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Disaggregated Memory Systems (DMS)
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High resource utilization

Flexible hardware scalability

Efficient data sharing

40-400 Gbps

Remote CPU bypassing

Memory Pool

Compute Pool

RDMA network



Trees Learned indexes

Ordered KV Store
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Get(k)

Put(k, v)

Tree-based Structures in DMS – Two Sided
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B+ Tree

Sorted Data

Memory nodeCompute node

• EMT@NSDI’19

• Cell @ ATC’16

RPC

1 3 7 8 ···



Tree-based Structures in DMS – Two Sided
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B+ Tree

Sorted Data

Memory node

Get(k)

Put(k, v)

Compute node

RPC

Limited computing resources
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Tree-based Structures in DMS – One Sided
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B+ Tree

Sorted Data

Memory node

Get(k)

Put(k, v)

Compute node

Local Caching

One Sided   RDMA

Cache Partial Tree

• FG @ SIGMOD’19

• Sherman @ SIGMOD’22

• RACE @ ATC’21
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Tree-based Structures in DMS – One Sided
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B+ Tree

Sorted Data

Memory nodeCompute node

Local Caching

One Sided   RDMA

Huge memory consumption

Limited local cache

Get(k)

Put(k, v)
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Tree-based Structures in DMS – One Sided
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B+ Tree

Sorted Data

Memory nodeCompute node

Local Caching

Redundant   RTTs

Decrease the performance

Get(k)

Put(k, v)



Get(k)

Put(k, v)
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Learned-indexes in DMS
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Learned Index

Memory nodeCompute node

Sorted Data

Order-of-magnitude space savings

Fully cached

Learned cache

XStore @ OSDI’20



Learned-indexes in DMS
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Learned Index

Memory node

Get(k)

Compute node

One   RTT
Sorted Data

Prediction
1 3 7 8 ···



Learned-indexes in DMS
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Learned Index

Memory node

Put(k, v)

Compute node

Sorted Data

RPC

B+ Tree
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Put(k, v)

Learned-indexes in DMS
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Learned Index

Memory nodeCompute node

Sorted Data

RPC

B+ Tree

Limited computing resources

Hybrid structures

for dynamic workloads

Invalid cache



Challenge 1: Computing Bottleneck
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retrain

search

update

insert

delete

RDMA networkRPC Limited computing resources

Massive data requests

GAP!!!



Challenge 2: Overloaded Bandwidth
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retrain search update insert delete

RDMA network

Insufficient bandwidth for

• Tree balancing

• Trained data transferring

Offload



Challenge 3: Inconsistency Issues
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RDMA networkUpdate Inconsistent states among nodes



RDMA-Oriented KVS Using Learned Indexes (ROLEX)
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Fixed-size leaves Asynchronous retraining

Retraining-decoupled learned index

Local learned cache

One-sided Indexing

• Get(k)

• Put(k,v)



Retraining-Decoupled Learned Indexes
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Retraining-Decoupled Learned Indexes
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CDF

model: f(x)

2e

2e

a
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Error! out of prediction range
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Retraining-Decoupled Learned Indexes
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Retraining-Decoupled Learned Indexes
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one leaf

Store data into fixed-size leaves

Data-movement constraints

• Moving within fixed-size leaves

• Synonym-leaf sharing



Memory Pool Stores Data
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Learned Model

22

M
e
m
o
r
y
 
P
o
o
l

C
o
m
p
u
t
e
 
P
o
o
l

RDMA

Data

Leaf Region

CPU

Learned index

Leaf Upper model PLR modelMetadata

Insert model pointer

Head

Ptr
1

Ptr
2

CirQ:

Learned cache Learned cache Learned cache Learned cache

Learned models
Learned model

Local learned cache



Learned Model – Piecewise Linear Regression Models
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LT

Learned model

SLT

entry (8B)

entry (8B)

Upper models

PLR models

Leaf region

key w b

parameter



Learned Model – Leaf  Table
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LT

Learned model

SLT

entry (8B)

entry (8B)

Upper models

PLR models

Leaf region

key w b

parameter 1 bit

lock ptr

7 bit 8 bit 48 bit

LRN LN

Example:

ptr:3 LN:0

LT SLT
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One-sided Indexing
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• Get(k)
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One-sided Indexing – Get (k)
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Leaf region alloc_num
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Compute Node

Memory Node

Learned Index

Get(k)

LT SLT

LT SLT

Translate
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One-sided Indexing – Put (k, v)
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One-sided Indexing – Put (k, v)

28

Leaf region alloc_num syn

Network

Compute Node

Memory Node

Learned Index

Put(k,v) Learned Cache

u

LT SLT

𝐿𝑖𝑛𝑠𝑒𝑟𝑡

FAA

FAA

synonym leaf

v

WRITE

w 

𝑃𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑛𝑔𝑒



Asynchronous Retraining
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Asynchronous Retraining – Consistency Guarantee
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alloc_num L3 L5 ··· L8 ···

LT SLT

Old model

Retraining LT SLT

New model

• Checking old LT and SLT

• Insert new leaf  into new SLT

Identify the modified data



Experimental Setup
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 Testbed

− 3 compute nodes + 3 memory nodes

− 100Gb Mellanox ConnectX-5 IB RNIC

 Workloads

− YCSB; Lognormal & Normal distributions

− 8B keys and values

 Comparisons

− XStore-D [OSDI’20]

− Sherman [SIGMOD’22]

− EMT-D (eRPC + Masstree) [NSDI’19]

− FG (Fine-grained B-link Tree) [SIGMOD’19]

100Gb RNIC



Performance on YCSB
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• Competitive performance on static workloads

• 1.3x~2.8x improvements on dynamic workloads 



Scale with CPU cores on compute nodes
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• ROLEX efficiently scale with computing resources

(a) Read performance (b) Write performance



Training Latency
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• Training 128 leaves consumes about 300μs

• Retraining a PLR model is efficient



Memory Overhead
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• (S)LT accounts for 98% memory overhead  

• Learned models save order-of-magnitude space



Conclusion
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 Disaggregated memory systems require efficient one-sided operations

− Tree-based structures incur multiple RTTs

− Learned indexes fail to dynamically change with one-sided operations

 ROLEX: a scalable RDMA-oriented KV store using learned indexes 

− Operation decoupling

− One-sided indexing

− Asynchronous retraining

 1.3x~2.8x improvements on the dynamic workloads

− Check ROLEX @ https://github.com/iotlpf/ROLEX

https://github.com/iotlpf/ROLEX


Thanks!

Q  &  A
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cspfli@hust.edu.cn


