
This paper is included in the Proceedings of the
2023 USENIX Annual Technical Conference.

July 10–12, 2023 • Boston, MA, USA
978-1-939133-35-9

Open access to the Proceedings of the
2023 USENIX Annual Technical Conference

is sponsored by

Light-Dedup: A Light-weight Inline Deduplication
Framework for Non-Volatile Memory File Systems

Jiansheng Qiu, Yanqi Pan, Wen Xia, Xiaojia Huang, Wenjun Wu, Xiangyu Zou, and
Shiyi Li, Harbin Institute of Technology, Shenzhen; Yu Hua,

Huazhong University of Science and Technology
https://www.usenix.org/conference/atc23/presentation/qiu-jiansheng

Light-Dedup: A Light-weight Inline Deduplication Framework for
Non-Volatile Memory File Systems

Jiansheng Qiu † ∗ §, Yanqi Pan † ∗, Wen Xia†B, Xiaojia Huang†, Wenjun Wu†, Xiangyu Zou†, Shiyi Li†, Yu Hua‡

†Harbin Institute of Technology, Shenzhen ‡Huazhong University of Science and Technology
B Corresponding Author: Wen Xia (xiawen@hit.edu.cn)

Abstract
Emerging NVM is promising to become the next-generation
storage media. However, its high cost hinders its develop-
ment. Recent deduplication researches in NVM file systems
demonstrate that NVM’s cost can be reduced by eliminat-
ing redundant data blocks, but their design lacks complete
insights into NVM’s I/O mechanisms.

We propose Light-Dedup, a light-weight inline dedupli-
cation framework for NVM file systems that performs fast
block-level deduplication while taking NVM’s I/O mecha-
nisms into consideration. Specifically, Light-Dedup proposes
Light-Redundant-Block-Identifier (LRBI), which combines
non-cryptographic hash with a speculative-prefetch-based
byte-by-byte content-comparison approach. LRBI leverages
the memory interface of NVM to enable asynchronous reads
by speculatively prefetching in-NVM data blocks into the
CPU/NVM buffers. Thus, NVM’s read latency seen by
content-comparison is markedly reduced due to buffer hits.
Moreover, Light-Dedup adopts an in-NVM Light-Meta-Table
(LMT) to store deduplication metadata and collaborate with
LRBI. LMT is organized in the region granularity, which sig-
nificantly reduces metadata I/O amplification and improves
deduplication performance.

Experimental results suggest Light-Dedup achieves 1.01–
8.98× I/O throughput over the state-of-the-art NVM dedupli-
cation file systems. Here, the speculative prefetch technique
used in LRBI improves Light-Dedup by 0.3–118%. In ad-
dition, the region-based layout of LMT reduces metadata
read/write amplification from 19.35×/9.86× to 6.10×/3.43×
in our hand-crafted aging workload.

1 Introduction
Recently, Non-Volatile Memory (NVM) has been becoming
increasingly popular. Its byte-addressability, persistence, and
low latency enable it to be attached to the memory bus, sitting
alongside the DRAM [24, 44, 52, 67]. Optane DC Persistent
Memory Module (DCPMM) is the latest commercially avail-
able NVM. However, it is much more expensive than Hard
Disk Drive (HDD) and Solid State Drive (SSD). Therefore,
reducing the price of NVM is paramount for its future usage.

Deduplication, a system-level data compression approach,
can enlarge the logical space and reduce the amortized cost

∗Jiansheng Qiu and Yanqi Pan are co-first authors of the paper.
§Now working at Tsinghua University.

of storage devices [16, 56, 62, 68]. Deduplication is widely
used in file systems [72], backup systems [18–20, 39, 63],
cloud computing [37, 57], etc. It usually calculates the finger-
prints of data blocks and then identifies duplicates according
to their fingerprints. For the redundant block, deduplication
increments the reference count in the corresponding metadata
to maintain data integrity.

Traditional disk-based deduplication approaches, such as
using the cryptographic hash (e.g., SHA-256 and MD-5) to
identify redundant data blocks, do not fit well with NVM since
fast NVM has shifted the performance bottleneck from I/O to
CPU. Prior works on deduplication for NVM [7, 28, 58, 75]
propose several ways to address the issues. First, some works
use offline deduplication to reduce the overhead of dedupli-
cation on the critical path, such as DeNOVA [28]. However,
such background deduplication can neither enhance the file
systems’ write performance nor improve NVM’s endurance.
Second, many works use the non-cryptographic hash (e.g.,
CRC32 and xxHash [11]) to accelerate the identification of
duplicate blocks. For example, NV-Dedup [58] leverages non-
cryptographic hash to avoid calculating cryptographic hashes
for most unique blocks, while DeWrite [75] shows that comb-
ing the non-cryptographic hash with byte-by-byte comparison
is efficient for deduplication at cache line granularity.

Despite these efforts, existing works still fail to fully ex-
ploit the performance of NVM during deduplication due to a
lack of comprehensive insights into NVM’s I/O mechanisms.
First, NVM’s read/write asymmetry encourages researchers
to combine non-cryptographic hash with byte-by-byte con-
tent-comparison to quickly identify the duplicate data [67,75].
Thus the overheads of cryptographic hash calculation can be
eliminated. Second, we observe other two NVM I/O features
that hinder NVM deduplication performance: (1) Long me-
dia read latency. Despite its read/write asymmetry, NVM’s
read latency is 2–3× higher than the write since the write
buffer inside NVM hides the long media write latency [67].
Therefore, there is still a large room left for the acceleration
of content-comparison by hiding the read latency. (2) Coarse
media access granularity. The mismatch between the size of
deduplication metadata (commonly 16–64 bytes for each data
block) and the coarse media access granularity in NVM (e.g.,
256 bytes XPLine of DCPMM) can lead to severe metadata
I/O amplification if the access to the metadata lacks locality,

USENIX Association 2023 USENIX Annual Technical Conference 101

which degrades not only deduplication performance but also
NVM’s endurance, especially when the system is aged.

This paper presents Light-Dedup, a novel light-weight in-
line deduplication framework for NVM file systems. Light-
Dedup is designed with two specific goals in mind: (1) Maxi-
mizing the deduplication performance by considering NVM’s
memory interface, read/write asymmetry, and access granu-
larity, while adding negligible overhead to the critical path.
(2) Retaining low deduplication metadata I/O amplification
even if the file system is severely aged (i.e., many holes).

To achieve the first goal, Light-Dedup proposes Light-
Redundant-Block-Identifier (LRBI) to quickly identify the
duplicate blocks. Unlike the prior works that use both non-
cryptographic and cryptographic hash [58] or that straight-
forwardly combine non-cryptographic hash with byte-by-
byte content-comparison [75], LRBI considers both NVM’s
read/write asymmetry and long media read latency in redun-
dant block identification. Specifically, LRBI uses xxHash,
one of the fastest non-cryptographic hashes [11], to quickly
identify most non-duplicate blocks. For those blocks with the
same fingerprint, LRBI leverages NVM’s memory interface
to enable asynchronous NVM reads and proposes specula-
tive prefetch to minimize the read latency seen by content-
comparison. In particular, speculative prefetch uses In-Block
and Cross-Block Prefetch to exploit the parallelism between
NVM read and CPU computation.

To achieve the second goal, Light-Dedup organizes its in-
NVM deduplication metadata table, Light-Meta-Table (LMT),
as a region-based linked list. Each region contains multi-
ple continuous metadata entries. Each entry stores the criti-
cal information for both basic deduplication and speculative
prefetch used in LRBI. The allocation of metadata entries
is done first by allocating a region and then by allocating
entries in that region almost sequentially, which significantly
reduces the deduplication metadata I/O amplification caused
by NVM’s coarse access granularity, especially in an aged
file system. In addition, LMT trades 1× extra deduplication
metadata space usage for zero garbage collection overheads,
which retains the stabilization of deduplication performance.

In summary, this paper makes the following contributions:
• We perform an in-depth analysis of how deduplication

can be affected by several NVM’s I/O mechanisms and
introduce how to maximize NVM deduplication perfor-
mance with full consideration of them.

• We propose an inline deduplication framework for
NVM file systems, Light-Dedup, with two key tech-
niques: (1) LRBI combines non-cryptographic hash with
speculative-prefetch-based content-comparison to fully
leverage NVM’s I/O asymmetry while hiding its media
read latency by enabling asynchronous NVM reads. (2)
The region-based layout is adopted in LMT to manage
deduplication metadata with a good locality and retain
low metadata I/O amplification.

• We implement Light-Dedup in Linux kernel 5.1.0 based

on NOVA [66], one state-of-the-art NVM file system.
The code is available at https://github.com/Light
-Dedup/Light-Dedup. Furthermore, we make a com-
prehensive evaluation of various synthetic and real-world
workloads. The results show that Light-Dedup adds neg-
ligible overhead while significantly improving the file
system’s write performance under a high duplication
ratio.

2 Background and Related Work
2.1 NVM and NVM File Systems
With its byte-addressability, low latency, persistence, and low
power consumption [3, 21, 26, 35, 40, 41, 46], NVM becomes
a promising candidate for next-generation storage media. In
this work, we focus on high-density storage-type NVM with
the memory-like interface [29] that serves as persistent stor-
age media. For brevity, we denote such storage-type NVM
as NVM. According to the latest research on the commercial
DCPMM [64, 67] and our investigation on existing NVM
devices [6, 34, 50, 51, 65, 71], this paper concludes the follow-
ing five common I/O features of NVM that potentially have
impacts on NVM deduplication performance:

• Asymmetry in Read/Write Bandwith. The read bandwidth
of NVM is up to 3× than its write [67]. The feature
is common for persistent storage media such as Phase
Change Memory (PCM) [50, 71], STT-RAM [6, 34],
memristor [65], 3D-XPoint [67], NAND flash [1], etc.

• I/O with Buffers. For writes, NVM leverages the buffer
to write asynchronously to hide long media write la-
tency. While for uncached reads, NVM fetches data syn-
chronously from the media. The data will be cached
in the internal read buffer for future reads [51, 64, 67].
Figure 1 shows the I/O mechanisms of NVM.

• Coarse Access Granularity. Coarse media access granu-
larity is common for storage-type NVM. For example,
the row buffer size of a PCM is preferred to be larger
than 128 bytes [30]. Coarse access granularity (and the
above I/O buffers) is beneficial for improving storage
bandwidth and bridging the performance gap between
storage and CPU. Since NVM is denser but slower com-
pared to DRAM, it is reasonable that NVM has a larger
access granularity than a cache line.

• Long Media Read Latency. The underlying non-volatile
media generally introduces relatively longer media la-
tency than DRAM [29,30,43,54]. The synchronous data
fetch mechanism fails to hide such latency [64].

• Memory Interface. With the memory interface, NVM can
be accessed by CPU store/load. This feature makes asyn-
chronous CPU prefetch possible, which can be leveraged
to address NVM’s long media read latency.

