
Light-Dedup:
A Light-weight Inline Deduplication Framework for

Non-Volatile Memory File Systems

Jiansheng Qiu*, Yanqi Pan*, Wen Xia, Xiaojia Huang, Wenjun Wu,

Xiangyu Zou, Shiyi Li, Yu Hua

(*: co-first authors)

USENIX ATC 23

Why NVM Dedup is Important?

• NVM promises to be the next-generation storage media
✓ Memory Interface
✓ Much Faster than SSDs/HDDs
✓ Persistence, Denser (but Slower)

than DRAM
• However, NVM is expensive

- Intel Optane DC Persistent Memory
Module* ≈ 8.8 $/GiB

- Intel SSD 760p ≈ 0.28 $/GiB
- Seagate BarraCuda ≈ 0.029 $/GiB

*The only commercially available NVM

31×
303×

DRAM

NVM

NAND SSD

HDD

Cache

Light-Dedup - USENIX ATC'23

Why NVM Dedup is Important?

• NVM promises to be the next-generation storage media
✓ Memory Interface
✓ Much Faster than SSDs/HDDs
✓ Persistence, Denser (but Slower)

than DRAM
• However, NVM is expensive

- Intel Optane DC Persistent Memory
Module* ≈ 8.8$/GiB

- Intel SSD 760p ≈ 0.28$/GiB
- Seagate BarraCuda ≈ 0.029$/GiB

*The only commercially available NVM

31×
303×

DRAM

NVM

NAND SSD

HDD

Cache

Light-Dedup - USENIX ATC'23

Deduplication can enlarge logical
space & reduce amortized cost

Workflow of Deduplication File System

• Inline Deduplication
1. Apps write() data

Applications -> write(data1)

Dedup File System

Light-Dedup - USENIX ATC'23

Data 1

Table Data 1

Workflow of Deduplication File System

• Inline Deduplication
1. Apps write() data

2. Calc hash as fingerprints

Applications -> write(data1)

Dedup File System

Data 1

Hash Calc

FP 1

Light-Dedup - USENIX ATC'23

Table Data 1

Workflow of Deduplication File System

• Inline Deduplication
1. Apps write() data

2. Calc hash as fingerprints

3. Using fingerprints to determine
if the data block is redundant

Applications -> write(data1)

Dedup File System

Data 1

Hash Calc

TableHW

FP 1

Data 1

FP 1: 1

…

Light-Dedup - USENIX ATC'23

Workflow of Deduplication File System

• Inline Deduplication
1. Apps write() data

2. Calc hash as fingerprints

3. Using fingerprints to determine
if the data block is redundant

4. If so, just modify reference count

Applications -> write(data1)

Dedup File System

Data 1

Hash Calc

TableHW

FP 1

Data 1

FP 1: 1 + 1

…

Light-Dedup - USENIX ATC'23

Workflow of Deduplication File System

• Inline Deduplication
1. Apps write() data

2. Calc hash as fingerprints

3. Using fingerprints to determine
if the data block is redundant

4. If so, just modify reference count

5. Otherwise, write the data with
reference count equals 1

Applications -> write(data2)

Dedup File System

Data 1 Data 2

Hash Calc

TableHW

FP 1 FP 2

Data 1

FP 1: 2

FP 2: 1

…

Light-Dedup - USENIX ATC'23

Data 2

Workflow of Deduplication File System

• Inline Deduplication
1. Apps write() data

2. Calc hash as fingerprints

3. Using fingerprints to determine
if the data block is redundant

4. If so, just modify reference count

5. Otherwise, write the data with
reference count equals 1

• Non-cryptographic Hash
- Not safe. Need content-

comparison (e.g., xxHash).
- Light-weight calculation

• Cryptographic Hash
- Safe. No additional I/O (e.g.,

SHA256).
- Slow calculation

Light-Dedup - USENIX ATC'23
Data 2

Data 1 Crypto

Non-
Crypto Collied

Safe

Workflow of Deduplication File System

• Inline Deduplication
1. Apps write() data

2. Calc hash as fingerprints

3. Using fingerprints to determine
if the data block is redundant

4. If so, just modify reference count

5. Otherwise, write the data with
reference count equals 1

• Offline Deduplication
Similar to inline deduplication,
but in the background, i.e.,
data must be written first

