
Zhangyu Chen, Yu Hua, Yongle Zhang*, Luochangqi Ding

Efficiently Detecting Concurrency Bugs
in Persistent Memory Programs

ASPLOS 2022

Huazhong University of Science and Technology
*Purdue University

Persistent Memory (PM)

PM characteristics
–DRAM-comparable performance
–TB-scale capacity
–Non-volatility
–Byte-addressability

New opportunities for memory systems
–Lower cost/GB than DRAM
–Instant recovery from PM

CPU

PM
(e.g., Intel Optane PM)

Core Core

Core Core

Memory Bus

2

PM Programming
PM programming is non-trivial

– Volatile CPU caches

x = A;

Cache

PM

Volatile domain

Persistent domain

3

x=0

* Assume x = 0 initially

PM Programming
PM programming is non-trivial

– Volatile CPU caches

x = A;

Cache
x=A

PM

Volatile domain

Persistent domain

3

x=0

* Assume x = 0 initially

PM Programming
PM programming is non-trivial

– Volatile CPU caches

x = A;

Cache

PM

LossVolatile domain

Persistent domain

3

x=0

* Assume x = 0 initially

PM Programming
PM programming is non-trivial

– Volatile CPU caches
Architectural support for PM

– Flush for durability (e.g., clwb from x86)

x = A;
clwb &x;

x = A;

Cache

PM

LossVolatile domain

Persistent domain

Cache

PM

3

x=0 x=0

* Assume x = 0 initially

PM Programming
PM programming is non-trivial

– Volatile CPU caches
Architectural support for PM

– Flush for durability (e.g., clwb from x86)

x = A;
clwb &x;

x = A;

Cache

PM

LossVolatile domain

Persistent domain

Cache
x=A

PM

3

x=0 x=0

x=A

* Assume x = 0 initially

PM Programming
PM programming is non-trivial

– Volatile CPU caches
Architectural support for PM

– Flush for durability (e.g., clwb from x86)

x = A;
clwb &x;

x = A;

Cache

PM

LossVolatile domain

Persistent domain

Cache
x=A

PM
clwb

3

x=0 x=0x=A

* Assume x = 0 initially

PM Programming
PM programming is non-trivial

– Volatile CPU caches
– Persistency reordering

Architectural support for PM
– Flush for durability (e.g., clwb from x86)

x = A;
clwb &x;
y = x;
clwb &y;

4

PM Programming
PM programming is non-trivial

– Volatile CPU caches
– Persistency reordering

Architectural support for PM
– Flush for durability (e.g., clwb from x86)

Write order
(CPU caches) Wx Wy

x = A;
clwb &x;
y = x;
clwb &y;

4

PM Programming
PM programming is non-trivial

– Volatile CPU caches
– Persistency reordering

Architectural support for PM
– Flush for durability (e.g., clwb from x86)

Write order
(CPU caches)

Persist order
(PM)

Wx Wy

Wy Wx

Persist reordering

x = A;
clwb &x;
y = x;
clwb &y;

4

PM Programming
PM programming is non-trivial

– Volatile CPU caches
– Persistency reordering

Architectural support for PM
– Flush for durability (e.g., clwb from x86)
– Fence for ordering (e.g., sfence from x86)

x = A;
clwb &x;

y = x;
clwb &y;

Write order
(CPU caches)

Persist order
(PM)

Wx Wy

Wy Wx

Persist reordering

x = A;
clwb &x;
y = x;
clwb &y;

4

PM Programming
PM programming is non-trivial

– Volatile CPU caches
– Persistency reordering

Architectural support for PM
– Flush for durability (e.g., clwb from x86)
– Fence for ordering (e.g., sfence from x86)

x = A;
clwb &x;
sfence;
y = x;
clwb &y;
sfence;

Write order
(CPU caches)

Persist order
(PM)

Wx Wy

Wy Wx

Persist reordering

x = A;
clwb &x;
y = x;
clwb &y;

sfence sfence
4

PM Programming
PM programming is non-trivial

– Volatile CPU caches
– Persistency reordering

Architectural support for PM
– Flush for durability (e.g., clwb from x86)
– Fence for ordering (e.g., sfence from x86)

Wx Wy

WyWx

x = A;
clwb &x;
sfence;
y = x;
clwb &y;
sfence;

Write order
(CPU caches)

Persist order
(PM)

Wx Wy

Wy Wx

Persist reordering

x = A;
clwb &x;
y = x;
clwb &y;

sfence sfence
4

PM Crash-Consistency Bugs

Correctness bugs
–Causing correctness violation
–Patterns:

• Missing flush/fence
• …

x = A;
y = x;
clwb &y;
sfence;

5

PM Crash-Consistency Bugs

Correctness bugs
–Causing correctness violation
–Patterns:

• Missing flush/fence
• …

Lack of flush/fence

x = A;
y = x;
clwb &y;
sfence;