To well exploit the physical characteristics of NVM de-
vices, several NVM file systems [8, 12, 17, 70] are proposed.
Among these file systems, NOVA [66] is the state-of-the-art
one, which aims to exploit the potential of DRAM and NVM

102 2023 USENIX Annual Technical Conference USENIX Association

https://github.com/Light-Dedup/Light-Dedup
https://github.com/Light-Dedup/Light-Dedup

calc
read

calc
read

calc
read

time

Read Buf Write Buf

3D-XPoint

NVM
CPU loadreturn

line

(a) Synchronous reads

Read Buf Write Buf

3D-XPoint

NVM
CPU store return

async write

calc calc calc
write write write write

calc
time

(b) Asynchronous writes
Figure 1: NVM I/O buffering mechanisms.

hybrid memory systems while providing strong consistency
guarantees. Specifically, NOVA allocates a separate log for
each inode (i.e., file), appends single inode operations as en-
tries of the inode’s log, and atomically updates the log’s tail
to commit the operations. For operations involving multiple
inodes, NOVA records the log tail’s pointers of the affected in-
odes in the journal to update them atomically. Further, NOVA
accelerates search operations by maintaining radix trees of
directories and files in DRAM.

2.2 Inline Deduplication Techniques for NVM
File system deduplication [62] is a block-level redundancy
elimination technique and has been needed in many applica-
tions [18–20,59,63,72]. This paper focuses on inline dedupli-
cation since the offline approach neither enhances file systems’
write performance nor improves NVM’s endurance. Typically,
an inline deduplication framework consists of several tech-
niques, including redundancy identification, deduplication
metadata management, indexing, etc.

Redundant Block Identification Techniques. Traditional
disk-based deduplication approaches, such as using the cryp-
tographic hash to determine the duplicates [16,56,68], do not
fit well with fast NVM devices due to their heavy software
overhead. Recent works [7,58,75] leverage non-cryptographic
hash functions to reduce the computation cost of fingerprints.
However, non-cryptographic hash suffers from hash collision
(different blocks have the same hash). To address the issue,
existing approaches either apply cryptographic hash (e.g.,
NV-Dedup [58]) or straightforwardly perform byte-by-byte
content-comparison (e.g., DeWrite [75]) to verify if the blocks
are duplicate when their non-cryptographic hashes equal1.
However, (1) cryptographic hash calculation is a bottleneck
when there are many duplicates; (2) the long latency of un-
cached reads hinders the performance of content-comparison,
especially when the concurrency level is low and read/write
asymmetry is not obvious. In contrast, our approach (i.e.,
LRBI) combines non-cryptographic hash with a speculative-
prefetch-based content-comparison technique to exploit I/O
asymmetry and hide long media read latency.

In-Storage Deduplication Metadata Management. To
manage redundant blocks, deduplication approaches must
maintain in-storage structures to store the basic information

1LO-Dedup does not address the hash collision of the non-cryptographic hash
used in their paper. Thus, we omit its redundancy identification technique.

about the deduplicated blocks (e.g., the mappings between fin-
gerprints and physical blocks, reference count, etc.). Besides,
some additional bits are required for the collaboration with
redundancy identification. Existing NVM deduplication ap-
proaches (e.g., NV-Dedup [58], LO-Dedup [7], DeWrite [75])
often reserve a fixed in-NVM table to store the deduplication
metadata and to allocate/free them by the free list. Addi-
tionally, NV-Dedup maintains both non-cryptographic and
cryptographic hash in the table; LO-Dedup organizes the
deduplication metadata as an ordered linked list structure to
accelerate the continuous matching. However, such free-list-
based management is not NVM-friendly since its allocation
strategy can introduce significant fragmentation when the sys-
tem is aged, causing a severe metadata I/O amplification. In
contrast, our proposed LMT manages the deduplication meta-
data as a region-based linked list, provides course-grained
metadata management, and significantly reduces metadata
I/O amplification under aged file systems.

In-NVM Deduplication Metadata Index Techniques.
Searching for in-NVM deduplication metadata based on the
calculated fingerprint is a critical step in deduplication. To
prevent frequent NVM accesses, existing works usually build
an in-DRAM index, such as static hash tables or red-black
tree, to accelerate the search [7, 58]. We use a dynamic hash
table (i.e., rhashtable [13]) for its resizability and efficiency.

3 Observations and Motivations
3.1 Data Redundancy & NVM Deduplication
Data redundancy is a common phenomenon in storage sys-
tems with the exponential growth of data. Prior works [19,
20, 63, 72] have observed a large number of redundancies in
modern primary storage systems. For example, there are 95%
and 47% duplicates (in 4 KiB block granularity) in two real-
world traces collected by FIU: Mails and WebVMs [27, 33].
Thus, the deduplication approach is a promising solution to
enlarge logical storage space and reduce storage costs. As
the next-generation storage media, deduplication for expen-
sive NVM is profitable and urgent. Recently, many research
efforts have designed deduplication schemes specifically for
NVM file systems [7, 58]. However, they fail to fully exploit
the characteristics of NVM’s I/O mechanisms and leave sub-
stantial room for improvement from the performance point
of view. This paper aims to develop a more efficient inline
deduplication framework scheme for NVM file systems that
can fully exploit the I/O characteristics of NVM devices.

3.2 I/O Asymmetry and Read Latency in NVM
Redundant Block Identification

The efficiency of redundant block identification is essential
to NVM deduplication performance. Traditional disk-based
deduplication approaches use the cryptographic hash to iden-
tify the duplicate blocks [16, 32, 56, 68]. However, it does not
suit NVM deduplication well due to its computation over-
head, which wastes much CPU computation and thus starves

USENIX Association 2023 USENIX Annual Technical Conference 103

Table 1: The breakdown deduplication time. Light denotes
Light-Dedup, and LD-w/o-P denotes a simple deduplica-
tion file system that incorporates non-cryptographic hash
with content-comparison into the write path and deduplicates
4 KiB blocks. With the introduced speculative prefetch tech-
nique (i.e., Light), content-comparison time is dropped by
62.2%.

System Calc. Lat (ns) I/O Lat (ns) Bandwidth
(MiB/s)fp others write cmp

NOVA 0.0 84.7 2275.6 0.0 1401
LD-w/o-P (1st) 309.9 1072.5 585.3 0.0 1612
LD-w/o-P (2nd) 308.0 571.6 0.0 3263.0 870

Light (1st) 310.0 1131.3 559.8 0.0 1592
Light (2nd) 0.0 343.3 0.0 1234.8 1914

NVM. We observe the problem in NV-Dedup [58]. In a sim-
ple sequential write 4 GiB workload, the write bandwidth of
NV-Dedup drops by 52.5% with the duplication ratio increas-
ing from 0% to 75%. The root cause is that cryptographic
hash calculation (i.e., MD-5) dominates up to 64.9% of the
whole write time since NV-Dedup relies on the cryptographic
hash to handle its non-cryptographic hash collision.

To address the above heavy computation, DeWrite [75]
uses non-cryptographic hash and byte-by-byte comparison
in the combined manner [10]. The method is well aligned
with the characteristic of NVM since it prevents heavy
CPU computation and leverages the large read/write asym-
metry to trade slow duplicate writes for faster reads (i.e.,
content-comparison). However, recent researches about NVM
reads [64, 67] show that they can still be a bottleneck since
uncached reads have to fetch data from media synchronously,
which introduces long media read latency and thus negatively
affects the content-comparison performance.

We examine how exactly NVM I/O affects the deduplica-
tion performance. Table 1 shows the breakdown latency of
orderly writing two 4 GiB files with identical content (2 MiB
per I/O) to NOVA and LD-w/o-P2 under a single thread. Note
that the first write conducts no duplicate blocks, but the sec-
ond write causes 100% duplicates and results in reads (caused
by content-comparison). We observe several interesting phe-
nomena from Table 1. First, LD-w/o-P has a surprisingly
low write time (585.3ms) compared to NOVA (2275.6ms)
because asynchronous write enables the parallelism between
CPU computation and write I/O. Thus, computation hides
part of NVM writes latency (as shown in Figure 1b). Second,
during the second writes, the write bandwidth of LD-w/o-P
drops by 46% compared to the first. We find that the content-
comparison time arises to 3263.0ns, which dominates 78.8%
deduplication latency. The above observations suggest that
non-cryptographic hash-based redundant block identification
adds negligible overheads to the normal non-deduplication

2We build LD-w/o-P based on our proposed Light-Dedup by removing the
speculative prefetch technique. This means that the deduplication metadata
management and indexing are the same as in Light-Dedup, but they have
negligible performance impacts on the experiments of this subsection.

Table 2: The average NVM extra reads/writes of deduplication
metadata for writing each block.

Approaches First Write Second Write
Read (B) Write (B) Read (B) Write (B)

ideal ≈40 40 40 ≈40
All-in-NVM 726.12 293.17 528.65 259.05
Entry-based 126.94 79.56 774.13 394.54

Ours 116.28 75.75 244.19 137.17

write path (i.e., the data blocks to be written are all unique).
However, deduplication performance is significantly limited
by the long read latency and is far from ideal. We believe
there are two reasons: (1) NVM’s read/write asymmetry un-
der low thread count is not large enough [67]. (2) Current
hardware prefetcher of intel 64 bits architecture fails to rem-
edy the drawbacks of NVM’s long media read latency since
it is designed for DRAM and only attempts to prefetch two
cache lines ahead of the prefetch stream [23].

In summary, NVM’s long read latency hinders content-
comparison performance during NVM deduplication. Con-
sidering NVM’s asynchronous writes and the limitations of
hardware prefetcher, we are motivated to think: Can we man-
ually achieve asynchronous reads to hide media read latency?
Memory characteristics of NVM inspire us to obtain our
first motivation: We can leverage memory prefetch instruc-
tions to enable asynchronous NVM reads and thus accelerate
content-comparsion. However, applying prefetch to NVM
deduplication is not straightforward. There are two technical
challenges: (1) The limited number of concurrent prefetch in-
structions that a CPU core can handle. (2) How to incorporate
the prefetch mechanism into deduplication logic.

3.3 Metadata I/O Amplification in NVM Dedu-
plication Metadata Management

During NVM deduplication, deduplication metadata can be
frequently accessed and updated, causing a large amount of
small NVM accesses. Metadata I/O amplification will get
larger if these small NVM accesses exhibit a random pattern
due to NVM’s coarse access granularity. However, existing
NVM deduplication file systems pay little attention to the
issue. In this subsection, we investigate two widely used NVM
deduplication metadata management approaches.