Light-Dedup - USENIX ATC'23

Deduplication on NVM File Systems

• NVM changes the game of deduplication
× Offline deduplication can neither improve I/O performance nor

lifetime of NVM
✓Using Inline deduplication to timely eliminate redundancy and

improve NVM’s lifetime

× Cryptographic-hash-based fingerprint cannot well apply to
fast NVM since NVM alters software and I/O bottlenecks

✓Using non-cryptographic-hash-based fingerprint with byte-
by-byte content-comparison to enable quick calculation

Light-Dedup - USENIX ATC'23

Deduplication on NVM File Systems

• NVM changes the game of deduplication
× Offline deduplication can neither improves I/O performance

nor lifetime of NVM
✓Using Inline deduplication to timely eliminate redundancy and

improve NVM’s lifetime

× Cryptographic-hash-based fingerprint cannot well apply to
fast NVM since NVM alters software and I/O bottlenecks

✓Using non-cryptographic-hash-based fingerprint with byte-
by-byte content-comparison to enable quick calculation

Light-Dedup - USENIX ATC'23

However, can using non-crypto hash
alone for NVM Dedup fully exploit NVM?

Exploiting NVM I/O Characteristics

Asymmetry in Read/Write Bandwidth (Yang@FAST’21, etc.)

I/O with Buffers (Xiang@Eurosys’22, etc.)

Long Media Read Latency (Xiang@Eurosys’22, etc.)

Coarse Access Granularity (Hyokeun@TOC’2019, etc.)

Memory Interface

Light-Dedup - USENIX ATC'23

Exploiting NVM I/O Characteristics

Asymmetry in Read/Write Bandwidth (Yang@FAST’21, etc.)

I/O with Buffers (Xiang@Eurosys’22, etc.)

Long Media Read Latency (Xiang@Eurosys’22, etc.)

Coarse Access Granularity (Hyokeun@TOC’2019, etc.)

Memory Interface
Light-Dedup - USENIX ATC'23

✓ Using non-crypto hash with content-comparison

Exploiting NVM I/O Characteristics

Asymmetry in Read/Write Bandwidth (Yang@FAST’21, etc.)

I/O with Buffers (Xiang@Eurosys’22, etc.)

Long Media Read Latency (Xiang@Eurosys’22, etc.)

Coarse Access Granularity (Hyokeun@TOC’2019, etc.)

Memory Interface

Light-Dedup - USENIX ATC'23

× Fail to exploit or to be considered

Exploiting NVM I/O Characteristics

Asymmetry in Read/Write Bandwidth (Yang@FAST’21, etc.)

I/O with Buffers (Xiang@Eurosys’22, etc.)

Long Media Read Latency (Xiang@Eurosys’22, etc.)

Coarse Access Granularity (Hyokeun@TOC’2019, etc.)

Memory Interface

Light-Dedup - USENIX ATC'23

× Fail to exploit or to be considered

How can these features affect NVM
Dedup FS? And how to exploit them?

Goal of This Work

✓How is Dedup affected by
NVM I/O features?

✓Maximize Dedup perf by fully
considering NVM I/O features

✓Minimize negative impacts of
Dedup for NVM file systems

Light-Dedup - USENIX ATC'23

Applications

Dedup File System
(Light-Dedup)

Redundant Identification

Dedup Metadata Table

NV
M

C
PU

Our Focus

Issue #1. Redundancy Identification Fails to
consider I/O Buffers and Read Latency
• Write latency can be hidden by calculation

- NOVA. A state-of-the-art NVM file system
- Naïve*. A non-crypto-hash-based Dedup file system
- Experiment. Write two identical 4GiB files

Light-Dedup - USENIX ATC'23

System
Calc Latency (ns) I/O Latency (ns) Bandwidth

(MiB/s)Hash calc Others Data write Content-cmp

NOVA 0.0 84.7 2275.6 0.0 1401

Naïve 309.9 1072.5 585.3 0.0 1612

During the first write Much less write time!

