4x 8x 16x

0
0.5

1
1.5

2
2.5

3
3.5

Array Btree Hash Queue RBtree TPCC YCSB Average

1x 2x 4x 8x 16x

(a) The normalized transaction throughput

(b) The normalized PM write traffic

N
o

rm
a

li
ze

d

T
h

ro
u

g
h

p
u

t

N
o

rm
a

li
ze

d

W
ri

te
 T

ra
ff

ic

Fig. 14. The transaction performance on different sizes of the write set.

overflowed logs to be flushed in parallel with generating new
logs. Fig. 14b shows that the write traffic only increases by
up to 1.9× on average since Silo flushes the overflowed undo
logs in a batch manner to mitigate the write amplification
to PM media. The performance on Btree, Hash, Queue,
and RBtree decrease when running large transactions due to
writing extra overflowed logs. Note that Array shows stable
performance since most of the logs are ignored as analyzed
in § VI-D. Hence, the logs do not frequently overflow. More-
over, the results on TPCC and YCSB keep stable due to their
good locality, which enables substantial logs to be merged on
chip. In summary, the log overflow does not always occur
in large transactions. Even if it occurs, Silo does not abort
transactions or incur severe performance degradations.

G. Performance Sensitivity to the Latency of Log Buffer
We study how the access latency of the log buffer affects

the performance. We change the latency from 8 to 128 cycles
to cover various buffer types (e.g., SRAM). The throughputs
of micro-/macro-benchmarks are normalized to Array/TPCC
using an 8-cycle buffer. Fig. 15 shows that the throughput
generally keeps stable when increasing the latency. In Silo,
the CPU store does not need to wait for writing logs to
the buffer during transaction execution, and the new data in
logs are read from the buffer to update the data region in the
background after commit. Thus, reading or writing the log
buffer is not on the critical path. Using a 128-cycle buffer
only decreases the throughput by 3.3% over an 8-cycle one
on average. Moreover, the write traffic is not affected when
changing the latency. In summary, the latency of log buffer
has negligible effect on the efficiency of Silo.

VII. RELATED WORK

WAL for Atomic Durability. Software loggings [12], [14],
[48], [56] rely on CPU instructions to enforce the durability or-
der between logs and data. DudeTM [34] and SoftWrAP [17]
use a DRAM cache to remove the persist operations from the
critical path, but need to track the data versions. Unlike these
studies, Silo adopts the hardware logging approach.

Hardware logging efficiently overlaps the log operations and
transaction execution. Prior hardware undo loggings [28], [46]
need to persist all the updated data before commit. ASAP [2]
asynchronously persists the undo logs and the updated data

0
2
4
6
8

10
12
14
16

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Array Btree Hash Queue RBtree TPCC YCSB

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

Access latency of log buffer (cycles)

Fig. 15. The normalized transaction throughput on different buffer latencies.

after commit, but need to track the data and control dependen-
cies. Existing redo schemes [16], [25], [27], [51] enforce the
ordering between redo logs and data. DHTM [27] writes redo
logs to provide durability for hardware transactional mem-
ory, but the transaction size is limited by LLC. CCHL [51]
compresses and consolidates logs to reduce writes. Legacy
undo+redo designs [38], [52] exploit the benefits of undo and
redo loggings, but still write extra logs. Unlike them, Silo uses
the on-chip logs to directly in-place update the data region in
common failure-free cases, thus reducing the overheads.
Multi-Versioning Schemes for Atomic Durability. Atomic
durability can be ensured by multi-versioning [10], [18], [35],
[61]. Kiln [61] uses a non-volatile last level cache (NVLLC) to
store the updated data. LAD buffers the updated cachelines in
memory controller until committed to PM. Kamino-Tx [35]
maintains the main and backup versions of data regions in
PM. HOOP [10] designs an indirection layer that redirects the
addresses for out-of-place updates. Unlike them, Silo adopts
hardware logging to ensure atomic durability, while enabling
in-place updates without the needs of NVLLC, data region
backups, and physical address redirections.
Crash Consistency for Single Operations. Some studies
guarantee the crash consistency for single operations on PM.
They can be divided into two categories. First, the software-
based data structures, such as NVTree [59], Fast&Fair [20],
Level Hashing [64], and MOD [19], leverage customized
schemes to ensure the consistency for single updates. Second,
the hardware-based schemes, such as eADR [22] and BBB [5],
adopt battery-backed caches to persist CPU writes. Orthogonal
to these studies, our Silo focuses on the atomic durability for
a group of updates based on the ACID transaction.

