Declarative Memory Services

Jeronimo Castrillon
Jana Giceva

Yu Hua

Kimberly Keeton
Akhil Shekar

Kevin Skadron
Tianzheng Wang
Huanchen Zhang

.
‘ Dresden g Al £
S 72) ga7
University of S = G I UfN\}VERSITY SIMON FRASER {3
‘ Technolo)éy o, 0 g e 7VIRGINIA SFU UNIVERSITY NG

“Memory” traditionally...

load/store,
ey] DDIO atomics
CPU L1 E
Properties: Issues:
* Single-node .
. Bytge-addressable) ZILIJMA';-awarineSS
Memory . - i
« ~100ns low latency I
* High bandwidth
i PaSS|Ve SSD/HDD @ e ey U

Relative tractable primitives and tools + imperative programming
Life was ok.

CIDR 2026 Declarative Memory Services

“Memory” today and future...

Uncertainties:

 Coherent?

e Volatile?

e Passive or active?

* Various latency and
bandwidth profiles

—
—
e
—
-

CPU E E
Disaggregated
memory
Memory — 5NN = <. More issues:
E * Security
JEEER)’ * Device capabilities
@ R * Fault tolerance
SSD/HDD Computational MY

memory

Intractable primitives = highly complex, imperative programming

Life is hard.

CIDR 2026

Declarative Memory Services

Case Study:

Adapting a B+-Tree for disaggregated memory

(1) Longer latency,
should cache:

Which B+-tree nodes
to cache?

Is there coherence
between compute
servers?

‘[ai: [0ig] DRAM Cache] WiT DRAM Cache
i) Inner Node [
i / T~ =6 i
Compute [Caching Sync. Sync.
RDMA
Memory
[=): [
ool A0 NN pL &

— = = P Vo
@@@(LeafNodeﬂ)(a) < @

0000) [D000) [Ddoo

(2) Memory has CPU,

should offload:
e How much CPU do |
have?

* What operations to
offload?

(3) Data placement +

replication:

* Who can access which
data?

* How to partition?

* DEX: Scalable Range Indexing on Disaggregated Memory, VLDB 2024

Case Study:

Adapting a B+-Tree for disaggregated memory

0608 DRAM Cach OG0 h
(1) Longer latency, = = e & S DRAM Cache
[m): Inner Node m]:
should cache: & /\ 4-9-»@
« Which B+-tree nodes i
0 :[m]:
to cache? :
Compute [Caching Sync. Sync
* |s there coherence p—
between compute Memory
servers? [a
ool A0 NN pL &
) w9 (Cleavodem) (B4 (C @) -+ BoEoes

Hand-coded decisions
Unsustainable (more cases in paper).

(2) Memory has CPU,

should offload:
e How much CPU do |
have?

* What operations to
offload?

(3) Data placement +

replication:

* Who can access which
data?

* How to partition?

Case Study:

Adapting a

(1) Longer latency,

should cache:

* Which B+-tree nodes
to cache?

* |sthere coherence
between compute
servers? 0]

Hand-coded decisions

-~

Articles

Since 2026
Since 2025
Since 2022
Custom range.

Sor

t by date

Review articles

v include citations

=

include patents

Create alert

index on disaggregated memory

Sherman: A write-optimized distributed b+ tree index on disaggregated

memory

QWang, Y Lu, J Shu - Pr g8 2022 - dl.acm.org
are: + An analysis of existing tree indexes on disaggregated memory, demonstrating that the
a write d B+Tree index on memory, which boosts write performance

¥r Save 99 Cite Citedby 136 Related articles Al 4 versions

the 2022 international conference

Scalable distributed inverted list indexes in disaggregated memory
MV of the ACM on Management of 2024 - dl.acm.org

as memory nodes have near-zero compute power. In this paper, we design a scalable
distributed inverted list index for disaggregated memory architectures. An inverted list index maps
¥r Save 99 Cite Citedby8 Related articles Al 3 versions

woser, D Kocher, N Augs!

Dex: Scalable range indexing on disaggregated memory [extended version]
BLu, K Huang, CJM Liang, T Wang, E Lo - arXiv preprint arXiv ..., 2024 - anxiv.org

Indexes: Disaggregated # Scalable Unfortunately, naively deploying a tree index on
disaggregated memory does ... With compute and memory decoupled, accessing the index
Yr Save 99 Cite Cited by 14 Related articles All 7 versions Web of Science: 4 99

Optimizing LSM-based indexes for disaggregated memory

RWa The VLDB Joumal, 2024 - Springes
indexing techniques for disaggregated memory, where the majority of data is stored in remote

memory while caching hot data in local memory... -Iree indexing for memory disaggregation

Y7 Save 99 Cite Citedby5 Related articles All 5 versions Web of Science: 2

Gao, J Wang, P Kadam, M TamerOzsu

Deft: A scalable tree index for disaggregated memory
J Wang, Q Wang, Y Zhang, J Shu - Proceedings of the Twentieth ..., 2025 - dl.acm.org

index on disaggregated memory. We propose Deft, a disaggregated-memory-friendly tree
index... patterns for tree nodes without increasing index height, and facilitating high concurrency
Yr Save 99 Cite Citedby3 Related articles