*Naïve means LD-w/o-P in our paper

Issue #1. Redundancy Identification Fails to
consider I/O Buffers and Read Latency

Light-Dedup - USENIX ATC'23

Not magic! This is caused by async NVM write (with buffers)

Storage Media
(e.g., 3D-Xpoint,

PCM, etc.)Read Buf

Write Buf

NV
M

as
yn

c
w

rit
e
System

Calc Latency (ns) I/O Latency (ns) Bandwidth
(MiB/s)Hash calc Others Data write Content-cmp

NOVA 0.0 84.7 2275.6 0.0 1401

Naïve 309.9 1072.5 585.3 0.0 1612

During the first write Much less write time!

Calc

Write

Calc Calc

Write

Calc

Write

time

I/O and CPU parallelism

Issue #1. Redundancy Identification Fails to
consider I/O Buffers and Read Latency
• Content-comparison can be the bottleneck

- NOVA. A state-of-the-art NVM file system
- Naïve. A non-crypto-hash-based Dedup file system
- Experiment. Write two identical 4GiB files

Light-Dedup - USENIX ATC'23

System
Calc Latency (ns) I/O Latency (ns) Bandwidth

(MiB/s)Hash calc Others Data write Content-cmp

NOVA 0.0 84.7 2275.6 0.0 1401

Naïve 308.0 571.6 0.0 3263.0 870

During the second write Slower than simply write data

Issue #1. Redundancy Identification Fails to
consider I/O Buffers and Read Latency

Light-Dedup - USENIX ATC'23

CPU has to wait for the un-cached data to be loaded from NVM

Storage Media
(e.g., 3D-Xpoint,

PCM, etc.)Read Buf

Write Buf

NV
M

sy
nc

re
ad Calc

Read

Calc C

Read

time

System
Calc Latency (ns) I/O Latency (ns) Bandwidth

(MiB/s)Hash calc Others Data write Content-cmp

NOVA 0.0 84.7 2275.6 0.0 1401

Naïve 308.0 571.6 0.0 3263.0 870

During the second write Slower than simply write data

Blocked read.

Issue #1. Redundancy Identification Fails to
consider I/O Buffers and Read Latency

Light-Dedup - USENIX ATC'23

CPU has to wait for the un-cached data to be loaded from NVM

Storage Media
(e.g., 3D-Xpoint,

PCM, etc.)Read Buf

Write Buf

NV
M

sy
nc

re
ad Calc

Read

Calc C

Read

time

System
Calc Latency (ns) I/O Latency (ns) Bandwidth

(MiB/s)Hash calc Others Data write Content-cmp

NOVA 0.0 84.7 2275.6 0.0 1401

Naïve 308.0 571.6 0.0 3263.0 870

During the second write Slower than simply write data

Blocked read.

Can we achieve async read to hide
such high read latency?

• Hardware prefetcher should help, but…
- NVM is slower than DRAM
- HW prefetcher is designed for DRAM, prefetching 2 lines ahead
- HW prefetcher is too conservative for NVM to hide read latency

Solution #1. (1/2) In-Block Prefetch: Using
Mem Prefetch to Hide Read Latency

Light-Dedup - USENIX ATC'23

• Hardware prefetcher should help, but…
- NVM is slower than DRAM
- HW prefetcher is designed for DRAM, prefetching 2 lines ahead
- HW prefetcher is too conservative for NVM to hide read latency

• Prefetch more aggressively?
Basic Idea
When content-comparison starts
issuing prefetch instruction for
every cache line (64 ins in total)

Solution #1. (1/2) In-Block Prefetch: Using
Mem Prefetch to Hide Read Latency

Light-Dedup - USENIX ATC'23

Data

CL CL CL CL … CL

64
 C

ac
he

 Li
ne

s
(C

L)
 fo

r a
 b

lo
ck

NV
M

C
PU

…CL CL CL CL CL

Compared bytes

However, prefetch ins #. that can
be handled concurrently is limited

• Good news: NVM has coarse access granularity!
✓ NVM typically has a coarser access granularity than cache line
✓ E.g., Optane PMM has a 256 bytes access granularity (XPLine).
✓ No need to issue 64 prefetch ins at first, but only 16! (prefetch

buffer not media)

