
LOFT: A Lock-free and Adaptive Learned Index

with High Scalability for Dynamic Workloads

Yuxuan Mo, Yu Hua

Huazhong University of Science and Technology

20th European Conference on Computer Systems (EuroSys), 2025

Dynamic Workloads

➢ Contain insert operations

- Growth in the data size

- Changes in data distribution

• Widely exist in real-world applications

- e.g., Facebook, Twitter, etc.

- Some are write-heavy[1]

2[1] Dynamo: amazon’s highly available key-value store, SOSP’07

Memory Systems

• Memory systems play a critical role in compute systems

- High-speed CPUs

- Low-speed storage systems

• In-memory index structures contribute to overall performance

- e.g., B+-tree and hash maps

- Efficient data management with fast query performance

CPU

Register

Cache

Memory

Main

Memory (DRAM)

Storage

Device (HHD/SSD)

Cost Speed

Capacity

Bridge the
performance gap

3

Dilemma: Data Growth vs DRAM Scaling

[1] https://www.statista.com/statistics/871513/worldwide-data-created/
[2] https://jcmit.net/memoryprice.htm

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1985 1990 1995 2000 2005 2010 2015 2020 2025

M
e
m

o
ry

 P
ri

c
e
 (

$
/M

B
)

Year

Cost of Memory with Time

• Slowdown of DRAM scaling technology[2]

0

100

200

300

400

500

2010 2012 2014 2016 2018 2020 2022 2024 2026 2028

Z
e
tt

a
b

y
te

s
 (

Z
B

)

Year

Volume of data

• Rapid growth of stored data[1]

4

Demand: Space-efficient and Scalable Index Structures

5

B+ Tree

Key

pos

pos pos + leaf_size

B+-Tree Index

• Tree-like range-query indexes
- Multiple pointer chasing operations
- Large space overhead

Data increase

Model

(e.g., RMI)

Key

pos

pos - pre_err pos + pre_err

Learned Index

• Learned indexes
- Model-based calculation
- Computation memory

Is the learned index the optimal solution?

Performance decreases

Existing Learned Indexes in Dynamic Workloads

• Fail to scale to dynamic workloads

• Fail to simultaneously achieve high throughput and high scalability

6

>70%

- The used workloads generated from YCSB.
- XIndex@PPoPP’20, FINEdex@VLDB’21, ALEX+@VLDB’22, LIPP+@VLDB’22

Existing Learned Indexes in Dynamic Workloads

7

➢ Space-efficient

➢ High performance in dynamic workloads

Small number of parameters

- High throughputs

- High scalability

Model-based calculation

➢ Efficient query performance

Challenge 1: Interference from Insertions

8

1 74 53 8

Sorted data array

1 T1

2

Insert 2 T1

2

Insert to 2nd slot

No empty slot

• In-place Insertion
- Model-based insertion
- Good query performance

➢ Lock-based design(ALEX+@VLDB’22)

- Poor scalability

1 74 53 8

• Out-of-place Insertion
- Buffer-based insertion
- Good scalability

➢ Buffer-based design(XIndex@PPOPP’20)
- Poor query performance

1 74 53 8

Sorted data array (immutable)

Buffer

3 T1

2 Insert to buffer

3.1 check the 2nd slot

3.2

Existing schemes interfere with concurrent or subsequent reads.

F(x) = x

Long tail latency

timely

• Blocking retraining scheme (ALEX+@VLDB’22)

- Actively trigger retraining once the condition is met

- Block the following operations to the retrained node

- In the critical path

Challenge 2: Collisions between Indexing and Retraining

9

Data node Data node Data node

all operations

Frontend
thread

Non-blocking

Long average latency

Long tail latency

Timely

Challenge 2: Collision between Indexing and Retraining

10

buffer

Data node Data node Data node

background
thread

How to achieve in-time and lightweight retraining?

• Blocking retraining scheme (ALEX+@VLDB’22)

- Actively trigger retraining once the condition is met

- Block the following operations to the retrained node

- In the critical path

• Non-blocking retraining scheme (XIndex@PPOPP’20)

- Periodically check the data nodes using background threads

- Unable to handle heavy tasks in write-intensive workloads

Write-intensive

Challenge 3: Fixed Parameters vs Diverse Access Patterns

11

Write-intensive
• Static triggering mechanism:

- Perform retraining once the predefined condition is met

• Static retraining parameters

- Use fixed parameters based on preliminary experiments

Trigger retraining in advance?

Preserve more free slots in advance?

