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Abstract—Nowadays, high-bandwidth networks are easily ac-
cessible in data centers. However, existing distributed graph-
processing frameworks fail to efficiently utilize the additional
bandwidth capacity in these networks for higher performance,
due to their inefficient computation and communication models,
leading to very long waiting times experienced by users for the
graph-computing results. The root cause lies in the fact that the
computation and communication models of these frameworks
generate, send and receive messages so slowly that only a
small fraction of the available network bandwidth is utilized.
In this paper, we propose a high-performance distributed graph-
processing framework, called BlitzG, to address this problem.
This framework fully exploits the available network bandwidth
capacity for fast graph processing. Our approach aims at
significant reduction in (i) the computation workload of each
vertex for fast message generation by using a new slimmed-
down vertex-centric computation model and (ii) the average
message overhead for fast message delivery by designing a light-
weight message-centric communication model. Evaluation on a
40Gbps Ethernet, driven by real-world graph datasets, shows
that BlitzG outperforms the state-of-the-art distributed graph-
processing frameworks by up to 27x with an average of 20.7x.

I. INTRODUCTION

Due to the wide variety of real-world problems that rely on
processing large amounts of graph data [1]-[3], many vertex-
centric distributed graph-processing frameworks, including
Pregel [4], GraphLab [5], PowerGraph [6], GPS [7], Giraph [8]
and Mizan [9], have been proposed to meet the compute needs
of a wide array of popular graph algorithms in both academia
and industry. These frameworks consider a graph-computing
job as a series of iterations. In each iteration, vertex-associated
work threads run in parallel across compute nodes. Common
in these frameworks are a vertex-centric computation model
and a vertex-target communication model [4], [7], as shown in
Figure 1. In the vertex-centric computation model, the work
threads on each compute node loop through their assigned
vertices by using a user-defined vertex-program(vertex i)
function. Each vertex program ingests the incoming messages
(Gather stage), updates its status (Apply stage) and then
generates outgoing messages for its neighbors (Scatter stage).
The incoming messages were received from its neighboring
vertices in the previous iteration. In the vertex-target commu-
nication model, the generated messages are first sent to the
message buffers where the message batches are then sent to
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the network. The message buffers are used to amortize the
average communication overhead of each message [4], [7].
At the receiver side, the message parser receives the message
batches and dispatches the messages in the message batches to
the message queues of the destination vertices [4], [7]. Thus,
the received messages can be identified by their destination
vertices. The received messages serve as the inputs to their
respective destination vertex programs in the next iteration.

A salient communication feature of vertex-centric distribut-
ed graph-processing frameworks is that, for most graph algo-
rithms, the messages generated and delivered are usually small
in size [10], [11]. Typically, a message carries a destination
vertex name and a 4-byte integer or floating-point number.
However, within each iteration, there are an enormously large
number of messages used by vertices to interact with one
another. This feature makes message delivery highly inefficient
[8], [12], [13] and severely underutilizes the network band-
width capacity even when the message buffering technique
[4], [7] is used to amortize the average per-message overhead.

However, nowadays, high-bandwidth networks, such as
40Gbps, even 100Gbps networks, are easily accessible in data
centers [14]. The large gap between the slow communication
in existing distributed graph-processing frameworks and the
easily accessible but severely underutilized high-bandwidth
network capacity motivates us to fully exploit the high-
bandwidth networks for high-performance graph computation.
In order to fully exploit the high-bandwidth network capacity
for fast graph computation, one must address the following
two key challenges.

The first is that the messages must be generated fast enough.
In order to generate a sufficient number of messages in a given
time slot, one intuitive solution is to leverage expensive high-
end servers with powerful processors to speed up the execution
of vertex programs on each compute node [15], [16], because
the messages are generated by the vertex programs. However,
this solution may not be viable for most distributed graph-
processing frameworks that are usually built on clusters of
commodity computers with a limited number of cores, for
better scalability and lower hardware costs [4]-[9]. Yet high
scalability and low hardware cost are important considerations
for graph-processing frameworks since a large number of
compute nodes are required to process a large graph [4], [8].
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Fig. 1. A Pair of Compute Nodes in Vertex-Centric Distributed Graph-
Processing Frameworks.

Instead of relying on more compute power, our proposed
solution is to reduce the computation workload of each vertex.
More specifically, since it is the vertex programs run by
the work threads that generate the messages, we propose a
slimmed-down vertex-centric computation model that helps
eliminate the time-consuming Gather stage of the vertex pro-
gram and thus significantly reduces the computation workload
of each vertex. Our experimental results, as shown in Section
VI, indicate that this method is very effective because the
runtime of each vertex-program is dominated by the Gather
and Scatter stages while the Apply stage entails a single
simple operation of updating the value of the vertex [12].

