
ROLEX: A Scalable RDMA-oriented Learned Key-

Value Store for Disaggregated Memory Systems

Pengfei Li, Yu Hua, Pengfei Zuo, Zhangyu Chen, Jiajie Sheng

Huazhong University of Science and Technology

The USENIX Conference on File and Storage Technologies (FAST), 2023

1

Disaggregated Memory Systems (DMS)

2

High resource utilization

Flexible hardware scalability

Efficient data sharing

40-400 Gbps

Remote CPU bypassing

Memory Pool

Compute Pool

RDMA network

Trees Learned indexes

Ordered KV Store

3

Get(k), Put(k, v)

Level

by

Level

Prediction

············

Leaf node Predicted range

Get(k)

Put(k, v)

Tree-based Structures in DMS – Two Sided

4

B+ Tree

Sorted Data

Memory nodeCompute node

• EMT@NSDI’19

• Cell @ ATC’16

RPC

1 3 7 8 ···

Tree-based Structures in DMS – Two Sided

5

B+ Tree

Sorted Data

Memory node

Get(k)

Put(k, v)

Compute node

RPC

Limited computing resources

1 3 7 8 ···

1 3 7 8 ···

Tree-based Structures in DMS – One Sided

6

B+ Tree

Sorted Data

Memory node

Get(k)

Put(k, v)

Compute node

Local Caching

One Sided RDMA

Cache Partial Tree

• FG @ SIGMOD’19

• Sherman @ SIGMOD’22

• RACE @ ATC’21

1 3 7 8 ···

Tree-based Structures in DMS – One Sided

7

B+ Tree

Sorted Data

Memory nodeCompute node

Local Caching

One Sided RDMA

Huge memory consumption

Limited local cache

Get(k)

Put(k, v)

1 3 7 8 ···

Tree-based Structures in DMS – One Sided

8

B+ Tree

Sorted Data

Memory nodeCompute node

Local Caching

Redundant RTTs

Decrease the performance

Get(k)

Put(k, v)

Get(k)

Put(k, v)

1 3 7 8 ···

Learned-indexes in DMS

9

Learned Index

Memory nodeCompute node

Sorted Data

Order-of-magnitude space savings

Fully cached

Learned cache

XStore @ OSDI’20

Learned-indexes in DMS

10

Learned Index

Memory node

Get(k)

Compute node

One RTT
Sorted Data

Prediction
1 3 7 8 ···

Learned-indexes in DMS

11

Learned Index

Memory node

Put(k, v)

Compute node

Sorted Data

RPC

B+ Tree

1 3 7 8 ···

Put(k, v)

Learned-indexes in DMS

12

Learned Index

Memory nodeCompute node

Sorted Data

RPC

B+ Tree

Limited computing resources

Hybrid structures

for dynamic workloads

Invalid cache

Challenge 1: Computing Bottleneck

13

retrain

search

update

insert

delete

RDMA networkRPC Limited computing resources

Massive data requests

GAP!!!

Challenge 2: Overloaded Bandwidth

14

retrain search update insert delete

RDMA network

Insufficient bandwidth for

• Tree balancing

• Trained data transferring

Offload

Challenge 3: Inconsistency Issues

15

RDMA networkUpdate Inconsistent states among nodes

RDMA-Oriented KVS Using Learned Indexes (ROLEX)

16

M
e
m
o
r
y

P
o
o
l

C
o
m
p
u
t
e

P
o
o
l

RDMA

Data

Leaf Region

CPU

Learned index

Leaf Upper model PLR modelMetadata

Insert model pointer

Head

Ptr
1

Ptr
2

CirQ:

Learned cache Learned cache Learned cache Learned cache

Fixed-size leaves Asynchronous retraining

Retraining-decoupled learned index

Local learned cache

One-sided Indexing

• Get(k)

• Put(k,v)

Retraining-Decoupled Learned Indexes

17

M
e
m
o
r
y

P
o
o
l

C
o
m
p
u
t
e

P
o
o
l

RDMA

Data

Leaf Region

CPU

Learned index

Leaf Upper model PLR modelMetadata

Insert model pointer

Head

Ptr
1

Ptr
2

CirQ:

Learned cache Learned cache Learned cache Learned cache

Retraining-decoupled learned index

key

p
o
s
i
t
i
o
n

Retraining-Decoupled Learned Indexes

18

CDF

model: f(x)

2e

2e

a

a

Error! out of prediction range

key

p
o
s
i
t
i
o
n

Retraining-Decoupled Learned Indexes

19

CDF

model: f(x)

2e

2e

a

a

e

e

CDF

f(x)

b

d

d

b

Move no more than δ positions

key

p
o
s
i
t
i
o
n

Retraining-Decoupled Learned Indexes

20

CDF

model: f(x)

2e

2e

a

a

e

e

CDF

f(x)

b

d

d

b

one leaf

Store data into fixed-size leaves

Data-movement constraints

• Moving within fixed-size leaves

• Synonym-leaf sharing

Memory Pool Stores Data

21

M
e
m
o
r
y

P
o
o
l

C
o
m
p
u
t
e

P
o
o
l

RDMA

Data

Leaf Region

CPU

Learned index

Leaf Upper model PLR modelMetadata

Insert model pointer

Head

Ptr
1

Ptr
2

CirQ:

