
FORD: Fast One-sided RDMA-based
Distributed Transactions

for Disaggregated Persistent Memory

Ming Zhang, Yu Hua, Pengfei Zuo, Lurong Liu

Huazhong University of Science and Technology, China

20th USENIX Conference on File and Storage Technologies (FAST), 2022

➢ Memory disaggregation

Disaggregated Persistent Memory

2

Monolithic servers

➢ Memory disaggregation

Disaggregated Persistent Memory

2

RDMA Network

Memory Pool

Weak compute units

Small DRAM cachesCPU

Compute Pool

Decouple

Monolithic servers

➢ Memory disaggregation

Disaggregated Persistent Memory

2

RDMA Network

Memory Pool

Weak compute units

Small DRAM cachesCPU

Compute Pool

Persistent Memory (PM)

Decouple

Monolithic servers

Transaction

3

Client
Stock Balancebuy

Desk 1
Desk 2

$0

Transaction

3

Client
Stock Balancebuy

Desk 1
Desk 2

$0

Client
Balance

Desk 2
$0

$50

Stock

Desk 1

Transaction

3

Client
Stock Balancebuy

Desk 1
Desk 2

$0

Client
Balance

Desk 2
$0

$50

Atomic

Stock

Desk 1

Transaction

3

Client
Stock Balancebuy

Desk 1
Desk 2

$0

Client
Balance

Desk 2
$0

$50Transaction

Atomic

Stock

Desk 1

Distributed Transaction

4

Stock
(Server 1)

Balance
(Server 2)

Distributed Transaction

Client
Stock Balancebuy

Desk 1
Desk 2

$0

Client
Balance

Desk 2
$0

$50Transaction

Atomic

Stock

Desk 1

Coordinator

Network

Network

Distributed Transaction

5

Distributed Transaction: A key building block

Client
Stock Balancebuy

Desk 1
Desk 2

$0

Client
Balance

Desk 2
$0

$50Transaction

Atomic

Stock

Desk 1

RDMA-based Distributed Transaction

6

Stock
(Server 1)

Balance
(Server 2)

Distributed Transaction

RDMA

Concurrency control: 2PL[1], OCC[2-4]

1 DrTM@SOSP’15 2 FaRM@SOSP’15 3 FaSST@OSDI’16 4 DrTM+H@OSDI’18

RDMA

Client
Stock Balancebuy

Desk 1
Desk 2

$0

Client
Balance

Desk 2
$0

$50Transaction

Atomic

Stock

Desk 1

Coordinator

RDMA-based Distributed Transaction

7

Coordinator

Distributed Transaction

High availability: Primary-backup replication[2-4]

1 DrTM@SOSP’15 2 FaRM@SOSP’15 3 FaSST@OSDI’16 4 DrTM+H@OSDI’18

Stock
(Backup)

Stock
(Backup)

Stock
(Primary)

Balance
(Primary)

Balance
(Backup)

Balance
(Primary)

Client
Stock Balancebuy

Desk 1
Desk 2

$0

Client
Balance

Desk 2
$0

$50Transaction

Atomic

Stock

Desk 1

RDMA
RDMA

RDMA

RDMA

Transaction on Disaggregated PM

8

RDMA

PM PoolCompute Pool

Weak compute unitsSmall DRAM caches

Transaction on Disaggregated PM

8

RDMA

PM PoolCompute Pool

Weak compute units

replica

Small DRAM caches

Transaction on Disaggregated PM

8

RDMA

PM PoolCompute Pool

Weak compute units

Memory allocation +
RDMA connection

replica

Small DRAM caches

Not involved in
txn processing

Transaction on Disaggregated PM

8

RDMA

PM PoolCompute Pool

Weak compute units

Memory allocation +
RDMA connection

replica

Small DRAM caches

Not involved in
txn processing

Coordinator

Transaction on Disaggregated PM

8

RDMA

PM PoolCompute Pool

Weak compute units

Metadata + Result
Memory allocation +

RDMA connection

replica

Small DRAM caches

Not involved in
txn processing

Coordinator

State-of-the-art

9
1 DrTM@SOSP’15 2 FaRM@SOSP’15 3 FaSST@OSDI’16 4 DrTM+H@OSDI’18

One/two-sided
RDMA…

Coord.

Replica

Txn

Monolithic architecture[1-4]

CPU

DRAM

DISK

Coord.
Txn

CPU

DRAM

DISK
Replica

One/two-sided
RDMA…

DISK

Coord.CPU

DRAM

DISK
Replica

State-of-the-art

9
1 DrTM@SOSP’15 2 FaRM@SOSP’15 3 FaSST@OSDI’16 4 DrTM+H@OSDI’18

Disaggregated architecture

Txn
…

Coord.
CPU CPU

CPU CPU

…
PM PM

PM PM

Replica

One/two-sided
RDMA…

Coord.