Solution #1. (1/2) In-Block Prefetch: Using
Mem Prefetch to Hide Read Latency

Light-Dedup - USENIX ATC'23

• Good news: NVM has coarse access granularity!
✓ NVM typically has a coarser access granularity than cache line
✓ E.g., Optane PMM has a 256 bytes access granularity (XPLine).
✓ No need to issue 64 prefetch ins at first, but only 16!

• In-Block Prefetch (IBP)
1. Issue 16 prefetch ins

(prefetch concurrently)
2. Prefetch the remaining then

(prefetch buffer not media)
media)

Solution #1. (1/2) In-Block Prefetch: Using
Mem Prefetch to Hide Read Latency

Light-Dedup - USENIX ATC'23

CL CL CL CL CL CL CL CL

NVM Read Buffer

CPU CachesCL CL

CL CL CL CL CLCL

...

• Good news: NVM has coarse access granularity!
✓ NVM typically has a coarser access granularity than cache line
✓ E.g., Optane PMM has a 256 bytes access granularity (XPLine).
✓ No need to issue 64 prefetch ins at first, but only 16!

• In-Block Prefetch (IBP)
1. Issue 16 prefetch ins

(prefetch concurrently)
2. Prefetch the remaining

(prefetch from buffer
instead of media)

Solution #1. (1/2) In-Block Prefetch: Using
Mem Prefetch to Hide Read Latency

Light-Dedup - USENIX ATC'23

CL CL CL CL CL CL CL CL

NVM Read Buffer

CPU CachesCL CL

CL CL CL CL CLCL

CL CL CL CL CLCL

...

Aggressive Method (P64) vs. IBP

Solution #1. (1/2) In-Block Prefetch: Using
Mem Prefetch to Hide Read Latency

Light-Dedup - USENIX ATC'23

Content-comparison time is dramatically dropped

However, IBP cannot exploit the parallelism of CPU (e.g.,
fingerprint calculation) and I/O

Solution #1. (1/2) In-Block Prefetch: Using
Mem Prefetch to Hide Read Latency

Light-Dedup - USENIX ATC'23

Calc

1st Step
Prefetch

2nd Step
Prefetch

Block Read

Content
Cmp, etc.

Calc

1st Step
Prefetch

2nd Step
Prefetch

Block Read

Content
Cmp, etc.

time

Content
Cmp

Content
Cmp

Be parallel like NVM write, How?

Solution #1. (2/2) Cross-Block Prefetch

Light-Dedup - USENIX ATC'23

• Key Idea
- Speculatively prefetch the to-be-compared data block

- Using a hint field in the deduplication metadata entry to record
the related information, see our paper for more details.

Block A Block B Block C
FP A, nxt: B

FP B, nxt: C

Block A Block B

Block B may on his way

Solution #1. (2/2) Cross-Block Prefetch

Light-Dedup - USENIX ATC'23

Our three explorations to Cross-Block Prefetch (CBP).

Calc

1 2

Read A

Cmp,
etc.

time

Calc

1 2

Read B

Cmp,
etc.

Initialization
(Serve as the 1st hint) Prefetch-Current

Prefetch B
Before Calc

Skip

1 2

Read B

Cmp,
etc.

Speculation

Skip Calc

Skip

1 2

Read B

Cmp,
etc.

Read C

1 2

Skip

Cross-Block Prefetch

Prefetch
Next: C

Full Parallelism Achieved!