All-in-NVM Management. DeNOVA [28] takes an All-in-
NVM design and constructs an in-NVM hash table to store
and index the deduplication metadata to reduce DRAM con-
sumption. However, hash tables typically exhibit random
access patterns [36, 45, 64, 73, 74], which leads to severe
read/write amplification. To verify this, we implement an in-
line deduplication system with an All-in-NVM design based
on Light-Dedup: Its deduplication metadata are organized as
a static hash table in NVM. We write the same 64 GiB file
twice and measure the extra NVM reads/writes of deduplica-
tion metadata using ipmctl [22]. The experimental results are
shown in Table 2. Ideally, each block write results in about
40 bytes NVM read/write (i.e., 32 bytes for deduplication

104 2023 USENIX Annual Technical Conference USENIX Association

metadata entry, 8 bytes for the mapping from block number to
metadata entry, see §4.2). In this case, read and write amplifi-
cation are 528.65/40 ≈ 13.2× and 293.17/40 ≈ 7.3×. Note
that the reason why read amplification is nearly 2× of theo-
retical upper bound (8×) may be due to the prefetch mech-
anism and buffering strategy of internal Optane DCPMM
hardware [64].

NVM-DRAM Hybrid Entry-Based Management. NV-
Dedup [58] and LO-Dedup [7] store the deduplication meta-
data in NVM and maintain the in-DRAM index to locate them
efficiently, which alleviates the problem of all-in-NVM design.
Their deduplication metadata is managed at the granularity
of cache lines, aligned in a manner favored by CPUs, and
allocated/freed through a free list. We refer to this approach
as entry-based. It is acceptable for a fresh new file system,
but when the file system is aged, the physical location of al-
located free entries can be random, which results in random
access to NVM and causes severe read/write amplification.
To show the problem, we make an extensive evaluation in
§5.5 and present part of the results in the Entry-based row
in Table 2, in which the first write is performed in the fresh
new system and the second write is in the aged system. The
results suggest that such entry-based metadata management
can lead to significant read/write amplification in the aged
system, about 774.13/40 ≈ 19.35× and 394.54/40 ≈ 9.86×,
respectively.

In summary, the severe metadata I/O amplification ob-
served in Table 2 wears out NVMs and leads to performance
degradation under aging file systems. To alleviate the prob-
lem, we focus on redesigning the hybrid deduplication meta-
data management strategy. Inspired by mimalloc [31], which
shards its free list in page granularity, we obtain our second
motivation: managing deduplication metadata in the region
(i.e., 4 KiB block) granularity to maintain access locality,
which elegantly reduces metadata I/O amplification. How-
ever, the issue of how to reclaim stale entries (i.e., garbage
collection) with minimal overhead and design entry fields that
collaborate with LRBI remains unresolved.

4 Design and Implementation
4.1 System Overview
Based on the observations of NVM’s internal I/O mechanisms,
we propose Light-Dedup, a light-weight inline deduplication
framework for NVM file systems, as shown in Figure 2. It
includes two key techniques:

• Light-Redundant-Block-Identifier (LRBI). LRBI is
proposed to quickly identify duplicate blocks by exploit-
ing NVM’s large read/write asymmetry and hiding long
media read latency. It combines non-cryptographic hash
with a speculative-prefetch-based byte-by-byte content-
comparison technique. Specifically, speculative prefetch
leverages NVM’s memory interface and uses In-Block
and Cross-Block Prefetch techniques to asynchronously
load speculated data into CPU/NVM buffers, which ex-

*Async
Prefetch

(c) Search

(b) fingerprint

ent

Applications

VFS and File System Write Interface

Byte-by-byte
Content Comparator

Non-cryptographic
Fingerprinting

LRBI L1/L2/L3 Cache

C
P
U

In-DRAM Index
(rhashtable)

D
R
A
M

LMT dedup metadata

N
V
M

Data
Block

FS
Metadata

Data
Block …

File System (FS) Metadata/Data Blocks

ent

Speculative
Prefetch

Cross-Blk In-Blk

(d) Data from NVM

*S
pe

cu
la

tio
n

(e) ent.ref += 1 (f) update fs metadata

(a) Input data block (d) Input data block

Figure 2: Light-Dedup overview.

ploits the parallelism of NVM I/O and CPU computation
and thus markedly hides read latency.

• Light-Meta-Table (LMT). LMT is an in-NVM table
responsible for (1) storing basic deduplication metadata,
such as the mapping from fingerprints to physical blocks;
(2) maintaining speculation information, such as the hint
of where and whether to prefetch the to-be-compared
block. LMT adopts region-based layout to retain the
locality of deduplication metadata. A region is a 4 KiB
block, and regions are linked by 8 bytes pointers. Each
dedup metadata is allocated in the region almost sequen-
tially, hence reducing metadata I/O amplification. In ad-
dition, to prevent GC overheads brought by sequentiality,
LMT trades 1× more space for zero GC overheads.

In-DRAM Index. Light-Dedup adapts a rhashtable in
DRAM to locate in-NVM deduplication metadata entry,
whose key is the hash value (i.e., fingerprint) and value is
the in-NVM position of the corresponding entry. We use
rhashtable since it is a mature, well-tested, and efficient dy-
namic hash table implementation in the mainline Linux ker-
nel [13], which suits for point-query (i.e., searching for a spe-
cific deduplication metadata entry by the given fingerprint).
Meanwhile, rhashtable leverages efficient Read-Copy-Update
(RCU) Lock [38] to handle the concurrent accesses to LMT.
Note that this paper does not aim to redesign a specific index
structure since in-DRAM hash table indexing is commonly ef-
ficient (e.g., usually achieves constant access time), and there
have been many works dedicated on this [36, 45, 73, 74].

Put NVM I/O Features & Light-Dedup Together. We
summarize Light-Dedup’s insights into the presented NVM
I/O features. First, read/write asymmetry can be leveraged
to improve NVM deduplication performance by combing
non-cryptographic hash with content-comparison, trading the
slow duplicate writes for the faster reads (§4.2). Second, this
paper observes that long media read latency hinders content-
comparison performance dramatically. To address the prob-
lem, we propose LRBI, which follows the non-cryptographic
hash-based infrastructure but leverages NVM’s memory inter-

USENIX Association 2023 USENIX Annual Technical Conference 105

face and I/O buffering to enable asynchronous reads, and thus
markedly accelerates content-comparison (§4.3). Third, Light-
Dedup addresses the metadata I/O amplification brought by
NVM’s coarse access granularity by organizing LMT as a
region-based linked list (§4.4).

4.2 Basic Deduplication Logic
This subsection will introduce the basic deduplication flows
of Light-Dedup (without speculative prefetch) to show how
non-cryptographic hash and byte-by-byte comparison can be
integrated into NVM file systems. Notably, we refer to this
version as LD-w/o-P, as mentioned in §3.2.

Write Logic. Assume that the file system is writing a 4 KiB
duplicate block. As shown in Figure 2, during the write, (1)
Light-Dedup first calculates the non-cryptographic hash as
the fingerprint of the input block (see steps (a), (b)), (2) and
then efficiently locates the corresponding deduplication meta-
data entry (refer to as entry for brevity) in LMT by searching
for the given fingerprint in rhashtable (see step (c)). (3) Once
the entry is found (i.e., hash value matches), Light-Dedup
compares the content of the input block and the block corre-
sponding to the found entry byte-by-byte (see step (d)). (4)
Finally, assuming comparison determines that the input block
is duplicate, Light-Dedup increments the reference count of
the duplicate block and records its duplicate block number in
the file system metadata (see steps (e), (f)).

There are two exceptional cases to be handled. Given the
fingerprint of the input block, (1) if no entry with the same
fingerprint is found in LMT, suggesting that the input block
is unique, then it will be written normally by the file system.
After that, both its fingerprint and the block number are stored
in a newly allocated entry with the reference count set to one.
(2) If an entry is found, but the content of the stored block and
the input one are different, then the input block becomes a
non-dedup block, i.e., Light-Dedup does not allocate an entry
for it, which will not affect the correctness of the deduplication
system since only the file system has access to that block.

Deletion Logic. Light-Dedup maintains another in-NVM
table that maps the block number to the offset of the cor-
responding deduplication metadata entry (i.e., similar to an
inverse index). Note that the mapping maintenance introduces
another 8 Byte metadata write in the write path (this is why
the ideal NVM access is 40 bytes instead of 32 bytes). To
delete a block, Light-Dedup first locates its deduplication
metadata entry with the aforementioned table. If the entry is
not found in the table, suggesting that the block number has
not been inserted into the metadata table, then Light-Dedup
frees the block directly. Otherwise, Light-Dedup decreases
the reference count of the block (recorded in the entry) by one.
If the reference count becomes zero, then the block can be
safely freed. Deleting blocks in Light-Dedup does not cause
the garbage collection of deduplication metadata due to the
tradeoff in LMT (see §4.4).

Read Logic. The read path remains the same as the non-

Data in 3D-XPoint

Read Buffer NVM

CPUCPU Caches

256B XPLine

prefetcht0

Auto-load by NVM

(a) 1st: Prefetching XPLines.
Data in 3D-XPoint

CPUCPU Caches

prefetcht0

256B XPLine

(b) 2nd: Prefetching read buffer.
Figure 3: In-Block Prefetch (IBP) mechanisms. Each square
in the figure indicates one 64 bytes cache line.

dedup file systems. Note that deduplication fragments files’
data, which may lead to random reads. However, Light-Dedup
deduplicates 4 KiB blocks and large random access to NVM
does not cause significant performance degradation [64].

4.3 LRBI: Dedup with Speculative Prefetch
In this subsection, we present the step-by-step design of specu-
lative prefetch used in LRBI, which aims to reduce the read la-
tency seen by content-comparison (§3.2). Its key design prin-
ciple is to enable asynchronous NVM reads and to markedly
improve the parallelism between NVM I/O and CPU compu-
tation. It consists of two prefetch strategies: In-Block Prefetch
and Cross-Block Prefetch.

4.3.1 In-Block Prefetch (IBP)
IBP speculates that the content-comparison always tends to
compare all bytes and leverages memory prefetch instructions,
e.g., prefetcht0 assembly instruction in x86 [23], to en-
hance the parallelism of reading bytes in the same block.

Prefetch-Cmp-64 (P64). The most straightforward prefetch
strategy is issuing 64 prefetch instructions to load 64 cache
lines of the block into CPU caches (i.e., 64×64= 4096 bytes)
before comparing it with the input block (if they have the same
fingerprint value). However, the maximum number of concur-
rent prefetch instructions a CPU core can handle is limited. In
our machine, that number is in the open range (8,16). There-
fore, many prefetch instructions in P64 are executed in a serial
manner, and thus the parallelism is limited.

