LOFT: A Lock-free and Adaptive Learned Index

with High Scalability for Dynamic Workloads

Yuxuan Mo, Yu Hua
Huazhong University of Science and Technology

20th European Conference on Computer Systems (EuroSys), 2025

Dynamic Workloads

» Contain insert operations
- Growth in the data size n g

- Changes in data distribution

* Widely exist in real-world applications

- e.g., Facebook, Twitter, etc.

- Some are write-heavy!l] amazon

[1] Dynamo: amazon’s highly available key-value store, SOSP’07 2

Memory Systems

* Memory systems play a critical role in compute systems

CPU
- High-speed CPUs Jrr] Bridge the Reg‘S‘ef
performance gap c:ost Morony Speed]m
- Low-speed storage systems —

Memory (DRAM)

Storage
Device (HHD/SSD)

) @Capacny
* In-memory index structures contribute to overall performance

- e.g., B*-tree and hash maps m

- Efficient data management with fast query performance M‘_—l

&P redis M

Dilemma: Data Growth vs DRAM Scaling

« Rapid growth of stored datal]

Volume of data
500 T

400 ©

w
o
o

Zettabytes (ZB)

|
o
o

X

2010 2012 2014 2016 2018Y 2020 2022 2024 2026 2028
ear

* Slowdown of DRAM scaling technology!?!

1.00E+03

“ > 1.00E+02 +

($/MB

Ice

Memory Pr

1.00E-03

[1] https://www.statista.com/statistics/871513/worldwide-data-created/

[2] https://jcmit.net/memoryprice.htm

1.00E+00
1.00E-01 +

1.00E-02 +

Cost of Memory with Time

1985 1990 1995 2000 2005 2010 2015 2020 2025

Year

Demand: Space-efficient and Scalable Index Structures

* Tree-like range-query indexes @ * Learned indexes
- Multiple pointer chasing operations - Model-based calculation
- Large space overhead - Computation memory

B*-Tree Index Key M Data increase Learned Index l Key

¥ - & []

\\ Performance decreases (e.9., RMI)

lpos l pos

R R
1 1

| | POS - pre_err pos + pre_err
pos pos + leaf size

Existing Learned Indexes in Dynamic Workloads

* Fail to scale to dynamic workloads

* Fail to simultaneously achieve high throughput and high scalability

B Xindex BN ALEX+ —— XIndex —— ALEX+
E3 FINEdex &8 LIPP+ FINEdex @ —<— LIPP+
g —
Q_].OO A |
CEJ >70% 60
— 75 1
‘g 40 -
% 50 f
A 2 i
S 25 20 —
c
— 0. 0 LE | Nlumber ofthrleads | | |
Read-only 5% insert 1 8 16 24 48 64 72 80

- The used workloads generated from YCSB.
- XIndex@PPoPP’20, FINEdex@VLDB’21, ALEX+@VLDB’22, LIPP+@VLDB’22

6

Existing Learned Indexes in Dynamic Workloads

" > Space-efficient

Small number of parameters

« > Efficient query performance

Model-based calculation

X > High performance in dynamic workloads

- High throughputs

- High scalability

Challenge 1: Interference from Insertions

* |In-place Insertion @

- Model-based insertion

- Poor scalability

O 71 S Insert
2

query performance
» Lock-based design(aLex+@vLpB22)

=

F(x) = X

No empty slot

eTl é Insert to 2nd slot

2

4

5

7

7

1l)

* Out-of-place Insertion @

Buffer-based insertion
scalability

» Buffer-based design(xindex@prorp20)

Poor query performance

O S
2

A 4

. @ Insert to buffer
@;'check the 2nd slot

1

3

4

5

7

8- [Buffer]

Challenge 2: Collisions between Indexing and Retraining

* Blocking retraining scheme (ALEX+@VLDB’22)

