IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

BAC: Bandwidth-Aware Compression for Efficient
Live Migration of Virtual Machines

Chunguang Li, Dan Feng*, Yu Hua, Wen Xia, Leihua Qin, Yue Huang, Yukun Zhou
Wuhan National Laboratory for Optoelectronics, School of Computer
Key Laboratory of Information Storage System, Ministry of Education
Huazhong University of Science and Technology
*Corresponding author: dfeng@hust.edu.cn

Abstract—Live migration of virtual machines (VM) is one of
the key characteristics of virtualization for load balancing, system
maintenance, power management, etc., in data centers or clusters.
In order to reduce the data transferred and shorten the migration
time, the compression techniques have been widely used to accel-
erate VM migration. However, different compression approaches
have different compression ratios and speeds. Because there is a
trade-off between compression and transmission, the migration
performance improvements obtained from different compression
approaches are differentiated, and the improvements vary with
the network bandwidth. Besides, the compression window sizes
used in most compression algorithms are typically much larger
than a single page size, so the traditional single page compression
loses some potential compression benefits. In this paper, we design
and implement a Bandwidth-Aware Compression (BAC) scheme
for VM migration. BAC chooses suitable compression approach
according to the network bandwidth available for the migration
process, and employs multi-page compression. These features
make BAC obtain more migration performance improvements
from compression. Experiments under various network scenarios
demonstrate that, compared with conventional compression ap-
proaches, BAC shortens the total migration time while achieving
comparable performance for the total data transferred and the
downtime.

I. INTRODUCTION

As a key technique to implement cloud computing systems,
virtualization [1] offers many features, such as abstraction from
heterogeneous hardware, security isolation, convenience for
management, etc. Live migration [2], which is interpreted as
moving a running virtual machine (VM) from one physical
host to another, is an important characteristic of virtualization.
Live migration is powerful in data centers due to the use for
load balancing [3], [4], system maintenance [5], datacenter
network optimization [6], [7], [8], fault tolerance [9], [10],
power management [11], [12], etc.

Inside data centers, the source and target hosts for migra-
tion often share the same disk storage (e.g., through SAN or
NES), so only the VCPU state and the content of VM memory
need to be transferred. Pre-copy [2], [13] is the prevailing
approach for VM migration with shared storage. Pre-copy
sends the memory content from the source node to the target
node in several iterations to minimize the downtime, during
which the VM is not running. In each iteration, only the
pages that are modified during last round are sent. Because
of its iterative process, pre-copy may cause large amount of
data transferred on the network and long migration time. To
accelerate the migration process, previous schemes use the
compression techniques [14], [15], [16].

978-1-5090-5336-0/17/$31.00 ©2017 |EEE

When choosing a suitable compression approach for mi-
gration, we look forward to obtaining the goals of both high
compression ratio and fast compression speed. However, for
the various compression approaches, there is always a trade-
off between the compression ratios and speeds. As a result,
different compression approaches lead to differentiated migra-
tion performance. When we consider the trade-off between the
compression of the VM memory and the transmission of the
compressed data, a suitable compression approach should be
chosen according to the network bandwidth allocated to the
migration process. For example, when network bandwidth is
low, a slow compression approach with good compression ratio
is suitable, because the size of data needed to be transferred is
significantly reduced. Otherwise, when the network bandwidth
is high, the same compression approach would become the
bottleneck of migration. So we design a Bandwidth-Aware
Compression (BAC) scheme for live VM migration, using a
list of compression strategies, based on the analysis of the
memory contents of VMs carrying out various workloads.

Because the VM memory is organized in the unit of
pages, existing scheme [14] compresses the memory contents
during migration at the granularity of a single page. However,
the compression window sizes used in most compression
algorithms (e.g. 64KB for LZ4) are typically much larger than
a single page size (typically 4KB), and compression algorithms
identify redundant strings within the area of this compression
window. Hence conventional single page compression method
loses some potential compression benefits. So we propose
the use of multi-page compression to get more performance
improvements from compression during VM migration.

The main contributions of this paper are listed as follows:

(1) We propose a Bandwidth-Aware Compression (BAC)
scheme for live VM migration, which chooses the suitable
compression approach according to the network bandwidth
available for migration and employs the multi-page compres-
sion method. Evaluation results with various network sce-
narios show that, our proposed scheme leads to significant
performance improvements comparing with the conventional
compression approaches.

(2) We derive a list of compression strategies through the
analysis of the memory contents of VMs carrying out various
workloads. The analysis suggests that, although the memory
contents with different workloads differ in compression ratios
and speeds, this list applies to all of them. This makes our BAC
scheme practical for implementation, so that we do not have
to store separate lists of compression strategies for different

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

workloads.

The rest of this paper is organized as follows: Section II
gives an overview of background on live VM migration. Our
motivation is shown in Section III. In Section IV, we analyze
the memory contents of VMs running various workloads.
Section V details the design and implementation of BAC.
Section VI shows the evaluation results. Section VII draws
the conclusions and presents the future work.

II. BACKGROUND

In this section, we introduce the background about live VM
migration, including the key metrics for migration, the pre-
copy migration algorithm, and existing techniques to improve
migration performance.

There are three key metrics for live migration: total migra-
tion time (TMT), total data transferred (TDT), and downtime.
TMT refers to the elapsed time from the beginning of migra-
tion to the moment when VM can run on the target host inde-
pendently. It is critical to shorten the TMT [17]. The purpose of
migration is to perform system maintenance or load balancing,
etc., so longer TMT may lead to the misses of the better
migration opportunities and make the system maintenance
or load balancing less effective. Besides, during migration,
the applications inside the migrated VM may suffer from
performance degradation due to the overhead of migration
thread for the CPU and network resources, and thus a shorter
TMT alleviates performance degradation. Furthermore, TDT
is the amount of data transferred from the source node to the
target node for migration, and it indicates the network resource
consumed by migration. Because the migration process and
applications running inside the VMs often share the same
network infrastructure, less TDT would leave more bandwidth
to applications during migration. Moreover, downtime is the
period from the time the migrated VM is suspended on the
source node to the time it is resumed on the target node. This
period of downtime should be short enough so that it is not
perceived obviously by users.