VIII. CONCLUSION
In order to ensure atomic durability for persistent memory

(PM), this paper proposes Silo, a speculative hardware logging
approach that leverages the new data in the on-chip logs to in-
place update the PM data region in common failure-free cases.
Hence, it is unnecessary to write logs to the PM log region to
back up data, thus improving the performance and reducing
the overheads. Only in rare cases, e.g., system crashes, Silo
selectively flushes necessary on-chip logs to PM for data
recovery without any loss of correctness. Experimental results
demonstrate that Silo significantly outperforms state-of-the-art
studies in terms of transaction throughput and write traffic.

ACKNOWLEDGMENTS
This work was supported in part by National Natural Sci-

ence Foundation of China (NSFC) under Grant No. 62125202
and U22B2022, and Key Laboratory of Information Storage
System, Ministry of Education of China.

661

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 30,2023 at 12:59:31 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. Abdel-Hafeez, A. Gordon-Ross, and B. Parhami, “Scalable digital
cmos comparator using a parallel prefix tree,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 21, no. 11, pp. 1989–
1998, 2013.

[2] A. H. M. O. Abulila, I. E. Hajj, M. Jung, and N. S. Kim, “ASAP:
architecture support for asynchronous persistence,” in ISCA ’22: The
49th Annual International Symposium on Computer Architecture, New
York, New York, USA, June 18 - 22, 2022. ACM, 2022, pp. 306–319.

[3] H. Akinaga and H. Shima, “Resistive random access memory (reram)
based on metal oxides,” Proceedings of the IEEE, vol. 98, no. 12, pp.
2237–2251, 2010.

[4] M. Alomari, M. Cahill, A. Fekete, and U. Rohm, “The cost of serial-
izability on platforms that use snapshot isolation,” in 2008 IEEE 24th
International Conference on Data Engineering, 2008.

[5] M. A. Alshboul, P. Ramrakhyani, W. Wang, J. Tuck, and Y. Soli-
hin, “BBB: simplifying persistent programming using battery-backed
buffers,” in IEEE International Symposium on High-Performance Com-
puter Architecture, HPCA 2021, Seoul, South Korea, February 27 -
March 3, 2021. IEEE, 2021, pp. 111–124.

[6] M. A. Alshboul, J. Tuck, and Y. Solihin, “Lazy persistency: A high-
performing and write-efficient software persistency technique,” in 45th
ACM/IEEE Annual International Symposium on Computer Architecture,
ISCA 2018, Los Angeles, CA, USA, June 1-6, 2018. IEEE Computer
Society, 2018, pp. 439–451.

[7] D. Apalkov, A. Khvalkovskiy, S. Watts, V. Nikitin, X. Tang, D. Lottis,
K. Moon, X. Luo, E. Chen, A. Ong, A. Driskill-Smith, and M. Krounbi,
“Spin-transfer torque magnetic random access memory (STT-MRAM),”
ACM J. Emerg. Technol. Comput. Syst., vol. 9, no. 2, pp. 13:1–13:35,
2013.

[8] L. Benson, L. Papke, and T. Rabl, “Perma-bench: Benchmarking persis-
tent memory access,” Proc. VLDB Endow., vol. 15, no. 11, pp. 2463–
2476, 2022.