- Actively trigger retraining once the condition is met timely
- Block the following operations to the retrained node
- In the critical path Long tail latency
®a|l operations
::::;an [? Fill ratio > 0.8] [Fill ratio > 0.8 !] [Retraining ﬂ%l

Data node Data node Data node

Challenge 2: Collision between Indexing and Retraining

* Blocking retraining scheme (ALEX+@VLDB’22)

- Actively trigger retraining once the condition is met Timely

- Block the following operations to the retrained node
- In the critical path Long tail latency

* Non-blocking retraining scheme (XIndex@PPOPP’20)
- Periodically check the data nodes using background threads Non-blocking

- Unable to handle heavy tasks in write-intensive workloads
Long average latency

::::ekagorlound [PBuffer size > 256 J [Buffer size > 256 ! J [Retraining]
Data node

Data node Data node

Challenge 3: Fixed Parameters vs Diverse Access Patterns

] . . . Write-intensive
 Static triggering mechanism: @

- Perform retraining once the predefined condition is met

e Static retraining parameters Write-intensive @

- Use fixed parameters based on preliminary experiments

Our Solution: LOFT

»To achieve high performance in dynamic workloads:

* C1: Interference introduced by insertions

Error-bounded insertion

* C2: Collisions between indexing and retraining

Lock-free retraining

* C3: Mismatch between fixed parameters and diverse access patterns

Self-tuning retraining

12

LOFT: Error-bounded Insertion

e Using CAS™ to compete for an empty slot within the predicted range
for sorting

- No duplicate keys

(1}l é Insert @ (2 2l é Insert to the 2nd slot
12

F(x) = (x-8)*0.5 L2 Q

i

71
e Continuously,” !

/
Empty key CAS

1
)
| 2 A 4

Predicted range 10113|14|12|18(19|21|22| Data array

----+> Failed CAS \

13 14
nglnsert T3§Insert

— Succeeded CAS

* Compare-and-Swap 13

LOFT: Error-bounded Insertion

 Expanded Learned Bucket for possible overflows

- A small data array with expanded models
- Increase the expansion factor as the bucket level rises

GT4 é Insert ﬂ aT4 é Insert to the 6th slot
20

F(x) = (x-8)*0.5 iO @

Continuously

CAS
Empty ke No emptyslot .
PLy KeY pLty I/_/.
Predicted range 10113|114|112|18|19|21|22 20
---- Failed CAS Data array Expanded learned bucket

— Succeeded CAS

LOFT: Lock-free Index Operations

» Decrease read performance to minimize operation interference

* Read

- Linear search within the predicted range

- Reasonable overheads
* |n-place update

- Atomically update the 8-byte value pointers
* Soft delete

* Maintain the key in the data array

* Invalidate the value

LOFT: Non-blocking Retraining Process

o @
N (S
;\S Update(k1, v1') A

A

< Update(k1, v1")

S Update(k5, v5')

A
°

>
: > " S
Time 6 Copy Stage é é Retraining Stage> Sync Stage
S TTTTTT e o Tt * r ™
¢ | ko | k1 e || k5,v5 vl 0 [ko | k1 | k5,5 : ko | k1 |5 .
E vO | vl nullptr : ______ : E E vo |l v’ nullptr k1, E vO [v1" v5'
) L I sl p1 : . NO DN1)
QSet retraining and init sync the record
the append-only log 0 from the tail
Copy the data into a new estart retraining and obtain kl'pl
Q new data nodes
array

goTTTTT T menees *, | Flags in the value: joTTTeTesessssssscecccccccccccccccccoee- .~ SO e e a e nns s nsenns s .