5

Inconsistent data
PM

x=0 y=A* Assume x = 0, y = 0 initially

PM Crash-Consistency Bugs

Correctness bugs
–Causing correctness violation
–Patterns:

• Missing flush/fence
• …

Lack of flush/fence

x = A;
y = x;
clwb &y;
sfence;

5

Inconsistent data
PM

x=0 y=A

Restart

* Assume x = 0, y = 0 initially

Bugs still exist after restarts!
PM

x=0 y=A

PM Crash-Consistency Bugs

Correctness bugs
–Causing correctness violation
–Patterns:

• Missing flush/fence
• …

Performance bugs
–Causing performance degradation
–Patterns:

• Extra flush/fence
• …

Lack of flush/fence

x = A;
y = x;
clwb &y;
sfence;

x = A;
clwb &x;
sfence;
clwb &x;
y = x;
clwb &y;
sfence;

6

Inconsistent data

PM Crash-Consistency Bugs

Correctness bugs
–Causing correctness violation
–Patterns:

• Missing flush/fence
• …

Performance bugs
–Causing performance degradation
–Patterns:

• Extra flush/fence
• …

Extra flush

Lack of flush/fence

x = A;
y = x;
clwb &y;
sfence;

x = A;
clwb &x;
sfence;
clwb &x;
y = x;
clwb &y;
sfence;

6

Inconsistent data

Unnecessary stall

Existing Automatic PM Debugging Tools

Correctness bugs
–Missing flush/fence

• AGAMOTTO [OSDI ’20]

• PMDebugger [ASPLOS ’21]

• …

Performance bugs
–Extra flush/fence

• AGAMOTTO, PMDebugger, …

x = A;
y = x;
clwb &y;
sfence;

x = A;
clwb &x;
sfence;
clwb &x;
y = x;
clwb &y;
sfence;

Are PM writes followed by flush/fence?

Are flushes/fences necessary?
7

Existing Automatic PM Debugging Tools

Correctness bugs
–Missing flush/fence

• AGAMOTTO [OSDI ’20]

• PMDebugger [ASPLOS ’21]

• …
–Other patterns

• Cross-failure race: XFDetector [ASPLOS ’20]

• Application-specific bugs: WITCHER [SOSP ’21]

• ...

Performance bugs
–Extra flush/fence

• AGAMOTTO, PMDebugger, …

x = A;
y = x;
clwb &y;
sfence;

x = A;
clwb &x;
sfence;
clwb &x;
y = x;
clwb &y;
sfence;

Are PM writes followed by flush/fence?

Are flushes/fences necessary?
7

Existing Automatic PM Debugging Tools

Correctness bugs
–Missing flush/fence

• AGAMOTTO [OSDI ’20]

• PMDebugger [ASPLOS ’21]

• …
–Other patterns

• Cross-failure race: XFDetector [ASPLOS ’20]

• Application-specific bugs: WITCHER [SOSP ’21]

• ...

Performance bugs
–Extra flush/fence

• AGAMOTTO, PMDebugger, …

x = A;
y = x;
clwb &y;
sfence;

x = A;
clwb &x;
sfence;
clwb &x;
y = x;
clwb &y;
sfence;

Are PM writes followed by flush/fence?

Are flushes/fences necessary?
7

Lack of considerations for concurrent executions!

Crash-Inconsistency in Concurrent Executions

Concurrency is important to PM system performance

8

* Assume x = 0, y = 0 initially

Crash-Inconsistency in Concurrent Executions

Concurrency is important to PM system performance
PM-specific concurrency bugs exist

Cache

x = A;

clwb &x;
sfence;

Thread 1

y = x;
clwb &y;
sfence;

Thread 2

Time

PM

8

x=0 y=0

* Assume x = 0, y = 0 initially

Crash-Inconsistency in Concurrent Executions

Concurrency is important to PM system performance
PM-specific concurrency bugs exist

Cache

x = A;

clwb &x;
sfence;

Thread 1

y = x;
clwb &y;
sfence;

Thread 2

Time

x=A

PM

8

x=0 y=0

* Assume x = 0, y = 0 initially

Crash-Inconsistency in Concurrent Executions

Concurrency is important to PM system performance
PM-specific concurrency bugs exist

Cache

x = A;

clwb &x;
sfence;

Thread 1

y = x;
clwb &y;
sfence;

Thread 2

Time

x=A y=A

PM

8

x=0 y=0y=A

* Assume x = 0, y = 0 initially

Crash-Inconsistency in Concurrent Executions

Concurrency is important to PM system performance
PM-specific concurrency bugs exist

Cache

x = A;

clwb &x;
sfence;

Thread 1

y = x;
clwb &y;
sfence;

Thread 2

Time

PM

8

x=0 y=0y=A

* Assume x = 0, y = 0 initially

Crash-Inconsistency in Concurrent Executions

Concurrency is important to PM system performance
PM-specific concurrency bugs exist