In-Block Prefetch (IBP). We leverage the large access
granularity of NVM (e.g., 256 bytes XPLine) to address the
problem of P64. As Figure 3 shows, first, we issue 16 prefetch
instructions with stride 256 bytes to touch the first cache line
of XPLine, and the whole block is loaded automatically into
CPU caches or NVM read buffer [64], where most of the
NVM read is in parallel. Second, we issue prefetch instruc-
tions with stride 64 bytes to bring the in-read-buffer data into
CPU caches. Note that In-Block Prefetch is a general optimiza-
tion technique that can be applied to some other block-based
NVM I/O scenarios, but it is beyond the scope of this paper.

4.3.2 Cross-Block Prefetch (CBP)
Unlike IBP, Cross-Block Prefetch exploits the parallelism
among CPU tasks (i.e., fingerprint calculations and content-
comparison, etc.) and NVM I/O tasks (i.e., reading a to-be-
compared data block), and thus hides NVM’s media read

106 2023 USENIX Annual Technical Conference USENIX Association

time

Prefetch the Current
To-be-compared Data Block

Prefetch the Next
To-be-compared Data Block

(b) Prefetch-Current(a) In-Block Prefetch (c) Speculation
time time time

Skip FP and Indexing by Speculating
the To -be-compared Data Block

Prefetch In -Block Bytes

f

rd
c

1 2
f

rd
c

1 2
f

rd
c

1 2
f

rd
c

1 2

Fingerprinting
and indexing

NVM Read of
a Data BlockCPU Tasks: rdf Content -Comparison, etc .c 1st Step of Prefetch 2nd Step Prefetch1 2

f

rd
c

1 2
f

rd
c

1 2
f

rd
c

1 2
f

rd
c

1 2
f

rd
c

1 2

rd
c

1 2
skip

rd
c

1 2
skip

rd
c

1 2
skip f

rd
c

1 2

rd
1 2
skip

rd
1 2
skip

rd
1 2
skip

rd
1 2
skip

c c c

(d) PN/CBP

NVM I/O Tasks:

Figure 4: Simplified time sequence of Light-Dedup using different prefetch mechanisms: IBP improves parallelism of reading an
NVM block while PC/SP/PN/CBP further improves the parallelism between CPU and NVM I/O tasks. Here, task c includes
content-comparison, updating dedup/FS metadata, etc. Note that the time of running task 2 depends on the amount of data
loaded into NVM’s read buffer. Thus, task 2 can be faster (shorter) after running tasks f and c in PC and PN/CBP, respectively.

latency. This subsection introduces the technique with step-
by-step explorations, as shown in Figures 4(b)–(d).

Determining Where and Whether to Prefetch the To-
be-compared Data Block. This is critical for Light-Dedup
to support Cross-Block Prefetch. First, we incorporate a “hint”
field into the deduplication metadata entry. The hint maintains
both the location of the subsequent speculated block’s entry
and the trust degree (range: [0,7]) that indicates if the specula-
tion is correct. Second, to maintain the hint, we keep track of
the entry of the last written block and check the correspond-
ing hint after the deduplication of the current input block
finishes: trust degree is decreased by 2 if the hint is proven to
be wrong, and increased by 1 if correct. The hint is trusted and
followed only if the trust degree reaches the trust threshold
(i.e., 4 for now). Third, since prefetch consumes NVM read
bandwidth, we are conservative about its usage. Thus, we
further introduce per-CPU stream trust degree to indicate the
locality of the workload, which is increased/decreased along
with per-entry trust degrees. Prefetch is enabled only if the
stream trust degree of the current CPU reaches its maximum
value (i.e., 7). Removing trust degree reduces the hit rate of
CBP from 98.6% to 60.0% during WebVMs batch replay (the
details of the workload are presented in §5.3), which shows
the effectiveness of trust degrees.

Prefetch-Current (PC). As Figure 4(b) shows, the simplest
idea is to prefetch the stored block that is possible to be
compared with the current input block (based on the stored
hints) before any deduplication calculations, and then follow
the basic deduplication logic to deduplicate the input block.
In this way, fingerprint calculations and index looking up (f
in Figure 4) are executed parallelly with NVM reads, and then
part of the NVM read latency can be hidden.

Speculation (SP). Furthermore, as Figure 4(c) shows, we
leverage hints to skip the fingerprint calculations and indexing
by directly locating the deduplication metadata entry (see
*Speculation arrow in Figure 2). If the content-comparison
demonstrates that the compared two blocks are the same, then
the duplicate block is found; otherwise, we fall back to the
basic deduplication logic. SP outperforms PC since SP can
reduce (skip) many deduplication calculations.

Prefetch-Next (PN). More aggressively, as Figure 4(d)
shows, to maximize parallelism, we utilize the stored specula-
tion hints to suggest the block that is likely to be compared
with the subsequent input block, and then we prefetch that
block after loading the current to-be-compared block into
CPU caches (2 in Figure 4). Therefore, the NVM read of the
next to-be-compared can be parallel with the following CPU
tasks (e.g., content-comparison). Now, NVM read is almost
fully parallel with the CPU computations.

Cross-Block Prefetch (CBP). From the above explorations,
we take PN as the fundamental of cross-block prefetch. How-
ever, we find that PN significantly degrades the deduplication
performance at a high concurrency level (as shown in Fig-
ure 11 later in §5.4) since the large amount of extra prefetch
I/O exacerbates the contention of NVM read buffer. Thus, we
further introduce Transition technique to mitigate the issue by
dynamically enabling/disabling prefetch according to concur-
rency level. Specifically, we maintain the number of threads
that access NVM concurrently with an atomic variable and do
not prefetch the next block if the number of threads reaches
the specified threshold. Note that the threshold is a kernel
module parameter. It is set to 6 by default (and we use this de-
fault value in our tests) because according to Figure 11, PN’s
throughput drops below SP’s throughput when the number
of threads ≥ 6 due to buffer contentions. Now, we obtain the
final version of CBP (i.e., PN+Transition).

4.3.3 Speculative Prefetch: Put IBP and CBP Together

Generally, speculative prefetch enables the asynchronous
NVM reads for content-comparison at both byte and block
levels. Among them, CBP is frequently triggered when the
workload exhibits good duplication continuousness (i.e., most
hints are trusted according to trust degrees). Otherwise, Light-
Dedup falls back to IBP when the duplication continuous-
ness is poor (since most hints are not trusted). Therefore, the
functionalities of CBP and IBP are complementary and are
combined together to deliver fast content-comparison perfor-
mance in both cases. The performance evaluation shows that
speculative prefetch can achieve up to 118% performance
improvement. More details can be obtained in §5.4.

USENIX Association 2023 USENIX Annual Technical Conference 107

sequentially updatessequentiallyalloc

Metadata Entry
hint bnr ref fp

C

…Data Blocks in Filesystem

N
V
M

File A

L
o
g
ic

B C D E …A B

Region EA EB EC LMT

F

Figure 5: Illustration of Light-Meta-Table (LMT).

4.4 LMT: In-NVM Dedup Metadata Layout
In this subsection, we present the design of LMT, as illus-
trated in Figure 5. LMT is used for maintaining the mappings
from fingerprints to physical blocks and providing hints for
speculative prefetch. Furthermore, the deduplication metadata
in LMT are laid out in the region granularity to reduce the
read/write amplification of deduplication metadata access in
NVM (i.e., allocating entries almost sequentially).

Deduplication Metadata Entry. In the LMT, each entry
consists of 8 bytes blocknr (block number), 8 bytes fp (fin-
gerprint), 8 bytes refcnt (reference count), and 8 bytes hint
(used for speculative prefetch). The blocknr field refers to
the corresponding block number in the file system, while the
refcnt field refers to the number of references on a data block.
The fp field stores the 8 bytes xxHash as the block’s finger-
print. And the hint field contains 61 bits for the location of
the subsequent speculated block’s entry and 3 bits for trust
degree.

Region-based Layout. To maintain the locality of dedupli-
cation metadata, we group metadata entries into regions and
allocate entries in the currently used region almost sequen-
tially. We use an in-DRAM variable Cur Region to represent
this in-NVM region. For brevity, we do not distinguish Cur
Region from the currently used in-NVM region. Each region is
4 KiB (aligned to the block size) so that the regions can be al-
located by NVM file systems’ block allocator directly [17,66].
The regions are linked by 8 bytes pointers at the end of each re-
gion, and the first a few regions (Region Header) are reserved
in a fixed place in NVM as the list head. In this way, the dedu-
plication metadata table can grow dynamically. Therefore,
Light-Dedup avoids unnecessary storage consumption and
can scale flexibly when the storage size changes.

We regard a region as allocatable (i.e., we can use the region
to allocate entries) if no more than half of the metadata entries
(i.e., 4KiB/32Byte/2 = 64 entries) are used in that region.
Such design is a tradeoff between maintaining the locality
of metadata entries’ allocation and the space utilization of
the region. To allocate regions in constant time, Light-Dedup
maintains the positions of allocatable regions with the Region
Queue in DRAM and keeps track of the number of valid en-
tries in each region with an XArray [60]. Figure 6 illustrates
the allocation and deletion of metadata entries:

• Entry Allocation. Light-Dedup checks the entries in the
Cur Region one by one (➀) until a free one is found (➁),

⑧
return to caller

(a) Allocate
in region

(b) Allocate New region (c) Delete
an entry

N
V
M

D
R
A
M

① ②

③

④

⑤

⑦ ⑨

⑩

Used Entry

Free Entry

Allocatable
Region

Cur Region

Region
Header

Link

File System
Block Allocator

×
⑥(1)

…

⑥(2)

⑥(2)

Figure 6: Illustration of region-based entry management. The
cross-mark indicates that the Cur Region is evicted.

and then returns its position to the caller (➂). If there
is no free entry found (➃), Light-Dedup evicts the Cur
Region (➄) and checks if the Region Queue is empty. If
not, Light-Dedup takes out an allocatable region from the
Region Queue as the new Cur Region (➅(1)). Otherwise,
Light-Dedup leverages the file systems’ block allocator
to allocate a new region as the Cur Region, and then
links it into the tail of the in-NVM region list (➅(2)). For
the new Cur Region, Light-Dedup checks the entries in
it one by one until a free entry is found (➆) and returns
its position to the caller (➇).

• Entry Deletion. Light-Dedup first sets the blocknr of the
target entry (➈) to zero. If exactly half of the metadata
entries in that region are free, then we insert this region
back to the Region Queue to make it allocatable again
(➉). For the simplicity of concurrent control, the region
will not be returned to the block allocator.

Reduction of Metadata I/O Amplification. To show this,
we make the following analysis: (1) For unique writes, Light-
Dedup allocates a metadata entry for each write almost se-
quentially in the Cur Region, so that the writes to these entries
usually hit the NVM write buffer, and thus the metadata write
amplification is reduced. (2) For duplicate writes, we as-
sume the redundant data tend to be clustered, such as using cp
or rsync to copy a file multiple times. In that case, since the
file’s deduplication metadata is allocated almost sequentially
in a region, the subsequent accesses/modifications to them are
also almost sequential, and thus the metadata read and write
amplification are both reduced. The extensive study in §5.5
validates our analysis.