Pre-copy [2], [13] is the prevailing approach for migration
and has been widely used in many virtualization platforms,
such as VMware [13], KVM [18], and Xen [1]. It works as
follows. The bulks of the VM’s memory pages are transferred
to the target node while the VM is still running at the source
node. The pages which are dirtied during the transfer are resent
to the target node in the next round. This iterative process
comes to the end when there are so little dirty pages remaining
that the expected time to transfer them is shorter than the
acceptable maximum downtime. Then the migration process
steps into the stop and copy phase: the VM is suspended at
the source node and the remaining dirty pages along with the
VCPU state are transferred to the target node. After that, the
VM continues to be executed at the target node. Pre-copy’s
overriding goal is to keep the downtime small. However, as
pre-copy needs to transmit parts of the memory pages many
times, it often causes large amount of data transferred on the
network and long migration time. To address the problem
of pre-copy, other live migration algorithms such as post-
copy [19], [20] and CR/TR-Motion [21] are also proposed in
previous works. However, they are seldom used in production
environments because of their lack of reliability or practicality.

To reduce the data transferred during pre-copy migration
and shorten the migration time, previous schemes use the
techniques of compression [14], [15], [16], [22]. However,

T T T T 500

224" [—m— compression ratio
—e— compression speed

2.0 '\ o

e 400

1.8 1 = o 300

200 °

o 100

Compression ratio
\.
¥
Compression speed (MB/s)

0 10 20 30 40 50
LZ4 accelation value

Fig. 1. The variation of compression ratios and speeds when the memory
content of a VM is compressed using LZ4 with different acceleration values.
The VM is allocated with 1 GB RAM and runs kernel compilation. The
experiment is conducted on machines with quad-core Xeon X3220 2.4GHz
CPU.

none of them takes network bandwidth into consideration
when leveraging compression to improve the migration perfor-
mance. Our analysis in the next section shows that, a suitable
compression approach should be chosen according to the
network bandwidth allocated to the migration process. Besides,
while previous works compress the VM memory contents at
the granularity of single page, we demonstrate that a larger
compression window obtains more performance improvements
for migration.

III. MOTIVATION
A. Considering Network Bandwidth When Using Compression
in VM Migration

Different compression approaches vary in compression ra-
tios and speeds. Generally speaking, the approaches with better
compression ratio may sacrifice compression speed, and vice
versa. In addition, many compression algorithms offer trade-
offs between the two metrics through some ways, e.g., setting
parameters in the APIs (such as LZ4 [23]), or defining macros
in the head files (such as QuickLLZ [24]). Thus users can choose
among different compression approaches according to their
requests. In this paper, LZ4 is chosen for the compression
in VM migration, because 1) it is quite fast, which is suitable
for memory compression; 2) it provides abundant trade-offs
between compression ratios and speeds.

LZA4 offers a parameter, called “acceleration”, in its com-
pression function. Figure 1 shows the variation of the com-
pression ratios! and speeds when the memory content of a
VM running kernel compilation is compressed using LZ4 with
different acceleration values. The value is adjusted from 1 to
49 by the step of 2. It is shown that when the compression
ratio is decreased from 2.22 to 1.37, the compression speed
improves from 98MB/s to 446MB/s.

In the real-world data centers, the network situation varies
over time. The administrators of data centers would also use
the adaptive rate limiting [1] to adjust the bandwidth allocated
to the migration process according to the requirements of
applications running inside the VMs, because the migration
process and the applications often compete for the same
network resources. These factors lead to the changes of the
network bandwidth available for VM migration.

ICompression ratio = size before compression / size after compression.

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

30 I original pre-copy
. C1z4_1
252 . 24 15

z 159

\y

10

Total migration time

30MB/s bandwidth 90MB/s bandwidth

Fig. 2. Total migration time with different network bandwidths. The VM has
1GB memory and is running kernel compilation during migration.

TABLE I. SOME NOTATIONS WE DEFINED IN THIS PAPER
Notations Description
St the average network bandwidth available for migration,

which is the transfer speed of the VM memory content.

Smgt the average migration speed of the VM memory content,
which equals Sy without compression.
Se the average compression speed of the compression ap-
proach we used.
p the average compression ratio of the compression ap-

proach we used, which equals the data size before
compression divided by the size after compression.

When we consider the trade-off between compression
and transmission, LZ4 approaches with different acceleration
values should get different performance improvements for
migration, and the improvements would vary with network
bandwidth. We conduct the following experiment of VM
migration to verify this consideration. We allocate the VM
with 1GB memory, and a Linux kernel compilation workload
is running during migration. We conduct the experiment with
the original pre-copy migration and the migration using LZ4
with acceleration values 1 and 15 respectively. Besides, the
experiment is repeated with 30MB/s and 90MB/s network
bandwidths. In our gigabit network environment, 30MB/s
bandwidth represents the situation when the network inside
a data center is busy and the administrator allocates low band-
width to the migration process, to guarantee the performance of
applications inside the data center; on the other hand, 90MB/s
bandwidth represents the situation when the network is idle
and the administrator allocates high bandwidth to the migration
process.

Figure 2 shows the result of the total migration time. It
demonstrates that, although both LZ4 approaches outperform
the original pre-copy, their improvements differ and vary with
network bandwidth. When the bandwidth is low, LZ4 12
obtains more performance improvements than LZ4_15, and
the contrary is the case with the high bandwidth.