Cache

x = A;

clwb &x;
sfence;

Thread 1

y = x;
clwb &y;
sfence;

Thread 2

Time

PM

Inconsistency: y ≠ x

8

x=0 y=0y=A

* Assume x = 0, y = 0 initially

Crash-Inconsistency in Concurrent Executions

Concurrency is important to PM system performance
PM-specific concurrency bugs exist

Cache

x = A;

clwb &x;
sfence;

Thread 1

y = x;
clwb &y;
sfence;

Thread 2

Time

PM

Inconsistency: y ≠ x

8

x=0 y=0y=A
Concurrency visibility ≠ persistency

* Assume x = 0, y = 0 initially

Crash-Inconsistency in Concurrent Executions

Concurrency is important to PM system performance
PM-specific concurrency bugs exist

Cache

x = A;

clwb &x;
sfence;

Thread 1

y = x;
clwb &y;
sfence;

Thread 2

Time

PM

Inconsistency: y ≠ x

No PM debugging tools detect buggy thread interleavings! 8

x=0 y=0y=A
Concurrency visibility ≠ persistency

Summary of Debugging Tools

• KLEE [OSDI ’08]

• LLVM sanitizers:
AddressSanitizer [ATC ’12],
MemorySanitizer [CGO ’15], …

• …

• AVIO [ASPLOS ’06]

• TSVD [SOSP ’19]

• Krace [S&P ’20]

• Kard [ASPLOS ’21]

• …
• XFDetector [ASPLOS ’20]

• AGAMOTTO [OSDI ’20]

• PMDebugger [ASPLOS ’21]

• WITCHER [SOSP ’21]

• …
9

Sequential Bugs Concurrency Bugs

DRAM

PM

Targets and platforms

Our approach: PMRace

Challenges for PM Concurrency Bug Detection

Exponential interleaving search space
–Exponential growth rate with respect to instructions

x = A;
clwb &x;
sfence;

y = x;
clwb &y;
sfence;

Thread 1 Thread 2

10

Challenges for PM Concurrency Bug Detection

Exponential interleaving search space
–Exponential growth rate with respect to instructions

x = A;
clwb &x;
sfence;

y = x;
clwb &y;
sfence;

𝑚𝑚 instructions 𝑛𝑛 instructions

𝑚𝑚 + 𝑛𝑛 !
𝑚𝑚! ∗ 𝑛𝑛!

Possible interleavings:

(for two threads)

Thread 1 Thread 2

10

Challenges for PM Concurrency Bug Detection

Exponential interleaving search space
–Exponential growth rate with respect to instructions

x = A;
clwb &x;
sfence;

y = x;
clwb &y;
sfence;

𝑚𝑚 instructions 𝑛𝑛 instructions

𝑚𝑚 + 𝑛𝑛 !
𝑚𝑚! ∗ 𝑛𝑛!

Possible interleavings:

(for two threads)

Thread 1 Thread 2

10

Challenges for PM Concurrency Bug Detection

Exponential interleaving search space

False positive
–Definition: a detected bug is not a true bug
–Reasons: inaccurate checkers, application-specific recovery…

x = A;

clwb &x;
sfence;

Thread 1

y = x;
clwb &y;
sfence;

Thread 2 Recover() {
// Assume x = 0, y = 0 initially
if (y != 0 && y != x) {

// Handle inconsistent x and y
}

}

An example of custom recovery code
11

Our Approach: PMRace

Two new PM concurrency bug patterns
–PM Inter-thread Inconsistency and PM Synchronization

Inconsistency

A fuzzer for PM concurrency bugs
–Exponential interleaving: PM-aware coverage-guided fuzzing
–False positive: Post-failure validation

Found 14 bugs in 5 concurrent PM programs

12

The Two Bug Patterns

PM Inter-thread Inconsistency
–Durable side effects (e.g., PM writes) based on non-persisted

data written by other threads

x = A;

clwb &x;
sfence;

Thread 1

y = x;
clwb &y;
sfence;

Thread 2

13

The Two Bug Patterns

PM Inter-thread Inconsistency
–Durable side effects (e.g., PM writes) based on non-persisted

data written by other threads

x = A;

clwb &x;
sfence;

Thread 1

y = x;
clwb &y;
sfence;

Thread 2

Read non-persisted x

13

The Two Bug Patterns

PM Inter-thread Inconsistency
–Durable side effects (e.g., PM writes) based on non-persisted

data written by other threads

x = A;

clwb &x;
sfence;

Thread 1

y = x;
clwb &y;
sfence;

Thread 2

Read non-persisted x

Write y based on non-persisted x

13

Data flow

The Two Bug Patterns

PM Inter-thread Inconsistency
–Durable side effects (e.g., PM writes) based on non-persisted

data written by other threads

PM Interleaving Concurrency Bug

x = A;

clwb &x;
sfence;

