
CompoundEyes: Near-duplicate Detection in Large
Scale Online Video Systems in the Cloud

Yixin Chen∗, Wenbo He†, Yu Hua‡, Wen Wang∗
∗†School of Computer Science, McGill University
∗Email: {yixin.chen, wen.wang4}@mail.mcgill.ca

†Email: wenbohe@cs.mcgill.ca
‡WNLO, School of Computer, Huazhong University of Science and Technology

Email: csyhua@hust.edu.cn

Abstract—At the present time, billions of videos are hosted and
shared in the cloud of which a sizable portion consists of near-
duplicate video copies. An efficient and accurate content-based
online near-duplicate video detection method is a fundamental
research goal; as it would benefit applications such as duplication-
aware storage, pirate video detection, polluted video tag detec-
tion, searching result diversification. Despite the recent progress
made in near-duplicate video detection, it remains challenging to
develop a practical detection system for large-scale applications
that has good efficiency and accuracy performance.

In this paper, we shift the focus from feature representation
design to system design, and develop a novel system, called
CompoundEyes, accordingly. The improvement in accuracy is
achieved via well-organized classifiers instead of advanced feature
design. Meanwhile, by applying simple features with reduced
dimensionality and exploiting the parallelism of the detection
architecture, we accelerate the detection speed. Through extensive
experiments we demonstrate that the proposed detection system is
accurate and fast. It takes approximately 1.45 seconds to process
a video clip from a large video dataset, CC WEB VIDEO, with
a 89% detection accuracy.

I. INTRODUCTION

In recent years we have witnessed the proliferation of
video content over the Internet. This growth was fueled by
rapid advances in multimedia technologies, and also by the
popularity of online video hosting and sharing services (e.g.,
YouTube, Yahoo! video). Videos have emerged as a dominant
form of big data on the online world. According to Cisco
Systems, Internet videos accounted for 78% of all U.S. Internet
traffic in 2014, and is expected to rise to 84% in 2018 [1].

The expansion of video content is accompanied with ubiq-
uitous duplications. Wu et al. [2] showed that among Internet
13,129 videos, around 27% are near-duplicate. Therefore, ef-
ficiently identifying near-duplicate videos (NDVs) on a large-
scale is a fundamental research goal, which can benefit the
performance of video sharing and hosting services in many
aspects. For example, by identifying the NDV copies, band-
width utilization and storage management in video content
distribution systems can be further optimized. By comparing
the metadata associated with NDVs, the pollution in metadata

This research is jointly sponsored by NSERC RGPIN 418521-12,
the National Basic Research Program of China (973) under Grant No.
2014CB340303, National Natural Science Foundation of China (NSFC) under
Grant No.61173043, and State Key Laboratory of Computer Architecture
under Grant No.CARCH201505.

[3] can be detected as well. Furthermore, the detection of
NDVs allows pirated copies to be identified (e.g., YouTube
Content ID).

Presently, a common way in practice to detect NDVs is
based on metadata such as keywords, tags, or associated de-
scriptions. However, metadata and descriptions are less reliable
in detecting NDVs than visual content. It is very common
that identical video clips have different sets of associated
tags, and clips with identical set of tags can be significantly
different. Therefore, a content-based NDVD (Near-Duplicate
Video Detection) system [2], [4], [5] is more desirable than one
based on metadata. These NDVD systems, however, tend to
use high-dimensional feature representations and complicated
algorithms to seek good detection accuracy, thereby sacrificing
efficiency for accuracy. This approach is not practical for large-
scale NDVD applications. As reported in YouTube statistics
[6], 300 hours of video clips are uploaded every minute. If
an NDVD system is not efficient enough, the detection speed
cannot catch up to the video uploading speed. Thus, building
a practical NDVD system is challenging due to the following
two reasons.

• The Complexity of Data: Compared with other forms
of big data such as records or logs, videos are more
information-abundant, and complicated. Therefore, using
features to profile a video is not as effective as it does
in content-based duplicate document detection. In the
cloud, there are numerous modifications on video content
to produce NDVs, for example, variations in encoding
format or parameters, photometric variations, or frame
insertion or deletion. Every feature discovered hitherto
has its own drawbacks, because certain information about
video content has been discarded by this feature.

• Detection Speed Requirement: To cope with the sheer
volume and increasing speed, a fast video detection
system is necessary. However, this requirement is con-
tradictory to the practice of using high-dimensional and
composite feature representations to embody videos [4],
[7], because the construction of these representations is
exhaustive [4]. Consequently, it is generally conducted
offline [4], [7].

In spite of time-consuming constructions, high-dimensional

and composite feature representations are intuitively more
informative, and thus, discriminative. This is why recent
research focuses on using high-dimensional feature design and
feature fusion [4], [7] to detect NDVs. However, in this paper,
using the information entropy concept, we demonstrate that
composite feature representations are not necessarily more
informative than a collection of simple representations. In
addition, the increase of dimensionality may further reduce
the informativeness. Accordingly, we shift the focus from
advanced representation design to the system design. We
design and implement an efficient yet accurate NDVD system,
called CompoundEyes. Our idea was inspired by the com-
pound eyes of insects, which are made up of numerous small
optical systems. Although an individual small optical system
is weak by itself, they together form a comprehensible eye
sight, allowing for an incredibly wide viewing angle and the
detection of fast movement.

The design of CompoundEyes follows the principles of sys-
tems approach. Although individual components are relatively
weak in accuracy, together as a system they could achieve
satisfactory performance improvement. Meanwhile the system
efficiency is ensured because the individual components are
simple and fast. We adopted CC WEB VIDEO [8] dataset to
evaluate the performance of CompoundEyes. Compared with a
similar work [9], the accuracy has been improved from 80% to
89%, with only 1.45 seconds average temporal cost for videos
less than 10 minutes in length.