The following analysis explains this phenomenon in details.
We first define some notations in Table I. When compression
is added into the process of migration, the size of the VM
memory content needed to be transferred after compression is
1/p of the original size. This implies that S; is augmented
indirectly by a factor of p. The compression of the memory
content and the transmission of the compressed content are

2In this paper, LZ4_n denotes LZ4 using n as acceleration value.

2.6+

24 —a— single page compression
—e— 256-page compression
Qo 224%
i \
S 2.0
»
1%
QL 18-
Q.
5 .
O 1.6 -y -
.
i
1.4 o S
T T T T 1

0 10 20 30 40 50
LZ4 acceleration value

Fig. 3. The compression ratios when we compress the VM memory content at
different granularities. Note that the compression speeds of these two different
granularities have no significant difference.

parallel, because we compress the next package when the last
compressed package is being transferred. So the migration
speed with compression is the minimum of the compression
speed and the augmented transfer speed, i.e.

S’rngt = min(sca St * P) (D

The bigger the S,,,¢; is, the shorter the total migration time
(TMT) is. So given a specific value of S, the compression
approach with the biggest S,,4; will lead to the shortest TMT.
This is the basic idea that motivates us to design a bandwidth-
aware compression scheme for the VM migration.

B. Multi-page Compression

Most compression techniques identify redundant strings
within a window of data. A larger window size offers op-
portunities to find more redundant strings, leading to better
compression ratio, at the cost of more compression overheads
[25]. In general, the implementation of LZ4 uses a 64 KB
compression window, which is much larger than a single
page size (4KB). Thus the single page compression approach,
which has been widely used, misses the potential opportunities
to find redundant strings in a larger area. Figure 3 verifies
this consideration. We compress the memory content of a
VM running kernel compilation with different granularities:
single page (4KB) and 256 pages (1MB). While the resulting
compression speeds have no significant difference, Figure 3
shows that the compression ratio of 256-page compression is
improved compared with the single page compression. This
motivates us to compress memory content at the granularity
of multiple pages.

IV. ANALYSIS OF THE VM MEMORY

Formula (1) in the former section indicates that we need to
first get the precise compression ratios (p) and speeds (S.) of
VM memory using different compression approaches, in order
to figure out which one has the biggest S, 4, thus leading
to the shortest TMT. However, when different workloads are
running inside the VM, the compression ratios and speeds
would differ when the memory content is compressed. This
is a big challenge for the implementation of our BAC scheme,
because it needs us to use separate sets of compression ratios
and speeds to compute the Sy, for different workloads.
However, the analysis of the VM memory in this section is
helpful to address this challenge.

We select eight representative workloads in virtualization
environments to get comprehensive understanding of the com-

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

—=—kc —<—hmmer @
—e— idle —— zeusmp

MB/s
v
8

-% 20 —A—ws —e—bzip2 < 400
= —v—du —e—gamess 3
[
218 2 300
123
246 5
[B 200
& 1.4 ¢
o s
g 100
1.24 . : . : . S | . : . : .
0 10 20 3 40 5 © 9o 10 20 30 40 50
LZ4 acceleration value LZ4 acceleration value
(a) Compression ratio (b) Compression speed
Fig. 4. The results of compressing memory content of VMs running 8 dif-

ferent workloads using LZ4 with varying acceleration values. The experiment
is conducted on machines with quad-core Xeon X3220 2.4GHz CPU.

75, 180
__70l% —=—Kkc —<+—hmmer 170
o I\ —e— idle —»— zeusmp| @
QD 6570 % —4—ws —e— bzip2 @ 160
e X 2 150
\ —v—du —e—gamess =
)\ B 140
& 130
7] I
c 1204 §
S i
‘@‘ 11044
2100-¢
T y T T T 1 = 90+ y v T y 1
0 10 20 30 40 50 0 10 20 30 40 50

LZ4 acceleration value

(b) St =90MB/s

LZ4 acceleration value

(a) St = 30MB/s

Fig. 5. Smgt of LZ4 using varying acceleration values with different network
bandwidths.

pression ratios and speeds. Table II shows the details of these
workloads. We also show the page dirtying speed (S4) of
these workloads in Table II, because it is an important factor
to influence the performance of VM migration. Note that
although S, has an effect on the TMT and TDT, it has no
relation with which compression approach we should choose.
This is because as is shown in Formula (1), the migration
speed (Spmgqe) is not influenced by S;. We expect to get the
biggest Sy,4; when we choose among different compression
approaches, so we do not need to consider Sj.

To get the compression ratios and speeds of the VM
memory during migration process, we modify the code of
migration routine in QEMU [26]. We use LZ4 to compress
memory pages before they are transferred to the target node.
Besides, at the beginning of each iteration of pre-copy, we
reset all the bits in the dirty bitmap of VM memory, to
make all the pages to be compressed and transferred during
every iteration. In different iterations, the acceleration value is
adjusted in the LZ4 compression API from 1 to 49 by a step
of 2. We accumulate the time and the compressed size of each
compression operation, to compute the compression ratios and
speeds of LZ4 with different acceleration values.

Figure 4 shows the results. For all the workloads, when the
compression speed gets faster, the compression ratio becomes
worse, and the results have a big gap between LZ4_1 and
LZ4_49. Besides, the results differ a lot between different
workloads, because their memory contents are quite different.
The figures also show the average values for the compression
ratios and speeds of the 8 workloads.

