
Aoyang Tong, Yu Hua, Menglei Chen

Huazhong University of Science and Technology

39th ACM International Conference on Supercomputing (ICS), 2025

DALdex: A DPU-Accelerated Persistent 
Learned Index via Incremental Learning



2

Bottleneck: In-Memory Index

• Traditional B/B+Tree are widely employed in HPC systems.

• Memory bottleneck: limited scalability in capacity.

[1] Source: https://my.idc.com/getdoc.jsp?containerId=prCHC52667624

• Index bottleneck: unaware of data distribution patterns.



3

DRAM

NVM

SSD

HDD

Cache

Capacity

Solution: HW & SW Co-Design

• HW solution: Non-Volatile Memory (e.g., Intel Optane DC PMEM, CXL-SSD)

• DRAM-like Byte-addressability & Storage-like Capacity.

Intel Optane DC PMEM[1]

[1] Source: https://www.intel.cn/content/www/cn/zh/architecture-and-technology/optane-dc-persistent-memory.html



3

Solution: HW & SW Co-Design

• HW solution: Non-Volatile Memory (e.g., Intel Optane DC PMEM, CXL-SSD)

• DRAM-like Byte-addressability & Storage-like Capacity.

• SW solution: Learned Index (e.g., neural network, linear regression).

…

Model

Key

Pos

Key

Pos

B+Tree Learned Index

Model as Index



3
DRAM Non-Volatile Memory

B+Tree

Learned Index

HW

SW

Persistent 
Learned Index

LOFT [Eurosys’25]
FINEdex [VLDB’21]
ALEX [SIGMOD’20]

PACTree [SOSP’21]
ROART [FAST’21]
TLBTree [ICDE’21] 

Solution: HW & SW Co-Design



4

Model

Key

Pos

Model’

Key

Pos

• Learned indexes require frequent model retraining to learn new data distributions.

Prediction Error!

Model Retraining

Challenge #1: Expensive Model Retraining 



4

𝑦 = 𝑎𝑥 + 𝑏[1]

𝑎 =
σ(𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)

σ(𝑥𝑖 − ҧ𝑥)2

𝑏 = ത𝑦 − 𝑎 ҧ𝑥

Bottleneck!

Model

Model Model

Model Model Model

Key

Pos

• Learned indexes require frequent model retraining to learn new data distributions.

• Model retraining is time-consuming, especially on low-speed storage devices.

             

 

 

 

 

 

 
 
  
 
  
  
 
  
  

 
  
 
 
 
 

                   

      

      

      

     

[1] One-dimensional linear regression using least squares method.

4 Seconds!

Challenge #1: Expensive Model Retraining 



5

Challenge #2: Excessive NVM Access

• Model access is on the critical path of persistent learned indexes.

• NVM exhibits lower performance metrics than DRAM.

Limited Bandwidth!

DRAM

NVM

SSD

HDD

Cache

Capacity

Per DIMM Optane DC PMEM DRAM

Latency ~170ns ~75ns

Read Bandwidth ~7.6 GB/s ~15 GB/s

Write Bandwidth ~2.3 GB/s ~15 GB/s



5

Challenge #2: Excessive NVM Access

• Model access is on the critical path of persistent learned indexes.

• NVM exhibits lower performance metrics than DRAM.

• Mismatched access granularity between CPU Cache and NVM.

3D-XPoint Media

XPBuffer

Cache

XPLine: 256B

CacheLine: 64B

WPQ

4X Amplification!

DRAM

NVM

SSD

HDD

Cache

Capacity

NVM



6

Challenge #3: Inefficient Recovery Mechanism

• State-of-the-art persistent learned indexes have to rebuild partial index structures[1]

or redo heavy NVM logs[2] during recovery.

[1] APEX: A High-Performance Learned Index on Persistent Memory, VLDB’2022
[2] PLIN: A Persistent Learned Index for Non-Volatile Memory with High Performance and Instant Recovery, VLDB’2022

Model

Key

Pos

Model

Key

Pos Log

Rebuild Index Structure Redo NVM Logs



7

DALdex: DPU-Accelerated Learned Index

• NVIDIA BlueField Data Processing Unit (DPU).

[1] LineFS: Efficient SmartNIC Offload of a Distributed File System with Pipeline Parallelism, SOSP’21

PCIe
Network 

Traffic

P
C

Ie
 S

w
it

ch

TX
/R

X

DRAM

CPU

• Hardware Accelerator: offload CPU-intensive tasks.

• Fault Tolerance: hardware level isolation[1].

Hardware Level Isolation

Component Configuration

Cores 8× ARMv8 A72 processors

DRAM 16GB on-board DDR4

Network 1× Ethernet port 200Gb/s

PCIe 16× PCIe Gen 4.0



8

DALdex Design

• Challenge #1: Expensive Model Retraining 

• DPU-Offloaded Incremental Learning

• Challenge #2: Excessive NVM Access

• NVM-friendly Index Structure

• Challenge #3: Inefficient Recovery Mechanism

• DPU-Assisted Instant Recovery



9

Offline Batched Learning Online Incremental Learning

Online Incremental Learning

• Offline Batched Learning: train new models from scratch.