Thread 1

y = x;
clwb &y;
sfence;

Thread 2

Read non-persisted x

Write y based on non-persisted x

13

Data flow

A PM Inter-thread Inconsistency in P-CLHT

P-CLHT from RECIPE [SOSP ’19]

–A chained hash table for PM
–Lock-free read and bucket-grained locks for write

Table pointer

14

A PM Inter-thread Inconsistency in P-CLHT

Table pointer

PM

Thread 1: ht_resize_pes Thread 2: ht_put
// Swap the hash table pointer for resizing
SWAP_U64(h->ht_off, pmemobj_oid(ht_new).off);

clwb(&h->ht_off); sfence();

// Insert a key-value item
hashtable = clht_ptr_from_off(h->ht_off);
bin = clht_hash(hashtable, key)
bucket = clht_ptr_from_off(hashtable->table_off) + bin;

// Acquire the bucket lock
lock = &bucket->lock;
while (!LOCK_ACQ(lock, hashtable))
{
 ...
}

// Find an empty slot in the bucket
bucket->val[j] = val;
...
clwb(&bucket->val[j]); sfence();
movnt64(&bucket->key[j], key); sfence();

* The code is simplified for presentation

Old table

New table

15

A PM Inter-thread Inconsistency in P-CLHT

Table pointer

PM Cache

Thread 1: ht_resize_pes Thread 2: ht_put
// Swap the hash table pointer for resizing
SWAP_U64(h->ht_off, pmemobj_oid(ht_new).off);

clwb(&h->ht_off); sfence();

// Insert a key-value item
hashtable = clht_ptr_from_off(h->ht_off);
bin = clht_hash(hashtable, key)
bucket = clht_ptr_from_off(hashtable->table_off) + bin;

// Acquire the bucket lock
lock = &bucket->lock;
while (!LOCK_ACQ(lock, hashtable))
{
 ...
}

// Find an empty slot in the bucket
bucket->val[j] = val;
...
clwb(&bucket->val[j]); sfence();
movnt64(&bucket->key[j], key); sfence();

* The code is simplified for presentation

Old table

New table

15

A PM Inter-thread Inconsistency in P-CLHT

Table pointer

PM Cache

Thread 1: ht_resize_pes Thread 2: ht_put
// Swap the hash table pointer for resizing
SWAP_U64(h->ht_off, pmemobj_oid(ht_new).off);

clwb(&h->ht_off); sfence();

// Insert a key-value item
hashtable = clht_ptr_from_off(h->ht_off);
bin = clht_hash(hashtable, key)
bucket = clht_ptr_from_off(hashtable->table_off) + bin;

// Acquire the bucket lock
lock = &bucket->lock;
while (!LOCK_ACQ(lock, hashtable))
{
 ...
}

// Find an empty slot in the bucket
bucket->val[j] = val;
...
clwb(&bucket->val[j]); sfence();
movnt64(&bucket->key[j], key); sfence();

* The code is simplified for presentation

Old table

New table

15

A PM Inter-thread Inconsistency in P-CLHT

Table pointer

PM Cache

Thread 1: ht_resize_pes Thread 2: ht_put
// Swap the hash table pointer for resizing
SWAP_U64(h->ht_off, pmemobj_oid(ht_new).off);

clwb(&h->ht_off); sfence();

// Insert a key-value item
hashtable = clht_ptr_from_off(h->ht_off);
bin = clht_hash(hashtable, key)
bucket = clht_ptr_from_off(hashtable->table_off) + bin;

// Acquire the bucket lock
lock = &bucket->lock;
while (!LOCK_ACQ(lock, hashtable))
{
 ...
}

// Find an empty slot in the bucket
bucket->val[j] = val;
...
clwb(&bucket->val[j]); sfence();
movnt64(&bucket->key[j], key); sfence();

* The code is simplified for presentation

Old table

New table

KV

15

A PM Inter-thread Inconsistency in P-CLHT

Table pointer

PM

Thread 1: ht_resize_pes Thread 2: ht_put
// Swap the hash table pointer for resizing
SWAP_U64(h->ht_off, pmemobj_oid(ht_new).off);

clwb(&h->ht_off); sfence();

// Insert a key-value item
hashtable = clht_ptr_from_off(h->ht_off);
bin = clht_hash(hashtable, key)
bucket = clht_ptr_from_off(hashtable->table_off) + bin;

// Acquire the bucket lock
lock = &bucket->lock;
while (!LOCK_ACQ(lock, hashtable))
{
 ...
}

// Find an empty slot in the bucket
bucket->val[j] = val;
...
clwb(&bucket->val[j]); sfence();
movnt64(&bucket->key[j], key); sfence();

