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Persistent Memory (PM)

PM characteristics
–DRAM-comparable performance
–TB-scale capacity
–Non-volatility
–Byte-addressability

New opportunities for memory systems
–Lower cost/GB than DRAM
–Instant recovery from PM
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PM Programming
PM programming is non-trivial

– Volatile CPU caches

x = A;

Cache

PM

Volatile domain

Persistent domain
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PM Programming
PM programming is non-trivial

– Volatile CPU caches
– Persistency reordering

Architectural support for PM
– Flush for durability (e.g., clwb from x86)
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PM Crash-Consistency Bugs

Correctness bugs
–Causing correctness violation
–Patterns:

• Missing flush/fence
• …

x = A;
y = x;
clwb &y;
sfence;
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Correctness bugs
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PM Crash-Consistency Bugs

Correctness bugs
–Causing correctness violation
–Patterns:
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• …
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PM Crash-Consistency Bugs

Correctness bugs
–Causing correctness violation
–Patterns:

• Missing flush/fence
• …

Performance bugs
–Causing performance degradation
–Patterns:

• Extra flush/fence
• …

Extra flush

Lack of flush/fence

x = A;
y = x;
clwb &y;
sfence;

x = A;
clwb &x;
sfence;
clwb &x;
y = x;
clwb &y;
sfence;
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Inconsistent data

Unnecessary stall



Existing Automatic PM Debugging Tools

Correctness bugs
–Missing flush/fence

• AGAMOTTO [OSDI ’20] 

• PMDebugger [ASPLOS ’21]

• …

Performance bugs
–Extra flush/fence

• AGAMOTTO, PMDebugger, …

x = A;
y = x;
clwb &y;
sfence;

x = A;
clwb &x;
sfence;
clwb &x;
y = x;
clwb &y;
sfence;

Are PM writes followed by flush/fence?

Are flushes/fences necessary?
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Lack of considerations for concurrent executions!



Crash-Inconsistency in Concurrent Executions

Concurrency is important to PM system performance
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* Assume x = 0, y = 0 initially

Crash-Inconsistency in Concurrent Executions

Concurrency is important to PM system performance
PM-specific concurrency bugs exist

Cache

x = A;

clwb &x;
sfence;

Thread 1

y = x;
clwb &y;
sfence;

Thread 2

Time

PM

Inconsistency: y ≠ x

No PM debugging tools detect buggy thread interleavings! 8

x=0 y=0y=A
Concurrency visibility ≠ persistency



Summary of Debugging Tools

• KLEE [OSDI ’08]

• LLVM sanitizers:  
AddressSanitizer [ATC ’12], 
MemorySanitizer [CGO ’15], …

• …

• AVIO [ASPLOS ’06]

• TSVD [SOSP ’19]

• Krace [S&P ’20]

• Kard [ASPLOS ’21]

• …
• XFDetector [ASPLOS ’20]

• AGAMOTTO [OSDI ’20] 

• PMDebugger [ASPLOS ’21]

• WITCHER [SOSP ’21]

• …
9

Sequential Bugs Concurrency Bugs

DRAM

PM

Targets and platforms

Our approach: PMRace



Challenges for PM Concurrency Bug Detection

Exponential interleaving search space
–Exponential growth rate with respect to instructions
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Challenges for PM Concurrency Bug Detection

Exponential interleaving search space

False positive
–Definition: a detected bug is not a true bug
–Reasons: inaccurate checkers, application-specific recovery…

x = A;

clwb &x;
sfence;

Thread 1

y = x;
clwb &y;
sfence;

Thread 2 Recover() {
// Assume x = 0, y = 0 initially
if (y != 0 && y != x) {

// Handle inconsistent x and y
}

}

An example of custom recovery code
11



Our Approach: PMRace

Two new PM concurrency bug patterns
–PM Inter-thread Inconsistency and PM Synchronization 

Inconsistency

A fuzzer for PM concurrency bugs
–Exponential interleaving: PM-aware coverage-guided fuzzing
–False positive: Post-failure validation

Found 14 bugs in 5 concurrent PM programs

12



The Two Bug Patterns

PM Inter-thread Inconsistency
–Durable side effects (e.g., PM writes) based on non-persisted

data written by other threads
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Thread 1

y = x;
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sfence;

Thread 2
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The Two Bug Patterns

PM Inter-thread Inconsistency
–Durable side effects (e.g., PM writes) based on non-persisted

data written by other threads

PM Interleaving Concurrency Bug

x = A;

clwb &x;
sfence;

Thread 1

y = x;
clwb &y;
sfence;

Thread 2

Read non-persisted x

Write y based on non-persisted x

13

Data flow



A PM Inter-thread Inconsistency in P-CLHT

P-CLHT from RECIPE [SOSP ’19]