The contributions of our system can be further explained
from the following aspects.

• A Shifting of Detection Paradigm: We apply a new
design philosophy for NDVD systems, which employs
multi-feature information fusion with well-coordinated
classifiers instead of multi-feature fusion with a simple
classifier. Based on the definition of the informativeness
of video representation, we prove that theoretically a
sophisticated representation combining multiple features
does not provide more information than a collection
of simple features, thus the latter approach does not
guarantee higher accuracy then the former one.

• Efficiency Improvement: We use low-dimensional rep-
resentations to achieve efficiency and scalability. Though
the accuracy using individual features with reduced di-
mensionality is affected, we apply ensemble classifiers
for information fusion and make the final detection result
more accurate than state-of-the-art approaches. Moreover,
we exploit the parallelism in our system to further accel-
erate the detection speed.

• Implementation: Our implementation of CompoundEyes
along with the simplicity of input representations and
native support of parallelism exhibits satisfactory perfor-
mance in terms of both accuracy and detection efficiency.
In CompoundEyes, LSH (Locality Sensitive Hashing)
[10] is used to accelerate the video information search.

The rest of the paper is organized as follows. Background
knowledge, the Feature-Centered detection paradigm, and re-

lated theoretical results are discussed in section II. In section
III, the design of CompoundEyes is proposed. It is evaluated
in section IV. Related work is reviewed in section V. Section
VI concludes the paper.

II. PRELIMINARIES

In this paper, we adopt the most strict and least subjective
[11] definition proposed by Wu et al. [2], in which NDVs are
videos of similar visual content but have undergone various
modifications such as illumination changes or caption inser-
tion. Therefore the NDV detection is based on visual content
rather than semantics.

A. Two-Stage NDVD Detection

The typical process of content-based NDVD systems is
comprised of two stages: (1) feature extraction and description,
(2) neighboring video retrieval.

1) Feature Extraction and Description: A video feature is
a summary of information in visual content, which should
preferably be stable and sufficiently distinguishable. A feature
may span globally across the whole video, such as the color
distribution, or be localized within a region, such as interest
regions [12].

Extracting features from a video is conducted on a frame-
by-frame basis. For instance, to calculate the color distribution
of a video, the color distribution of each frame is calculated
first, then the average of them is taken as the color distribution
of the video.

Descriptors are constructed to quantitatively interpret ex-
tracted features. Among numerous descriptors, histograms are
widely adopted, such as in color distribution, SIFT [12], and
BoW (Bag of Words) methods.

2) Neighboring Video Retrieval: When the first stage ends,
videos are summarized as multi-dimensional coordinates. Ide-
ally, NDVs should be adjacent, whereas dissimilar ones should
be distant in this feature space. With the coordinates of a given
video and a distance measurement, we will be able to identify
the near duplicate videos by its neighborhood.

Moreover, the execution of retrieving neighboring videos
from large database is critical for detection speed improve-
ment. To accelerate this execution, storage and retrieval assis-
tance schemes such as, Hash table [4], inverted index file [7],
or LSH (Locality Sensitive Hashing) [9], are introduced.

B. Feature-Centered Detection Paradigm

Conventionally, the feature representation construction in
the first stage is the center of NDVD system design. In this
part, we commence our discussion about this Feature-Centered
detection paradigm with a theoretical model, in order to further
investigate its drawbacks from with respect to dimensionality
and informativeness.

1) Model: First, we define four relevant concepts in NDVD
systems as follows.

Definition 1. The neighborhood of a video v ∈ V is U(v) =
{v′ ∈ V |v′ ∈ duplicate(v)}.

��������	

����������	

Fig. 1: Transformation of Feature Space

Definition 1 is independent of features.

Definition 2. The representation of a video v ∈ V in feature
f ∈ F is defined as Xf (v) ∈ Rn (i.e., Euclidean space).

Definition 3. The hypersphere neighborhood of a video v ∈ V
in feature f ∈ F is defined as S(Xf (v), τ) = {Xf (v

′)|v′ ∈
V, |Xf (v

′)−Xf (v)| ≤ τ}, where |.| is a distance measurement
in the feature space.

Definition 4. The error set of S(Xf (v), τ) is defined as
Ef (v) = {v′ ∈ V |v′ ∈ U(v), Xf (v

′) /∈ S((Xf (v), τ
∗)} ∪

{v′ ∈ V |v′ /∈ U(v), Xf (v
′) ∈ S((Xf (v), τ

∗)}, where τ∗ is
the optimal value for S(Xf (v), τ).

By these definitions, after establishing the feature f , the
detection, or classification task in this paradigm is as simple
as testing whether v′ ∈ S(xf (v), τ∗), v, v′ ∈ V . Its accuracy
can be measured by the volume of Ef = {Ef (v)|v ∈ V }. The
smaller it is, the better f is to embody videos.

As shown in the left part of Figure 1, the hypersphere
neighborhood in a “raw” and simple feature f1 may not be
a satisfactory approximation , as |Ef | = 4. To increase the
discriminative ability of feature representations, in the Feature-
Centered paradigm, a higher-dimensional feature representa-
tion Xf , f ∈ F is created by combining feature represen-
tations Xf1 , Xf2 , . . . , Xfn , f1, f2, . . . , fn ∈ F [4], [7]. The
hypersphere neighborhood in f should be more accurate as
shown in the right part of Figure 1, as |Ef | = 0. However,
this paradigm may encounter issues from the following per-
spectives of dimensionality and informativeness.