We further compute the Sy, of LZ4 with varying accel-
eration values using formula (1) Sy,g¢ = min(Se, S; * p) for
each pair of the compression ratios and speeds. S; is set to be
30MB/s and 90MB/s respectively as the representations of the
low and high network bandwidth situations. Figure 5 shows
the results. Because different workloads vary in compression

224

2.0
B 184/
2
o 164
c
O 144
B
‘C__D 1.2
£
z 10+
= 08717¥ —=—St=30MB/ls < St= 150MB/s
€ 064 —e—St=60MB/s —»— St= 180MB/s
S oa —A—St=90MB/s —&— St=210MB/s
Z 04 — v St=120MB/s —e— St = 240MB/s
02 T T T T 1

0 10 20 30 40 50
LZ4 acceleration value

Fig. 6. Normalized Spmg¢ with varying S¢, computed by the average
compression ratios and speeds of the eight workloads. Normalization means
that Siynge is divided by the network transfer speed Si.

ratios and speeds, their values of Sy, vary too. When
Sy = 30M B/s, all of the workloads get the biggest S, with
LZ4_1, so does the average value. When S; = 90M B/ s, the
average value gets the biggest S,4; with LZ4_7. Meanwhile,
each of the 8 workloads either gets the biggest Sy, 4: or is quite
close to the biggest Sy,q: With LZ4_7. Taking hmmer as an
example, its S, q¢ with LZ4_7 is 148MB/s, while it gets the
biggest Sy, 4+ of 152MB/s with LZ4_5, which are very close.

So we argue that, although various workloads differ in the
compression ratios and speeds, and so differ in the S,,4:, all
of their S;,4; get the maximum with almost the same LZ4
acceleration value. This makes it feasible to use the average
values of the compression ratios and speeds, to compute the
Smgt for all of the VM workloads. Thanks to this significant
finding, the implementation of our BAC scheme is simplified
without storing separate sets of the compression ratios and
speeds for different workloads.

Next, we continue to compute the S,,4+ when the network
bandwidth is further improved, using the average compression
ratios and speeds. As shown in Figure 6, we present the result
as normalized S, 4, (which is S,,,4,/S;) to indicate the factor
by which S,,4¢ is augmented using compression. From the
result we have three insights. First, when the acceleration
value is not very big, the normalized S, of the same
acceleration value drops as the bandwidth improves. This
implies that compression obtains more performance improve-
ments for migration with lower network bandwidth. Second,
the biggest Sy, occurs at bigger acceleration value as the
bandwidth improves. This implies that we should sacrifice the
compression ratio to use a faster approach with higher network
bandwidth. Third, some slow compression approaches with
good compression ratio lead to a normalized Sy, less than 1,
when the bandwidth is high. This means that the compression
would worsen the migration performance in such a situation.

From the results above, we conclude three cases in brief:

Case 1: When the network bandwidth is low, a slow
compression approach with good compression ratio is suitable
for migration;

Case 2: When the network bandwidth is high, a fast
compression approach which sacrifices the compression ratio
is suitable for migration;

Case 3: When the network bandwidth fluctuates during
migration, the compression approach needs to be adjusted
dynamically according to the bandwidth.

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

TABLE II. THE EIGHT REPRESENTATIVE WORKLOADS WE SELECT IN VIRTUALIZATION ENVIRONMENT.
Workloads Description Sa
Kernel Compilation | A linux-3.7.9 kernel is compiled, which is a balanced workload to test the performance of system virtualization. Middle
Idleness The virtual machine boots up without running any application. Slow
Web Server An apache web server which serves static content at a high rate is running. One client is configured with 100 concurrent | Middle
connections while each connection continuously requests random 512KB files from the web server.
Daily Use Some daily operations are carried out inside the VM, such as browsing websites using Firefox browser, playing a 720p Slow
high definition movie, and editing some documents with the LibreOffice.
CPU2006.Hmmer This is an integer benchmark, which performs protein sequence analysis using profile hidden Markov models. Slow
CPU2006.Bzip2 This is another integer benchmark, which performs Seward’s bzip2 version 1.0.3, modified to do most work in memory. Fast
CPU2006.Zeusmp This is a floating point benchmark, which performs the simulation of astrophysical phenomena using computational fluid Fast
dynamics.
CPU2006.Gamess This is another floating point benchmark, which implements a wide range of quantum chemical computations. Slow

VM VM
BAC
RAM compress RAM
BAC
Bandwidth buffer decompress
Monitor 1
Netwark
QEMU QEMU
KVM KVM
Linux Kernel Linux Kernel
Hardware Hardware

Source Node Target Node

Fig. 7. The system architecture of BAC.
V. DESIGN AND IMPLEMENTATION

The analysis in the former section demonstrates that the
acceleration value of LZ4 with which we will obtain the
shortest TMT varies with network bandwidth. In the real-
world environment, the network situation varies over time. The
administrators of data centers would also use the adaptive rate
limiting to adjust the bandwidth allocated to migration process
according to the requirements of applications running inside
data centers. So we design a Bandwidth-Aware Compression
(BAC) scheme for live VM migration, which has been imple-
mented in the KVM/QEMU platform. Figure 7 presents the
system structure of our BAC scheme. Here we present the
details of BAC as follows.

A. Bandwidth-Aware Compression

In our BAC scheme, the source node of the migration to
perform the compression operations stores a list of compression
strategies, along with the average compression ratios and
speeds we have obtained in Section IV. When strategy i in
the list is selected, it means compressing the VM memory
content via LZ4 with acceleration value i. BAC monitors
the network to get the bandwidth allocated to the migration
process, and then selects the best compression strategy whose
Smgt is the biggest, which is computed based on formula (1).
We could leverage the bandwidth monitor to get the real-time
bandwidth periodically (e.g. once per second), so that the best
compression strategy is adjusted dynamically according to the
network bandwidth. The decompression at the target node in

our BAC scheme does not need additional operations since
the LZ4 decompression API is universal no matter what the
acceleration value is.

As we have discussed in Section IV, we store the average
values of the compression ratios and speeds of the eight
workloads into the list of compression strategies, and they
would apply to all workloads running inside the VM. Our
implementation stores 16 pairs of compression ratios and
speeds, from LZ4_1 to LZ4_31 by the step of 2. We do
not store all of the 31 pairs because the Sy,,; changes only
slightly between two adjacent acceleration values. The pseudo-
code to choose among compression strategies is presented in
Algorithm 1. Note that in Algorithm 1, strategies[i][0] refers
to the compression ratio (p), and strategies[i][1] refers to the
compression speed (S;).