* The code is simplified for presentation

Old table

Loss

15

The Two Bug Patterns

PM Inter-thread Inconsistency
–Durable side effects (e.g., PM writes) based on non-persisted

data written by other threads

PM Synchronization Inconsistency
–Unreleased synchronization data after restarts

lock(&g);
x = A;
…
unlock(&g);

PM

16

The Two Bug Patterns

PM Inter-thread Inconsistency
–Durable side effects (e.g., PM writes) based on non-persisted

data written by other threads

PM Synchronization Inconsistency
–Unreleased synchronization data after restarts

lock(&g);
x = A;
…
unlock(&g);

PM

g=locked

16

The Two Bug Patterns

PM Inter-thread Inconsistency
–Durable side effects (e.g., PM writes) based on non-persisted

data written by other threads

PM Synchronization Inconsistency
–Unreleased synchronization data after restarts

lock(&g);
x = A;
…
unlock(&g);

PM
lock(&g);

g=locked
Restart

PM Execution Context Bug

Blocked due to the unreleased lock g

16

A PM Synchronization Inconsistency in P-CLHT

// Insert a key-value item
hashtable = clht_ptr_from_off(h->ht_off);
bin = clht_hash(hashtable, key)
bucket = clht_ptr_from_off(hashtable->table_off) + bin;

// Acquire the bucket lock
lock = &bucket->lock;
while (!LOCK_ACQ(lock, hashtable))
{
 ...
}

// Find an empty slot in the bucket
bucket->val[j] = val;
...
clwb(&bucket->val[j]); sfence();
movnt64(&bucket->key[j], key); sfence();

LOCK_RLS(lock);

PM
Thread x: ht_put

* The code is simplified for presentation 17

A PM Synchronization Inconsistency in P-CLHT

// Insert a key-value item
hashtable = clht_ptr_from_off(h->ht_off);
bin = clht_hash(hashtable, key)
bucket = clht_ptr_from_off(hashtable->table_off) + bin;

// Acquire the bucket lock
lock = &bucket->lock;
while (!LOCK_ACQ(lock, hashtable))
{
 ...
}

// Find an empty slot in the bucket
bucket->val[j] = val;
...
clwb(&bucket->val[j]); sfence();
movnt64(&bucket->key[j], key); sfence();

LOCK_RLS(lock);

PM

lock=1

Thread x: ht_put

* The code is simplified for presentation 17

A PM Synchronization Inconsistency in P-CLHT

// Insert a key-value item
hashtable = clht_ptr_from_off(h->ht_off);
bin = clht_hash(hashtable, key)
bucket = clht_ptr_from_off(hashtable->table_off) + bin;

// Acquire the bucket lock
lock = &bucket->lock;
while (!LOCK_ACQ(lock, hashtable))
{
 ...
}

// Find an empty slot in the bucket
bucket->val[j] = val;
...
clwb(&bucket->val[j]); sfence();
movnt64(&bucket->key[j], key); sfence();

LOCK_RLS(lock);

PM

lock=1

Blocking all writes on the bucket

Thread x: ht_put

* The code is simplified for presentation 17

PMRace Overview

PM-Aware Coverage-
Guided Fuzzing

False Positive
Reduction

Runtime Inconsistency
Checking

PM Interleaving
Exploration PM Checkers Post-Failure

Validation

PM Input
Generator

Bug reports

Instrumentation
Coverage feedback

18

PMRace Overview

PM-Aware Coverage-
Guided Fuzzing

PM Interleaving
Exploration PM Checkers Post-Failure

Validation

PM Input
Generator

Bug reports

Instrumentation
Coverage feedback

19

PM Alias (Pair) Coverage

Recording concurrent PM accesses to the same address
Guiding fuzzing to test “new” interleavings

PM Interleaving
Exploration PM Checkers

PM Input
Generator

Branch coverage &
PM alias coverage

20

PM-Aware Interleaving Exploration

Exploration scheme
–Driving the execution towards reading non-persisted data

x = A; y = x;
clwb &y;
sfence;

Thread 1 Thread 2

clwb &x;
sfence;

21

PM-Aware Interleaving Exploration

Exploration scheme
–Driving the execution towards reading non-persisted data

–Step 1: preemption point selection
• PM accesses to shared data
• A priority queue of PM access x = A; y = x;

clwb &y;
sfence;

Thread 1 Thread 2

clwb &x;
sfence;

21

PM-Aware Interleaving Exploration

Exploration scheme
–Driving the execution towards reading non-persisted data

–Step 1: preemption point selection
• PM accesses to shared data
• A priority queue of PM access x = A; y = x;

clwb &y;
sfence;

Thread 1 Thread 2

clwb &x;
sfence;

21

PM-Aware Interleaving Exploration

Exploration scheme
–Driving the execution towards reading non-persisted data

–Step 1: preemption point selection

–Step 2: scheduling a group of alias
PM accesses (to the same address)