[9] N. L. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt, A. G.
Saidi, A. Basu, J. Hestness, D. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. S. B. Altaf, N. Vaish, M. D. Hill, and D. A. Wood, “The
gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, pp.
1–7, 2011.

[10] M. Cai, C. C. Coats, and J. Huang, “HOOP: efficient hardware-assisted
out-of-place update for non-volatile memory,” in 47th ACM/IEEE An-
nual International Symposium on Computer Architecture, ISCA 2020,
Valencia, Spain, May 30 - June 3, 2020. IEEE, 2020, pp. 584–596.

[11] D. R. Chakrabarti, H. Boehm, and K. Bhandari, “Atlas: leveraging locks
for non-volatile memory consistency,” in Proceedings of the 2014 ACM
International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA 2014, part of SPLASH 2014,
Portland, OR, USA, October 20-24, 2014. ACM, 2014, pp. 433–452.

[12] A. Chatzistergiou, M. Cintra, and S. D. Viglas, “REWIND: recovery
write-ahead system for in-memory non-volatile data-structures,” Proc.
VLDB Endow., vol. 8, no. 5, pp. 497–508, 2015.

[13] Z. Chen, Y. Hua, Y. Zhang, and L. Ding, “Efficiently detecting concur-
rency bugs in persistent memory programs,” in ASPLOS ’22: 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Lausanne, Switzerland, 28 February
2022 - 4 March 2022. ACM, 2022, pp. 873–887.

[14] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala,
and S. Swanson, “Nv-heaps: making persistent objects fast and safe
with next-generation, non-volatile memories,” in Proceedings of the 16th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2011, Newport Beach, CA,
USA, March 5-11, 2011. ACM, 2011, pp. 105–118.

[15] Z. Dang, S. He, P. Hong, Z. Li, X. Zhang, X. Sun, and G. Chen,
“Nvalloc: rethinking heap metadata management in persistent memory
allocators,” in ASPLOS ’22: 27th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems,
Lausanne, Switzerland, 28 February 2022 - 4 March 2022. ACM, 2022,
pp. 115–127.

[16] K. Doshi, E. Giles, and P. J. Varman, “Atomic persistence for SCM
with a non-intrusive backend controller,” in 2016 IEEE International
Symposium on High Performance Computer Architecture, HPCA 2016,
Barcelona, Spain, March 12-16, 2016. IEEE Computer Society, 2016,
pp. 77–89.

[17] E. Giles, K. Doshi, and P. J. Varman, “Softwrap: A lightweight frame-
work for transactional support of storage class memory,” in IEEE 31st
Symposium on Mass Storage Systems and Technologies, MSST 2015,
Santa Clara, CA, USA, May 30 - June 5, 2015. IEEE Computer Society,
2015, pp. 1–14.

[18] S. Gupta, A. Daglis, and B. Falsafi, “Distributed logless atomic durability
with persistent memory,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 2019, Colum-
bus, OH, USA, October 12-16, 2019. ACM, 2019, pp. 466–478.

[19] S. Haria, M. D. Hill, and M. M. Swift, “MOD: minimally ordered
durable datastructures for persistent memory,” in ASPLOS ’20: Archi-
tectural Support for Programming Languages and Operating Systems,
Lausanne, Switzerland, March 16-20, 2020. ACM, 2020, pp. 775–788.

[20] D. Hwang, W. Kim, Y. Won, and B. Nam, “Endurable transient in-
consistency in byte-addressable persistent b+-tree,” in 16th USENIX
Conference on File and Storage Technologies, FAST 2018, Oakland, CA,
USA, February 12-15, 2018. USENIX Association, 2018, pp. 187–200.

[21] IBM, “Telecom application transaction processing (tatp) benchmark,”
http://tatpbenchmark.sourceforge.net/, 2011.

[22] Intel, “eADR: New Opportunities for Persistent Memory Appli-
cations,” https://software.intel.com/content/www/us/en/develop/articles/
eadr-new-opportunities-for-persistent-memory-applications.html, 2021.