Algorithm 1 Pseudo-code to choose among compression s-
trategies
Input: current network bandwidth, St
Output: the LZ4 acceleration value which earns the most
benefits for migration, best
1: Predefined values: the list of compression strategies,
strategies[16][2]

2: 140

3: maz_Smgt < 0

4: while i < 16 do

5: if strategies[i][1] < St * strategies[i][0] then
6: Smgt + strategies[i][1]

7: else

8: Smgt < St x strategies|i][0]
9: end if

10: if Smgt > max_Smgt then

11: max_Smgt < Smgt

12: best <~ 2x%i41

13: end if
14: end while
15: return best

Besides, existing implementation of the pre-copy migra-
tion in QEMU employs a standard optimization to compress
uniform pages, of which each byte is the same, such as zero
pages. QEMU uses only one byte (with a flag to distinguish) to
represent one entire 4KB uniform page when being transferred
in migration. We keep this optimization in our implementation,
and the uniform pages are not compressed by LZ4.

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

B. Multi-Page Compression

As we have stated in Section 3, a larger compression
window contributes to better compression ratio for the VM
memory, without obvious impact on compression speed. So in
our BAC scheme, we maintain a buffer in the source node to
store the pages being transferred temporarily. When the buffer
is full, the memory pages in the buffer will be compressed
together and then be transferred to the target node. The size of
the buffer is adjustable, and a 1MB buffer has been proven
to work well in practice. At the target node, there is also
a buffer to receive the compressed multi-page content. After
decompression, the pages are submitted to the RAM space of
VM.

VI. EVALUATION

This section presents the performance characteristics of the
proposed techniques. We select three representative workloads
(kernel compilation, zeusmp, and web server) from the eight
introduced in Section 4 and measure the TMT, TDT, and
downtime in various network scenarios. The results show that
our BAC scheme shortens the TMT a lot, with comparable
performance for the TDT and the downtime, compared with
the conventional compression approaches.

A. Experimental Setup

Our experimental environment consists of four machines,
each with quad-core Xeon X3220 2.4GHz CPU, 8GB RAM
and two Intel PRO/1000 gigabit network interface card (NIC).
Two of these machines act as the source and target nodes
of live migration, and they share the storage from another
machine through the NFS method. The last machine acts as
the client of the web server workload. All of the four machines
are connected via a gigabit ethernet switch. Besides, a separate
gigabit ethernet exists between the source and target nodes and
it’s used only for the migration process. The OS of the host
machines is Redhat Enterprise Linux 6.2, and the guest OS
inside the VM is Ubuntu-12.04. The VM is configured with 1
VCPU and 1GB of RAM except where noted otherwise.

We repeat each migration experiment three times, and use
the arithmetic average of the three values as the result. Besides,
to ensure that the migration experiments are conducted in the
same situation for each workload, we first boot up the VM and
run the workload from the same starting point, and then begin
migration after the workload has run for the same period of
time.

To set the various network scenarios during VM migration,
the migrate_set_speed command, which sets the bandwidth
allocated to migration process, is used in QEMU monitor.

B. Effects of LZ4 Compression with Varying Acceleration
Values

We first conduct the experiments to get the effects of LZ4
compression with varying acceleration values. Eight accelera-
tion values (1, 4, 7, 10, 15, 20, 30, 45) are used to repeat the
migration experiments. With these eight candidates, we get the
varying trends of the TMT and the TDT when using various
LZ4 approaches. The experiments are repeated with 30MB/s
and 90MB/s network bandwidth corresponding to Figure 5.

Total Migration Time. Figure 8 shows the results of the
TMT. With 30MB/s bandwidth, the TMT of all the three work-
loads becomes longer with the increment of the acceleration
value. With 90MB/s bandwidth, the TMT first drops to the

N
=

—=a— kernel compilation|

o
3

® D —e— zeusmp
e 16 g 6.0 —a— web server
é 14 g 55
3 = 50
512 >
€ —=a— kernel compilation £ 45
g 10 —e— zeusmp S 40
L o —— web server ° a5
0 10 20 30 40 50 o 710 20 30 40 50
LZ4 acceleration value LZ4 acceleration value
(a) 30MB/s bandwidth (b) 90MB/s bandwidth
Fig. 8. The total migration time of various LZ4 compression approaches

with different network bandwidth.

600

B)

@ 500
= 500 =
e 3
] 5 400
400 £
8 £
% 300 —=— kernel compilation| % 300 —=— kernel compilation
© —e— zeusmp o —e— zeusmp
© —a— web server % —— web server
S 200+ : : : : ‘ 2 200+ ‘ : : : ‘
0 10 20 30 40 50 0 10 20 30 40 50
LZ4 acceleration value LZ4 acceleration value
(a) 30MB/s bandwidth (b) 90MB/s bandwidth
Fig. 9. The total data transferred of various LZ4 compression approaches

with different network bandwidth.

bottom from LZ4_1 to LZ4_7, and then climbs up all the way
to LZ4_45. Compared with Figure 5, the varying trends of the
TMT for these workloads conform to that of the S,,4¢. When
the Syq¢ gets biggest (LZ4_1 and LZ4_7 respectively for the
30MB/s and 90MB/s bandwidth), the TMT gets shortest. So
we conclude that our method to compute the S,,4¢ and to use
it as an indicator of the performance improvements earned by
the compression is efficient.

Besides, the results of different LZ4 approaches differ a lot
(but they are all better than that of the original pre-copy). Take
the kernel compilation with 30MB/s network for instance, the
TMT is 8.7s using LZ4_1 and 18.0s using LZ4_45, which has
more than 2X difference. This indicates that it’s significant
to choose the proper compression approach for migration to
obtain the maximum benefits.