Avoidance of Garbage Collection (GC). Maintaining se-
quentiality (e.g., log-structured layout) often requires GC [66].
However, GC is complex and time-consuming. To address
the issue, Light-Dedup does not reclaim allocated regions and
allows to reuse them when half of the entries are free. In other
words, Light-Dedup trades more NVM space for GC-free
design. Such design does not bring significant storage con-
sumption: assuming the capacity of NVM is x, then there are
at most x

4KiB unique blocks to be referenced by Light-Dedup.

108 2023 USENIX Annual Technical Conference USENIX Association

Thus, at most 2x
4KiB entries are needed for GC-free design (i.e.,

all the allocated regions are half-full). Since each entry is 32
bytes, at most 2x

4KiB × 32Byte/x ≈ 1.56% space of NVM is
needed. Note that this is the worst case. The experiment shows
that writing a 128 GiB non-duplicate file allocates 1.008 GiB
of regions, which is only 0.79% of the data size.

4.5 Crash Consistency and Recovery
Light-Dedup maintains crash consistency lazily by collabo-
rating with NVM file systems’ recovery process. The lazy
strategy guarantees crash consistency and avoids eager con-
sistency overheads [9, 47, 68].

Normal Recovery: Storing in-DRAM index, allocator, etc.
to NVM and Reloading them back. During the clean unmount,
Light-Dedup stores in-DRAM rhashtable items and the valid
entry counts in the reserved area in NVM. During the subse-
quent remount, Light-Dedup first initializes an empty index,
and then inserts the saved items into it. Next, the valid entry
counts are loaded into DRAM directly and the Region Queue
is rebuilt accordingly. After this process, Light-Dedup is ready
to accept new I/O requests.

Failure Recovery: Fixing inconsistency of deduplication
metadata in NVM and Reconstructing in-DRAM data struc-
tures. To recover to the normal state, Light-Dedup scans the
deduplication metadata during the file systems’ recovery to
fix two inconsistent cases: (1) A block is only referenced by
the file system. It is a non-dedup block, so Light-Dedup does
not reinsert it into the deduplication metadata table. (2) A
block is only referenced by the deduplication metadata table.
Since Light-Dedup treats the file system’s metadata as the true
source of information, it invalidates the corresponding dedu-
plication metadata entry. After this, Light-Dedup rebuilds its
in-DRAM structures similar to the normal recovery.

4.6 Portability
Port to Future NVM Devices. Although Optane DCPMM
exited the market recently, we are still confident about NVM
technology because it bridges the performance gap between
DRAM and SSDs. Our work focuses on the common features
of storage-type NVMs as discussed in §2.1, e.g., long me-
dia read latency, memory interface, and coarse media access
granularity. Therefore, we believe our work can be applied to
future commercial storage-type NVMs.
Port to Future CXL-based Devices. Compute Express Link
(CXL) [15, 25, 53] is an emerging interconnect standard. We
believe that Light-Dedup can also be applied to the storage
systems using CXL (e.g., NVMs interconnected with CXL)
if the systems exhibit the common features that Light-Dedup
focuses on. We leave this as our future work.
Port to Other Instruction Sets. Although Light-Dedup is
currently implemented on x86, the idea of hiding long NVM
media read latency with speculative prefetch can be applied
to other instruction sets with prefetch instructions, such as
ARM with the PRFM instruction [2].

5 Performance Evaluation
This section seeks to answer the following questions: (i)
How does Light-Dedup perform against state-of-the-art NVM
(deduplication) file systems? (§5.2) (ii) How does Light-
Dedup perform in real-world scenarios? (§5.3) (iii) How does
speculative prefetch in LRBI contribute to final performance?
(§5.4) (iv) How efficient is the design of LMT? (§5.5) (v) How
expensive is the Light-Dedup recovery mechanism? (§5.6)

5.1 Experimental Setup
Testbed. We evaluate Light-Dedup on a server with an Intel
Xeon Gold 5218 CPU clocked at 2.3 GHz, which has 16 cores
(32 hyper-threads) and 22 MiB of L3 cache with clwb support.
The machine is equipped with 512 GiB Optane DCPMM
(2×256 GiB DIMMs) in non-interleaved AppDirect Mode,
and 128 GiB DRAM (4 × 32 GiB DIMMs). The server runs
CentOS with kernel 5.1.0 modified by NOVA [48].
Compared Systems. We compare Light-Dedup with NOVA,
NV-Dedup, DeNOVA, and LD-w/o-P. Among them, the
source code of NV-Dedup is not publicly available, thus we
re-implement it on top of NOVA3, following the same config-
urations in their paper [58]. For DeNOVA, we implement the
Deduplication Daemon (DD) based on the open-source ver-
sion and deduplicate the data in the background aggressively
(i.e., DeNOVA-Immediate [28]).
Methodology. FIO [4] is used to measure extensive I/O per-
formance. We use sync as I/O engine to guarantee the persis-
tence; 0–75% duplication ratio is emulated with parameter
dedupe_percentage. For the 100% duplication ratio, we per-
form the same FIO twice and measure the performance of
the second run. The reason is that 100% dedupe_percentage
results in issuing a few unique blocks, which is quite dif-
ferent from the real scenarios. Moreover, we also measure
four real-world workloads: copying compiled Linux kernel
as code archiving scenario, replaying three realistic traces
as frequent data operations scenarios. Among these traces,
WebVMs and Mails are collected from FIU [27, 33]. Homes
is generated from 50 students’ home directories on our OS
Lab server: we break the files into 4 KiB blocks, generate
each of them md5 digest similar to FIU traces, and use the
files’ creation time as timestamps. Each measurement is re-
peated 5 times, and the average values are presented. All
coefficients of variation are less than 5%, which suggests re-
producibility and stability. The evaluation scripts are available
at https://github.com/Light-Dedup/tests.

5.2 Microbenchmarks
We use FIO to evaluate the write performance of Light-Dedup
under the different duplication ratios, write patterns, and con-
currency levels, i.e., a single thread and 8 threads. Adding
more threads does not contribute to the performance improve-
ment due to the contention on the Optane DCPMM [67]. The
workload data size is set to 128 GiB to observe a more sta-
ble result. Note that under the 100% duplication ratio, each

3https://github.com/Light-Dedup/nv-dedup

USENIX Association 2023 USENIX Annual Technical Conference 109

https://github.com/Light-Dedup/tests
https://github.com/Light-Dedup/nv-dedup

0 25 50 75 100

(a) Single thread (4KiB per I/O)

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (G

iB
/s

)

duplication ratio (%)
0 25 50 75 100

(b) 8 threads (4KiB per I/O)

0.0

2.0

4.0

duplication ratio (%)
0 25 50 75 100

(c) Single thread (2MiB per I/O)

0.0

1.0

2.0

duplication ratio (%)
0 25 50 75 100

(d) 8 threads (2MiB per I/O)

0.0

3.0

6.0

duplication ratio (%)

Light-Dedup LD-w/o-P DeNOVA NV-Dedup NOVA

Figure 7: Microbenchmark with FIO under different write patterns (4 KiB/2 MiB per I/O) and concurrency levels.

run performs 64 GiB writes. Further, to better support the
large workload in FIO, we modify NOVA by removing the
threshold of log extending and by making the extension al-
ways double the size of the inode log, which eliminates a
substantial amount of many unnecessary Fast GCs [66]. The
experimental results are shown in Figures 7.

Block-based I/O (4 KiB). Figures 7(a) and (b) represent
the throughput of 4 KiB I/O writes. We find that: (1) Light-
Dedup achieves 1.70–4.58× throughput over NV-Dedup
when the duplication ratio is ≥75% since NV-Dedup suf-
fers from cryptographic hash calculation overheads, while
LRBI enables the efficient deduplication in either concur-
rency levels. (2) Light-Dedup is 3–15% slower than NOVA
for the 0% duplication ratio, but the throughput can be 1.05–
2.28× to the throughput of NOVA when the duplication ratio
is ≥75%. (3) IBP contributes to 1–52% performance improve-
ment under single thread compared to LD-w/o-P. However,
its contribution is reduced with the increasing threads number
due to dramatically enlarged read/write asymmetry; thus, the
improvement of IBP is diluted. Notably, CBP cannot work
ideally across syscalls. A possible reason is that the load
queue [49] is flushed during the context switch.

Continuous Block I/O (2 MiB). Figures 7(c) and (d) rep-
resent the throughput of 2 MiB I/O writes, i.e., writing 512
4 KiB blocks in one syscall. We find that: (1) all the evalu-
ated file systems gain higher write performance due to fewer
syscalls. Among them, DeNOVA benefits the most since the
contention of DD’s dequeue and enqueue decreases signifi-
cantly. (2) Under the single thread, Light-Dedup achieves 72–
118% performance improvement when the duplication ratio is
≥75% compared to LD-w/o-P since Cross-Block Prefetch can
leverage the locality of workloads to speculate the subsequent
block efficiently in a single syscall.

Read-Write Interference. Although Light-Dedup trades
slow duplicate writes for faster asynchronous reads, the mixed
read/write I/O under multi-thread environments can poten-
tially interfere with each other. This is because writing du-
plicate blocks require content comparisons and do not write
redundant data, which can be seen as a reader-like operation.
Conversely, threads that write unique blocks can be seen as
writer-like because they aim to write new blocks. Such inter-
ference has been previously observed in NyxCache [61] and
MT [69]. However, the goal of Light-Dedup is to improve
overall performance by eliminating duplicate data blocks, and

100 101 102 103 104

Consecutive duplicate length (#. blocks)

0.00
0.25
0.50
0.75
1.00

C
D

F

Homes WebVMs Mail

Figure 8: Cumulative distribution function of duplication
continuousness of evaluated traces.

Table 3: Characteristics of evaluated real-world workloads.
Workload Total I/O Write Prop. Dup Ratio Granularity

Copy 13.85 GiB 100% 100% 2 MiB

Homes 63.52 GiB 100% 84%
4 KiB for Blk

Max 2 MiB for Bat

WebVMs 54.53 GiB 78% 47%
4 KiB for Blk

Max 2 MiB for Bat

Mails 173.27 GiB 91% 95%
4 KiB for Blk

Max 2 MiB for Bat

we argue that even though individual tasks can be negatively
affected, the overall performance can still be improved.

To show this, we run a set of experiments (not shown
in the figure) on the case of 50% duplication ratio and 8
threads. To obtain the separate bandwidth of readers and
writers, we make four threads write the duplicated data (as
readers) while the remaining four write unique data (as writ-
ers). We observe that the bandwidth of Light-Dedup decreases
to 1316 MiB/s for readers and 1052 MiB/s for writers when
compared to the bandwidth of non-interfered systems with 4
readers (3380 MiB/s) and 4 writers (1608 MiB/s), respectively.
However, when compared to the bandwidth of non-interfered
systems with 8 writers (1624 MiB/s), the overall bandwidth of
Light-Dedup with mixed 4 readers and 4 writers is improved
to 2368 MiB/s. Experimental results show that Light-Dedup’s
non-cryptographic-hash-based deduplication approach can
improve overall deduplication performance even in the pres-
ence of read-write interference.