2) Dimensionality: The first potential issue of the Feature-
Centered paradigm is the high dimensionality of represen-
tations. Typically, there are two manners of dimensionality
growth; more features being integrated, or the vocabulary of
visual words expanding. They can be explained by examples.

The LBP-based spatio-temporal feature [7] is an example
of feature fusion. First, each frame is represented by a binary
vector of 16 dimensions, thus there are 216 = 65536 possible
patterns. Then the video representation, a histogram, is con-
structed by counting frames that fall into each pattern. In this
way, the dimensionality of the representation is 65536.

In BoW methods, the dimensionality of representations is
the number of visual words in the vocabulary, or O(

√
n)

according to a rule of thumb, where n is the number of interest
regions extracted from all videos. Given that there are 107

videos in a database, each of them has 102 frames and the
average number of extracted regions is 103, the dimensionality
of this representation, is 10

7+2+3
2 = 106.

Either the combinatorial explosion, or sublinear growth,
could lead to the high-dimensionality of representations, which
imposes heavy retrieval cost, thus reducing the detection speed
of NDVD systems. On the other hand, the accuracy could
also be negatively affected. When dimensionality increases,
the maximum distance between two random representations
becomes indiscernible compared to the minimum distance
[13], as

lim
d→∞

E(
distmax(d)− distmin(d)

distmin(d)
) = 0. (1)

Thus the neighborhood defined on distance becomes less
meaningful. In addition, when more irrelevant or noisy dimen-
sions are involved, the accuracy of neighboring video retrieval
will also drop [13].

3) Informativeness: The second potential issue of the
paradigm comes from the reduction of informativeness, which
is critical to the detection accuracy. We assume that feature
representations emerge as histogram because it is widely
adopted, such as in color distribution, SIFT, or BoW. The
informativeness of representation is defined as entropy.

Definition 5. The informativeness of a video represen-
tation X ∈ {Xf1 , Xf2 , . . . , Xfk , . . .} is Hv(X) =
−
∑

i pv(xi) log pv(xi); f1, f2, . . . , fk, . . . ∈ F are features;
pv(xi) = gv(xi)wi; gv : range(X)→ [0, 1] is the probability
density function of X; wi = ui − li is bin width, x ∈ [li, ui],
ui−1 = li, i = 2 . . . n, ∪ni=1[li, ui] = range(X), n is the
dimensionality (number of bins) of X .

Two properties regarding information lost could be revealed
under Definition 5.

Property 1. Hv(X) = 0, if n = 1; Hv(X)→ 0, if n→∞.

Proof. The first part is straightforward.
For the second part, as n → ∞, wi → 0, thus pv(xi) =

gv(xi)wi → 0. Additionally, according to the definition of
entropy, p(x) log p(x) = 0, when p(x) = 0. Therefore,
Hv(X) = −

∑
i pv(xi) log pv(xi)v → 0, as n→∞.

According to Property 1, increasing the dimensionality of a
representation does not necessarily make it more informative.
On the contrary, as it becomes sparse, its informativeness is
closer to 0. Essentially, it reveals the curse of dimensionality
as Equation 1 does, from another perspective.

Property 2. H(Xf1 , Xf2 , . . . , Xfk) ≤ H(Xf1) +H(Xf2) +
. . .+H(Xfk).

Proof. Utilize the non-negativity [14] of the mutual informa-
tion I(Xf1 , Xf2) = H(Xf1) +H(Xf2) −H(Xf1 , Xf2) ≥ 0,
and induction.

From Property 2, constructing a sophisticated representation
via feature fusion does not increase its informativeness com-
pared with the collection of simpler representations. Therefore,

����������	
����

�������

�	
����

�������

�	
����

�������

�	
����

����������	
����

������

������ ������

��	�������������

�����������

���	
��������

��������������

�������������
��������������������

������������������

�����������������

������

��������� �

!���"���������������

� �

� �

#���
��

�#$

�
�#$

Fig. 2: The Architecture and Parallel Organization of Com-
poundEyes

building a sophisticated classifier, and feeding it with simple
feature representations, could be achieve higher accuracy than
the combination of advanced representations and a simple
classifier.

III. SYSTEM DESIGN

From Properties 2 and 1, we realize the gains in accuracy
by shifting the focus away from building advanced feature
representation towards advanced classifier. To achieve fast
detection speed, our system is designed according to systems
principles. Components are simple, efficient, and independent
of each other. Parallelism provided by this autonomy is also
exploited to further increase speed. In addition, efforts have
been made to organize the feature extractors and classifiers to
ensure a satisfactory performance both in accuracy and speed.

A. Architecture

CompoundEyes is designed by using an abstraction layer
model. In this model, frames are sampled at the Frame layer,
in which features are extracted and represented at the Feature
layer. From these representations, patterns of NDVs rest in
the Knowledge layer, which finally emerge in the Decision
layer and are used to make predictions about videos being
duplicated or not.

The system is divided into three subsystems: Feature Vector
Builder, Vector Repository, and Ensemble Learner. These
subsystems are located on the Feature, Knowledge and De-
cision layers, as shown in Figure 2. Furthermore, we divide
the Feature Vector Builder subsystem into various Vector
Builders, each of which uses a distinctive feature extraction
and representation algorithm. For each Vector Builder, there
is a weak Learner which uses its representations to form
predictions. These predictions are collected by the Ensemble
Learner, to make final predictions.

The parallel organization of CompoundEyes is hierarchical,
as illustrated in Figure 2. The first level is the function
parallelism among components, i.e., Vector Builders and weak
Learners. They compete for parallel sections to perform their
computations. The second level is the data parallelism within
the computations of Vector Builders. Upon obtaining a parallel
section, one or more parallel tasks are spawned, among which
the computations of the Vector Builder are divided.