Next: Block B

The effectiveness of CBP

Solution #1. (2/2) Cross-Block Prefetch

Light-Dedup - USENIX ATC'23

With CBP, CPU calculation is now fully parallel with NVM I/O

Solution #1. Put Together

• Light-Redundant-Block-
Identifier (LRBI)
✓Non-crypto-hash-based method

✓Speculative-Prefetch-based
content-comparison: IBP + CBP

Light-Dedup - USENIX ATC'23

Applications

Dedup File System
(Light-Dedup)

Redundant Identification
(LRBI)

Dedup Metadata Table

NV
M

C
PU

Issue #2. Dedup Metadata Table Fails to
consider I/O Amplification
• Using Dedup metadata table to store

✓ The mappings between fp to the written data block
✓ Some additional information required by Dedup system, e.g.,

hint for our LRBI
• Two related questions

✓ How to efficiently search the entry in the table?
✓ How to manage the layout of Dedup metadata to be NVM friendly?

• Two existing approaches
- All-in-NVM. Using static hash table in NVM to achieve fast indexing
- Entry-based. Using in-DRAM structure to quickly index. While using

free list to allocate/free entry.
Light-Dedup - USENIX ATC'23

Issue #2. Dedup Metadata Table Fails to
consider I/O Amplification
• However, severe metadata I/O amplification is observed

- Reduce NVM’s lifetime
- Reduce deduplication performance

Light-Dedup - USENIX ATC'23

Approaches
First Write Second Write

Meta Read
(Bytes/Block)

Meta Write
(Bytes/Block)

Meta Read
(Bytes/Block)

Meta Write
(Bytes/Block)

Ideal 40 40 40 40

All-in-NVM 726.12 293.17 528.65 259.05

Entry-based 126.94 79.56 774.13 394.53

They fail to consider I/O amplification caused by random NVM access

Solution #2. Light-Meta-Table: Managing
Dedup Metadata with Locality
• Key Idea of LMT

✓ In-DRAM Index. Using in-DRAM
index to search for the entry

✓ In-NVM Layout. Allocate meta
entries in a coarse region

Light-Dedup - USENIX ATC'23

Applications

Dedup File System
(Light-Dedup)

Redundant Identification
(LRBI)

Dedup Metadata Table

NV
M

C
PU

Index

D
RA

M

search

Solution #2. Light-Meta-Table: Managing
Dedup Metadata with Locality
• Index Selection

Using in-DRAM rhashtable (kernel data structure) for its resizable,
maturity, and scalability

• Region-based Layout
- Region is in a block size (i.e., 4KiB)
- Region is linked by a 8 byte pointer to avoid static allocation
- Region can be reused if no less than half entries are freed or empty
- Trade 1× space consumption (1.56%) for GC-free

Light-Dedup - USENIX ATC'23

Region Region Region

en
tr

y
en

tr
y 8B ptr

NV
M

Solution #2. Light-Meta-Table: Managing
Dedup Metadata with Locality
• How does LMT maintains locality?

- Unique write. Entries are allocated almost sequentially in a region
- Duplicate write. Entries are potentially accessed sequentially, e.g., cp

Light-Dedup - USENIX ATC'23

Region Region Region

En
t A

En
t B

8B ptr

NV
M

Data A Data B

Fi
le

 A

Data A Data B

Fi
le

 B

Data A Data B

Fi
le

 C

cp A B cp B C

sequential access

Solution #2. Light-Meta-Table: Managing
Dedup Metadata with Locality
• The effectiveness of LMT (under an aged file system)

- Punch holes in file to emulate aging workload
- Region layout significantly reduces metadata I/O amplification

Light-Dedup - USENIX ATC'23

Dimension
Fresh System (128 GiB) Aged System (64 GiB)
LMT

(Region Layout)
Entry-based

Layout
LMT

(Region Layout)
Entry-based

Layout
Meta Read

(Bytes/Block)
116.28

(2.91×)
126.94
(3.17×)

244.19
(6.1×)

774.13
(19.35×)

Meta Write
(Bytes/Block)

75.75
(1.89×)

79.56
(1.99×)

137.17
(3.43×)

394.54
(9.86×)

Throughput
(MiB/s) 1747.5 1690.6 1336.72 1197.76

Solution #1 & #2. Light-Dedup

• Light-Redundant-Block-
Identifier (LRBI)
✓Non-crypto-hash-based method

(NVM’s read/write asymmetry)