5.3 Real-world Scenarios
In this subsection, we study the performance of Light-Dedup
under real-world scenarios. The characteristics of the four
workloads are summarized in Table 3. Specifically, for Copy,
we copy compiled Linux kernel twice from SSD to NVM, and
the bandwidth of the second copying is measured. Copy can
be considered as a real-world application that uses NVM as
the storage of code repositories. For the other three traces,

110 2023 USENIX Annual Technical Conference USENIX Association

CP H-Blk V-Blk M-Blk H-Bat V-Bat M-Bat
(a) Single thread

0.0

1.1

2.2

Tp
ut

 (G
iB

/s
)

CP H-Blk V-Blk M-Blk H-Bat V-Bat M-Bat
(b) Multi threads (#. 8)

0.0

2.5

5.0

Tp
ut

 (G
iB

/s
)

Light-Dedup
LD-w/o-P

DeNOVA
NV-Dedup

NOVA

Figure 9: Performance comparison of real-world scenarios.
Here, H, V, M indicate Homes, WebVMs, and Mails, respec-
tively. Suffix “-Blk” (block replay) and “-Bat” (batch replay)
indicate that each I/O processes one block and a batch of no
more than 512 consecutive blocks, respectively.

we implement trace-replayer4 to emulate the behaviors of
a real-world application and replay traces. Unlike previous
block-level trace replay tools [27, 33], trace-replayer can
batch consecutive logical blocks in one syscall, which has the
same rationale as many real-world applications (e.g., batching
the reads/writes using a local buffer). The insights can be re-
flected in Figure 8. Homes and Mails traces show good spatial
locality, which the speculative prefetch can well exploit. For
WebVMs, there are only 30% duplicate blocks whose consec-
utive length is >10 blocks (point (10,0.70)), which shows
relatively poor continuousness.

Figure 9 compares the throughput of Light-Dedup and the
other four approaches under different real-world workloads.
For DeNOVA, we configure trace-replayer to replay the traces
by appending data but ignoring the given data offset due to
its bugs of handling overlapping writes. Light-Dedup shows
the best deduplication performance under all workloads in
most cases. In particular, (1) during Copy, Light-Dedup is
much faster than other approaches since speculative prefetch
markedly hides read latency under a single thread (due to
the continuousness of the workload). (2) During block re-
ply, In-Block Prefetch shows its effectiveness under a single
thread. With the increasing number of threads and the en-
larged read/write asymmetry, the throughput of LD-w/o-P
catches up with that of Light-Dedup. (3) During batch replay,
speculative prefetch contributes a lot to single-thread perfor-
mance with a high duplication ratio. For example, for single-
thread Mails, Light-Dedup achieves 1.28× write throughput
compared to NOVA under a single thread. However, LD-w/o-
P cannot even catch up with NOVA’s throughput.

5.4 Speculative Prefetch Efficiency
In this subsection, we study the efficiency of prefetching and
speculation by using FIO with block size set to 2 MiB, and

4The tool is available at https://github.com/Light-Dedup/nvm_tools

Copy as our benchmarks.
Single-thread Comparison. Figure 10(a) writes the same

64 GiB data twice (using FIO) with a single thread, and the
second writing bandwidth is measured. PN significantly ex-
ceeds other variants by 1.11–2.19×, mainly because prefetch
enables the parallelism of CPU calculation and NVM I/O
and significantly reduces content-comparison time. We fur-
ther measure the deduplication performance of Copy under
a single thread. Figure 10(b) presents the throughput of the
second copy. The result is similar to FIO, except the overall
throughput is lower. This is because there are 44% small files
(less than 4 KiB) in the Linux kernel source code, and these
small files degrade the deduplication performance.

Multi-thread Comparison and Observations. To study
how PN scales with the increasing concurrency level, we use
the same FIO benchmark but with the number of threads set to
1–16. Figure 11 presents the second write performance. The
figure shows that: (1) The throughput of PN is 1.03–1.29×
and 1.51–2.19× that of SP and LD-w/o-P when the threads
number ≤ 5 since PN prefetches NVM data into the CPU
cache, which reduces content-comparison time. (2) When the
threads number ≥ 6, SP shows about 1.11–1.80× throughput
compared to PN. According to the breakdown performance
(not shown in the figure due to space limits), we find that the
content-comparison time of PN rises up to 1.65× to that of
SP under 16 threads, which suggests the large amount of extra
prefetch I/O exacerbates the contention of in-NVM buffers
and thus leads to longer I/O latency. (3) The evaluation shows
that CBP (i.e., PN+Transition, see §4.3) combines the benefits
of SP and PN and scales well with the increment of threads.

5.5 Metadata I/O Amplification in LMT
To study the efficiency of region-based layout in LMT, we
have designed a workload to quickly age the file system.
(1) We first write a 128 GiB file (2 MiB per I/O) to a newly
mounted deduplication file system (Fresh System). (2) Next,
we punch the file randomly by using fallocate() until the
file size is reduced to half. This step creates random holes
in the file system, which emulates the aging process (Aged
System). (3) Finally, we write another 64 GiB file to fill the
holes. In the aged system, the spatial distribution of free en-
tries is random. Inappropriate metadata management (e.g.,
entry-based layout used in NV-Dedup [58]) can cause se-
vere read/write amplification and consequently decline the
system’s I/O performance.

Table 4 shows the comparison between region-based and
entry-based metadata layout in multiple dimensions under the
aging workload. The evaluation shows that region-based con-
sistently outperforms entry-based in all the dimensions and
can resist fragmentation problems. Maintaining the locality of
entries significantly reduces the write amplification under the
aged system (i.e., from entry-based’s 9.86× to region-based’s
3.43×), and improves about 11.6% write throughput relative
to entry-based. The results suggest that region-based meta-

USENIX Association 2023 USENIX Annual Technical Conference 111

https://github.com/Light-Dedup/nvm_tools

0 10 20 30 40 50 60 70 80
(a) FIO Breakdown (in seconds)

PN
SP
PC

IBP
P64
NP

1896 MiB/s
1705 MiB/s

1628 MiB/s
1396 MiB/s

1259 MiB/s
864 MiB/s

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
(b) Copy compiled Linux Breakdown (in seconds)

PN
SP
PC

IBP
P64
NP

1400 MiB/s
1308 MiB/s

1231 MiB/s
1104 MiB/s

1020 MiB/s
745 MiB/s

Content-Comparison Fingerprint Calculation Prefetch Lookup Copy User Others

Figure 10: Performance comparison and breakdowns of different variants. For simplicity, we denote LD-w/o-P as NP (i.e., no
speculative prefetch), and recall that IBP is In-Block Prefetch. Note that Cross-Block Prefetch (CBP) is effectively equivalent to
PN in single-thread experiments; thus, it is omitted in the above figures.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Threads (#.)

0
1
2
3
4
5
6
7

Th
ro

ug
hp

ut
 (G

iB
/s

) SP PN Cross-Block Prefetch LD-w/o-P

Figure 11: Performance comparison between different dedu-
plication strategies under different threads.

Table 4: Comparison of region-based and entry-based meta-
data layout under the aging workload.

Dimension
Fresh System (128 GiB) Aged System (64 GiB)
Region Entry Region Entry

Reads Per
Block (B)

116.28
(2.91×)

126.94
(3.17×)

244.19
(6.1×)

774.13
(19.35×)

Writes Per
Block (B)

75.75
(1.89×)

79.56
(1.99×)

137.17
(3.43×)

394.54
(9.86×)

Throughput
(MiB/s) 1747.5 1690.6 1336.72 1197.76

data layout is more friendly to NVM deduplication, especially
in an aged file system (which is common in the production
environments).

5.6 Recovery Overheads
Table 5 studies the unmount time, normal recovery time, and
failure recovery time of NOVA and Light-Dedup with differ-
ent sizes of files (the total number of files is fixed to 32). The
results show that although Light-Dedup causes overheads dur-
ing recovery, its unmount and failure recovery time remains
the same trend as NOVA (linearly) as the file size grows. We
argue that trading longer unmount/recovery time for more
efficient runtime is reasonable for NVM deduplication.

6 Discussion
Memory Consumption of rhashtable. We observe that the
memory consumption of writing 128 GiB data under 0%,
25%, 50%, and 75% duplication ratio is 1.26 GiB, 1.08 GiB,
658 MiB, and 331 MiB, respectively. The experimental results
indicate that the memory consumption is less than 1% of the
data size (e.g., 1.26GiB/128GiB ≈ 0.98%).
Hardware-based Cryptographic Hash Calculation. There
are several hardware accelerators developed for efficiently cal-

Table 5: Comparison of recovery overheads.

Dimension File system File system utilization (GiB)
32 × 1 32 × 2 32 × 4

Umount Time (s) NOVA 0.385 0.775 1.502
Light-Dedup 0.551 1.095 2.099

Normal Recovery
Time (s)

NOVA 0.015 0.015 0.015
Light-Dedup 0.617 1.223 2.398

Failure Recovery
Time (s)

NOVA 0.315 0.488 0.829
Light-Dedup 1.260 2.372 4.604

culating cryptographic hash [5, 14, 42, 55]. However, they are
not widely deployed and require special hardware. Therefore,
they are not considered in this paper.

Scalability on Multiple Optane DCPMMs. We run a 32 GiB
FIO workload with 75% duplication ratio on two interleaved
256 GiB DCPMMs. The experimental results show that the
throughput of Light-Dedup increases from 952 MiB/s to
6238 MiB/s with 1–16 threads, suggesting Light-Dedup can
scale with increasing threads on multiple Optane DCPMMs.

7 Conclusion and Future Work
In this paper, we propose Light-Dedup, a light-weight inline
deduplication framework for NVM file systems. With the
NVM-aware Light-Redundant-Block-Identifier (LRBI) and
Light-Meta-Table (LMT), Light-Dedup is able to maximize
NVM deduplication performance by fully considering NVM’s
I/O mechanisms (e.g., long media read latency). Evaluation
results show that the deduplication cost is low, and the per-
formance can be enhanced if the duplication ratio is high.
Since memory usage is sensitive to server environment [28],
we plan to incorporate other memory-efficient hash table de-
sign [36, 45, 73, 74] to optimize Light-Dedup’s index further.