The second challenge is that the average message time in
existing distributed graph-processing frameworks is very long,
which must be substantially shortened. That is, the messages
among the vertices must be delivered fast enough. The average
message time is defined as the time for sending an average
message from a source vertex to a remote destination vertex.
The long average message time is primarily consumed by the
extra communication overheads of the kernel overhead, multi-
copy overhead, interrupt overhead and the lock overhead [17]-
[20], as discussed in Section II-B. We address this challenge
by proposing a light-weight message-centric communication
model that significantly reduces the average message time by
avoiding the four extra communication overheads in existing
distributed graph-processing frameworks, as discussed in Sec-
tion IV.

Based on the proposed computation and communication
models, we implement a high-performance distributed graph-
processing framework, called BlitzG. This paper makes the
following three contributions.

1) A slimmed-down vertex-centric computation model that
significantly accelerates message generation by reducing
the workload of each vertex.

2) A light-weight message-centric communication model that
significantly reduces average message delivery time. Fur-
thermore, this communication model significantly reduces
the memory footprint by avoiding intermediate messages.
Thus, our framework can support larger graphs or more
complex graph algorithms with the same memory capac-
ity, leading to lower hardware cost and better scalability.

3) The design and prototype implementation of BlitzG that
can achieve the line-speed throughput of a 40Gbps Eth-
ernet, for fast graph computation.

The rest of the paper is structured as follows. Background
and motivation are presented in Section II. The proposed com-
putation model is given in Section III. Section IV introduces
the proposed communication model. Section V presents other
key components of the BlitzG. Experimental evaluation of the
BlitzG prototype is presented in Section VI. We discuss the
related work in Section VII and conclude the paper in Section
VIIL

II. BACKGROUND AND MOTIVATION

In this section, we first present a brief introduction to the
vertex-centric computation model in existing distributed graph-
processing frameworks. This helps motivate us to propose a
new slimmed-down vertex-centric computation model, which
can provide faster speed of message generation, as discussed in
Section III. We then introduce the vertex-target communication
model, in order to explore the high extra communication over-
heads of existing distributed graph-processing frameworks.
The insights gained through these explorations help motivate
us to propose a light-weight message-centric communication
model that significantly reduces average message delivery
time, as discussed in Section IV.

A. Vertex-Centric Computation Model

We discuss the execution process of a typical compute node
in the vertex-centric distributed graph-processing frameworks
to help understand the vertex-centric computation model. In
this model, the graph to be processed is first partitioned by
a predefined scheme so that each subgraph is loaded to a
compute node that then assigns its vertices to a limited number
of work threads, each of which loops through its assigned
vertices by using a user-defined vertex-program(vertex i). As
shown in Figure 2(a), vertex-program(vertex i) sequentially
executes the following three stages for each vertex i: Gather,
Apply, and Scatter. In the Gather stage, the value of each
message in the input message queue MQ_input[i] of vertex i
is collected through a generalized sum:

2.« @

meMQ_inputl[i]
The user defined sum operation is commutative and
associative, and can range from a numerical sum to the union

of the data on the incoming messages [5].
The resulting value ¥ is used in the Apply stage to update
the value of the vertex i (indicated as Y):

[V, %) =Y

m.value (2.1)

(2.2)

Finally, in the Scatter stage, vertex i uses its new value (Y)
to generate messages and then sends these messages to its out-
going neighbors. Usually, in order to improve communication
efficiency, the messages are batched in the dedicated message
buffers [4], [7] before sending them over the network.
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Fig. 2. The Workflow of the Vertex-Centric Distributed Graph-Processing
Framework in A Typical Compute Node.

Once the vertex-centric computation model is activated,
the compute node begins to execute the vertex-target re-
ceiving/dispatching process concurrently. This process is an
integral part of the vertex-target communication model, as
discussed in the next subsection. As shown in Figure 2(b),
each incoming message batch is received by a message parser
[7]. The message parser thread parses each message batch
and enqueues the messages in the message batch into the
message queues of the destination vertices. Thus, each vertex
can identify the messages sent to itself.

Each vertex i has two message queues, i.e., the receiving
message queue MQ_recv[i] and the input message queue
MQ_input[i] [4], [7]. The former is used to store the messages
that are sent to vertex i. The latter stores the messages received
in the previous iteration and serves as the input to the vertex-
program(vertex i). At the end of each iteration, the two
message queues switch their roles.

