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Backup-enabled Read

➢ Allows backups to serve read-only (RO) data
• In-place update → No address redirection

• Undo logging → No data migration → No CPU involvement in PM pool
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➢ Only issue remote flushes to backups after the final write
• Guarantee remote persistency

• Ensure recoverability by backups

• Reduce flushing round trips

• Compatible with different flush primitives [1]

Selective Remote Flush

20
1 One-sided RDMA FLUSH or READ (READ-after-WRITE)
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➢ Put it all together: One-sided RDMA and PM-conscious designs

FORD Transaction
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More Details

➢ Programming Interface

➢ Indexes in PM Pool

➢ Analysis on ACID and Serializability

➢…
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Evaluation

➢ Benchmarks
• KV store

• 8B key + 40B value

• Skewed (θ = 0.99) + Uniform

• TATP
• RO/RW: 80%/20%, 48B

• SmallBank
• RO/RW: 15%/85%, 16B

• TPCC
• RO/RW: 8%/92%, 672B

➢ Comparisons[1]

• FaRM@SOSP’15

• DrTM+H@OSDI’18
23

PM pool
Each contains six 128GB Intel Optane PM

Compute pool
Intel Xeon Gold 6230R

RDMA Switch
100Gbps SB7890

ConnectX-5 RNIC

Testbed
1 Protocols are re-implemented using one-sided RDMA

ConnectX-5 RNICConnectX-5 RNIC



End-to-End Performance
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➢ KV store, 1 backup

Read backup
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➢ KV store, 1 coordinator

Remote flush
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Conclusion
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Selective 

remote flush

Challenges

https://github.com/minghust/ford

Our 
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