Acknowledgments
We thank our shepherd, Youjip Won, and the anonymous re-
viewers for their constructive comments and insightful sugges-
tions. This research was partly supported by the National Nat-
ural Science Foundation of China under Grant no. 61972441
and U22B2022; Shenzhen Science and Technology Innova-
tion Program under Grant no. RCYX20210609104510007;
Guangdong Basic and Applied Basic Research Foundation
under Grant 2021A1515012634.

112 2023 USENIX Annual Technical Conference USENIX Association

References
[1] Mijin An, Soojun Im, Dawoon Jung, and Sang-Won Lee.

Your read is our priority in flash storage. Proceedings
of the VLDB Endowment, 15(9):1911–1923, 2022.

[2] ARM. Arm cortex-a75 core technical reference manual
r2p0, 2023. https://developer.arm.com/docume
ntation/100403/0200/functional-description
/level-1-memory-system/data-prefetching.

[3] Amro Awad, Sergey Blagodurov, and Yan Solihin.
Write-aware management of NVM-based memory ex-
tensions. In Proceedings of the 2016 International
Conference on Supercomputing, ICS ’16, New York,
NY, USA, 2016. Association for Computing Machinery.
https://doi.org/10.1145/2925426.2926284.

[4] Jens Axboe. Flexible i/o tester, 2017. https://gith
ub.com/axboe/fio.

[5] Sergei Brazhnikov. A hardware implementation of the
SHA2 hash algorithms using CMOS 28nm technology.
In 2020 IEEE Conference of Russian Young Researchers
in Electrical and Electronic Engineering (EIConRus),
pages 1784–1786. IEEE, 2020.

[6] Mu-Tien Chang, Paul Rosenfeld, Shih-Lien Lu, and
Bruce Jacob. Technology comparison for large last-
level caches (l 3 cs): Low-leakage SRAM, low write-
energy STT-RAM, and refresh-optimized eDRAM. In
2013 IEEE 19th international symposium on high perfor-
mance computer architecture (HPCA), pages 143–154.
IEEE, 2013.

[7] Wande Chen, Zhenke Chen, Dingding Li, Hai Liu, and
Yong Tang. Low-overhead inline deduplication for per-
sistent memory. Transactions on Emerging Telecommu-
nications Technologies, page e4079, 2020.

[8] Youmin Chen, Youyou Lu, Bohong Zhu, et al. Scalable
persistent memory file system with kernel-userspace
collaboration. In 19th USENIX Conference on File and
Storage Technologies (FAST 21), pages 81–95, 2021.

[9] Vijay Chidambaram, Tushar Sharma, Andrea C Arpaci-
Dusseau, and Remzi H Arpaci-Dusseau. Consistency
without ordering. In FAST, page 9, 2012.

[10] John Colgrove, John D. Davis, John Hayes, Ethan L.
Miller, Cary Sandvig, Russell Sears, Ari Tamches, Neil
Vachharajani, and Feng Wang. Purity: Building fast,
highly-available enterprise flash storage from commod-
ity components. In Proceedings of the 2015 ACM SIG-
MOD International Conference on Management of Data,
SIGMOD ’15, page 1683–1694, New York, NY, USA,
2015. Association for Computing Machinery.

[11] Yann Collet. xxhash: Extremely fast hash algorithm,
2016. https://github.com/Cyan4973/xxHash.

[12] Jeremy Condit, Edmund B Nightingale, Christopher
Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Der-
rick Coetzee. Better i/o through byte-addressable, per-
sistent memory. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, pages
133–146, 2009.

[13] Jonathan Corbet. Relativistic hash tables, part 1: Algo-
rithms, 2014. https://lwn.net/Articles/612021/.

[14] Luigi Dadda, Marco Macchetti, and Jeff Owen. The
design of a high speed asic unit for the hash function
sha-256 (384, 512). In Proceedings Design, Automation
and Test in Europe Conference and Exhibition, volume 3,
pages 70–75. IEEE, 2004.

[15] Debendra Das Sharma. Keynote 1: Compute express
link (cxl) changing the game for cloud computing. In
2021 IEEE Symposium on High-Performance Intercon-
nects (HOTI), pages xii–xii, 2021.

[16] Biplob K Debnath, Sudipta Sengupta, and Jin Li.
Chunkstash: Speeding up inline storage deduplica-
tion using flash memory. In Proceedings of the
2010 USENIX annual technical conference (USENIX
ATC’10), pages 1–16, 2010.

[17] Subramanya R Dulloor, Sanjay Kumar, Anil Keshava-
murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,
and Jeff Jackson. System software for persistent mem-
ory. In Proceedings of the Ninth European Conference
on Computer Systems (EuroSys’14), pages 1–15, 2014.

[18] Min Fu, Dan Feng, Yu Hua, Xubin He, Zuoning Chen,
Jingning Liu, Wen Xia, Fangting Huang, and Qing
Liu. Reducing fragmentation for in-line deduplication
backup storage via exploiting backup history and cache
knowledge. IEEE Transactions on Parallel and Dis-
tributed Systems, 27(3):855–868, 2016.

[19] Min Fu, Dan Feng, Yu Hua, Xubin He, Zuoning Chen,
Wen Xia, Fangting Huang, and Qing Liu. Accelerating
restore and garbage collection in deduplication-based
backup systems via exploiting historical information. In
2014 USENIX Annual Technical Conference (USENIX
ATC 14), pages 181–192, Philadelphia, PA, June 2014.
USENIX Association.

[20] Min Fu, Dan Feng, Yu Hua, Xubin He, Zuoning Chen,
Wen Xia, Yucheng Zhang, and Yujuan Tan. Design
tradeoffs for data deduplication performance in backup
workloads. In 13th USENIX Conference on File and
Storage Technologies (FAST 15), pages 331–344, Santa
Clara, CA, February 2015. USENIX Association.

USENIX Association 2023 USENIX Annual Technical Conference 113

https://developer.arm.com/documentation/100403/0200/functional-description/level-1-memory-system/data-prefetching
https://developer.arm.com/documentation/100403/0200/functional-description/level-1-memory-system/data-prefetching
https://developer.arm.com/documentation/100403/0200/functional-description/level-1-memory-system/data-prefetching
https://doi.org/10.1145/2925426.2926284
https://github.com/axboe/fio
https://github.com/axboe/fio
https://github.com/Cyan4973/xxHash
https://lwn.net/Articles/612021/

[21] Ahmad Hassan, Hans Vandierendonck, and Dimitrios S.
Nikolopoulos. Energy-efficient hybrid DRAM/NVM
main memory. In Proceedsings of 2015 International
Conference on Parallel Architecture and Compilation
(PACT), pages 492–493, 2015.

[22] Intel. ipmctl, 2018. https://github.com/intel/i
pmctl.

[23] Intel. Intel® 64 and ia-32 architectures software devel-
oper manuals, 2022. https://www.intel.com/cont
ent/www/us/en/developer/articles/technical
/intel-sdm.html.

[24] Joseph Izraelevitz, Jian Yang, et al. Basic performance
measurements of the intel optane dc persistent memory
module. arXiv preprint arXiv:1903.05714, 2019.

[25] Myoungsoo Jung. Hello bytes, bye blocks: Pcie storage
meets compute express link for memory expansion (cxl-
ssd). In Proceedings of the 14th ACM Workshop on
Hot Topics in Storage and File Systems, HotStorage ’22,
page 45–51, New York, NY, USA, 2022. Association
for Computing Machinery.

[26] Myoungsoo Jung, John Shalf, and Mahmut Kandemir.
Design of a large-scale storage-class RRAM system. In
Proceedings of the 27th International ACM Conference
on International Conference on Supercomputing, ICS
’13, page 103–114, New York, NY, USA, 2013. Associ-
ation for Computing Machinery.

[27] Ricardo Koller and Raju Rangaswami. I/o deduplication:
Utilizing content similarity to improve i/o performance.
ACM Transactions on Storage (TOS), 6(3):1–26, 2010.

[28] Hyungjoon Kwon, Yonghyeon Cho, et al. Denova:
Deduplication extended nova file system. In IPDPS,
pages 1–12. IEEE, 2022.

[29] Giusy Lama. Phase Change Memory (PCM) for High
Density Storage Class Memory (SCM) Applications.
PhD thesis, Université Grenoble Alpes [2020-], 2022.

[30] Hyokeun Lee, Moonsoo Kim, Hyunchul Kim, Hyun
Kim, and Hyuk-Jae Lee. Integration and boost of a read-
modify-write module in phase change memory system.
IEEE Transactions on Computers, 68(12):1772–1784,
2019.

[31] Daan Leijen, Benjamin Zorn, and Leonardo de Moura.
Mimalloc: Free list sharding in action. In Asian Sympo-
sium on Programming Languages and Systems, pages
244–265. Springer, 2019.

[32] Jingwei Li, Zuoru Yang, et al. Balancing storage effi-
ciency and data confidentiality with tunable encrypted
deduplication. In Proceedings of the Fifteenth European

Conference on Computer Systems (EuroSys’20), pages
1–15, 2020.

[33] Wenji Li, Gregory Jean-Baptise, Juan Riveros, Giri
Narasimhan, Tony Zhang, and Ming Zhao. CacheD-
edup: In-line deduplication for flash caching. In 14th
USENIX Conference on File and Storage Technologies
(FAST 16), pages 301–314, Santa Clara, CA, February
2016. USENIX Association.

[34] Yu-Pei Liang, Tseng-Yi Chen, Yuan-Hao Chang, Shuo-
Han Chen, Pei-Yu Chen, and Wei-Kuan Shih. Rethink-
ing last-level-cache write-back strategy for mlc stt-ram
main memory with asymmetric write energy. In 2019
IEEE/ACM International Symposium on Low Power
Electronics and Design (ISLPED), pages 1–6. IEEE,
2019.

[35] Haikun Liu, Yujie Chen, Xiaofei Liao, Hai Jin,
Bingsheng He, Long Zheng, and Rentong Guo.
Hardware/software cooperative caching for hybrid
DRAM/NVM memory architectures. In Proceedings of
the International Conference on Supercomputing, ICS
’17, New York, NY, USA, 2017. Association for Com-
puting Machinery.

[36] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric
Lo. Dash: Scalable hashing on persistent memory. In
Proceedings of the VLDB Endowment, page 1147–1161,
April 2020.

[37] Bo Mao, Hong Jiang, Suzhen Wu, and Lei Tian. Pod:
Performance oriented i/o deduplication for primary stor-
age systems in the cloud. In 2014 IEEE 28th Interna-
tional Parallel and Distributed Processing Symposium,
pages 767–776. IEEE, 2014.

[38] Paul McKenney. What is rcu, fundamentally?, 2007.
https://lwn.net/Articles/262464/.

[39] Jaehong Min, Daeyoung Yoon, and Youjip Won. Effi-
cient deduplication techniques for modern backup oper-
ation. IEEE Transactions on Computers, 60(6):824–840,
2011.