B. Vertex-Target Communication Model

As shown in Figure 1, the vertex-target communication
model works as follows. At the sender side, any message
generated by a work thread is first sent to the user-space
message buffers [4], [7]. When a message buffer is filled up,
the message batch is delivered to kernel network protocol
stack where it is sent to the network. At the receiver side,
when a message batch is received by the kernel network
protocol stack, it is first delivered to the user-space. The
message parser then parses the message batch and enqueues
the messages in the message batch to the message queues
of the destination vertices [4], [7]. As mentioned before,
this communication model usually suffers from four extra
communication overheads, leading to long average message
delivery time.

Kernel overhead. Existing distributed graph-processing
frameworks are built on an operating system kernel commu-
nication protocol stack where the message batches are passed
through the network [4], [7]. Modern operating system kernels
provide a wide range of general networking functionalities.
This generality does, however, come at a performance cost,
severely limiting the packet processing speed [17].

Multi-copy overhead. In high-bandwidth networks, exces-
sive data copying results in poor performance [18], [21].
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Fig. 3. The Workflow on A Typical Compute Node of BlitzG.

However, data copying occurs twice each at the sender side
and at the receiver side in existing vertex-centric distributed
graph-processing frameworks, as shown in Figure 1.

Interrupt overhead. Conventional network interface card
(NIC) drivers usually use interrupts to notify the operating
system that data is ready for processing. However, interrupt
handling can be expensive in modern processors, limiting the
packet receiving speed [19], [20], [22], [23].

Lock overhead. Contention among threads on critical
resources via locks is a potential bottleneck that prevents
the high-bandwidth network capacity from being efficiently
utilized by distributed graph-processing frameworks [20].

III. SLIMMED-DOWN VERTEX-CENTRIC
COMPUTATION MODEL

We present the execution process of a typical compute node
in our BlitzG framework to help understand our slimmed-
down vertex-centric computation model. In this model, like the
existing vertex-centric computation model, each work thread
in the compute node loops through its vertices by using
the vertex-program(vertex i). Unlike existing vertex-centric
computation model, as shown in Figure 3(a), the vertex-
program(vertex i) sequentially executes the Apply and Scatter
stages only, for each vertex i. In the Apply stage, the input
accumulated value X_input[Z] is used to update the value of
the vertex i (indicated as Y) :

Y, X inputfi]) - Y (3.1)

In the Scatter stage, vertex i uses its new value (Y) to
generate messages for its outgoing neighbors. The messages
are constructed directly in the message buckets. A message
bucket is a message container consisting of the Ethernet
header, IP header and a number of data structures of messages,
as discussed in Section IV. When a message bucket is full, it
is sent to the network interface card (NIC) directly.

Once the slimmed-down vertex-centric computation model
is activated, the compute node begins to execute the message-
centric receiving/accumulating process concurrently. This pro-
cess is an integral part of the light-weight message-centric
communication model, as detailed in Section IV. As shown
in Figure 3(b), instead of the message parser, a message
accumulator is used to ingest the incoming message buckets
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where the value of each message msg in the message buckets
is accumulated through a generalized sum:

Y_recvfi] ® msg.value — X_recvli] (3.2)

where i is the destination vertex name of the message msg,
and X_recv[i] is the receiving accumulated value of vertex i.

Each vertex i is associated with two user-defined accumu-
lated values, i.e., a receiving accumulated value ¥._recv[i] and
an input message accumulated value >_input[i]. The former
is used to accumulate the values of the incoming messages
that are sent to vertex i. The latter serves as the input of the
vertex-program(vertex i). At the end of each iteration, the
two accumulated values switch their roles.

Summary: Our slimmed-down vertex-centric computation
model speeds up the message generation by eliminating time-
consuming Gather stage of the vertex program. This gain
is attributed to the message-centric receiving/accumulating
process. Like vertex-target receiving/dispatching process in the
vertex-centric distributed graph-processing frameworks, our
message-centric receiving/accumulating process needs to parse
the received message buckets to identify each message, result-
ing in parsing overhead [7]. However, instead of dispatching
the identified messages to their destination vertices, our ap-
proach accumulates the values of the identified messages to
the accumulators of the destination vertices directly, avoiding
the overheads of message migrations. In the next iteration,
the value of each accumulator is used by the Apply stage
of the destination vertex program directly. More importantly,
our approach avoids the costly kernel, multi-copy, interrupt
and defragmenting overheads, enabling the messages to be
received/processed efficiently, as discussed in Section IV.