��

��

���

���

�

� �

� �

�

� �

����������	
��	��	��
������������������

��������������

������	����������� ������	�����	�����	�� �������	������

 ��!������	�����	��

Fig. 3: The Seven Features in CompoundEyes

B. Data Flow

1) Feature Layer: In the Feature layer, we utilize seven
feature extraction algorithms: color coherence, color distri-
bution, LBP (Local Binary Pattern), edge orientation, ordinal
pattern, motion orientation, and bounding boxes of objects, as
explained in Figure 3. All of these algorithms are simple and
efficient. Furthermore, feature diversity is positively correlated
to the accuracy of the final prediction [15].

All the Vector Builders work on a frame-by-frame basis.
Given the j-th Vector Builder deals with feature fj , j =
1, . . . , 7, it first extracts fj from the i-th key-frame of video
v and represents it as a histogram m

fj
i (v), i = 1, . . . , N(v),

where N(v) is the number of key-frames in v. Then the
video representation of v built by this Vector Builder is
calculated as Mfj (v) = 1

N(v)

∑N(v)
i=1 m

fj
i (v). The frame-level

data parallelism in this calculation is exploited by distributing
the computations of mfj

i (v), i = 1, . . . , N(v) onto the tasks
belonging to a parallel section obtained by this Vector Builder,
as shown in Figure 2.

2) Knowledge Layer: To explain the neighboring video re-
trieval procedure in Vector Repository, we need the following
definition.

Definition 6. The neighborhood of a video v ∈ V in feature
f ∈ F : Uf (v, τ) = {Mf (v′)|v′ ∈ V, |Mf (v′)−Mf (v)| ≤ τ}.

After videos are represented as {Mfj (v)|j = 1, . . . , 7}, v ∈
V , the representations of the videos in the training set Vt
are stored and indexed in Vector Repository along with their
ground-truth labels, separated by the features fj , j = 1, . . . , 7
into seven subspaces. This Vector Repository grants Com-
poundEyes the capability to act as both NDVD and NDVR
(Near-Duplicate Video Retrieval) system.

When the representations of a query video vq from the
testing set Vq , Mfj (vq), j = 1, . . . , 7 are issued to the Vector
Repository, its neighborhoods in feature fj , Ufj (vq, τ), j =
1, . . . , 7, are computed and returned to Learners in the Deci-
sion layer respectively. The main objective of the Video Repos-
itory is to make this neighboring video retrieval procedure
more efficient.

We implement the Vector Repository as an LSH [16], [17]
structure for two reasons. First, LSH is sensitive to locality
thereby having the capacity of providing the neighboring
video retrieval with more accurate results. Second, its retrieval

temporal cost is O(1). In addition, the LSH structure is
combined with Cuckoo Hashing [18]. As a result, the problems
of unbalanced load among hash tables and of local similar sets
are mitigated, further enhancing its retrieval performance.

3) Decision Layer: We model the NDVD task as a clas-
sification problem. A video v ∈ V can belong to n possible
classes ci, i = 1, . . . , n. For example, when n = 2, the classes
are duplication and non-duplication. In CompoundEyes, n =
7, because the dataset we adopt divides videos into seven
categories: Exactly Duplicate, Similar, Different Version, Ma-
jor Change, Long Version, Dissimilar, and Do not Exist.
Dissimilar and Do not Exist are treated as the same.

As in Figure 2, the learners (or classifiers) in the Decision
layer are organized in a hierarchical manner. The prediction
of a video being duplicate is made upon the hypotheses of the
seven weak Learners.

The weak Learners are denoted as Lj , j = 1, . . . , N , where
N = 7 is equal to the number of features we adopt. The videos
from both the training set Vt and testing set Vq are summarized
as representations {Mfj (v)|v ∈ Vt ∪ Vq, j = 1, . . . , 7}
in the Feature layer. {Mfj (v)|v ∈ Vt, j = 1, . . . , 7} are
stored in the Vector Repository along with their ground-truth
labels {v = ci|v ∈ Vt, i = 1, . . . , 7}, while {Mfj (v)|v ∈
Vq, j = 1, . . . , 7} are directed to Learners Lj , j = 1, . . . , N ,
respectively, as shown in Figure 2. On Lj , the probabilities
p(vq = ci|Lj), i = 1, . . . , 7 are approximated with frequen-
cies,

N(vq = ci|Lj) =
|{v = ci|v ∈ Vt, v ∈ Ufj (vq, τ)}|
|{v|v ∈ Vt, v ∈ Ufj (vq, τ)}|

,

i = 1, . . . , 7.

The computation of Ufj (vq, τ) is performed by the Vector
Repository, as mentioned above.

These frequencies are taken as input to the Ensemble
Learner, which calculates the posterior probabilities p(vq =
ci|L1, . . . , L7), i = 1, . . . , 7, utilizing the BKS (Behavior-
Knowledge Space) method [19] as follows,

p(vq = ci|L1, . . . , L7) ∼= p̂(vq = ci|L1, . . . , L7),

p̂(vq = ci|L1, . . . , L7) =
N(vq = ci|L1, . . . , L7)∑
iN(vq = ci|L1, . . . , L7)

.

To make estimating N(vq = ci|L1, . . . , L7), i = 1, . . . , 7
easier, , we assume Lj , j = 1, . . . , 7 are conditionally in-
dependent, because of the diversity of features, and with
p(vq = ci|Lj) ∼= N(vq = ci|Lj), i = 1, . . . , 7, then we have,

p(vq = ci|L1, . . . , L7) ∝ p(L1, . . . , L7|vq = ci)

=

7∏
j=1

p(Lj |vq = ci) ∝
7∏

j=1

p(vq = ci|Lj)

∼=
7∏

j=1

N(vq = ci|Lj), i = 1, . . . , 7.