• cond_wait before PM reads
• cond_signal after corresponding

PM writes and before flushes
• Pitfalls and solutions… (refer to the paper)

x = A; y = x;
clwb &y;
sfence;

Thread 1 Thread 2

clwb &x;
sfence;

22

cond_wait(&m);
y = x;
clwb &y;
sfence;

PM-Aware Interleaving Exploration

Exploration scheme
–Driving the execution towards reading non-persisted data

–Step 1: preemption point selection

–Step 2: scheduling a group of alias
PM accesses (to the same address)

• cond_wait before PM reads
• cond_signal after corresponding

PM writes and before flushes
• Pitfalls and solutions… (refer to the paper)

x = A;

Thread 1 Thread 2

clwb &x;
sfence;

cond_wait(&m);

22

cond_wait(&m);
y = x;
clwb &y;
sfence;

PM-Aware Interleaving Exploration

Exploration scheme
–Driving the execution towards reading non-persisted data

–Step 1: preemption point selection

–Step 2: scheduling a group of alias
PM accesses (to the same address)

• cond_wait before PM reads
• cond_signal after corresponding

PM writes and before flushes
• Pitfalls and solutions… (refer to the paper)

x = A;

Thread 1 Thread 2

clwb &x;
sfence;

22

cond_wait(&m);
y = x;
clwb &y;
sfence;

PM-Aware Interleaving Exploration

Exploration scheme
–Driving the execution towards reading non-persisted data

–Step 1: preemption point selection

–Step 2: scheduling a group of alias
PM accesses (to the same address)

• cond_wait before PM reads
• cond_signal after corresponding

PM writes and before flushes
• Pitfalls and solutions… (refer to the paper)

x = A;

Thread 1 Thread 2

clwb &x;
sfence;

cond_signal(&m);

22

cond_wait(&m);
y = x;
clwb &y;
sfence;

PM-Aware Interleaving Exploration

Exploration scheme
–Driving the execution towards reading non-persisted data

–Step 1: preemption point selection

–Step 2: scheduling a group of alias
PM accesses (to the same address)

• cond_wait before PM reads
• cond_signal after corresponding

PM writes and before flushes
• Pitfalls and solutions… (refer to the paper)

x = A;

Thread 1 Thread 2

cond_signal(&m);

clwb &x;
sfence;

22

cond_wait(&m);
y = x;
clwb &y;
sfence;

PM-Aware Interleaving Exploration

Exploration scheme
–Driving the execution towards reading non-persisted data

–Step 1: preemption point selection

–Step 2: scheduling a group of alias
PM accesses (to the same address)

• cond_wait before PM reads
• cond_signal after corresponding

PM writes and before flushes
• Pitfalls and solutions… (refer to the paper)

x = A;

Thread 1 Thread 2

cond_signal(&m);

clwb &x;
sfence; Trigger reading non-persisted x

22

PMRace Overview

PM Interleaving
Exploration

Post-Failure
Validation

PM Input
Generator

Bug reports

Instrumentation
Coverage feedback

Runtime Inconsistency
Checking

PM Checkers

23

PM Inconsistency Checkers

Persistency state tracking

PM_CLEAN PM_DIRTY
Store

Flush

Non-temporal store

24

PM Inconsistency Checkers

Persistency state tracking

Runtime PM checkers
–PM Inter-thread Inconsistency when

• Reading non-persisted data (PM_DIRTY) and
• causing durable side effects (PM writes)

PM_CLEAN PM_DIRTY
Store

Flush

Non-temporal store

hook_load(&x);
y = x;
hook_store(&y);
clwb &y;
sfence;

1

2
1

2
Data flow

24

PM Inconsistency Checkers

Persistency state tracking

Runtime PM checkers
–PM Inter-thread Inconsistency when

• Reading non-persisted data (PM_DIRTY) and
• causing durable side effects (PM writes)

–PM Synchronization Inconsistency when
• Updating annotated synchronization data

PM_CLEAN PM_DIRTY
Store

Flush

Non-temporal store

hook_load(&x);
y = x;
hook_store(&y);
clwb &y;
sfence;

1

2

1

1

2
Data flow

1

24

PMRace Overview

PM Interleaving
Exploration PM Checkers

PM Input
Generator

Bug reports

Instrumentation
Coverage feedback

False Positive
Reduction

Post-Failure
Validation

25

Post-Failure Validation

To identify false positive (benign inconsistency)

PM Checkers

Are durable side
effects overwritten?

Is synchronization
data reinitialized?