IV. LIGHT-WEIGHT MESSAGE-CENTRIC
COMMUNICATION MODEL

Our light-weight message-centric communication model,
as shown in Figure 4(c), is able to significantly reduce the
communication time of an average message primarily because
of the following reasons.

First, in order to avoid kernel overhead of operating system,
our communication model first employs the Intel Data Plane
Development Kit (DPDK) [19], a fast user-space packet pro-
cessing framework that has been gaining increasing attention
[14], [19], [20], [23]. DPDK allows user-space applications
using the provided drivers and libraries to access the Ethernet
controllers directly without needing to go through the Linux
kernel. These libraries can be used to receive and send packets
within a minimum number of CPU cycles, usually less than
80 cycles, in contrast to the approximately 200 cycles required
to access the memory [19]. To the best of our knowledge,
this is the first time that DPDK is used in graph-processing
frameworks. The high performance of DPDK make it possible
for BlitzG to utilize the high-bandwidth networks efficiently.

Second, BlitzG eliminates the four rounds of data copying in
vertex-centric distributed graph-processing frameworks. This
is important since, in high-bandwidth networks, excessive data
copying results in poor performance [18], [21]. At the sender

side, when each work thread executes its vertex programs, it
updates the DestinationVertexID and MessageValue fields of
each message in the message buckets directly, avoiding the
message migrations to the message buffers in existing vertex-
centric distributed graph-processing frameworks. As shown in
Figure 4(a), a message bucket contains the following fields: the
Ethernet header, IP header, BuckNum, ACKNum, a number of
messages (payload) and pad. The BucketNum and ACKNum
fields are used to guarantee reliable transmission. We employ
the DPDK mbuf data structure [19] to store the message bucket
that is indexed by a pointer. When a message bucket is full, it
is flushed to the network interface card (NIC) directly by using
the user-space DPDK drivers deployed by the message bucket
sender, avoiding the data copying from the use space to the
kernel space. At the receiver side, the message accumulator
receives the message buckets from the NIC and accumulates
the message value of each message in the message buckets
directly to the X_recv[i] variable, where i is the vertex name
appearing in the message, avoiding the data copying from the
kernel space to the user space and the message migrations from
the use-space buffers to the message queues of the destination
vertices. The accumulated values serve as the inputs to the
destination vertex programs in the next iteration.

Third, instead of using interrupts to signal packet arrival,
the receive queues of network controllers are polled by the
receiving threads directly, avoiding the costly interrupt over-
heads.

Fourth, our communication model avoids the extra over-
heads of packet fragmenting/defragmenting. Existing vertex-
centric distributed graph-processing frameworks usually use
large-size message buffers to amortize the average overhead of
each message [4], [7]. In this case, fragmenting/defragmenting
is required so that each message batch can be encapsu-
lated within data frames that have a size constrained by
the Maximum Transmission Unit (MTU). For example, the
MTU of Ethernet network is typically 1500 Bytes. However,
packet fragmenting/defragmenting can decrease the efficiency
of packet processing when large-size packets pass through the
networks [24]. Instead of large size, our communication model
avoids the fragmenting/defragmenting by limiting the message
bucket size to be slightly smaller than the MTU. This design is
based on the fact that the messages of most graph algorithms
are usually short and have a uniform size [10], [11]. Our
communication model also supports jumbo messages, each
of which is composed of multiple message buckets linked
together through their “next” field, albeit a rare case scenario.

Finally, the high performance of our communication model
also stems from the lockless design, as discussed in Section
V-A.

Summary: The proposed light-weight message-centric
communication model significantly reduces the communica-
tion time of average message by avoiding the costly extra
communication overheads in existing vertex-centric distributed
graph-processing frameworks.

Furthermore, this communication model is highly memory-
saving because it ingests the values of incoming messages
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directly on the fly, eliminating intermediate messages in
vertex-centric distributed graph-processing frameworks. Mem-
ory consumption is an important concern in graph-processing
systems [25]. Because, given the aggregate memory capacity
of the compute nodes in a cluster, the memory-saving graph-
processing systems are able to process larger graphs or more
complex graph algorithms, leading to lower hardware cost.

V. DESIGN & IMPLEMENTATION oOF BLITZG

BlitzG is able to achieve the line-rate throughput of high-
bandwidth networks due to the slimmed-down vertex-centric
computation model and the light-weight message-centric com-
munication model, as discussed in Sections III and IV. In this
section, we focus mainly on other key components of BlitzG.