Therefore, with appropriate normalization, the probabilities are
estimated as

p(vq = ci|L1, . . . , L7) =

∏7
j=1N(vq = ci|Lj)∑7

i=1

∏7
j=1N(vq = ci|Lj)

,

i = 1, . . . , 7.

The class with the largest posterior probability would be the
final prediction of the class of vq .

The combination of the the Nearest Neighbor algorithm
applied on the weak Learners and the BKS method on the
Ensemble Learner appears satisfactory to the design of Com-
poundEyes. First, the Vector Repository directly provides an
interface to efficiently compute Ufj (vq, τ), whose cost is O(1).
Second, the Nearest Neighbor algorithm is non-parametric,
which is helpful to reduce the training cost to O(1), fulfilling
the in-situ requirement. Third, the Nearest Neighbor algorithm
is sensitive to the variations of feature types [15], thus making
it suitable in the scenario of multiple feature subspaces. Fourth,
the BKS method is sufficiently accurate to be applied on the
Ensemble Learner [19].

C. Advantages

The advantages of CompoundEyes can be illustrated from
the following aspects.

a) Accuracy: The accuracy improvement is primarily
achieved via the collective effort of learners. First, the cov-
erage of feature space is broader. Not only are spatial and
temporal information used, but also color, edge orientation,
texture, and object sizes information is also included in
learning. Second, the diversity of representations enhances the
accuracy of learning.

b) Detection Speed: Primarily, two factors contribute to
the increase of detection speed. The first one is the compact-
ness of representations, which shortens the temporal cost of
extracting feature vectors in the preprocessing stage and of
neighboring representation retrieval in the processing stage.
The second one is the exploiting of the function parallelism
among the Vector Builders and Learners, and the frame-level
data parallelism within the Vector Builders.

c) In-situ Updating: CompoundEyes has the capacity
of constantly updating its classifiers when incorporates new
knowledge (i.e., videos and corresponding ground-truth la-
bels), because the cost of training classifiers is O(1), and
the changes in classifiers do not affect the construction of
representations in the Feature Layer.

d) Modularity: The components in CompoundEyes are
independent, and so can be changed without affecting others.
For example, a new Vector Builder detecting a new type of
features can be admitted if necessary, so is the case with
weak learners implementing other algorithms, and the Vector
Repository utilizing alternative indexing schemes. Therefore,
the system could be easily upgraded.

IV. EVALUATION

A. Experimental Setup

We implement CompoundEyes in C++, C, and Matlab.
Specifically, Vector Builders are coded in C++, using the
OpenCV libraries. Weak Learners and NEST are implemented
in C, and the Ensemble Learner is programmed in Matlab. The
parallel parts of CompoundEyes are implemented by using
OpenMP libraries.

Experiments are conducted on a 64-core Intel Xeon E5-4640
machine (2.4GHz, 12.5GB memory) with Ubuntu system. The
cores are distributed equally into 4 NUMA nodes.

B. Dataset Description

We evaluate CompoundEyes on the CC WEB VIDEO
dataset. There are four reasons for this selection.
• First, it was constructed from real online videos. All the

videos were downloaded from YouTube, Google Video
and Yahoo! Video.

• Second, various formats and editorial modifications are
included.

• Third, it has been widely adopted, which facilitates us to
compare the performance.

• Fourth, ground-truth labels are provided. These labels
are obtained manually, which is laborious and makes the
dataset precious for NDVD/NDVR research.

The CC WEB VIDEO dataset is comprised of 24 independent
groups. In each group, a video is designated as the seed and
others are compared with it and labeled accordingly.

C. NDVD/NDVR Systems to Compare with

To evaluate the performance of CompoundEyes, we com-
pare it with existing state-of-the-art NDVD/NDVR systems,
which have been evaluated on the CC WEB VIDEO dataset
or on extended datasets. They are described briefly as follows.

Hierarchical detection system (HIER): Wu et al. [2]
proposed a hierarchical NDVD system, which uses a global
signature-based method to filter out duplicates with minor
changes first, leaving more sophisticated ones to the local
feature-based method.

Video Cuboid based detection system (VC): Zhou et
al. [9] introduced the Video Cuboid signature, a n-gram
based representation, to integrate the temporal and spatial
information. Further optimizations include the use of the EMD
distance, the incremental signature construction, and an LSH
based matching scheme.

Spatial-Temporal feature based detection system (ST):
Shang et al. [7] explored alternative approaches of combining
the temporal and spatial information into signatures. Two
approaches are proposed: Conditional Entropy (ST-CE) and
Local Binary Pattern (ST-LBP). The retrieval process is ac-
celerated by applying a fast intersection kernel and inverted
file.

Multiple feature hashing based detection system (MFH):
Song et al. [4] provided another combination of a global and a
local feature of videos. A series of hash functions are learned

TABLE I: The Comparison in MAP

SYSTEM HIER ST-CE ST-LBP MFH Ours
MAP (%) 95.20 95.30 95.00 95.40 99.75

TABLE II: The Comparison in Peak Memory Usage and Time
Complexity

SYSTEM HIER ST-CE ST-LBP MFH Ours
Peak Memory Usage O(k) O(n) O(n) O(k3n3) O(k)

Time Complexity O(kn2) O(kn) O(kn) O(k3n3) O(kn)

from feature representations. The neighboring video searching
is conducted in Hamming space of the hash codes.