✓Speculative-Prefetch-based
content-comparison: IBP + CBP

• Light-Meta-Table (LMT)
✓Using region-based layout to

maintain good locality

Light-Dedup - USENIX ATC'23

Applications

Light-Dedup

LRBI
Content-comparison can be imporved

LMT
Manage metadata with localityNV

M
C

PU

rhashtable

D
RA

M

search

Solution #1 & #2. Light-Dedup

• Light-Redundant-Block-
Identifier (LRBI)
✓Non-crypto-hash-based method

(NVM’s read/write asymmetry)

✓Speculative-Prefetch-based
content-comparison: IBP + CBP

• Light-Meta-Table (LMT)
✓Using region-based layout to

maintain good locality

Light-Dedup - USENIX ATC'23

Read/Write Asymmetry

I/O with Buffers

Long Media Read Latency

Coase Access Granularity

Memory Interface
All the features are considered!

Recall NVM features

More Details in Our Paper

• The fields of the deduplication entry

• When to trust hint

• Detailed entry management of LMT

• Crash consistency

• Portability of Light-Dedup
Light-Dedup - USENIX ATC'23

Light-Dedup Evaluation: Setup

Light-Dedup - USENIX ATC'23

• Linux Kernel 5.1.0 (same as NOVA)

• Intel Xeon Gold 5218 CPU @ 2.3GHz

• 256 GiB Optane DCPMM

• 128 GiB DRAM

Microbenchmark: FIO

• Block-based I/O
✓Light-Dedup is up to 4.58×

faster than NV-Dedup
✓IBP contributes up to 52%

compared to LD-w/o-P
✓CBP cannot work ideally

across syscall
• Continuous I/O

✓Light-Dedup outperforms
NOVA in the single thread

✓Light-Dedup is 72-128%
faster than LD-w/o-P

Light-Dedup - USENIX ATC'23 Thanks to CBP

Thanks to IBP

Thanks to non-crypto-based method

CBP does not work

Real-world Scenarios

Light-Dedup - USENIX ATC'23

• Evaluated read-world workload
- Using trace-replayer to replay the trace, which can batch the

data blocks

Workload Scenario Total I/O Write Prop. Dup Ratio Granularity

Copy Copy Compiled
Linux Kernel 13.85 GiB 100% 100% 2 MiB

Homes (Trace) Our OS Lab 63.52 GiB 100% 84% 4KiB for Blk
Max 2MiB for Bat

WebVMs (Trace) Two Web Servers
(FIU Trace) 54.53 GiB 78% 47% 4KiB for Blk

Max 2MiB for Bat

Mails (Trace) An Email Server
(FIU Trace) 173.27 GiB 91% 96% 4KiB for Blk

Max 2MiB for Bat

Real-world Scenarios

Light-Dedup - USENIX ATC'23

Thanks to non-
crypto-based
method (similar
to FIO)

Real-world Scenarios

Light-Dedup - USENIX ATC'23

CBP works well

Real-world Scenarios

Light-Dedup - USENIX ATC'23

Consistent with FIO
workload. IBP
contributes here

Real-world Scenarios

Light-Dedup - USENIX ATC'23

• CBP contributes to batched
trace a lot

• Light-Dedup performs best
under Homes-Bat

Best consecutive duplication

Conclusion

• Deduplication can largely reduce NVM’s cost
• Existing approaches fail to fully exploit NVM’s I/O features

- I/O with buffers, long read latency, memory interface, and coarse
access granularity

• We propose Light-Dedup to fully exploit these features
✓LRBI. Speculative-prefetch-accelerated content-comparison
✓LMT. Region-based layout and in-DRAM rhashtable
✓Significant speedup against SOTA methods with low meta I/O amp.

Light-Dedup - USENIX ATC'23

github.com/Light-Dedup/

Check out our paper for more details!
Thanks & QA

https://github.com/Light-Dedup/

	默认节
	幻灯片 1: Light-Dedup: A Light-weight Inline Deduplication Framework for Non-Volatile Memory File Systems

	Why NVM dedup
	幻灯片 2: Why NVM Dedup is Important?
	幻灯片 3: Why NVM Dedup is Important?