A. Lockless Design

Intuitively, the work threads in each compute node can share
the message buckets. Shared memory is typically managed
with locks for data consistency, but locks inevitably de-
grade performance by serializing data accesses and increasing
contention [20], [26]. To address this problem, we propose
parallelized message bucket ring groups, each of which serves
for one work thread. As shown in Figure 4(b), a message
bucket ring consists of a set of message buckets that are used
to store messages with the same remote compute node as
their destination. As shown in Figure 4(c), each work thread
has a message bucket ring group that includes P-1 message
bucket rings, where P is the number of compute nodes. Each
message bucket ring is dedicated to one remote compute node
independently. The message fields of each message bucket ring
are updated by its work thread sequentially in order by using
the automatically incremented value of a message field pointer.
When all the message fields in a message bucket are updated,
the message bucket is marked to be full, and its descriptor is
sent to the message bucket descriptor queue of the message
bucket ring group.

The message bucket sender module has a number of sender
threads, each of which manages several message bucket de-
scriptor queues, as shown in Figure 4(c). Each sender polls
its message bucket descriptor queues. When a message bucket
descriptor is obtained from a message bucket descriptor queue,
the message bucket indexed by the descriptor is directly sent

to the NIC. Using this design, each sender can also work
independently without accessing any shared data.

Next we discuss the lockless design of message bucket
receiving/processing. Modern NICs are usually supported by
the Receiver-Side Scaling (RSS) technique [14] with multiple
queues that allow the packet receiving and processing to be
load balanced across multiple processors or cores [27]. For
example, the Mellanox ConnectX-3 NIC has up to 32 queues
[14]. In order to completely parallelize the message bucket
receiving/processing, the message accumulator module has
multiple accumulator threads, each of which manages several
receiving queues of the NIC. By using this design, each
accumulator thread is allowed to work independently.

Summary: There are three key components in our BlitzG
framework, i.e., computation(work threads), message bucket
sender and message accumulator. Due to the lockless design,
the work of each key component is parallelized by multiple
dedicated threads, each of which works independently. Using
this design, BlitzG obtains high scalability in terms of core
count that enables high-bandwidth network to be fully utilized.

Furthermore, due to the lockless design, each thread of
the three key components is busy all the time, enabling
the dedicated cores to be utilized efficiently. Once the work
threads begin to work, the accumulator threads receive and
then process the message buckets continuously, significantly
reducing the polling time for the arrivals of the message
buckets.

B. Reliable Transmission

Reliable transmission must be ensured even though the
dropped packet rate is very low in a high-quality network.
BlitzG only needs to guarantee reliable transmission between
any pair of compute nodes.

“Sending with Acknowledgement” Mechanism : At the
beginning of each iteration, each side of a pair of compute
nodes begins to send message buckets to its peer. The sent
message buckets are numbered sequentially. The sequence
number of each message bucket is carried in the BucketNum
field in the message bucket. The AckNum field in each message
bucket is used to inform the peer that all the message buckets
with their sequence number being less than or equal to the Ack-
Num value have been received. When the expected AckNum
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value has not been received within an expected time interval,
the message buckets with their sequence number being larger
than the last received AckNum value will be re-sent to the
peer. Message bucket transmission between any two compute
nodes proceeds with this “sending with acknowledgement”
mechanism. When a compute node sends the last message
bucket to its peer, a “last” flag is carried in the BucketNum field
in the message bucket to inform the peer to stop receiving. In
this case, the compute node without message buckets to send
is still ready for receiving message buckets from its peer until
the “last” signal is received.

Delayed Processing Policy: In our “sending with acknowl-
edgement” mechanism, a connection descriptor is designed for
any given pair of compute nodes. These connection descriptors
are used by the sender threads and the accumulator threads to
trace and guarantee the reliable message transmission process
between any pair of compute nodes. Collisions can occur in
some cases. For example, when two different accumulator
threads on the same compute node have received their respec-
tive message buckets from the same remote compute node,
each of them needs to process its message bucket and update
the status of the same connection descriptor simultaneously.
In this case, in order to avoid contention overheads to achieve
higher performance, our approach is to delay the processing
of any message bucket that has a BucketNum being larger
than a predefined threshold. The delayed thread continues
to receive the subsequent message buckets, and the delayed
message buckets will be processed, along with the new ones in
the correct order. This approach enables each communication
thread to work independently, improving the utilization of
cores and system scalability.