In these systems, VC provides us with the results of
accuracy, while others are more concerned with mean average
precision and average response time. Hence, we will compare
CompoundEyes with VC in terms of accuracy, and with others
in terms of mean average precision and average response time.

D. Experimental Results

In this subsection, extensive experiments are conducted
to evaluate the performance of CompoundEyes. Datasets of
various sizes are constructed by randomly selecting videos
from the CC WEB VIDEO dataset. Unless stated otherwise,
in each one of them, 50% are used as the training set and the
other 50% as the testing set.

1) Accuracy:
a) Evaluation Metrics:

• Accuracy: It is computed as AC = n
N , the portion of

correct predictions in total results.
• Mean Average Precision: The Mean Average Precision

(MAP) is computed by averaging the Average Precision
(AP) of each group g, as MAP = 1

24

∑24
g=1APg, APg =

1
n

∑n
i=1

i
ri

, where n is the number of correct predictions
, ri is the rank of i-th correct prediction.
b) Results: CompoundEyes shows an improvement on

detection accuracy. It achieves a higher Accuracy than the VC
system, 89.28% vs. 80%, and outperforms other systems in
Mean Average Precision, as shown in Table I.

2) Detection Speed:
a) The Definition of Temporal Cost: The detection speed

of CompoundEyes is measured by the temporal cost, which is
the sum of the preprocessing time and response time.

Temporal Cost = Preprocessing T ime+Response T ime.

b) Analysis of Preprocessing Time Cost: In literature,
preprocessing is performed offline thus its temporal cost is
not measured. However, the burden of preprocessing can be
estimated from the fact that feature extraction of HIER, ST-
CE or ST-LBP on a dataset of 132647 videos is practically
impossible [4].

Suppose the number of videos is n, and the average number
of key-frames in a video is k. The peak memory usage and
worst case time complexity of the preprocessing of various
systems is estimated in Table II.

TABLE III: The Comparison in Response Time (RT)

SYSTEM HIER ST-CE ST-LBP Ours
RT (ms) 9600 3.7 3.6 0.2051

�

��

���

����

�
��
�
��
��
��
�	

��
�

�
��
��

Fig. 4: The Sequential Preprocessing Time of All the Vector
Builders.

According to Table II, CompoundEyes has advantages in
both the peak memory usage and time complexity. It neither
involves the computations and pairwise comparisons of SIFT
descriptors as HIER, nor the computations of certain global
variables, i.e. the entropy of ordinal relations in ST-CE, the
correlation between LBP patterns in ST-LBP, and the trans-
formation and bias matrices in MFH, which are both spatially
and temporally exhaustive. In contrast, the two major oper-
ations of CompoundEyes in preprocessing, the construction
of representations and inserting them into the NEST tables,
are all spatially and temporally efficient. By experiment, the
average temporal cost of preprocessing is 1.4537s.

c) Experimental Results of Response Time Cost: The
advantage of CompoundEyes in detection speed can also be
manifested from response time, as shown in Table III. The
average response time of CompoundEyes only accounts to
5.70% of ST-LBP’s.

Implementing the main part of CompoundEyes in C++,
rather than Matlab may contribute to the reduction of response
time. However, such a substantial reduction could not be
explained merely by the efficiency of C++. In CompoundEyes,
the dimensionality of representations could be 16, 32, or 64,
all of which are much lower 65536 of ST-CE and ST-LBP
[7]. This reduction in dimensionality is the main reason for
the improvement on response time.

3) Parallel Speedup: Experiments in this subsection are
performed on a 10% subset of CC WEB VIDEO, because
it is time-consuming to use the whole dataset for all of them.
To evaluate speedup, the temporal cost of sequential version
and parallel version are compared.

The temporal cost of each Vector Builder is estimated in
Figure 4 first, and used as a reference for workload distri-
bution. On the horizontal axis are the abbreviations of the
features they extract, which are color histogram (HSV), color
coherence (CC), ordinal pattern (SP), edge orientation (EO),
bounding boxes of objects (BB), local binary pattern (LBP),
and motion orientation (OPT FLOW).

a) Thread Allocation Strategies: Both of the parallel
sections and tasks in Figure 2 are abstraction of thread.

�

�

�

�

�

��

��

��

��

��

�� �� �� �� �� �� 	� ��
� ���

�
�
�
�
�
�
�

��������	�
�����

���
���

������

��������

Fig. 5: The Speedup of CompoundEyes Under 3 Thread
Allocation Strategies

������

������

������

������

������

������

� 	
 � � � �

��������	�
������

�� ���

(a) On AC and MAP

���

���

���

���

���

���

��	

��

�

���

���

� � � � � �

�
�
�
��
�
�
��
�
	

�
��
��

�
��
��
��

��������	�
������

(b) On Temporal Cost

Fig. 6: The Effect of Feature Information Fusion

Under different thread allocation strategies, the overall parallel
speedup would be different. Therefore, we design and compare
three allocation strategies as follows.
• SECTION: What varies in this strategy is the number of

parallel section competed by Vector Builders, from 1 to
7. Once a parallel section obtained, a number of parallel
tasks, proportional to the Vector Builder’s sequential
running time, will be allocated for computing.

• TASK-EQ: In this strategy, every Vector Builder acquires
a parallel section. What varies is the number of tasks
spawned by a section, which is equal for all the Vector
Builders.

• TASK-PROP: In this strategy, not only does every Vector
Builder obtain a parallel section, but also the number of
tasks allocated to a Vector Builder is proportional to its
sequential running time.
b) Results: As expected, from Figure 5, Strategy TASK-

PROP achieves the best speedup, because it efficiently utilizes
allocated threads. Moreover, we notice that when the thread
number exceeds 60, the increase of speedup ceases. This value
coincides with the number of cores in the machine. This
phenomenon is a hint of resource contention.