	Dedup & NVM dedup
	幻灯片 4: Workflow of Deduplication File System
	幻灯片 5: Workflow of Deduplication File System
	幻灯片 6: Workflow of Deduplication File System
	幻灯片 7: Workflow of Deduplication File System
	幻灯片 8: Workflow of Deduplication File System
	幻灯片 9: Workflow of Deduplication File System
	幻灯片 10: Workflow of Deduplication File System
	幻灯片 11: Deduplication on NVM File Systems
	幻灯片 12: Deduplication on NVM File Systems

	NVM Charactersitics
	幻灯片 13: Exploiting NVM I/O Characteristics
	幻灯片 14: Exploiting NVM I/O Characteristics
	幻灯片 15: Exploiting NVM I/O Characteristics
	幻灯片 16: Exploiting NVM I/O Characteristics

	Overview
	幻灯片 17: Goal of This Work

	Issue 1 & Solution
	幻灯片 18: Issue #1. Redundancy Identification Fails to consider I/O Buffers and Read Latency
	幻灯片 19: Issue #1. Redundancy Identification Fails to consider I/O Buffers and Read Latency
	幻灯片 20: Issue #1. Redundancy Identification Fails to consider I/O Buffers and Read Latency
	幻灯片 21: Issue #1. Redundancy Identification Fails to consider I/O Buffers and Read Latency
	幻灯片 22: Issue #1. Redundancy Identification Fails to consider I/O Buffers and Read Latency
	幻灯片 23: Solution #1. (1/2) In-Block Prefetch: Using Mem Prefetch to Hide Read Latency
	幻灯片 24: Solution #1. (1/2) In-Block Prefetch: Using Mem Prefetch to Hide Read Latency
	幻灯片 25: Solution #1. (1/2) In-Block Prefetch: Using Mem Prefetch to Hide Read Latency
	幻灯片 26: Solution #1. (1/2) In-Block Prefetch: Using Mem Prefetch to Hide Read Latency
	幻灯片 27: Solution #1. (1/2) In-Block Prefetch: Using Mem Prefetch to Hide Read Latency
	幻灯片 28: Solution #1. (1/2) In-Block Prefetch: Using Mem Prefetch to Hide Read Latency
	幻灯片 29: Solution #1. (1/2) In-Block Prefetch: Using Mem Prefetch to Hide Read Latency
	幻灯片 30: Solution #1. (2/2) Cross-Block Prefetch
	幻灯片 31: Solution #1. (2/2) Cross-Block Prefetch
	幻灯片 32: Solution #1. (2/2) Cross-Block Prefetch
	幻灯片 33: Solution #1. Put Together

	Issue 2 & Solution
	幻灯片 34: Issue #2. Dedup Metadata Table Fails to consider I/O Amplification
	幻灯片 35: Issue #2. Dedup Metadata Table Fails to consider I/O Amplification
	幻灯片 36: Solution #2. Light-Meta-Table: Managing Dedup Metadata with Locality
	幻灯片 37: Solution #2. Light-Meta-Table: Managing Dedup Metadata with Locality
	幻灯片 38: Solution #2. Light-Meta-Table: Managing Dedup Metadata with Locality
	幻灯片 39: Solution #2. Light-Meta-Table: Managing Dedup Metadata with Locality
	幻灯片 40: Solution #1 & #2. Light-Dedup
	幻灯片 41: Solution #1 & #2. Light-Dedup
	幻灯片 42: More Details in Our Paper

	Evaluation
	幻灯片 43: Light-Dedup Evaluation: Setup
	幻灯片 44: Microbenchmark: FIO
	幻灯片 45: Real-world Scenarios
	幻灯片 46: Real-world Scenarios
	幻灯片 47: Real-world Scenarios
	幻灯片 48: Real-world Scenarios
	幻灯片 49: Real-world Scenarios

	Conclusion
	幻灯片 50: Conclusion