Yes

Yes

False positive
(benign inconsistency)

No

No

PM Interleaving
Concurrency Bug

PM Execution
Context Bug

Post-failure validation 26

An Example of Benign Inconsistency

x = A;
hook_store(&x);
cond_signal(&m);

clwb &x;
sfence;

Thread 1

cond_wait(&m);

hook_load(&x);
y = x;
hook_store(&y);
clwb &y;
sfence;

Thread 2
Recover() {
// Assume x = 0, y = 0 initially
if (y != 0 && y != x) {

// Handle inconsistent x and y
x = 0;
y = 0;

}
}

27

An Example of Benign Inconsistency

x = A;
hook_store(&x);
cond_signal(&m);

clwb &x;
sfence;

Thread 1

cond_wait(&m);

hook_load(&x);
y = x;
hook_store(&y);
clwb &y;
sfence;

Thread 2
Recover() {
// Assume x = 0, y = 0 initially
if (y != 0 && y != x) {

// Handle inconsistent x and y
x = 0;
y = 0;

}
}

PM checker: PM Inter-thread Inconsistency

27

An Example of Benign Inconsistency

x = A;
hook_store(&x);
cond_signal(&m);

clwb &x;
sfence;

Thread 1

cond_wait(&m);

hook_load(&x);
y = x;
hook_store(&y);
clwb &y;
sfence;

Thread 2
Recover() {
// Assume x = 0, y = 0 initially
if (y != 0 && y != x) {

// Handle inconsistent x and y
x = 0;
y = 0;

}
}

PM checker: PM Inter-thread Inconsistency

Post-failure validation: benign inconsistency

27

Evaluation
System configurations

– Two 26-core Intel Xeon Gold 6230R CPUs
– 1.5 TB Intel Optane PM 100 Series, 192 GB DRAM

Tested 5 open-source concurrent PM programs based on PMDK

Comparison
– PMRace: our scheme
– Delay Inj: PMRace with random delay injection for interleaving exploration

Systems Scope Concurrency
P-CLHT [SOSP ’19] Static hashing Lock-based

Clevel Hashing [ATC ’20] PM-optimized hashing Lock-free
CCEH [FAST ’19] Extendible hashing Lock-based

FAST-FAIR [FAST ’18] B+-Tree Lock-based
memcached-pmem Key-value store Lock-based

14 Bugs
Type New Description Impact

P-CLHT

1 Inter Y read unflushed table pointer and insert items data loss
2 Sync Y do not initialize bucket locks after restarts hang
3 Intra Y read unflushed table pointer and perform GC PM leakage
4 Other Y read unflushed keys redundant PM writes
5 Other Y do not release bucket locks in update hang

CCEH
6 Sync Y do not release segment locks after restarts hang
7 Intra Y read unflushed capacity and allocate segments PM leakage

FAST-FAIR 8 Inter Y read unflushed pointer and insert data data loss

memcached-pmem

9 Inter Y read unflushed value and write value inconsistent data
10 Inter Y read unflushed value and write value inconsistent data
11 Inter N read unflushed "prev" and write "slabs_clsid" inconsistent data
12 Inter N read unflushed "prev" and write "it_flags" or value inconsistent index
13 Inter N read unflushed "it_flags" and write value inconsistent data
14 Inter N read unflushed "slabs_clsid" and write "slabs_clsid" of others inconsistent index

Inter: PM Inter-thread Inconsistency Intra: PM Intra-thread Inconsistency Sync: PM Synchronization Inconsistency

The Time to Identify PM Inter-thread Inconsistency

(1) P-CLHT (2) FAST-FAIR

 PMRace efficiently triggers reading non-persisted data
30

Inconsistencies and False Positives

31

Inter-Cand Inter Filtered FP Unique Bugs Sync Filtered FP Unique Bugs
P-CLHT 35 10 0 1 4 3 1

clevel hashing 6 2 0 0 0 0 0

CCEH 15 0 0 0 1 0 1

FAST-FAIR 179 69 3 1 0 0 0

memcached-pmem 266 79 62 6 0 0 0

Total 501 160 65 8 5 3 2

PM Interleaving Concurrency Bug PM Execution Context Bug

Inter-Cand: PM Inter-thread Inconsistency Candidate
Filtered FP: Filtered false positives

Inconsistencies and False Positives

Durable side effects refine inconsistencies

31

Inter-Cand Inter Filtered FP Unique Bugs Sync Filtered FP Unique Bugs
P-CLHT 35 10 0 1 4 3 1

clevel hashing 6 2 0 0 0 0 0

CCEH 15 0 0 0 1 0 1

FAST-FAIR 179 69 3 1 0 0 0

memcached-pmem 266 79 62 6 0 0 0

Total 501 160 65 8 5 3 2

PM Interleaving Concurrency Bug PM Execution Context Bug

Inter-Cand: PM Inter-thread Inconsistency Candidate
Filtered FP: Filtered false positives

Inconsistencies and False Positives

Durable side effects refine inconsistencies
Post-failure validation reduces false positives