Total Data Transferred. Figure 9 shows the results of
the TDT. With both network bandwidths, the TDT increases
continuously from LZ4_1 to LZ4_45. The results suggest that
the TDT is dominated by the compression ratio, and better
compression ratio leads to less data transferred.

Comparing LZ4_1 with LZ4_7 in Figure 8(b) and Figure
9(b), we see that less data is transferred in more time with
90MB/s bandwidth. This is because although LZ4_1 leads to
less data transferred due to its better compression ratio, its
compression speed is much slower than LZ4_7. With 90MB/s
bandwidth, it is the slow compression speed of LZ4_1, rather
than the network bandwidth, that becomes the bottleneck of
migration, so it leads to a longer migration time than LZ4 7.

C. Effects of Multi-Page Compression

Next, we conduct the experiments to verify the effect
of multi-page compression. LZ4 approaches with the best
acceleration values are used as baseline, which are LZ4 1 for
30MB/s bandwidth and LZ4_7 for 90MB/s bandwidth. A 1IMB
buffer is used to hold the memory pages to be compressed.

Figures 10(a) and 10(b) show the results of the TMT and
the TDT. With 30MB/s bandwidth, compared with the single

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

[TMT: single page compression .
[l TMT: single page compression [TMT: 256-page compression 400 =] orlglnal pre-copy)
[TMT: 256-page compression 400 1 228 TDT: single page compression 1400 = I single page compression
12 - 2 TDT: single page compression P21 TDT: 256-page compression Il 256-page compression
WZZZ TDT: 256-page compression _ o 2504
[is) —~ 44 —
@ 10 3 & W=z 2
@ 5 @ s £ 200
£ 8 g E 34 g GE)
= 5 ko)
5 2008 9 200% £ 1501
= 64 c = c
S § g, g 3
k=4 = 2 = 8 100-
E 4 £ E £
] s 3] 100 5 50-
g 2 T e 3
= [J
0~ 0 0 440 kc zeusmp ws kc zeusmp ws

kernel compilation web server

(a) TMT and TDT with 30MB/s bandwidth

zeusmp

Fig. 10. The effects of multi-page compression on the migration performance.

page compression, our multi-page compression method gets
a speedup of 1.13, 1.23 and 1.22 respectively for the three
workloads in terms of the TMT. TDT is reduced by 8%, 14%,
and 11% respectively. With 90MB/s bandwidth, although the
multi-page compression doesn’t obtain obvious improvement
for the TMT, it reduces the TDT by 6%, 16%, and 10%
respectively. Figure 10(c) shows the downtime, and multi-page
compression leads to comparable downtime compared with
single page compression. Note that the zeusmp workload has
such a fast memory dirtying rate that when the bandwidth is
30MB/s, the original pre-copy process is not able to converge
to the stop and copy phase. To handle that, when the original
pre-copy migration has continued for 60 seconds, we set the
downtime value to be big enough through the QEMU monitor,
to force the pre-copy process stepping into the stop and copy
phase. This results in a huge downtime (1.46s).

In summary, the multi-page compression method improves
both the TMT and the TDT with low bandwidth, while only
improving the TDT with high bandwidth.

D. Migration with Fixed Network Bandwidth

In this and the next subsections, we compare the per-
formance of BAC with four fixed LZ4 approaches (LZ4_1,
LZ4_7, LZA4_15, LZ4_30) across various network scenarios.
Besides, the performance of original pre-copy is also shown
in the evaluation. First we conduct experiments with fixed
network bandwidth, which means the bandwidth allocated to
migration process stays constant during the whole migration
process. As stated in Section III, 30MB/s and 90MB/s band-
widths are chosen to represent the busy network and idle
network situations inside a data center.

Figure 11 shows the results with 30MB/s bandwidth. Ac-
cording to the compression strategies, BAC chooses LZ4_1 for
migration. It is shown that BAC along with all the other com-
pression approaches obtain remarkable improvements from the
original pre-copy for all the three metrics. Furthermore, due
to the use of bigger compression window (256 pages), BAC is
better than the LZ4_1 approach. Besides, compared with the
other LZ4 approaches, BAC gets significant improvements in
terms of the TMT and the TDT. Note that when compared with
the original pre-copy migration, almost all of the compression
approaches reduce the downtime significantly from hundreds
of milliseconds to tens of milliseconds. Tens of milliseconds
is already in a micro scope, hence the little difference of
downtimes among different compression approaches is not
important for the performance of migration.

Figure 12 shows the results with 90MB/s bandwidth. In

zeusmp

(b) TMT and TDT with 90MB/s bandwidth

web server 30MB/s bandwidth

90MB/s bandwidth

(c) Downtime

this case, BAC chooses LZ4_7 for migration. Again, all the
compression approaches get remarkable improvements from
the original pre-copy. Besides, BAC is the best in all these
compression approaches considering both TMT and TDT.
Compared with LZ4_1, BAC gets a speedup of 1.37X, 1.36X
and 1.48X respectively in terms of the TMT, while has a
comparable performance for the TDT.

In summary, in the network scenarios with fixed band-
width, our BAC scheme gets significant improvement for the
TMT, compared with the conventional compression approach-
es, while having comparable performance for the TDT and the
downtime.

E. Migration with Fluctuating Network Bandwidth

Then, we conduct experiments in a network with fluctu-
ating bandwidth. The migrate_set_speed command is used in
QEMU monitor to change the bandwidth allocated to migration
every 1 second to emulate this network scenario. The band-
width is alternately set as 30MB/s, 60MB/s, 90MB/s, 30MB/s,
60MB/s, 90MB/s... Besides, we migrate VMs allocated with
4GB RAM, to prolong the migration processes, so that the
implication of the fluctuating bandwidth is better observed.