–A chained hash table for PM
–Lock-free read and bucket-grained locks for write

Table pointer

14



A PM Inter-thread Inconsistency in P-CLHT

Table pointer

PM

Thread 1: ht_resize_pes Thread 2: ht_put
// Swap the hash table pointer for resizing
SWAP_U64(h->ht_off, pmemobj_oid(ht_new).off);

clwb(&h->ht_off); sfence();

// Insert a key-value item
hashtable = clht_ptr_from_off(h->ht_off);
bin = clht_hash(hashtable, key)
bucket = clht_ptr_from_off(hashtable->table_off) + bin;

// Acquire the bucket lock
lock = &bucket->lock;
while (!LOCK_ACQ(lock, hashtable))
{
  ...
}

// Find an empty slot in the bucket
bucket->val[j] = val;
...
clwb(&bucket->val[j]); sfence();
movnt64(&bucket->key[j], key); sfence();

* The code is simplified for presentation

Old table

New table
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The Two Bug Patterns

PM Inter-thread Inconsistency
–Durable side effects (e.g., PM writes) based on non-persisted

data written by other threads

PM Synchronization Inconsistency
–Unreleased synchronization data after restarts

lock(&g);
x = A;
…
unlock(&g);

PM
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The Two Bug Patterns

PM Inter-thread Inconsistency
–Durable side effects (e.g., PM writes) based on non-persisted

data written by other threads

PM Synchronization Inconsistency
–Unreleased synchronization data after restarts

lock(&g);
x = A;
…
unlock(&g);

PM
lock(&g);

g=locked
Restart

PM Execution Context Bug

Blocked due to the unreleased lock g

16



A PM Synchronization Inconsistency in P-CLHT

// Insert a key-value item
hashtable = clht_ptr_from_off(h->ht_off);
bin = clht_hash(hashtable, key)
bucket = clht_ptr_from_off(hashtable->table_off) + bin;

// Acquire the bucket lock
lock = &bucket->lock;
while (!LOCK_ACQ(lock, hashtable))
{
  ...
}

// Find an empty slot in the bucket
bucket->val[j] = val;
...
clwb(&bucket->val[j]); sfence();
movnt64(&bucket->key[j], key); sfence();

LOCK_RLS(lock);

PM
Thread x: ht_put

* The code is simplified for presentation 17
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A PM Synchronization Inconsistency in P-CLHT

// Insert a key-value item
hashtable = clht_ptr_from_off(h->ht_off);
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bucket = clht_ptr_from_off(hashtable->table_off) + bin;
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PMRace Overview

PM-Aware Coverage-
Guided Fuzzing

False Positive 
Reduction

Runtime Inconsistency 
Checking

PM Interleaving 
Exploration PM Checkers Post-Failure 

Validation

PM Input 
Generator

Bug reports

Instrumentation
Coverage feedback
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PM Alias (Pair) Coverage

Recording concurrent PM accesses to the same address
Guiding fuzzing to test “new” interleavings

PM Interleaving 
Exploration PM Checkers

PM Input 
Generator

Branch coverage & 
PM alias coverage

20



PM-Aware Interleaving Exploration

Exploration scheme
–Driving the execution towards reading non-persisted data

x = A; y = x;
clwb &y;
sfence;

Thread 1 Thread 2

clwb &x;
sfence;
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–Step 1: preemption point selection

–Step 2: scheduling a group of alias
PM accesses (to the same address)

• cond_wait before PM reads
• cond_signal after corresponding 

PM writes and before flushes
• Pitfalls and solutions… (refer to the paper)
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Thread 1 Thread 2

cond_signal(&m);

clwb &x;
sfence;
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cond_wait(&m);
y = x;
clwb &y;
sfence;

PM-Aware Interleaving Exploration

Exploration scheme
–Driving the execution towards reading non-persisted data

–Step 1: preemption point selection

–Step 2: scheduling a group of alias
PM accesses (to the same address)

• cond_wait before PM reads
• cond_signal after corresponding 

PM writes and before flushes
• Pitfalls and solutions… (refer to the paper)

x = A;

Thread 1 Thread 2

cond_signal(&m);

clwb &x;
sfence; Trigger reading non-persisted x
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PM Inconsistency Checkers

Persistency state tracking

PM_CLEAN PM_DIRTY
Store

Flush

Non-temporal store
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PM Inconsistency Checkers

Persistency state tracking

Runtime PM checkers
–PM Inter-thread Inconsistency when

• Reading non-persisted data (PM_DIRTY) and
• causing durable side effects (PM writes)

PM_CLEAN PM_DIRTY
Store

Flush

Non-temporal store

hook_load(&x);
y = x;
hook_store(&y);
clwb &y;
sfence;

1

2
1
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Data flow
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PM Inconsistency Checkers

Persistency state tracking

Runtime PM checkers
–PM Inter-thread Inconsistency when

• Reading non-persisted data (PM_DIRTY) and
• causing durable side effects (PM writes)

–PM Synchronization Inconsistency when
• Updating annotated synchronization data

PM_CLEAN PM_DIRTY
Store

Flush

Non-temporal store

hook_load(&x);
y = x;
hook_store(&y);
clwb &y;
sfence;

1

2

1

1

2
Data flow

1
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Post-Failure Validation 

To identify false positive (benign inconsistency)

PM Checkers

Are durable side 
effects overwritten?