Algorithm 1: Collect(imsg) Function of PageRank

int i;
i = msg.DestinationVetexID;
> _recv[i]+=msg.value;

Algorithm 2: Vertex-Program(vertex i) Function of PageRank
vertices[i].value = 3 _input[]*0.85+0.15; /* Apply */
foreach(j in out_neighbors of vertex i) /+ Scatter */

SendMsg(j, vertices[i].value);

C. Programming API

To better illustrate the programming API, we use an exam-
ple of the computation of PageRank [28]. In each iteration,
each compute node has two independent processes. In the
message-centric receiving/accumulating process, the message
accumulator ingests the incoming message buckets. Each
message msg in the message buckets is processed by using
the collect(msg) function, as shown in Algorithm 1. In the
slimmed-down vertex-centric computation model, each work
thread loops through its assigned vertices by using the vertex-
program(vertex i) function of PageRank. This function first
executes the Apply stage then the Scatter stage, as shown in
Algorithm 2.
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VI. EXPERIMENTAL EVALUATION

In this section, we conduct extensive experiments to evaluate
the performance of BlitzG. Experiments are conducted on a
32-node cluster. Each compute node has two 6-core Intel(R)
Xeon(R) E5-2620 processors with 32GB of RAM and a
Mellanox ConnectX-3 VPI NIC. Each core has two logical
cores by means of the hyper-threading technology. Nodes
are connected via a 40Gbps Ethernet network. We use 8GB
of RAM for huge pages [19], based on the fact that in
Intel’s performance reports 8GB is set as a default huge page
size. The operating system of each node is CENTOS 7.0
(kernel3.10.0). DPDK-2.1_1.1 is used.

Graph Algorithms and Datasets: We evaluate BlitzG by
implementing several graph algorithms, such as Single-Source
Shortest-Paths (SSSP) [31], PageRank (PR) [28], Community
Detection (CD) and Connected Components (CC) [12]. We
evaluate BlitzG using several real-world graph datasets that
are summarized in Table I.

Baseline Framework: We compare BlitzG with GPS,
which is an open-source Pregel implementation from Stanfords
InfoLab [7]. It is a representative vertex-centric distributed
graph-processing framework.

A. Performance Analysis

BlitzG is compared with GPS in terms of the total runtime
and throughput. Each framework, built on a 24-node cluster,
runs the PageRank algorithm with the Twitter-2010 on the
1Gbps, 10Gbps and 40Gbps Ethernets respectively. GPS is
evaluated with its default size of message buffers [7].

The experimental results shown in Figure 5(a) indicate that
the runtime of GPS is not improved on a higher-bandwidth
network due to two factors, i.e., the slow process of message
generation and the costly extra communication overheads. The
two factors prevent GPS from utilizing the network bandwidth
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TABLE I
GRAPH DATASETS SUMMARY.

DataSets V] |E| Type Avg/In/Out degree Max -/In/Out degree Largest SCC
LiveJournal [29] 48x10%  69x10° Social Network 18/14/14 20K/13.9K/20K 3.8M (79%)
Twitter-2010 [30] 41x108 1.4x10° Social Network 58/35/35 2.9M/770K/2.9M 33.4M (80.3%)
UK-2007-05 [30] 106x108  3.7x10° Web 63/35/35 975K/15K/975K 68.5M (64.7%)
= 30x100 B i of workers in each compute node. GPS runs repeatedly by
S 4-0x100 4 H = - increasing the number of workers in each compute node.

2 3.5x10% ]

“3.0x10°% ] L 1BlitzG [ GPS

o 1 2 3 4 5 6 7
Compute Node

Fig. 7. Speed of Message Generation.

[ GraphLab [ BlitzG B GraphLab [ ] BlitzG
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(a) Memory. (b) Runtime.

Fig. 8. Memory Consumption & Performance.

capacity effectively, achieving only 45%, 4.6% and 1.2% of
line-speed throughputs respectively of the 1Gbps, 10Gbps and
40Gbps Ethernet networks, as shown in Figure 5(b).

However, BlitzG obtains significant performance improve-
ment on a higher-bandwidth network. The reasons are twofold.
First, the slimmed-down vertex-centric computation model that
significantly accelerates message generation by reducing the
workload of each vertex. Second, the light-weight message-
centric communication significantly reduces the communica-
tion time of average message by eliminating the costly extra
communication overheads. The faster message generation and
the shorter communication time of average message enable
the network bandwidth capacities to be utilized at 98%, 96%
and 95% respectively when running on the 1Gbps, 10Gbps
and 40Gbps Ethernet networks. In these experiments, BlitzG
is 2.1x, 12.7x and 25.3x faster than GPS respectively when
running on the 1Gbps, 10Gbps and 40Gbps Ethernet networks.
These experimental results indicate that BlitzG significantly
outperforms GPS in terms of runtime, especially when a
higher-bandwidth network is available.