We also notice that even under the best thread allocation
strategy, the speedup is far from linear speedup. This is
determined by the fact that in CompoundEyes, videos are
processed sequentially, which limits the throughput of the
system.

4) Feature Information Fusion: In this part, we assess the
impact of the feature information fusion, mainly on detection
accuracy. The experiments are conducted on a 10% subset. For
the sake of fair comparison, the number of parallel sections is
equal to the number of features to be used, and the number of
tasks a section can spawn is equal for all the Vector Builders.

As shown in Figure 6(a), on average, the fusion increases

������

������

������

������

������

�������

���� �		�
�
� 	��� �
�	 ���� ��	
 ���
� ��	�� �����

��������	�
���������

�

���

(a) On AC and MAP

�

����

����

����

����

����

����

����

	���

���

�����

���
 ���	 �	�� ���� ��
� ���� 	
�� �������������
�

��
�
�
�
��
�	

�
��
	
��

��������	�
���������

(b) On Temporal Cost

Fig. 7: The Effect of the Dataset Scale

������

������

������

������

������

�������

�	� �	�
	� �	� 	 �	� �	
 �	� �	�

���������	
����������������������������

��

���

Fig. 8: The Effect of the Portion of the Training Set on AC
and MAP

detection accuracy, both in terms of Accuracy and Mean
Average Precision. This advantage becomes smaller when
measured by the best accuracy of fusion. For example, the
accuracy difference between the best combination of three
features and four is negligible. This suggests the importance
of the selection of feature information to be fused.

For the best combinations except all-included, correspond-
ing average temporal costs are shown in Figure 6(b). They are
helpful when choosing the number of features. For example,
fusing three is better than four, because it costs less time but
achieves comparable detection accuracy.

5) Relevant Parameters:
a) The Scale of the Dataset: The first relevant parameter

is the scale of the dataset. According to Figure 7(a), the
Accuracy is satisfactory, above 80%, when the size is 1279.
It also increases as the size of the dataset grows. Therefore,
CompoundEyes is accurate when sufficient knowledge has
been learned, and its discriminative capability develops as
knowledge accumulates.

Figure 7(b) affirms that the total temporal cost increase
linearly rather than exponentially with the growth of dataset.
This linearity confirms that Vector Repository is capable of
maintaining decent performance even if the size of the dataset
becomes large.

b) The Portion of the Training Set: Because a system
well-tuned on training set could behave poorly on testing
set, it is necessary to evaluate the detection accuracy of
CompoundEyes under different portions of the training set.

The effect of this portion on Accuracy and Mean Average
Precision is recorded in Figure 8. The value of MAP stays
stable, and the value of AC increases as the ratio increases.
Both of them peak around 5 : 5. Afterward, classifiers are
over-trained.

������

������

������

������

������

������

�������

�������

�����������

	

�	�

(a) On AC and MAP

�����

�����

�����

����

�����

�����

�����

�����

�
�
�
��
�
�
��
�
	

�
��
��

�
��
��
��

�����������

(b) On Temporal Cost

Fig. 9: The Effect of r

������

������

������

������

������

������

�������

�������

	
 � � �� �	 �
 �� ��

�

��

���

(a) On AC and MAP

�����

�����

�����

�����

����

�����

�����

�����

� � � � �� �� �� �� ��

�
�
�
��
�
�
��
�
	

�
��
��

�
��
��
��

�

(b) On Temporal Cost

Fig. 10: The Effect of k

c) NEST-related Parameters: Two NEST-related param-
eters, r and k, are of importance. Parameter r is used as τ
in the definition of the neighborhood in feature. Parameter k
is the number of hash tables in NEST. Generally speaking, a
larger value of k increases detection accuracy, at the expense
of longer response time.

Because the value of r is different for each type of feature
representations, we set them by experience first, then change
them with the same offset. The effect of r on Accuracy and
Mean Average Precision is shown in Figure 9(a), and the effect
on average temporal cost is shown in Figure 9(b).

Since k is the same for all feature spaces, we vary its value
directly. From Figure 10(a), we observe that Accuracy and
Mean Average Precision exhibit different trends, the former
one goes down and the latter one goes up and stays around
100%. This is because as k increases, the recall of neighboring
video retrieval grows, but the precision goes down. These
changes reflect on Accuracy but not Mean Average Precision,
for the number of correct results and their ranks are barely
affected.

The effect of k on average temporal cost is shown in Figure
10(b), from which we know that 12 is the optimal value for
detection speed.

V. RELATED WORK

The knowledge about the content of big data has manifested
its importance to various applications, such as in-network im-
age deduplication [20], and confidential data protection [21].
This knowledge is generally acquired by extracting features
from data, for example, DoG and PCA-SIFT [20], or document
fingerprint [21].

Feature combination is a common approach in constructing
discriminative video feature representations, typical examples
including global and local features [2], [4], [5], [22], or spatial
and temporal features [7], [9]. The combination can be simply

concatenating representations [5], or using sophisticated math-
ematical transformations [4], [22]. Liu et al. [11] summarized
the development of feature representations.

With the support of indexing structures such as hash tables
[9], [4], [7], the response time of these systems is satisfactory.
However, to be qualified as an online system, capable of
identify NDVs in the cloud, the preprocessing procedure
should not be conducted offline, and its temporal cost should
be substantially reduced.

