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Bottleneck: In-Memory Index

* Traditional B/B*Tree are widely employed in HPC systems. D 3

cassandra
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 Memory bottleneck: limited scalability in capacity.

* Index bottleneck: unaware of data distribution patterns.
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[1] Source: https://my.idc.com/getdoc.jsp?containerld=prCHC52667624
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Solution: HW & SW Co-Design

 HW solution: Non-Volatile Memory (e.g., Intel Optane DC PMEM, CXL-SSD)
 DRAM-like Byte-addressability & Storage-like Capacity.

< S Intel Optane DC PMEM!1]

Capacity

[1] Source: https://www.intel.cn/content/www/cn/zh/architecture-and-technology/optane-dc-persistent-memory.html



Solution: HW & SW Co-Design

 HW solution: Non-Volatile Memory (e.g., Intel Optane DC PMEM, CXL-SSD)
 DRAM-like Byte-addressability & Storage-like Capacity.

 SW solution: Learned Index (e.g., neural network, linear regression).
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Solution: HW & SW Co-Design
SW

LOFT [Eurosys’25]
ALEX [SIGMOD’20] Persistent
Learned Index
PACTree [SOSP’21]
B*Tree ROART [FAST’21]
TLBTree [ICDE’21]
> HW
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Challenge #1: Expensive Model Retraining

e Learned indexes require frequent model retraining to learn new data distributions.
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Challenge #1: Expensive Model Retraining

* Learned indexes require frequent model retraining to learn new data distributions.

 Model retraining is time-consuming, especially on low-speed storage devices.
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[1] One-dimensional linear regression using least squares method.



Challenge #2: Excessive NVM Access

* Model access is on the critical path of persistent learned indexes.

 NVM exhibits lower performance metrics than DRAM.

___PerDIMM_| Optane DCPMEM | DRAM _

Latency ~170ns ~75ns
Read Bandwidth ~7.6 GB/s ~15 GB/s
Write Bandwidth ~2.3 GB/s ~15 GB/s

Limited Bandwidth!

Capacity



Challenge #2: Excessive NVM Access

* Model access is on the critical path of persistent learned indexes.

 NVM exhibits lower performance metrics than DRAM.

 Mismatched access granularity between CPU Cache and NVM.
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Challenge #3: Inefficient Recovery Mechanism

« State-of-the-art persistent learned indexes have to rebuild partial index structures!¥

or redo heavy NVM logs!?] during recovery.
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[1] APEX: A High-Performance Learned Index on Persistent Memory, VLDB’2022
[2] PLIN: A Persistent Learned Index for Non-Volatile Memory with High Performance and Instant Recovery, VLDB’2022



DALdex: DPU-Accelerated Learned Index

 NVIDIA BlueField Data Processing Unit (DPU).

e Hardware Accelerator: offload CPU-intensive tasks.

e Fault Tolerance: hardware level isolation!!,
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[1] LineFS: Efficient SmartNIC Offload of a Distributed File System with Pipeline Parallelism, SOSP’21



DALdex Design

* Challenge #1: Expensive Model Retraining
 DPU-Offloaded Incremental Learning
* Challenge #2: Excessive NVM Access

* NVM-friendly Index Structure
* Challenge #3: Inefficient Recovery Mechanism

 DPU-Assisted Instant Recovery



Online Incremental Learning

e Offline Batched Learning: train new models from scratch.

* Online Incremental Learning: retrain old models based on new data distributions.
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DPU-Offloaded Incremental Learning

* Online incremental learning scheme is still on the critical path.

e Further offload incremental learning to the DPU side.

Get Intermediate Result Start Incremental Learning

CPU | Search Shift Insert Incremental learning

On the critical path

Online Incremental Learning
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DPU-Offloaded Incremental Learning
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NVM-Friendly Index Structure

Model
Layer

Block
Layer

DRAM-Accelerated Model Layer: reduce NVM access.

NVM-Aware Block Layer: minimize NVM amplification.
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DPU-Assisted Instant Recovery

 The offloaded model structure naturally serves as a model backup.
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Experimental Setup

* Testbed
— Intel(R) Xeon(R) Gold 6230 CPU @ 2.00GHz
— 384GB DRAM & 768GB Intel Optane DC PMEM
— NVIDIA Mellanox BlueField-2 DPU
* Workloads
— Real-World Datasets: Books, Genome, OSM
— 200M 8B Integer Keys & Values
* Comparisons
— Learned Index: APEX [VLDB’21], PLIN [VLDB’22]
— Non-Learned index: TLBTree [ICDE’21], ROART [FAST’21], PACTree [SOSP’21]
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Overall Performance

—o— DALdex| —&— APEX —— PLIN —»— ROART ——PACTree —=— TLBTree

0 A\ 5.46X @ 25 A\ 3.12X
2291 \ 3 20
= 40 S|
:530 i ?:_;’ 1 5 B
220 %10 -
210} = Sr
Eo Eo
1 6 1218 24 30 36 4248 52 1 6 1218 24 30 36 4248 52
Number of Threads Number of Threads
Read-Intensive Write-Intensive

DALdex improves the overall throughput by 1.07-6.34X. J
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Skewed Workloads
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{ DALdex improves the throughput by 1.11-7.70X under skewed workloads. J

15



Memory Overheads

/1 DALdex| RN\ APEX PLIN
=301 123.7% 91.8% =8l 35.0% 43. 29.4%
o (NN el AN N
=5t TN LN TN | 2400 PN PR E
o PN B B R
slZNZN 7N TN 2NN
' Books Genome OSM Books Genome OSM
Datasets Datasets
DRAM overhead NVM overhead

{ DALdex reduces memory overheads by 58.9-123.7% and 18.9-43.4%.




Summary

* Existing persistent learned indexes suffer from expensive model retraining and

excessive NVM access.
 DALdex: A DPU-Accelerated Persistent Learned Index via Incremental Learning

 DPU-Offloaded Incremental Learning
* NVM-Friendly Index Structure

 DPU-Assisted Instant Recovery

* DALdex significantly outperforms state-of-the-art persistent indexes with
minimal DRAM and NVM overheads.

Open Source Code: https://qgithub.com/CitySkylines/DALdex
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https://github.com/CitySkylines/DALdex
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Aoyang Tong, Yu Hua, Menglei Chen
Huazhong University of Science and Technology

Email: aoyangtong@hust.edu.cn
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