B. Impact of Core Count

We compare BlitzG with GPS in terms of the impact of
the number of cores in each compute node. Each framework
with a 24-node cluster runs 10 iterations of PageRank with
the Twitter-2010. GPS parallelizes a graph-computing job by
using multiple workers in each compute node [7]. Each worker
has a work thread, a message parsing thread and several MINA
(an Apache network application framework) threads [7], [32].
To efficiently utilize the CPU cores, MINA sets the size of
the thread pool as “number of logical cores + 17 by default.
Hence, we study GPS in terms of the impact of the number

Experimental results, as shown in Figure 6, indicate that GPS
has a sweet spot at 2 workers per compute node: adding
more workers degrades performance. The reason is contention
for the shared message buffers [33]. In each experiment, the
number of threads used by GPS in each compute node is larger
than 24, the number of logical cores in each compute node.
Most of the dedicated threads are used by the MINA. This
indicates that the communication load of GPS is heavy.

Unlike GPS, BlitzG uses multithreading in its three key
modules of each compute node: computation (work threads),
message bucket sender and message bucket accumulator. In-
stead of using a thread pool, BlitzG binds each thread to a
dedicated logical core. BlitzG runs repeatedly by increasing
the number of threads of each compute node, that is, each
compute node is assigned 3, 6, 9, 12, 15 and 18 threads
in different experiments, as shown Figure 6. Experimental
results show that the runtime of BlitzG is reduced gradually
until reaching the peak performance when 18 threads are
used by each compute node. We also conduct experiments
to identify the minimum numbers of required threads for
its three key modules (i.e., computation, message bucket
sender and message bucket accumulator) that contribute to
the peak performance of BlitzG. Experimental results indicate
that BlitzG can reach its peak performance by assigning 4
threads to message bucket sender, 6 threads to message bucket
accumulator, and 6 threads to computation. The reason is that
the message bucket sender has lighter workload.

C. Speed of Message Generation

In order to study the effectiveness of our slimmed-down
vertex-centric computation model, we compare BlitzG with
GPS in terms of message generation speed. Each framework
is run on an 8-node cluster executing the PageRank algorithm
with the Twitter-2010. In each compute node, BlitzG assigns 4
threads to the message bucket sender, 6 threads to the message
bucket accumulator, and 6 threads to computation since the
experimental results, as shown in Section VI-B, indicate that
BlitzG with this configuration is able to achieve near-line-
speed throughput of the 40Gbps network. For fair comparison,
GPS assigns 4 workers to each compute node, with each
worker consisting of one work thread, one message parser
thread and 2 MINA threads, for a total of 16 threads. Both
the size of the message buffers in GPS and the size of the
message bucket rings in BlitzG are set at a sufficiently large
value respectively to avoid idle times experienced by work
threads to wait for the communication.
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Fig. 9. Comprehensive Evaluation on Different Graphs & Graph Algorithms.

In each experiment, the message generation speed of each
compute node is calculated according to the number of total
generated messages of the compute node and the runtime of
the slowest work thread in the compute node. Experimental
results, as shown in Figure 7, indicate that the message
generation speeds of compute nodes in BlitzG range from
4.02x10% to 4.73x10® messages/second. In the PageRank
algorithm, each message consists of an 8-byte long-integer
number to carry the destination vertex name and a 4-byte
floating-point number to carry the pagerank value. In this
case, the message generation speed of each compute node
in BlitzG can provide sufficient communication workload
to fully utilize the 40Gbps network if the communication
model is also efficient enough. However, each compute node
in GPS fails to provide so fast message generation speed
as BlitzG. The message generation speeds of the compute
nodes in GPS are only 43%-51% of those of BiltzG. The
message generation speeds are sufficient for GPS due to its
slower communication model, but insufficient for BlitzG due
to its highly efficient communication model. Intuitively, GPS
can also provide fast message generation speed as BlitzG by
using more work threads. However, as mentioned in Section
I, most existing distributed graph-processing frameworks are
built on commodity compute nodes with limited core count
for low hardware costs and better scalability. Furthermore,
as verified in Section VI-B, the communication workload
of GPS is heavier than its computation workload. In this
case, increasing the number of work threads can deprive CPU
resources of communication threads, leading to worse overall
system performance.