[23] Intel, “Intel® Optane™ Persistent Memory,” https://www.intel.com/
content/www/us/en/architecture-and-technology/optane-dc-persistent-
memory.html, 2022.

[24] Intel, “The libpmemobj library in Intel Persistent Memory Development
Kit,” https://pmem.io/pmdk/libpmemobj/, 2022.

[25] J. Jeong, C. H. Park, J. Huh, and S. Maeng, “Efficient hardware-assisted
logging with asynchronous and direct-update for persistent memory,” in
51st Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 2018, Fukuoka, Japan, October 20-24, 2018. IEEE Computer
Society, 2018, pp. 520–532.

[26] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “Efficient persist barri-
ers for multicores,” in Proceedings of the 48th International Symposium
on Microarchitecture, MICRO 2015, Waikiki, HI, USA, December 5-9,
2015. ACM, 2015, pp. 660–671.

[27] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “DHTM: durable hard-
ware transactional memory,” in 45th ACM/IEEE Annual International
Symposium on Computer Architecture, ISCA 2018, Los Angeles, CA,
USA, June 1-6, 2018. IEEE Computer Society, 2018, pp. 452–465.

[28] A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra, “ATOM: atomic dura-
bility in non-volatile memory through hardware logging,” in 2017 IEEE
International Symposium on High Performance Computer Architecture,
HPCA 2017, Austin, TX, USA, February 4-8, 2017. IEEE Computer
Society, 2017, pp. 361–372.

[29] R. Kateja, A. Badam, S. Govindan, B. Sharma, and G. Ganger, “Viyojit:
Decoupling battery and DRAM capacities for battery-backed DRAM,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture, ISCA 2017, Toronto, ON, Canada, June 24-28, 2017.
ACM, 2017, pp. 613–626.

[30] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “ATLAS: A scalable
and high-performance scheduling algorithm for multiple memory con-
trollers,” in 2010 IEEE International Symposium on High Performance
Computer Architecture, HPCA 2010, Bangalore, India, January 9-14,
2010. IEEE Computer Society, 2010, pp. 1–12.

[31] H. Kimura, “FOEDUS: OLTP engine for a thousand cores and
NVRAM,” in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria, Australia,
May 31 - June 4, 2015, T. K. Sellis, S. B. Davidson, and Z. G. Ives,
Eds. ACM, 2015, pp. 691–706.

[32] S. K. Lee, J. Mohan, S. Kashyap, T. Kim, and V. Chidambaram, “Recipe:
converting concurrent DRAM indexes to persistent-memory indexes,”
in Proceedings of the 27th ACM Symposium on Operating Systems
Principles, SOSP 2019, Huntsville, ON, Canada, October 27-30, 2019.
ACM, 2019, pp. 462–477.

[33] Y. Lee, S. Kim, S. Hong, and J. Lee, “Skinflint DRAM system: Mini-
mizing DRAM chip writes for low power,” in 19th IEEE International
Symposium on High Performance Computer Architecture, HPCA 2013,
Shenzhen, China, February 23-27, 2013. IEEE Computer Society, 2013,
pp. 25–34.

[34] M. Liu, M. Zhang, K. Chen, X. Qian, Y. Wu, W. Zheng, and J. Ren,
“Dudetm: Building durable transactions with decoupling for persistent
memory,” in Proceedings of the Twenty-Second International Conference
on Architectural Support for Programming Languages and Operating

662

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 30,2023 at 12:59:31 UTC from IEEE Xplore. Restrictions apply.

Systems, ASPLOS 2017, Xi’an, China, April 8-12, 2017. ACM, 2017,
pp. 329–343.