Learned cache Learned cache Learned cache Learned cache

alloc_num (8B): the number of the allocated leaves

Atomically allocate leaves via FAA (Fetch and Add)

Fixed-size leaves

Learned Model

22

M
e
m
o
r
y

P
o
o
l

C
o
m
p
u
t
e

P
o
o
l

RDMA

Data

Leaf Region

CPU

Learned index

Leaf Upper model PLR modelMetadata

Insert model pointer

Head

Ptr
1

Ptr
2

CirQ:

Learned cache Learned cache Learned cache Learned cache

Learned models
Learned model

Local learned cache

Learned Model – Piecewise Linear Regression Models

23

LT

Learned model

SLT

entry (8B)

entry (8B)

Upper models

PLR models

Leaf region

key w b

parameter

Learned Model – Leaf Table

24

LT

Learned model

SLT

entry (8B)

entry (8B)

Upper models

PLR models

Leaf region

key w b

parameter 1 bit

lock ptr

7 bit 8 bit 48 bit

LRN LN

Example:

ptr:3 LN:0

LT SLT

ptr:0 LN:1

ptr:6 LN:2

ptr:0 LN:4

ptr:0 LN:5

slotuse
...

ptr:0 LN:6

...

ptr:0 LN:8

0

1

2

3

4

0

6

3

One-sided Indexing

25

M
e
m
o
r
y

P
o
o
l

C
o
m
p
u
t
e

P
o
o
l

RDMA

Data

Leaf Region

CPU

Learned index

Leaf Upper model PLR modelMetadata

Insert model pointer

Head

Ptr
1

Ptr
2

CirQ:

Learned cache Learned cache Learned cache Learned cache

One-sided Indexing

• Get(k)

• Put(k,v)

One-sided Indexing – Get (k)

26

Leaf region alloc_num

Network

Compute Node

Memory Node

Learned Index

Get(k)

LT SLT

LT SLT

Translate

Predict

𝑃𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑛𝑔𝑒

One-sided Indexing – Put (k, v)

27

Leaf region alloc_num

Network

Compute Node

Memory Node

Learned Index

Put(k,v) Learned Cache

u

LT SLT

𝐿𝑖𝑛𝑠𝑒𝑟𝑡

𝑃𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑛𝑔𝑒

v

WRITE

w

One-sided Indexing – Put (k, v)

28

Leaf region alloc_num syn

Network

Compute Node

Memory Node

Learned Index

Put(k,v) Learned Cache

u

LT SLT

𝐿𝑖𝑛𝑠𝑒𝑟𝑡

FAA

FAA

synonym leaf

v

WRITE

w

𝑃𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑛𝑔𝑒

Asynchronous Retraining

29

M
e
m
o
r
y

P
o
o
l

C
o
m
p
u
t
e

P
o
o
l

RDMA

Data

Leaf Region

CPU

Learned index

Leaf Upper model PLR modelMetadata

Insert model pointer

Head

Ptr
1

Ptr
2

CirQ:

Learned cache Learned cache Learned cache Learned cache

Asynchronous retraining

Asynchronous Retraining – Consistency Guarantee

30

alloc_num L3 L5 ··· L8 ···

LT SLT

Old model

Retraining LT SLT

New model

• Checking old LT and SLT

• Insert new leaf into new SLT

Identify the modified data

Experimental Setup

31

 Testbed

− 3 compute nodes + 3 memory nodes

− 100Gb Mellanox ConnectX-5 IB RNIC

 Workloads

− YCSB; Lognormal & Normal distributions

− 8B keys and values

 Comparisons

− XStore-D [OSDI’20]

− Sherman [SIGMOD’22]

− EMT-D (eRPC + Masstree) [NSDI’19]

− FG (Fine-grained B-link Tree) [SIGMOD’19]

100Gb RNIC

Performance on YCSB

32

• Competitive performance on static workloads

• 1.3x~2.8x improvements on dynamic workloads

Scale with CPU cores on compute nodes

33

• ROLEX efficiently scale with computing resources

(a) Read performance (b) Write performance

Training Latency

34

2 4 8 16 32 64 128 256
0

100

200

300

400

500
L
a
te

n
c
y
 (

μ
s
)

The number of leaves

 PLR+LT

 LT

PLR model

• Training 128 leaves consumes about 300μs

• Retraining a PLR model is efficient

Memory Overhead

35

1x106 5x106 1x107 5x107 1x108 5x108
0

300

600

900

1200

1500
M

e
m

o
ry

 O
v
e

rh
e

a
d

 (
M

B
)

The number of inserts

 Tree-8 XStore-D

 Tree-16 ROLEX

• (S)LT accounts for 98% memory overhead

• Learned models save order-of-magnitude space

Conclusion

36

 Disaggregated memory systems require efficient one-sided operations

− Tree-based structures incur multiple RTTs

− Learned indexes fail to dynamically change with one-sided operations

 ROLEX: a scalable RDMA-oriented KV store using learned indexes

− Operation decoupling

− One-sided indexing

− Asynchronous retraining

 1.3x~2.8x improvements on the dynamic workloads

− Check ROLEX @ https://github.com/iotlpf/ROLEX

https://github.com/iotlpf/ROLEX

Thanks!

Q & A

37

cspfli@hust.edu.cn