D. Memory Consumption & Performance

MOCgraph [25] can achieve a similar performance to
GraphLab [5] with significantly smaller memory consumption-
s. GraphLab is an open-source project originated at CMU [5]
and now supported by GraphLab Inc. It is a representative
distributed shared-memory graph-processing framework. We
also compare BlitzG with GraphLab in terms of memory
consumption and performance. We use the latest version of
GraphLab 2.2, which supports distributed computation and
incorporates the features and improvements of PowerGraph
[5], [6]. Each framework with a 24-node cluster runs SSSP,
PR and CD respectively on the Twitter-2010. Figure 8 shows
the experimental results. Although the memory consumption
of GraphLab is about 4.3x-5.6x larger than that of BlitzG,
BlitzG can achieve 9.6x-11.8x performance improvement over

GraphLab. The reasons are twofold. First, like MOCgraph,
BlitzG greatly reduces the memory footprint by significantly
reducing intermediate data. Second, unlike MOCgraph, BlitzG
significantly speeds up the message generation and reduces the
communication time of average message, leading to the higher
performance.

E. Comprehensive Evaluation

We evaluate BlitzG comprehensively with different graph
algorithms on various graph datasets against GPS. Each frame-
work runs four graph algorithms on various graph datasets (as
shown in Table I). We run PageRank with 10 supersteps on
each graph dataset. Experiments are conducted on three clus-
ters with 3 compute nodes, 24 compute nodes and 32 compute
nodes respectively when using the LiveJournal, Twitter-2010
and UK-2007-05 graphs as inputs. The experimental results
are shown in Figure 9. We use the experimental results of
GPS as the baselines for an easy two-way comparison.

Experimental results indicate that the speedup of BlitzG is
higher when running on bigger graph datasets. For example,
BlitzG is 19x, 24.1x and 27.3x faster than GPS respectively
when running PR on the LiveJournal, Twitter-2010 and UK-
2007-05 graphs. BlitzG’s higher scalability on larger graph
datasets results from the fact that more compute nodes are
required by bigger graph dataset, which in turn leads to higher
speedup. Furthermore, BlitzG is demonstrated to significantly
outperform GPS across a range of different algorithms con-
sistently with similar level of improvement in performance. In
our comprehensive evaluation, BlitzG runs 17.2x-27.3x (with
an average of 20.7x) faster than GPS respectively on various
graph algorithms and graph datasets.

VII. RELATED WORK

In this section, we briefly discuss the work on distributed
graph-processing frameworks most relevant to our BlitzG.

The message buffers technique is used by most distributed
graph-processing frameworks to amortize the average over-
head of each message [4], [7]-[9]. This technique can im-
prove the communication efficiency by sending the message
batches. However, these frameworks still suffer from long
communication time of average message due to the costly
kernel, multi-copy, interrupt and fragmenting/defragmenting
overheads. BlitzG avoids these costly extra overheads by using
the light-weight message-centric communication model.

Sedge [34] aims to reduce the inter-node communication
by graph partitioning. Mizan [9] introduces dynamic load
balancing and efficient vertex migration to reduce the number
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of messages. GPS [7] introduces the dynamic repartitioning
and large adjacency list partitioning (LALP) techniques to
reduce the number of messages sent over the network. Pregel
[4] adopts a combiner to reduce the number of cross-machine
messages. These methods reduce the number of inter-node
messages, lowering the communication costs, which are also
effective in our BlitzG.

MOCgraph [25] reduces the memory footprint by signif-
icantly reducing intermediate data. This approach is very
useful for processing larger graphs or more complex graph
algorithms within the same memory capacity. Like MOCgraph,
BlitzG is memory-saving due to its light-weight message-
centric communication model. Unlike MOCgraph, our com-
munication model aims to reduce the communication time of
average message by avoiding the costly extra communication
overheads, as mentioned before.

The DPDK framework is proposed recently to provide
capacities of fast packet processing in software [19], which
has been gaining increasing attention. Using this framework,
NetVM [20] brings virtualization to the network by en-
abling high bandwidth network functions to operate at near
line speed. While BlitzG employs the DPDK technology to
improve the communication efficiency in distributed graph-
processing frameworks.

VIII. CONCLUSION

In this paper, we propose a distributed graph-processing
framework, called BlitzG. This framework fully exploits the
modern high-bandwidth networks for fast graph computation
by significantly speeding up the message generation and re-
ducing the communication time of average message. Extensive
prototype evaluation of BlitzG, driven by real-world datasets,
indicates that it can achieve nearly line-speed throughout of
a 40Gbps Ethernet, gaining 17.2x-27.3x (with an average
of 20.7x) performance improvement over state-of-the-art dis-
tributed graph-processing frameworks.
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