[35] A. Memaripour, A. Badam, A. Phanishayee, Y. Zhou, R. Alagappan,
K. Strauss, and S. Swanson, “Atomic in-place updates for non-volatile
main memories with kamino-tx,” in Proceedings of the Twelfth European
Conference on Computer Systems, EuroSys 2017, Belgrade, Serbia, April
23-26, 2017. ACM, 2017, pp. 499–512.

[36] C. Mohan, D. Haderle, B. G. Lindsay, H. Pirahesh, and P. M. Schwarz,
“ARIES: A transaction recovery method supporting fine-granularity
locking and partial rollbacks using write-ahead logging,” ACM Trans.
Database Syst., vol. 17, no. 1, pp. 94–162, 1992.

[37] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton, “An
analysis of persistent memory use with WHISPER,” in Proceedings of
the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2017,
Xi’an, China, April 8-12, 2017. ACM, 2017, pp. 135–148.

[38] M. Ogleari, E. L. Miller, and J. Zhao, “Steal but no force: Efficient
hardware undo+redo logging for persistent memory systems,” in IEEE
International Symposium on High Performance Computer Architecture,
HPCA 2018, Vienna, Austria, February 24-28, 2018. IEEE Computer
Society, 2018, pp. 336–349.

[39] Oracle, “NVM-Direct Library,” https://github.com/oracle/nvm-direct,
2015.

[40] Oracle, “What is OLTP?” https://www.oracle.com/database/what-is-
oltp/, 2022.

[41] D. Pandiyan and C. Wu, “Quantifying the energy cost of data movement
for emerging smart phone workloads on mobile platforms,” in 2014
IEEE International Symposium on Workload Characterization, IISWC
2014, Raleigh, NC, USA, October 26-28, 2014. IEEE Computer Society,
2014, pp. 171–180.

[42] D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L.
Taberna, and P. Simon, “Ultrahigh-power micrometre-sized supercapac-
itors based on onion-like carbon,” Nature nanotechnology, vol. 5, no. 9,
pp. 651–654, 2010.

[43] M. Poremba, T. Zhang, and Y. Xie, “Nvmain 2.0: A user-friendly
memory simulator to model (non-)volatile memory systems,” IEEE
Comput. Archit. Lett., vol. 14, no. 2, pp. 140–143, 2015.

[44] A. Rudoff, “Deprecating the PCOMMIT instruction,” https://software.
intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction, 2016.

[45] A. Rudoff, “Persistent memory programming without all that cache
flushing,” SDC, 2020.

[46] S. Shin, S. K. Tirukkovalluri, J. Tuck, and Y. Solihin, “Proteus: a flexible
and fast software supported hardware logging approach for NVM,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 2017, Cambridge, MA, USA, October 14-18,
2017. ACM, 2017, pp. 178–190.

[47] Y. Tian, S. M. Khan, D. A. Jiménez, and G. H. Loh, “Last-level cache
deduplication,” in 2014 International Conference on Supercomputing,
ICS’14, Muenchen, Germany. ACM, 2014, pp. 53–62.

[48] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: lightweight
persistent memory,” in Proceedings of the 16th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2011, Newport Beach, CA, USA, March 5-11, 2011.
ACM, 2011, pp. 91–104.

[49] T. Wang and R. Johnson, “Scalable logging through emerging non-
volatile memory,” Proc. VLDB Endow., vol. 7, no. 10, pp. 865–876,
2014.

[50] Z. Wang, X. Liu, J. Yang, T. Michailidis, S. Swanson, and J. Zhao,
“Characterizing and modeling non-volatile memory systems,” in 53rd
Annual IEEE/ACM International Symposium on Microarchitecture, MI-
CRO 2020, Athens, Greece, October 17-21, 2020. IEEE, 2020, pp.
496–508.

[51] X. Wei, D. Feng, W. Tong, J. Liu, C. Wang, and L. Ye, “CCHL:
compression-consolidation hardware logging for efficient failure-atomic
persistent memory updates,” in ICPP 2020: 49th International Confer-
ence on Parallel Processing, Edmonton, AB, Canada, August 17-20,
2020. ACM, 2020, pp. 12:1–12:11.