31

Inter-Cand Inter Filtered FP Unique Bugs Sync Filtered FP Unique Bugs
P-CLHT 35 10 0 1 4 3 1

clevel hashing 6 2 0 0 0 0 0

CCEH 15 0 0 0 1 0 1

FAST-FAIR 179 69 3 1 0 0 0

memcached-pmem 266 79 62 6 0 0 0

Total 501 160 65 8 5 3 2

PM Interleaving Concurrency Bug PM Execution Context Bug

Inter-Cand: PM Inter-thread Inconsistency Candidate
Filtered FP: Filtered false positives

Inconsistencies and False Positives

Durable side effects refine inconsistencies
Post-failure validation reduces false positives
Limitation: false positives still exist due to lazy recovery mechanisms…

31

Inter-Cand Inter Filtered FP Unique Bugs Sync Filtered FP Unique Bugs
P-CLHT 35 10 0 1 4 3 1

clevel hashing 6 2 0 0 0 0 0

CCEH 15 0 0 0 1 0 1

FAST-FAIR 179 69 3 1 0 0 0

memcached-pmem 266 79 62 6 0 0 0

Total 501 160 65 8 5 3 2

PM Interleaving Concurrency Bug PM Execution Context Bug

Inter-Cand: PM Inter-thread Inconsistency Candidate
Filtered FP: Filtered false positives

Conclusion

PM-specific concurrency bugs are unexplored
We identify two new PM concurrency bug patterns
PMRace: the first tool to detect PM concurrency bugs

–PM-aware coverage-guided fuzzing to accelerate interleaving
exploration

–Post-failure validation to reduce false positives
Found 14 bugs in 5 concurrent PM programs
Open-source at https://github.com/yhuacode/pmrace

32

https://github.com/yhuacode/pmrace

Thanks!

Email: chenzy@hust.edu.cn

Homepage: https://chenzhangyu.github.io

33

mailto:chenzy@hust.edu.cn
https://chenzhangyu.github.io/

	Efficiently Detecting Concurrency Bugs in Persistent Memory Programs
	Persistent Memory (PM)
	PM Programming
	PM Programming
	PM Programming
	PM Programming
	PM Programming
	PM Programming
	PM Programming
	PM Programming
	PM Programming
	PM Programming
	PM Programming
	PM Programming
	PM Crash-Consistency Bugs
	PM Crash-Consistency Bugs
	PM Crash-Consistency Bugs
	PM Crash-Consistency Bugs
	PM Crash-Consistency Bugs
	Existing Automatic PM Debugging Tools
	Existing Automatic PM Debugging Tools
	Existing Automatic PM Debugging Tools
	Crash-Inconsistency in Concurrent Executions
	Crash-Inconsistency in Concurrent Executions
	Crash-Inconsistency in Concurrent Executions
	Crash-Inconsistency in Concurrent Executions
	Crash-Inconsistency in Concurrent Executions
	Crash-Inconsistency in Concurrent Executions
	Crash-Inconsistency in Concurrent Executions
	Crash-Inconsistency in Concurrent Executions
	Summary of Debugging Tools
	Challenges for PM Concurrency Bug Detection
	Challenges for PM Concurrency Bug Detection
	Challenges for PM Concurrency Bug Detection
	Challenges for PM Concurrency Bug Detection
	Our Approach: PMRace
	The Two Bug Patterns
	The Two Bug Patterns
	The Two Bug Patterns
	The Two Bug Patterns
	A PM Inter-thread Inconsistency in P-CLHT
	A PM Inter-thread Inconsistency in P-CLHT
	A PM Inter-thread Inconsistency in P-CLHT
	A PM Inter-thread Inconsistency in P-CLHT
	A PM Inter-thread Inconsistency in P-CLHT
	A PM Inter-thread Inconsistency in P-CLHT
	The Two Bug Patterns
	The Two Bug Patterns
	The Two Bug Patterns
	A PM Synchronization Inconsistency in P-CLHT
	A PM Synchronization Inconsistency in P-CLHT
	A PM Synchronization Inconsistency in P-CLHT
	PMRace Overview
	PMRace Overview
	PM Alias (Pair) Coverage
	PM-Aware Interleaving Exploration
	PM-Aware Interleaving Exploration
	PM-Aware Interleaving Exploration
	PM-Aware Interleaving Exploration
	PM-Aware Interleaving Exploration
	PM-Aware Interleaving Exploration
	PM-Aware Interleaving Exploration
	PM-Aware Interleaving Exploration
	PM-Aware Interleaving Exploration
	PMRace Overview
	PM Inconsistency Checkers
	PM Inconsistency Checkers
	PM Inconsistency Checkers
	PMRace Overview
	Post-Failure Validation
	An Example of Benign Inconsistency
	An Example of Benign Inconsistency
	An Example of Benign Inconsistency
	Evaluation
	14 Bugs
	The Time to Identify PM Inter-thread Inconsistency
	Inconsistencies and False Positives
	Inconsistencies and False Positives
	Inconsistencies and False Positives
	Inconsistencies and False Positives
	Conclusion
	幻灯片编号 82