• Online Incremental Learning: retrain old models based on new data distributions.

𝑆𝑥𝑛 =෍
0

𝑛−1

𝑥𝑖 𝑆𝑥𝑥𝑛 =෍
0

𝑛−1

𝑥𝑖
2

𝑆𝑦𝑛 =෍
0

𝑛−1

𝑦𝑖 𝑆𝑥𝑦𝑛 =෍
0

𝑛−1

𝑥𝑖𝑦𝑖

𝑎𝑛𝑒𝑤 =
𝑛 + 1 𝑆𝑥𝑦𝑛+1 − 𝑆𝑥𝑛+1𝑆𝑦𝑛+1
𝑛 + 1 𝑆𝑥𝑥𝑛+1 − (𝑆𝑥𝑛+1)

2

𝑏𝑛𝑒𝑤 =
𝑆𝑥𝑥𝑛+1𝑆𝑦𝑛+1 − 𝑆𝑥𝑛+1𝑆𝑥𝑦𝑛+1
𝑛 + 1 𝑆𝑥𝑥𝑛+1 − (𝑆𝑥𝑛+1)

2

Intermediate Results

𝑎 =
σ(𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)

σ(𝑥𝑖 − ҧ𝑥)2

𝑏 = ത𝑦 − 𝑎 ҧ𝑥



10

DPU-Offloaded Incremental Learning

Wait

Online Incremental Learning

DPU-Offloaded Incremental Learning

CPU

CPU

DPU Incremental learning

Search Shift Insert

• Online incremental learning scheme is still on the critical path.

• Further offload incremental learning to the DPU side.

Incremental learningSearch Shift Insert On the critical path

Off the critical path

Get Intermediate Result Start Incremental Learning



111

NVM-Friendly Index Structure

Model

Model Model

Model Model Model

...

( DRAM )

( NVM )

Model 
Layer

Block 
Layer

• DRAM-Accelerated Model Layer: reduce NVM access.

• NVM-Aware Block Layer: minimize NVM amplification.

Lock

Min_key
K
V

K
V

K
V

K
V

Entry Buffer Bitmap FPS

NextNum

Model B1 B5 B7 ...Header

Accelerator Nodes Data Blocks

256B-Aligned



12

Model

Model Model

Model Model Model

CPU

PCIe 
...

( DRAM )

( NVM )

DPU

Model 
Layer

Block 
Layer

ΔModelModel

a’ = a + Δa
b’ = b + Δb

DPU-Assisted Instant Recovery

• The offloaded model structure naturally serves as a model backup.

DMA



• Testbed

– Intel(R) Xeon(R) Gold 6230 CPU @ 2.00GHz

– 384GB DRAM & 768GB Intel Optane DC PMEM

– NVIDIA Mellanox BlueField-2 DPU

• Workloads

– Real-World Datasets: Books, Genome, OSM

– 200M 8B Integer Keys & Values

• Comparisons

– Learned Index: APEX [VLDB’21], PLIN [VLDB’22]

– Non-Learned index: TLBTree [ICDE’21], ROART [FAST’21], PACTree [SOSP’21]

13

Experimental Setup



                  
 

  

  

  

  

  

 
 
  
 
 
 
 
 
  
  

 
 
 
  
 

                 

                                                 

                  
 

 

  

  

  

  

 
 
  
 
 
 
 
 
  
  

 
 
 
  
 

                 

14

Overall Performance

DALdex improves the overall throughput by 1.07-6.34X.

5.46X

Read-Intensive Write-Intensive

3.12X



                
 

  

  

  

  

 
 
  
 
 
 
 
 
  
  

 
 
 
  
 

          

                                                 

                
 

 

  

  

  

  

 
 
  
 
 
 
 
 
  
  

 
 
 
  
 

          

15

Skewed Workloads

Read-Intensive (52 threads)

DALdex improves the throughput by 1.11-7.70X under skewed workloads.

7.33X 3.14X

Write-Intensive (52 threads)



              
   

   

   

   

   

   

   

 
 
 
 
 
 
 
  
 
 
  
 
 
 

        

              
 

 

 

 

 

 
 
 
 
 
 
 
  
 
 
  
 
 
 

        

                             

16

Memory Overheads

DRAM overhead

91.8%

NVM overhead

58.9%

123.7% 35.0% 43.4% 29.4%

DALdex reduces memory overheads by 58.9-123.7% and 18.9-43.4%.



17

• Existing persistent learned indexes suffer from expensive model retraining and 

excessive NVM access.

Summary

• DALdex: A DPU-Accelerated Persistent Learned Index via Incremental Learning

• DPU-Offloaded Incremental Learning

• NVM-Friendly Index Structure

• DPU-Assisted Instant Recovery

• DALdex significantly outperforms state-of-the-art persistent indexes with 

minimal DRAM and NVM overheads.

Open Source Code: https://github.com/CitySkylines/DALdex

https://github.com/CitySkylines/DALdex


Email: aoyangtong@hust.edu.cn

Aoyang Tong, Yu Hua, Menglei Chen

Huazhong University of Science and Technology

Thanks!
Q & A

mailto:aoyangtong@hust.edu.cn