VI. CONCLUSION

In this paper, we proposed and developed an efficient NDVD
cloud system, called CompoundEyes, by using a new detection
paradigm. Instead of designing a sophisticated video repre-
sentation, the focus has been shifted to the design of a well-
organized system. Rather than feature design, we introduced
improvements in accuracy through classifiers. Through use
of reduced dimensionality and parallelism, we reduced the
duration required for precise duplicate detection. Moreover,
experiments and analysis corroborated that CompoundEyes
outperforms contemporary NDVD and NDVR systems in
accuracy. At the same time, CompoundEyes bested or matched
its peers in both peak memory usage and time complex-
ity. In conclusion, CompoundEyes is feasible and practical
to perform large-scale NDVD tasks in the cloud. As other
NDVD/NDVR systems, CompoundEyes needs a training set
and ground-truth labels, the acquisition of which is beyond
the scope of this paper. In the future, we will migrate this
system to more cutting-edge cloud platforms such as Spark, to
overcome the limitations of shared memory parallel computing
architectures.

REFERENCES

[1] M. LOPES. Videos may make up 84 percent
of internet traffic by 2018: Cisco. [Online]. Avail-
able: http://www.reuters.com/article/2014/06/10/us-internet-consumers-
cisco-systems-idUSKBN0EL15E20140610

[2] X. Wu, A. G. Hauptmann, and C.-W. Ngo, “Practical elimination of
near-duplicates from web video search,” in Proceedings of the 15th
international conference on Multimedia. ACM, 2007, pp. 218–227.

[3] J. S. Pedro, S. Siersdorfer, and M. Sanderson, “Content redundancy in
youtube and its application to video tagging,” ACM Transactions on
Information Systems (TOIS), vol. 29, no. 3, p. 13, 2011.

[4] J. Song, Y. Yang, Z. Huang, H. T. Shen, and R. Hong, “Multiple
feature hashing for real-time large scale near-duplicate video retrieval,”
in Proceedings of the 19th ACM international conference on Multimedia.
ACM, 2011, pp. 423–432.

[5] M. Hefeeda, T. ElGamal, K. Calagari, and A. Abdelsadek, “Cloud-based
multimedia content protection system,” 2013.

[6] YouTube. Statistics. [Online]. Available:
http://www.youtube.com/yt/press/statistics.html

[7] L. Shang, L. Yang, F. Wang, K.-P. Chan, and X.-S. Hua, “Real-time
large scale near-duplicate web video retrieval,” in Proceedings of the
international conference on Multimedia. ACM, 2010, pp. 531–540.

[8] A. G. H. Xiao Wu, Chong-Wah Ngo. Cc web video:
Near-duplicate web video dataset. [Online]. Available:
http://vireo.cs.cityu.edu.hk/webvideo/

[9] X. Zhou and L. Chen, “Monitoring near duplicates over video streams,”
in Proceedings of the international conference on Multimedia. ACM,
2010, pp. 521–530.

[10] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards
removing the curse of dimensionality,” in Proceedings of the Thirtieth
Annual ACM Symposium on Theory of Computing, ser. STOC ’98.
New York, NY, USA: ACM, 1998, pp. 604–613. [Online]. Available:
http://doi.acm.org/10.1145/276698.276876

[11] J. Liu, Z. Huang, H. Cai, H. T. Shen, C. W. Ngo, and W. Wang, “Near-
duplicate video retrieval: Current research and future trends,” ACM
Computing Surveys (CSUR), vol. 45, no. 4, p. 44, 2013.

[12] K. Mikolajczyk and C. Schmid, “A performance evaluation of local
descriptors,” Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, vol. 27, no. 10, pp. 1615–1630, 2005.

[13] WIKIPEDIA. Curse of dimensionality. [Online]. Available:
https://en.wikipedia.org/wiki/Curse of dimensionality

[14] Wikipedia. Mutual information. [Online]. Available:
https://en.wikipedia.org/wiki/Mutual information

[15] C. Domeniconi and B. Yan, “Nearest neighbor ensemble,” in Pattern
Recognition, 2004. ICPR 2004. Proceedings of the 17th International
Conference on, vol. 1. IEEE, 2004, pp. 228–231.

[16] Y. Hua, B. Xiao, and X. Liu, “Nest: Locality-aware approximate query
service for cloud computing,” in INFOCOM, 2013 Proceedings IEEE.
IEEE, 2013, pp. 1303–1311.

[17] Z. Nie, Y. Hua, D. Feng, Q. Li, and Y. Sun, “Efficient storage support for
real-time near-duplicate video retrieval,” in Algorithms and Architectures
for Parallel Processing. Springer, 2014, pp. 312–324.

[18] R. Pagh and F. F. Rodler, Algorithms — ESA 2001: 9th Annual European
Symposium Århus, Denmark, August 28–31, 2001 Proceedings. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, ch. Cuckoo Hashing, pp.
121–133. [Online]. Available: http://dx.doi.org/10.1007/3-540-44676-
1 10

[19] S. Tulyakov, S. Jaeger, V. Govindaraju, and D. Doermann, “Review
of classifier combination methods,” in Machine Learning in Document
Analysis and Recognition. Springer, 2008, pp. 361–386.

[20] Y. Hua, W. He, X. Liu, and D. Feng, “Smarteye: Real-time and efficient
cloud image sharing for disaster environments,” in Proc. INFOCOM,
2015.

[21] F. Hao, M. Kodialam, T. Lakshman, and K. P. Puttaswamy, “Protecting
cloud data using dynamic inline fingerprint checks,” in INFOCOM, 2013
Proceedings IEEE. IEEE, 2013, pp. 2877–2885.

[22] J. Liu, Z. Huang, H. T. Shen, and B. Cui, “Correlation-based retrieval
for heavily changed near-duplicate videos,” ACM Transactions on Infor-
mation Systems (TOIS), vol. 29, no. 4, p. 21, 2011.