Chime: A cache-efficient and high-performance hybrid index on disaggregated

memory

X Luo, J Shen, P Zuo, X Wang, MR Lyu... - Proceedings of the ACM ..., 2024 - dl.acm.org
Disaggregated memory (DM) is a widely discussed datacenter ... It decouples computing and

memory resources from ... 2.2 Range Indexes on Disaggregated Memory Range indexes are

Yr Save 99 Cite Citedby 13 Related articles All 4 versions

dism: An Ism-based index for memory disaggregation
R Wa J Wang, P Kad: MT Ozsu... - 2023 IEEE 39th 2023 - i plore.ieee.org

cores, but abundant memory, eg, 100s of ... indexing techniques for disaggregated memory.
where the majority of data is stored in remote memory while caching hot data in local memory.
¢ Save 99 Cite Citedby 38 Related articles Al 3 versions

a

Designing an Efficient Tree Index on Disaggregated Memory
QWang, Y Lu, J Shu - Communications of the ACM, 2025 - dl.acm.org

B + Tree index on RDMA-enabled disaggregated memory. ... software techniques to boost
index write performance from three ... RDMA-based tree indexes on memory (§3).
¥r Save 99 Cite Citedby 1 Related articles

Marlin: A concurrent and write-optimized b+-tree index on disaggregated
memory
H An, F Wang, D Feng, X Zou, Z Liu... - Proceedings of the 52nd, 2023 - dl.acm.org

To address the above challenges, we propose Marlin2, a concurrent and write-optimized

D o Sk AmE A B, i bl str A s KBl i ksl Boiobins ponra b i $463A

Unsustainable (more cases in paper).

CIDR 2026

Declarative Memory Services

[PDF] acm.org

[PDF] acm.org

[PDF] arxiv.org
Full View

[PDF] springer.com

[PDF) acm.org

[PDF] acm.org

[PDF] ieee.org

[PDF] acm.org
Full View

[PDF] acm.org
Full View

AM Cache

=

§0fﬂoad .

B+-Tree for dlsaggregated memory

Google Scholar

(2) Memory has CPU,

should offload:
e How much CPU do |
have?

What operations to
offload?

(3) Data placement +

replication:

* Who can access which
data?

* How to partition?

Would be nice to be more declarative

* Decouple device-specific logic from high-level design
* “l want this function to be offloaded, if possible”
e “Latency to access this memory block should not exceed 5ms”

e Simplify programming for today and future, unknown architectures
 Same DBMS design, any hardware

* Better cross-device optimizations

How to get there?

Vision: Declarative Memory Services

Three-layer design:

* Abstraction Layer
* Developers work with “logical memory regions” and data flows
* Annotate with desired properties

* Calibration Layer
* Discover and index device capabilities
* Expose device primitives and APlIs

* Memory Services Layer
* Aset of generic “memory services” that well use memory devices
* Jointly optimize for the application based on annotations

Caveat: yet to implement, this is pure vision!

Declarative Abstraction layer

B+-tree node definition:

Applications (Abstraction Layer) struct InternalNode {
Data-flow tasks KV kv_pairs[MAX_KV];
int key count;

]
Annotated logical 1
memory regions

}s Declare desired

properties
Previously: Now with DMS:
[cacheable, coherent, latency < 10us]
InternalNode *n = allocate(..) InternalNode *n = allocate(..)
// hand-made decision to cache it // placed in coherent, compute-side memory, by DMS
cache.insert(n); cacheinsert(n);

Data flows work similarly:
* Properties attached to tasks, enforced by DMS runtime

Physical design and logical functionality decoupled

CIDR 2026 Declarative Memory Services 9

Calibration Layer

* Discovers and track device capabilities, provide APIs

* Key component: device catalogue
* A table that evolves with hardware changs

Device Capabilities Characteristics

Local DRAM Coherence dram-load, dram-store, dram- ... X GBps within socket, under y load...
Byte-addressable dsa, atomics...

CXL DRAM Partial coherence cxl-load, cxl-store... ... 300ns best - 1us worst latency...
Byte-addressable

Membrane Compute pim-load, pim-store, pim- ... X ns latency with host...

(computation Byte-addressable offload...

al memory) R 7‘

> /

Implemented and maintained by

DMS developers Challenging

Memory Services Layer

* Use device catalogue APIs to build services

Memory Services Runtime

(A) €) ¢)

* DEX example:
e Services needed: data placement and caching
* Upon allocation: place data based on annotated desired properties
* Runtime: lightweight metadata tracking for caching

* Customized policies possible
* “Please don’t evict parent node before child node”
* “Please use this encoding scheme for such and such data”

Research Challenges and Agenda

Device Characterization

* Beyond simple stats: e.g., latency behaviour under varying load levels
» Self-evolving the device catalogue with new hardware

Properties = Services: When to pick which implementation?

SLA Guarantees

* Memory services monitor metrics, and migrate between services to meet SLO

* How to deal with conflicting SLAs?
e E.g., tenants prioritizing throughput vs. latency

DMS Deployment

* DMS requires non-trivial information (global and local server) to work

Correctness and Debugging
 DMS-based programs are declarative
* How to verify their correctness and debug them? Tools for exploring why an SLO was missed?

Summary

* Memory is heterogeneous: complexity arises with more features
e Current approach to leveraging memory devices is unsustainable
* Hand-crafted with low-level primitives
e Getting worse as hardware evolves

* Declarative Memory Services
* Developers specify logical functionality
 Calibration layer discovers and characterises devices
* Memory services provide physical implementations and optimizations

Thank you!