As shown in Figure 13, all the compression approaches get
remarkable improvements from the original pre-copy, except
for the downtimes of zeusmp. For zeusmp, the downtimes of
several compression approaches are much longer than that of
the original pre-copy. We explain this abnormality as follows.
In the implementation of QEMU for the pre-copy process, at
the end of each iteration, the code computes the data transfer
rate of last iteration and gets the amount of remaining dirty
pages. These two values are used to estimate the downtime, to
decide if pre-copy should step into the stop and copy phase.
However, the fluctuating bandwidth may lead to the result that
the transfer rate computed by the code differs a lot from the
real-time bandwidth. Besides, as mentioned before, zeusmp has
a very fast memory dirtying rate. We consider these factors as
the reasons for the abnormality of the downtimes for zeusmp.

Still, BAC obtains the best performance among all of
the compression approaches considering both TMT and TDT.
Compared with LZ4 1, in terms of the TMT, BAC gets a
speedup of 1.26X, 1.23X and 1.31X respectively for the three
workloads, while having comparable performance for the TDT
and the downtime.

F. Overhead Analysis
Our BAC scheme has little memory overhead, just two
buffers for multi-page compression and decompression (both

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

B Original M LZ4 1 EEELZ4 7
B 74 15 B=174 30 EEEBAC

I Original [LZ4_1
B 74 15 BE=E174 30 BERBAC

.74 7 B Original EENLZ4 1 EEELZ4_7

B 74 15 E==8124 30 B BAC

60
2000 4 1500 4
40 I 15003 10004
1000]
20,1 —~ im 007
2 2 s00] 3003
> =
£ 15 3 = 250
= 2 400 £
S 3 3 200
T 10+ § 300+ E
2 s € 150
£ £ 200 g
© 3 T O 1004
e 7 IS
£ 00l
'9 00 50 -
0- 04 04
kernel compilation zeusmp web server kernel compilation zeusmp web server kernel compilation zeusmp web server
(a) Total migration time (b) Total data transferred (c) Downtime
Fig. 11. Migration performance with low network bandwidth (30MB/s).
I Original I LZ4_ 1 EEELZ4_7 B Original 174 1 EEEELZ4 7 Il Original IELZ4_ 1 M LZ4_7
12 B 74 15 BE=L74 30 EEEBAC vz za1s B=174 30 BEBBAC B 24 15 E=S174 30 EEERBAC
1000]
10 I 00 250
= . 6005 mm H
— o =
2 s
2 1 N
£ 6 e £
§ 3 £
E : g
5 47 = g
€ % S
5 3 e
o 2 ©
= 3
L
04
kernel compilation zeusmp web server kernel compilation zeusmp web server kernel compilation zeusmp web server
(a) Total migration time (b) Total data transferred (c) Downtime
Fig. 12. Migration performance with high network bandwidth (90MB/s).
I Original EEMILZ4 1 EEELZ4 7 B Original IEENLZ4 1 |[ELZ4_7 B Original MEENILZ4_ 1 [EEELZ4_7

B 74 15 EELz4 30 BEEBAC
4000

Total migration time (s)
Total data transferred (MB)

web server

kernel compilation

zeusmp

kernel compilation

(a) Total migration time

Fig. 13.

are 1MB in our experiments) and the memory space used by
LZA4 algorithm (typically about 16KB by its default setting).
The main overhead is the CPU resources used for LZ4 com-
pression, while decompression is very fast and uses little CPU
resources. To evaluate the CPU overhead of LZ4 compression,
we repeat the kernel compilation migration experiments with
30MB/s network bandwidth, using different LZ4 approaches.
We get the precise CPU time spent on compression and
the total migration time through the experiments. Then we
compute the CPU overhead of LZ4 compression which is the
compression time divided by the total migration time. Table III
shows the results. Note that we use only one thread to execute
the compression task, so the numbers represent the usage of a
single CPU core. It is shown that from LZ4_1 to LZ4_19, the

B3 | 74 15 BE=5L74_30 BB BAC

(b) Total data transferred

B 74 15 BE=E174 30 BEEBAC
350

Downtime (ms)

zeusmp web server web server

kernel compilation

zeusmp

(c) Downtime

Migration performance with fluctuating network bandwidth. VMs are allocated with 4GB RAM.

CPU overhead varies from 56.2% to 11.7% of a single CPU
core. With the availability of multi-core or many-core, CPU
resources tends to be abundant in current data centers, SO we
consider the CPU overhead of our BAC scheme as acceptable.

VII. CONCLUSION AND FUTURE WORK

In this paper, we design and implement a Bandwidth-
Aware Compression (BAC) scheme for live VM migration.
BAC chooses the suitable compression approach according to
the network bandwidth available for the migration process
and employs multi-page compression. These features make
BAC obtain more performance improvements for migration.
To choose among various compression approaches, we get a
list of compression strategies through the analysis of memory

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

TABLE III. CPU OVERHEAD OF A SINGLE CORE FOR DIFFERENT LZ4 APPROACHES
Lz4_1 | LZ4 3 | LZ4 5 | LZ4_7 | LZ4_9 | LZ4_11 | LZ4_13 | LZ4_15 | LZ4_17 | LZ4_19
CPU overhead | 56.2% | 43.7% | 31.3% | 22.6% 18.3% 15.2% 13.7% 12.8% 12.4% 11.7%

contents of VMs running various workloads. We demonstrate
that this list applies to all the VM workloads, which makes our
BAC scheme practical for implementation. Experiments with
various network scenarios (low bandwidth, high bandwidth,
and fluctuating bandwidth) demonstrate that compared with the
conventional compression approaches, BAC shortens the TMT,
while achieving the comparable performance for the TDT and
the downtime.

