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Dynamic Workloads

➢ Contain insert operations

- Growth in the data size

- Changes in data distribution

• Widely exist in real-world applications

- e.g., Facebook, Twitter, etc.

- Some are write-heavy[1]

2[1] Dynamo: amazon’s highly available key-value store, SOSP’07



Memory Systems

• Memory systems play a critical role in compute systems

- High-speed CPUs

- Low-speed storage systems

• In-memory index structures contribute to overall performance

- e.g., B+-tree and hash maps

- Efficient data management with fast query performance
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Dilemma: Data Growth vs DRAM Scaling 

[1] https://www.statista.com/statistics/871513/worldwide-data-created/ 
[2] https://jcmit.net/memoryprice.htm
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• Slowdown of DRAM scaling technology[2]
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• Rapid growth of stored data[1]
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Demand: Space-efficient and Scalable Index Structures
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B+ Tree

Key
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B+-Tree Index

• Tree-like range-query indexes
- Multiple pointer chasing operations 
- Large space overhead 

Data increase

Model

(e.g., RMI)

Key

pos

pos - pre_err pos + pre_err

Learned Index

• Learned indexes
- Model-based calculation 
- Computation memory

Is the learned index the optimal solution?

Performance decreases



Existing Learned Indexes in Dynamic Workloads 

• Fail to scale to dynamic workloads

• Fail to simultaneously achieve high throughput and high scalability
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>70%

- The used workloads generated from YCSB.
- XIndex@PPoPP’20, FINEdex@VLDB’21, ALEX+@VLDB’22, LIPP+@VLDB’22  



Existing Learned Indexes in Dynamic Workloads 
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➢ Space-efficient

➢ High performance in dynamic workloads

Small number of parameters

- High throughputs

- High scalability

Model-based calculation 

➢ Efficient query performance



Challenge 1: Interference from Insertions 
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1 74 53 8

Sorted data array

1 T1

2

Insert 2 T1

2

Insert to 2nd slot

No empty slot

• In-place Insertion
- Model-based insertion
- Good query performance

➢ Lock-based design(ALEX+@VLDB’22)

- Poor scalability

1 74 53 8

• Out-of-place Insertion
- Buffer-based insertion
- Good scalability

➢ Buffer-based design(XIndex@PPOPP’20 )
- Poor query performance

1 74 53 8

Sorted data array (immutable)

Buffer

3 T1

2 Insert to buffer

3.1 check the 2nd slot

3.2

Existing schemes interfere with concurrent or subsequent reads.

F(x) = x



Long tail latency

timely

• Blocking retraining scheme (ALEX+@VLDB’22)

- Actively trigger retraining once the condition is met

- Block the following operations to the retrained node

- In the critical path

Challenge 2: Collisions between Indexing and Retraining
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Non-blocking

Long average latency

Long tail latency

Timely

Challenge 2: Collision between Indexing and Retraining
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buffer

Data node Data node Data node

background 
thread

How to achieve in-time and lightweight retraining?

• Blocking retraining scheme (ALEX+@VLDB’22)

- Actively trigger retraining once the condition is met

- Block the following operations to the retrained node

- In the critical path

• Non-blocking retraining scheme (XIndex@PPOPP’20)

- Periodically check the data nodes using background threads

- Unable to handle heavy tasks in write-intensive workloads



Write-intensive

Challenge 3: Fixed Parameters vs Diverse Access Patterns
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Write-intensive
• Static triggering mechanism:

- Perform retraining once the predefined condition is met 

• Static retraining parameters

- Use fixed parameters based on preliminary experiments

Trigger retraining in advance?

Preserve more free slots in advance?



Our Solution: LOFT
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• C1: Interference introduced by insertions 

• C2: Collisions between indexing and retraining

• C3: Mismatch between fixed parameters and diverse access patterns

➢To achieve high performance in dynamic workloads: 

Error-bounded insertion

Lock-free retraining

Self-tuning retraining
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LOFT: Error-bounded Insertion 
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• Using CAS* to compete for an empty slot within the predicted range

- No shifting for sorting

- No duplicate keys
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F(x) = (x-8)*0.5

* Compare-and-Swap

Data array

Empty key
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LOFT: Error-bounded Insertion 
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• Expanded Learned Bucket for possible overflows 

- A small data array with expanded models

- Increase the expansion factor as the bucket level rises

Predicted range

Failed CAS

Succeeded CAS

1 T4

20

Insert 2 T4

20

Insert to the 6th slot

No empty slotEmpty key

F(x) = (x-8) - 12

Expanded learned bucket

3 Continuously
CAS

20

F(x) = (x-8)*0.5

Concurrent insert operations are executed in a lock-free manner.

Data array



LOFT: Lock-free Index Operations
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➢ Decrease read performance to minimize operation interference  

• Read

- Linear search within the predicted range

- Reasonable overheads

• In-place update

- Atomically update the 8-byte value pointers

• Soft delete

• Maintain the key in the data array

• Invalidate the value

All index operations are executed in a lock-free manner.



LOFT: Non-blocking Retraining Process 
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LOFT: Self-tuning Retraining
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• Write-intensive 

- Increase the expansion factor of data nodes

- Increase the predicted range

• Cold

- Decrease the expansion factor

- Increase the predicted range

• Read-intensive

- Decrease the predicted range

Retraining frequency

Index size

Search length



More Details about LOFT
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➢ Concurrency correctness

➢ Structure modification operations

➢ Informed decision making

➢ ……



Experimental Setup
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• Testbeds

• Two 26-core Intel(R) Xeon(R) CPU @2.10GHz

• Assign one background thread to every twelve worker threads

• Workloads

• YCSB with Zipfian distribution

• Multiple real-world datasets

• Comparisons

- Conventional: Masstree [Eurosys’12], ART-OLC [DaMoN ‘16]

- Learned: DyTIS [Eurosys’23], XIndex [PPOPP’20], FINEdex[VLDB’21], ALEX+ [VLDB’22], 

LIPP+ [VLDB’22], SALI [SIGMOD’23]



Evaluation on Scalability
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: within an NUMA node

Read-intensive workload Write-intensive workload

2. Due to the lock-free
design, LOFT achieves the 

best scalability.

1. Due to the in-place 
insertion design, ALEX+, 
SALI and LOFT achieve 

higher throughput.

1

2

2

3. LOFT improves the 
throughput by 1.7x – 14x 

on average.
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Evaluation on Adaptiveness
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1. The average throughputs 
of all indexes decline as the 

proportion of insertions 
increases.

2. Our lock-free retraining 
scheme  enables LOFT to 

avoid severe performance 
jitter.

3. LOFT illustrates long-term 
stability thanks to self-

tuning retraining 
mechanism.
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Summary
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• Existing learned indexes show limited scalability in dynamic workloads.

- Display sharp performance degradation

- Fail to simultaneously achieve high throughput and high scalability  

• LOFT: a Lock-free and scalable learned index.

- Error-bounded insertion scheme

- Lock-free index operations and retraining process 

- Self-tuning retraining mechanism 

• LOFT significantly improves the throughput with high scalability 

compared with state-of-the-art schemes.

Open-source address: https://github.com/yuxuanMo/LOFT.git 
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Thanks!

Q & A

yuxuanmo@hust.edu.cn