Is synchronization 
data reinitialized?

Yes

Yes

False positive
(benign inconsistency)

No

No

PM Interleaving 
Concurrency Bug

PM Execution 
Context Bug

Post-failure validation 26



An Example of Benign Inconsistency

x = A;
hook_store(&x);
cond_signal(&m);

clwb &x;
sfence;

Thread 1

cond_wait(&m);

hook_load(&x);
y = x;
hook_store(&y);
clwb &y;
sfence;

Thread 2
Recover() {
// Assume x = 0, y = 0 initially
if (y != 0 && y != x) {

// Handle inconsistent x and y
x = 0; 
y = 0;

}
}
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hook_store(&x);
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sfence;

Thread 1

cond_wait(&m);

hook_load(&x);
y = x;
hook_store(&y);
clwb &y;
sfence;

Thread 2
Recover() {
// Assume x = 0, y = 0 initially
if (y != 0 && y != x) {

// Handle inconsistent x and y
x = 0; 
y = 0;

}
}

PM checker: PM Inter-thread Inconsistency

Post-failure validation: benign inconsistency
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Evaluation
System configurations

– Two 26-core Intel Xeon Gold 6230R CPUs
– 1.5 TB Intel Optane PM 100 Series, 192 GB DRAM

Tested 5 open-source concurrent PM programs based on PMDK

Comparison
– PMRace: our scheme
– Delay Inj: PMRace with random delay injection for interleaving exploration

Systems Scope Concurrency
P-CLHT [SOSP ’19] Static hashing Lock-based

Clevel Hashing [ATC ’20] PM-optimized hashing Lock-free
CCEH [FAST ’19] Extendible hashing Lock-based

FAST-FAIR [FAST ’18] B+-Tree Lock-based
memcached-pmem Key-value store Lock-based



14 Bugs
# Type New Description Impact

P-CLHT

1 Inter Y read unflushed table pointer and insert items data loss
2 Sync Y do not initialize bucket locks after restarts hang
3 Intra Y read unflushed table pointer and perform GC PM leakage
4 Other Y read unflushed keys redundant PM writes
5 Other Y do not release bucket locks in update hang

CCEH
6 Sync Y do not release segment locks after restarts hang
7 Intra Y read unflushed capacity and allocate segments PM leakage

FAST-FAIR 8 Inter Y read unflushed pointer and insert data data loss

memcached-pmem

9 Inter Y read unflushed value and write value inconsistent data
10 Inter Y read unflushed value and write value inconsistent data
11 Inter N read unflushed "prev" and write "slabs_clsid" inconsistent data
12 Inter N read unflushed "prev" and write "it_flags" or value inconsistent index
13 Inter N read unflushed "it_flags" and write value inconsistent data
14 Inter N read unflushed "slabs_clsid" and write "slabs_clsid" of others inconsistent index

Inter: PM Inter-thread Inconsistency Intra: PM Intra-thread Inconsistency Sync: PM Synchronization Inconsistency



The Time to Identify PM Inter-thread Inconsistency

(1) P-CLHT (2) FAST-FAIR

 PMRace efficiently triggers reading non-persisted data
30



Inconsistencies and False Positives

31

Inter-Cand Inter Filtered FP Unique Bugs Sync Filtered FP Unique Bugs
P-CLHT 35 10 0 1 4 3 1

clevel hashing 6 2 0 0 0 0 0

CCEH 15 0 0 0 1 0 1

FAST-FAIR 179 69 3 1 0 0 0

memcached-pmem 266 79 62 6 0 0 0

Total 501 160 65 8 5 3 2

PM Interleaving Concurrency Bug PM Execution Context Bug

Inter-Cand: PM Inter-thread Inconsistency Candidate
Filtered FP: Filtered false positives
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Inconsistencies and False Positives

Durable side effects refine inconsistencies
Post-failure validation reduces false positives
Limitation: false positives still exist due to lazy recovery mechanisms…
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Conclusion

PM-specific concurrency bugs are unexplored 
We identify two new PM concurrency bug patterns
PMRace: the first tool to detect PM concurrency bugs

–PM-aware coverage-guided fuzzing to accelerate interleaving 
exploration

–Post-failure validation to reduce false positives
Found 14 bugs in 5 concurrent PM programs
Open-source at https://github.com/yhuacode/pmrace
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Thanks! 

Email: chenzy@hust.edu.cn

Homepage: https://chenzhangyu.github.io
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