: ' latest logged ' ' ')

vl ko | k1 ks | ! wled @9 b ko | ke k5 ; ko | ki MPTY || 5,y :

o | - [|i| vERE || Lol 5 e | o . | LI key

. v v ﬁ] DNO DN1 : : i [value

e [] bucket
O new data nodes :_: shadow data node | [] append-only log i | removed data background thread éfrontend thread
16

LOFT: Self-tuning Retraining

g Update(k1, v1")

. . . - S
* Write-intensive @ Retraining Stage

- Increase the expansion factor of data nodes Dbk ke | ks

- Increase the predicted range A RV R0 R P <
¢ COId start retraining and obtain
. oneW data nodfs
- Decrease the expansion factor
- Increase the predicted range i [0 |k [
; vO [vl' . v5
DNO DN1

 Read-intensive

[] append-only log i I removed data

- Decrease the predicted range

17

More Details about LOFT

» Concurrency correctness
» Structure modification operations

Informed decision making

Paper

EuroSys 25, March 30:Apil 3, 2025, Roltercan,

the set conditions are mel. For example, ALEX+ triggers
relraining when the fill ratio of the data node exceeds the
threshold. The blocking retrzining process decreases the per-
formance, because the index is unable to access items in
the retrained data node until the new models are ready. To
reduce the overhead of retraining, FINEdex [32] proposes a
fine-grained retraining technique, which only retrains the
records ir: the level-bin (a small B™-tree) to obtain new small
datz node and blocks all reads znd icsertiors to the retrained
level-bin. ALEX+ incurs 6.2x tail latency and FINEdex has
2.3 with 24 threads duc to the blocking retraining, while
Xindex only shows 1.5 tail latency by using non-blocking
retraining (Figure 3). To reduce the tail latency, we need to
remove the relraining process from the crilical path.
Non-blocking relraining in Xlndex however becomes a
hurdle 1o gain high performance, when the retrained tasks
are not processed prempily. Xindex retrains datz nodes witk
buffer sizes larger than 256 records, which is easily achiev-
ven in read-intensive workloads. XIndk

able needs to re-

train almost all data nedes using a single worker thread as
shown in Figure 3. However, the computing rescurces of

is unable to cor

lete such heavy retraining tasks io a short
titne. Henee, the large buffer size leads Lo long read latency.
As a result, the relative P99.9 read latency of Xndex is 5.3%,
when the theead number is 1, as shown in Figure 3.
Mismalch between Fixed Parameters and Various

Access Patterns. All the parameters for retraining are pre-
set and fixed. For example, the training prediction error is a
tredeoff between prediction zccurzcy znd the model rumbers
based on the evaluatior. results. ALEX+ determines whether
to retrair. by comparing the fill rztio of the datz node with &
fixed threskold. However, different workloads have different
request distributions. We need to customize the pararcters
for cach data node under different workloads with reason-
iggher performence. For
ode witk: frequent read operations car.
abtain higher prediction aceuracy for higher read throrzgh-
put, while the cold data node with rare data accesses can
preserve fewer free slots for memory saving. However, it is
inefiicient to pause the clients’ requests and then manually
modify the parameters. In order to be easy-to-use and adap-
tive, the learned index reeds to be self-tuning depending or:
the access patterns. Unfortunately, existing scheraes fail te
achieve these design geals.

able overheads and i

3 The LOFT Design

31 Overview

We propase LOET, an adaptive and lock-free learned index
desigred for Ligl sealability in dynemic worklozds. Figure 4
shows the overall architecture of LOFT, which contains two
layers; ore root tode ar.d multiple data nodes. The root node