Our Solution: LOFT

12

• C1: Interference introduced by insertions

• C2: Collisions between indexing and retraining

• C3: Mismatch between fixed parameters and diverse access patterns

➢To achieve high performance in dynamic workloads:

Error-bounded insertion

Lock-free retraining

Self-tuning retraining

13

LOFT: Error-bounded Insertion

13

• Using CAS* to compete for an empty slot within the predicted range

- No shifting for sorting

- No duplicate keys

10 1814 19

1 T1

12

Insert

21 22

2 T1

12

Insert to the 2nd slot

Predicted range

Failed CAS

Succeeded CAS
T2

13

Insert

3 Continuously
CAS

T3

14

Insert

12

F(x) = (x-8)*0.5

* Compare-and-Swap

Data array

Empty key

10 181413 19 21 2212

LOFT: Error-bounded Insertion

14

• Expanded Learned Bucket for possible overflows

- A small data array with expanded models

- Increase the expansion factor as the bucket level rises

Predicted range

Failed CAS

Succeeded CAS

1 T4

20

Insert 2 T4

20

Insert to the 6th slot

No empty slotEmpty key

F(x) = (x-8) - 12

Expanded learned bucket

3 Continuously
CAS

20

F(x) = (x-8)*0.5

Concurrent insert operations are executed in a lock-free manner.

Data array

LOFT: Lock-free Index Operations

15

➢ Decrease read performance to minimize operation interference

• Read

- Linear search within the predicted range

- Reasonable overheads

• In-place update

- Atomically update the 8-byte value pointers

• Soft delete

• Maintain the key in the data array

• Invalidate the value

All index operations are executed in a lock-free manner.

LOFT: Non-blocking Retraining Process

Start

Time Copy Stage Retraining Stage Sync Stage

new data nodes shadow data node append-only log removed data background threadBT frontend thread

key

value

bucket

1

k5,v5

v0 v1

k0

nullptr

k1 EMPTY
KEY

...

...

Set retraining and init

the append-only log
BT 1

2

Copy the data into a new
array

BT 2

v0 v1

k0 k1

...

...

v5

k5

Update(k1, v1')

v1'

v v0 0 ...

63 62 04761

v v1 0 ...

v v0 1 ...

latest logged
Flags in the value:

k5,v5

v0 v1'

k0

nullptr

k1 EMPTY
KEY

...

...

k1,
p1

3

3 start retraining and obtain
new data nodes

BT

Update(k1, v1'')

k0

v0

DN0

k1

v1'

k5

v5

DN1

k0

v0

DN0

k1

v1'

k5

v5

DN1

k5,v5

v0 v1'' ...

k0

nullptr

k1 EMPTY
KEY

...

Update(k5, v5')

v5'

k1,p1

4

4
sync the record

from the tail
BT

v1''

16

LOFT: Self-tuning Retraining

17

• Write-intensive

- Increase the expansion factor of data nodes

- Increase the predicted range

• Cold

- Decrease the expansion factor

- Increase the predicted range

• Read-intensive

- Decrease the predicted range

Retraining frequency

Index size

Search length

More Details about LOFT

18

➢ Concurrency correctness

➢ Structure modification operations

➢ Informed decision making

➢ ……

Experimental Setup

19

• Testbeds

• Two 26-core Intel(R) Xeon(R) CPU @2.10GHz

• Assign one background thread to every twelve worker threads

• Workloads

• YCSB with Zipfian distribution

• Multiple real-world datasets

• Comparisons

- Conventional: Masstree [Eurosys’12], ART-OLC [DaMoN ‘16]

- Learned: DyTIS [Eurosys’23], XIndex [PPOPP’20], FINEdex[VLDB’21], ALEX+ [VLDB’22],

LIPP+ [VLDB’22], SALI [SIGMOD’23]

Evaluation on Scalability

20
: within an NUMA node

Read-intensive workload Write-intensive workload

2. Due to the lock-free
design, LOFT achieves the

best scalability.

1. Due to the in-place
insertion design, ALEX+,
SALI and LOFT achieve

higher throughput.

1

2

2

3. LOFT improves the
throughput by 1.7x – 14x

on average.

3

Evaluation on Adaptiveness

21

1. The average throughputs
of all indexes decline as the

proportion of insertions
increases.

2. Our lock-free retraining
scheme enables LOFT to

avoid severe performance
jitter.

3. LOFT illustrates long-term
stability thanks to self-

tuning retraining
mechanism.

2

Summary

22

• Existing learned indexes show limited scalability in dynamic workloads.

- Display sharp performance degradation

- Fail to simultaneously achieve high throughput and high scalability

• LOFT: a Lock-free and scalable learned index.

- Error-bounded insertion scheme

- Lock-free index operations and retraining process

- Self-tuning retraining mechanism

• LOFT significantly improves the throughput with high scalability

compared with state-of-the-art schemes.

Open-source address: https://github.com/yuxuanMo/LOFT.git

23

Thanks!

Q & A

yuxuanmo@hust.edu.cn