[52] X. Wei, D. Feng, W. Tong, J. Liu, and L. Ye, “Morlog: Morphable
hardware logging for atomic persistence in non-volatile main memory,”
in 47th ACM/IEEE Annual International Symposium on Computer
Architecture, ISCA 2020, Valencia, Spain, May 30 - June 3, 2020. IEEE,
2020, pp. 610–623.

[53] H. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran,
M. Asheghi, and K. E. Goodson, “Phase change memory,” Proceedings
of the IEEE, vol. 98, no. 12, pp. 2201–2227, 2010.

[54] Z.-S. Wu, K. Parvez, X. Feng, and K. Müllen, “Graphene-based in-plane
micro-supercapacitors with high power and energy densities,” Nature
communications, vol. 4, no. 1, pp. 1–8, 2013.

[55] L. Xiang, X. Zhao, J. Rao, S. Jiang, and H. Jiang, “Characterizing the
performance of intel optane persistent memory: a close look at its on-
dimm buffering,” in EuroSys ’22: Seventeenth European Conference on
Computer Systems, Rennes, France, April 5 - 8, 2022. ACM, 2022,
pp. 488–505.

[56] Y. Xu, J. Izraelevitz, and S. Swanson, “Clobber-nvm: Log less, re-
execute more,” in ASPLOS ’21: Architectural Support for Programming
Languages and Operating Systems, 2021. ACM, 2021.

[57] S. Yadalam, N. Shah, X. Yu, and M. Swift, “ASAP: A speculative
approach to persistence,” in IEEE International Symposium on High-
Performance Computer Architecture, HPCA 2022, Seoul, South Korea,
April 2-6, 2022. IEEE, 2022, pp. 892–907.

[58] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson,
“An empirical guide to the behavior and use of scalable persistent
memory,” in 18th USENIX Conference on File and Storage Technologies,
FAST 2020, Santa Clara, CA, USA, February 24-27, 2020. USENIX
Association, 2020, pp. 169–182.

[59] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He, “Nv-
tree: Reducing consistency cost for nvm-based single level systems,”
in Proceedings of the 13th USENIX Conference on File and Storage
Technologies, FAST 2015, Santa Clara, CA, USA, February 16-19, 2015.
USENIX Association, 2015, pp. 167–181.

[60] H. Zhang, D. G. Andersen, A. Pavlo, M. Kaminsky, L. Ma, and R. Shen,
“Reducing the storage overhead of main-memory OLTP databases with
hybrid indexes,” in Proceedings of the 2016 International Conference on
Management of Data, SIGMOD Conference 2016, San Francisco, CA,
USA, June 26 - July 01, 2016, F. Özcan, G. Koutrika, and S. Madden,
Eds. ACM, 2016, pp. 1567–1581.

[61] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln: closing
the performance gap between systems with and without persistence
support,” in The 46th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-46, Davis, CA, USA, December 7-11, 2013.
ACM, 2013, pp. 421–432.

[62] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy
efficient main memory using phase change memory technology,” in 36th
International Symposium on Computer Architecture (ISCA 2009), June
20-24, 2009, Austin, TX, USA. ACM, 2009, pp. 14–23.

[63] Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira,
A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A.
Stach, and R. S. Ruoff, “Carbon-based supercapacitors produced by
activation of graphene,” Science, vol. 332, no. 6037, pp. 1537–1541,
2011.

[64] P. Zuo, Y. Hua, and J. Wu, “Write-optimized and high-performance
hashing index scheme for persistent memory,” in 13th USENIX Sym-
posium on Operating Systems Design and Implementation, OSDI 2018,
Carlsbad, CA, USA, October 8-10, 2018. USENIX Association, 2018,
pp. 461–476.

663

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 30,2023 at 12:59:31 UTC from IEEE Xplore. Restrictions apply.