Fuesan Mo o Vi Hua

4. The overall architecture of LOFT.

consists of a two-stage RMI odel and a collection of point-
ers ta the data nades. Each data node handles distinet key
ranges without overlaps. For each client request, LOFT uti-
lizes the RMT in the root niode to locate the appropriate data
node. followed by perfarming the index operation within
the data nade using the correspanding linear models. Since
all index operations follow a uniform pracess at the root
node level, our primary focus lies on the structures ard tech-
niques relzted to the data rodes. Specificelly, to mitigate the
interference brought by insertions, LOFT employs an error-
bounded insertion mechanism that places new items into
their predicted positions ard uses expanded learved buckets
to manage the overflowed items so that all index operations
- be executed in 2 lock-free marner. We present the struc-
ture of the expanded learned bi:cket and demonstrate how
T.OFT carries outindex operatiors concurrently and correctly
without locks in §3.2. To alleviate the collision between the
indexing and retraining, LOFT introduces a shadow data
node to serve the clients' requests, while allowing clients to
contribute to the retrzining process. §3.3 outlires the retrain-
ing workflow and describes how index aperations proceed
during retraining. Moreover, LOFT maintains essential sta-
tistics at low costs, making it workload-aware and enabling
adaptive retraining. §3.4 presents how to handle retraining
tasks based on an informed decision-making strategy. Fi-
nally, we demenstrate the concurrency correctness of index
aperations in §3.5.

ca

32 Lock-
LOFT supports common operztiors in traditional index struc-
tures, ircluding read, insert, ipaate, delete and scan. We
omit the repeated details of usirg the RMI model ir: the root
node to reach the data node. We present the procedures of
these operatiors upor. datz nodes without performing strue-
ture medification operations {SMOs) in this subsection and
with perfarming SMOs in §3.3.

Tndex operations are closely related to data node initial-
ization since this process determines the recard placement
We hence start with node initialization. Piecewise Linear
Approximation (PLA} algorithm 18] is employed ta obtain
the linear madels within the data nodes. Consider a linear
model for N keys, where a represents the slope, K, is the
smallest key, der:otes the giver: lookup key: This model

e Index Operations

o, ety

led {asergjy,
¥ by omyy.

an
[remory
[¢ giver

18

Experimental Setup

* Testbeds
 Two 26-core Intel(R) Xeon(R) CPU @2.10GHz

* Assign one background thread to every twelve worker threads
* Workloads
* YCSB with Zipfian distribution

* Multiple real-world datasets

* Comparisons

- Conventional: Masstree [Eurosys’12], ART-OLC [DaMoN ‘16]
- Learned: DyTIS [Eurosys’23], XIndex [PPOPP’20], FINEdex[VLDB’21], ALEX+ [VLDB’22],
LIPP+ [VLDB’22], SALI [SIGMOD’23]

19

Evaluation on Scalability

—&— Masstree —+— ART-OLC —&— XIndex —4— FINEdex | -—*— ALEX+| -—#— LIPP+ —%— SALl |t LOFT

— '__.:

n —

. 200 .

N ; \

O [‘,‘

O '160- ,,

> - ’

120+

e

= .

Q. 80-

.C I

S 4o0- .

E 0'- l T T T T T L 0' — T , T fl ?—, ?

= 1 8 16 24 48 64 72 180 1 8 16 24 48] 64 72 80

Number of threads Number of threads

Read-intensive workload Write-intensive workload

1. Due to the

design, ALEX+, 2. Due to the 3. LOFT improves the

design, LOFT achieves the throughput by
best scalability. on average.

SALI and LOFT achieve
higher throughput.

Evaluation on Adaptiveness

—— ART-OLC —— Masstree — XIndex — ALEX+ —— LOFT

120

Throughput (Mops/s)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
The number of operations (million)

1. The average throughputs 2. Our 3. LOFT illustrates long-term
of all indexes as the scheme enables LOFT to stability thanks to

proportion of insertions avoid severe performance
jitter. mechanism.

Summary

* Existing learned indexes show limited scalability in dynamic workloads.

- Display sharp performance degradation

- Fail to simultaneously achieve high throughput and high scalability
* LOFT: a Lock-free and scalable learned index.

- Error-bounded insertion scheme
- Lock-free index operations and retraining process

- Self-tuning retraining mechanism

* LOFT significantly improves the throughput with high scalability

compared with state-of-the-art schemes.

Open-source address:

Thanks!

Q&A

O yuxuanmo@hust.edu.cn