[40] Sparsh Mittal and Jeffrey S. Vetter. A survey of soft-
ware techniques for using non-volatile memories for
storage and main memory systems. IEEE Transactions
on Parallel and Distributed Systems, 27(5):1537–1550,
2016.

[41] Onur Mutlu and Lavanya Subramanian. Research prob-
lems and opportunities in memory systems. Supercom-
puting frontiers and innovations, 1(3):19–55, 2014.

[42] Rahul P Naik and Nicolas T Courtois. Optimising the
SHA256 hashing algorithm for faster and more efficient
bitcoin mining. MSc Information Security Department
of Computer Science UCL, pages 1–65, 2013.

114 2023 USENIX Annual Technical Conference USENIX Association

https://github.com/intel/ipmctl
https://github.com/intel/ipmctl
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://lwn.net/Articles/262464/

[43] Prashant J Nair, Chiachen Chou, Bipin Rajendran, and
Moinuddin K Qureshi. Reducing read latency of phase
change memory via early read and turbo read. In 2015
IEEE 21st International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 309–319.
IEEE, 2015.

[44] Sanketh Nalli, Swapnil Haria, Mark D Hill, Michael M
Swift, Haris Volos, and Kimberly Keeton. An analysis
of persistent memory use with whisper. ACM SIGPLAN
Notices, 52(4):135–148, 2017.

[45] Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H
Noh, and Beomseok Nam. Write-optimized dynamic
hashing for persistent memory. In Proceedings of the
17th USENIX Conference on File and Storage Technolo-
gies (FAST’19), pages 31–44, 2019.

[46] Heba Nashaat, Nesma Ashry, and Rawya Rizk. Smart
elastic scheduling algorithm for virtual machine migra-
tion in cloud computing. The Journal of Supercomput-
ing, 75(7):3842–3865, 2019.

[47] Chun-Ho Ng, Mingcao Ma, Tsz-Yeung Wong, Patrick
P. C. Lee, and John C. S. Lui. Live deduplication storage
of virtual machine images in an open-source cloud. In
Proceedings of Middleware 2011, pages 81–100, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[48] NVSL. Nova: Non-volatile memory accelerated log-
structured file system, 2017. https://github.com/N
VSL/linux-nova.

[49] Il Park, Chong Liang Ooi, and TN Vijaykumar. Reduc-
ing design complexity of the load/store queue. In Pro-
ceedings. 36th Annual IEEE/ACM International Sym-
posium on Microarchitecture, 2003. MICRO-36., pages
411–422. IEEE, 2003.

[50] Moinuddin K Qureshi, Michele M Franceschini, and
Luis A Lastras-Montano. Improving read performance
of phase change memories via write cancellation and
write pausing. In HPCA-16 2010 The Sixteenth Inter-
national Symposium on High-Performance Computer
Architecture, pages 1–11. IEEE, 2010.

[51] Moinuddin K. Qureshi, Michele M. Franceschini, and
Luis A. Lastras-Montaño. Improving read performance
of phase change memories via write cancellation and
write pausing. In HPCA - 16 2010 The Sixteenth Inter-
national Symposium on High-Performance Computer
Architecture, pages 1–11, 2010.

[52] Steve Scargall. Programming Persistent Memory: A
Comprehensive Guide for Developers. Springer Nature,
2020.

[53] Debendra Das Sharma. Compute express link®: An
open industry-standard interconnect enabling heteroge-
neous data-centric computing. In 2022 IEEE Sympo-
sium on High-Performance Interconnects (HOTI), pages
5–12, 2022.

[54] ChunYi Su, David Roberts, Edgar A León, Kirk W
Cameron, Bronis R de Supinski, Gabriel H Loh, and
Dimitrios S Nikolopoulos. Hpmc: An energy-aware
management system of multi-level memory architec-
tures. In Proceedings of the 2015 International Sympo-
sium on Memory Systems, pages 167–178, 2015.

[55] Vikram Suresh, Sudhir Satpathy, Sanu Mathew, Mark
Anders, Himanshu Kaul, Amit Agarwal, Steven Hsu,
and Ram Krishnamurthy. A 230mv-950mv 2.8 tbps/w
unified sha256/sm3 secure hashing hardware accelerator
in 14nm tri-gate cmos. In ESSCIRC 2018-IEEE 44th
European Solid State Circuits Conference (ESSCIRC),
pages 98–101. IEEE, 2018.

[56] Vasily Tarasov, Deepak Jain, Geoff Kuenning, Sonam
Mandal, Karthikeyani Palanisami, Philip Shilane, Sagar
Trehan, and Erez Zadok. Dmdedup: Device mapper
target for data deduplication. In Proceedings of the
2014 Ottawa Linux Symposium (OLS’14), pages 83–95.
Citeseer, 2014.

[57] K. Venkatesh and D. Narasimhan. Revealing the novel
precise subset identification and deduplication of au-
dio substance over the shared public environment. The
Journal of Supercomputing, Feb 2022.

[58] Chundong Wang, Qingsong Wei, Jun Yang, Cheng Chen,
Yechao Yang, and Mingdi Xue. Nv-dedup: High-
performance inline deduplication for non-volatile mem-
ory. IEEE Transactions on Computers, 67(5):658–671,
2017.

[59] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE
Long, and Carlos Maltzahn. Ceph: A scalable, high-
performance distributed file system. In Proceedings of
the 7th symposium on Operating systems design and
implementation, pages 307–320, 2006.

[60] Matthew Wilcox. Xarray. https://www.kernel.org
/doc/html/v5.1/core-api/xarray.html.

[61] Kan Wu, Kaiwei Tu, Yuvraj Patel, Rathijit Sen,
Kwanghyun Park, Andrea Arpaci-Dusseau, and Remzi
Arpaci-Dusseau. NyxCache: Flexible and efficient
multi-tenant persistent memory caching. In 20th
USENIX Conference on File and Storage Technologies
(FAST 22), pages 1–16, Santa Clara, CA, February 2022.
USENIX Association.

USENIX Association 2023 USENIX Annual Technical Conference 115

https://github.com/NVSL/linux-nova
https://github.com/NVSL/linux-nova
https://www.kernel.org/doc/html/v5.1/core-api/xarray.html
https://www.kernel.org/doc/html/v5.1/core-api/xarray.html

[62] Wen Xia, Hong Jiang, Dan Feng, Fred Douglis, Philip
Shilane, Yu Hua, Min Fu, Yucheng Zhang, and Yukun
Zhou. A comprehensive study of the past, present, and
future of data deduplication. Proceedings of the IEEE,
104(9):1681–1710, 2016.

[63] Wen Xia, Hong Jiang, Dan Feng, and Yu Hua. Silo:
A similarity-locality based near-exact deduplication
scheme with low ram overhead and high throughput.
In Proceedings of the 2011 USENIX annual technical
conference (USENIX ATC’11), pages 26–30, 2011.

[64] Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang,
and Hong Jiang. Characterizing the performance of intel
optane persistent memory: A close look at its on-dimm
buffering. In Proceedings of the Seventeenth European
Conference on Computer Systems, EuroSys ’22, page
488–505, New York, NY, USA, 2022. Association for
Computing Machinery.

[65] Cong Xu, Xiangyu Dong, Norman P Jouppi, and Yuan
Xie. Design implications of memristor-based RRAM
cross-point structures. In 2011 Design, Automation &
Test in Europe, pages 1–6. IEEE, 2011.

[66] Jian Xu and Steven Swanson. Nova: A log-structured
file system for hybrid volatile/non-volatile main mem-
ories. In Proceedings of the 14th USENIX Conference
on File and Storage Technologies (FAST’16), pages 323–
338, 2016.

[67] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steve Swanson. An empirical guide
to the behavior and use of scalable persistent memory.
In Proceedings of the 18th USENIX Conference on File
and Storage Technologies (FAST’20), pages 169–182,
2020.

[68] Qirui Yang, Runyu Jin, and Ming Zhao. Smartdedup: op-
timizing deduplication for resource-constrained devices.
In Proceedings of the 2019 USENIX Annual Technical
Conference (USENIX ATC’19), pages 633–646, 2019.

[69] Jifei Yi, Benchao Dong, Mingkai Dong, Ruizhe Tong,
and Haibo Chen. MT2: Memory bandwidth regulation
on hybrid nvm/dram platforms. In 20th USENIX Confer-
ence on File and Storage Technologies (FAST 22), pages
199–216, 2022.

[70] Jifei Yi, Mingkai Dong, Fangnuo Wu, and Haibo Chen.
Htmfs: Strong consistency comes for free with hardware
transactional memory in persistent memory file systems.
In 20th USENIX Conference on File and Storage Tech-
nologies (FAST 22), pages 17–34, 2022.

[71] Jianhui Yue and Yifeng Zhu. Accelerating write by
exploiting PCM asymmetries. In 2013 IEEE 19th In-
ternational Symposium on High Performance Computer
Architecture (HPCA), pages 282–293, 2013.

[72] Benjamin Zhu, Kai Li, and R Hugo Patterson. Avoiding
the disk bottleneck in the data domain deduplication file
system. In Fast, volume 8, pages 269–282, 2008.

[73] Xiaomin Zou, Fang Wang, Dan Feng, Chaojie Liu, Fan
Li, and Nan Su. Hmeh: write-optimal extendible hash-
ing for hybrid DRAM-NVM memory. In 2020 36th
Symposium on Mass Storage Systems and Technologies
(MSST), 2020.

[74] Pengfei Zuo, Yu Hua, and Jie Wu. Write-optimized and
high-performance hashing index scheme for persistent
memory. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages
461–476, 2018.

[75] Pengfei Zuo, Yu Hua, Ming Zhao, Wen Zhou, and
Yuncheng Guo. Improving the performance and en-
durance of encrypted non-volatile main memory through
deduplicating writes. In Proceedings of the 51st Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO 2018), pages 442–454. IEEE, 2018.

116 2023 USENIX Annual Technical Conference USENIX Association

	Introduction
	Background and Related Work
	NVM and NVM File Systems
	Inline Deduplication Techniques for NVM

	Observations and Motivations
	Data Redundancy & NVM Deduplication
	I/O Asymmetry and Read Latency in NVM Redundant Block Identification
	Metadata I/O Amplification in NVM Deduplication Metadata Management

	Design and Implementation
	System Overview
	Basic Deduplication Logic
	LRBI: Dedup with Speculative Prefetch
	In-Block Prefetch (IBP)
	Cross-Block Prefetch (CBP)
	Speculative Prefetch: Put IBP and CBP Together

	LMT: In-NVM Dedup Metadata Layout
	Crash Consistency and Recovery
	Portability

	Performance Evaluation
	Experimental Setup
	Microbenchmarks
	Real-world Scenarios
	Speculative Prefetch Efficiency
	Metadata I/O Amplification in LMT
	Recovery Overheads

	Discussion
	Conclusion and Future Work