For the future work, we expect to adopt more compression
algorithms besides LZ4 into our BAC scheme. Besides, we
plan to evaluate our BAC scheme in more network scenarios
to represent the real-world situations inside data centers.

ACKNOWLEDGMENT

This work was partly supported by the National Key
Research and Development Program of China under Grant
2016YFB1000202; State Key Laboratory of Computer Ar-
chitecture, No.CARCH201505; NSFC No. 61502190 and No.
61502191; Fundamental Research Funds for the Central Uni-
versities, HUST, under Grant No. 2015MS07; Hubei Provincial
Natural Science Foundation of China under Grant No. 2016CF-
B226. This work was also supported by Engineering Research
Center of Data Storage Systems and Technology, Ministry of
Education, China.

REFERENCES

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,”
in Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP’03). ACM, 2003, pp. 164-177.

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proceedings
of the 2nd conference on Symposium on Networked Systems Design &
Implementation (NSDI’05), 2005, pp. 273-286.

P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
A. Merchant, and K. Salem, “Adaptive control of virtualized resources
in utility computing environments,” in Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems (Eu-
roSys’07), 2007, pp. 289-302.

N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement of virtual
machines for managing sla violations,” in Proceedings of the 10th
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM’07), 2007, pp. 119-128.

Z. Zheng, M. Li, X. Xiao, and J. Wang, “Coordinated resource
provisioning and maintenance scheduling in cloud data centers,” in
Proceedings of the IEEE International Conference on Computer Com-
munications (INFOCOM’13), 2013, pp. 345-349.

X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networks with traffic-aware virtual machine placement,”
in Proceedings of the IEEE International Conference on Computer
Communications (INFOCOM’10), 2010, pp. 1-9.

R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Almost optimal vir-
tual machine placement for traffic intense data centers,” in Proceedings
of the IEEE International Conference on Computer Communications
(INFOCOM’13), 2013, pp. 355-359.

M. Alicherry and T. Lakshman, “Optimizing data access latencies in
cloud systems by intelligent virtual machine placement,” in Proceedings
of the IEEE International Conference on Computer Communications
(INFOCOM’13), 2013, pp. 647-655.

[1]

[3]

[4]

[5]

[6]

[7]

[8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield, “Remus: High availability via asynchronous virtual ma-
chine replication,” in Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation (NSDI’08), 2008.

A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott, “Proactive
fault tolerance for hpc with xen virtualization,” in Proceedings of the
21st annual International Conference on Supercomputing (ICS’07).
ACM, 2007, pp. 23-32.

R. Nathuji and K. Schwan, “Virtualpower: coordinated power manage-
ment in virtualized enterprise systems,” in Proceedings of the 21st ACM
Symposium on Operating Systems Principles (SOSP’07), 2007.

M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Efficient dat-
acenter resource utilization through cloud resource overcommitment,”
in Proceedings of the IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), 2015, pp. 330-335.

M. Nelson, B.-H. Lim, G. Hutchins et al., “Fast transparent migration
for virtual machines.” in Proceedings of USENIX Annual Technical
Conference (USENIX’05), general track, 2005, pp. 391-394.

H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan, “Live virtual machine
migration with adaptive memory compression,” in /EEE International
Conference on Cluster Computing and Workshops (CLUSTER’09).
IEEE, 2009, pp. 1-10.

S. Al-Kiswany, D. Subhraveti, P. Sarkar, and M. Ripeanu, “Vmflock:
virtual machine co-migration for the cloud,” in Proceedings of the 20th
international symposium on High Performance Distributed Computing
(HPDC’11), 2011, pp. 159-170.

P. Svird, B. Hudzia, J. Tordsson, and E. Elmroth, “Evaluation of delta
compression techniques for efficient live migration of large virtual
machines,” in Proceedings of the ACM SIGPLAN/SIGOPS international
conference on Virtual Execution Environments (VEE’11). ACM, 2011.

J. Zhang, F. Ren, and C. Lin, “Delay guaranteed live migration of virtual
machines,” in Proceedings of the IEEE International Conference on
Computer Communications (INFOCOM’14), 2014, pp. 574-582.

A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the
linux virtual machine monitor,” in Proceedings of the Linux symposium,
vol. 1, 2007, pp. 225-230.

M. R. Hines and K. Gopalan, “Post-copy based live virtual machine
migration using adaptive pre-paging and dynamic self-ballooning,” in
Proceedings of the ACM SIGPLAN/SIGOPS international conference
on Virtual Execution Environments (VEE’09). ACM, 2009.

Y. Abe, R. Geambasu, K. Joshi, and M. Satyanarayanan, “Urgent virtual
machine eviction with enlightened post-copy,” in Proceedings of the
ACM SIGPLAN/SIGOPS international conference on Virtual Execution
Environments (VEE’16). ACM, 2016.

H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu, “Live migration of virtual
machine based on full system trace and replay,” in Proceedings of the
18th ACM international symposium on High Performance Distributed
Computing (HPDC’09). ACM, 2009, pp. 101-110.

U. Deshpande, X. Wang, and K. Gopalan, “Live gang migration of
virtual machines,” in Proceedings of the 20th international symposium
on High Performance Distributed Computing (HPDC’11). ACM, 2011.
“LZA4-Extremely fast compression,” https://github.com/Cyan4973/1z4,
accesed February 2016.

“The QuickLZ compression library,” http://www.quicklz.com/, accesed
February 2016.

X. Lin, G. Lu, F. Douglis, P. Shilane, and G. Wallace, “Migratory com-
pression: Coarse-grained data reordering to improve compressibility,”
in Proceedings of the 12th USENIX Conference on File and Storage
Technologies (FAST’14), 2014, pp. 256-273.

F. Bellard, “Qemu, a fast and portable dynamic translator.” in Proceed-
ings of USENIX Annual Technical Conference (USENIX’05), 2005.