Replica

Txn

Monolithic architecture[1-4]

CPU

DRAM

DISK

Coord.
Txn

CPU

DRAM

DISK
Replica

One/two-sided
RDMA…

DISK

Coord.CPU

DRAM

DISK
Replica

State-of-the-art

9
1 DrTM@SOSP’15 2 FaRM@SOSP’15 3 FaSST@OSDI’16 4 DrTM+H@OSDI’18

Disaggregated architecture

Txn
…

Coord.
CPU CPU

CPU CPU

…
PM PM

PM PM

Replica

One/two-sided
RDMA…

Coord.

Replica

Txn

Monolithic architecture[1-4]

CPU

DRAM

DISK

Coord.
Txn

CPU

DRAM

DISK
Replica

One/two-sided
RDMA…

DISK

Coord.CPU

DRAM

DISK
Replica

Fail to work

HTM/Poll/Lock/Fetch

State-of-the-art

9
1 DrTM@SOSP’15 2 FaRM@SOSP’15 3 FaSST@OSDI’16 4 DrTM+H@OSDI’18

Disaggregated architecture

Txn
…

Coord.
CPU CPU

CPU CPU

…
PM PM

PM PM

Replica

One/two-sided
RDMA…

Coord.

Replica

Txn

Monolithic architecture[1-4]

CPU

DRAM

DISK

Coord.
Txn

CPU

DRAM

DISK
Replica

No CPU

One/two-sided
RDMA…

DISK

Coord.CPU

DRAM

DISK
Replica

Fail to work

HTM/Poll/Lock/Fetch

State-of-the-art

9
1 DrTM@SOSP’15 2 FaRM@SOSP’15 3 FaSST@OSDI’16 4 DrTM+H@OSDI’18

Disaggregated architecture

Txn
…

Coord.
CPU CPU

CPU CPU

…
PM PM

PM PM

Replica

One/two-sided
RDMA…

Coord.

Replica

Txn

Monolithic architecture[1-4]

CPU

DRAM

DISK

Coord.
Txn

CPU

DRAM

DISK
Replica

No CPU

One/two-sided
RDMA…

DISK

Coord.CPU

DRAM

DISK
Replica

Do not consider

Bandwidth
Persistence

Fail to work

HTM/Poll/Lock/Fetch

State-of-the-art

9
1 DrTM@SOSP’15 2 FaRM@SOSP’15 3 FaSST@OSDI’16 4 DrTM+H@OSDI’18

One-sided
RDMA

Disaggregated architecture

Txn
…

Coord.
CPU CPU

CPU CPU

…
PM PM

PM PM

Replica

One/two-sided
RDMA…

Coord.

Replica

Txn

Monolithic architecture[1-4]

CPU

DRAM

DISK

Coord.
Txn

CPU

DRAM

DISK
Replica

No CPU

One/two-sided
RDMA…

DISK

Coord.CPU

DRAM

DISK
Replica

Do not consider

Bandwidth
Persistence

Fail to work

HTM/Poll/Lock/Fetch

State-of-the-art

9
1 DrTM@SOSP’15 2 FaRM@SOSP’15 3 FaSST@OSDI’16 4 DrTM+H@OSDI’18

One-sided
RDMA

Disaggregated architecture

Txn
…

Coord.
CPU CPU

CPU CPU

…
PM PM

PM PM

Replica

One/two-sided
RDMA…

Coord.

Replica

Txn

Monolithic architecture[1-4]

CPU

DRAM

DISK

Coord.
Txn

CPU

DRAM

DISK
Replica

No CPU

One/two-sided
RDMA…

DISK

Coord.CPU

DRAM

DISK
Replica

Do not consider

Bandwidth
Persistence

Fail to work

HTM/Poll/Lock/Fetch

Challenge 1

➢ Long-latency processing: Many round trips

10

Coordinator

A’s primary

A’s backup

B’s primary

B’s backup

C’s primary

C’s backup

Data

Version

Lock

Unlock

RTT

Redo log

Txn begin
Read A,B,C
Write A=A+C
Write B=B-C
Txn commit

Challenge 1

➢ Long-latency processing: Many round trips

10

Coordinator

A’s primary

A’s backup

Execution

A B C

B’s primary

B’s backup

C’s primary

C’s backup

Data

Version

Lock

Unlock

RTT

Redo log

Txn begin
Read A,B,C
Write A=A+C
Write B=B-C
Txn commit

Challenge 1

➢ Long-latency processing: Many round trips

10

Coordinator

A’s primary

A’s backup

Execution

A B C

Locking

B’s primary

B’s backup

C’s primary

C’s backup

Data

Version

Lock

Unlock

RTT

Redo log

Txn begin
Read A,B,C
Write A=A+C
Write B=B-C
Txn commit

Challenge 1

➢ Long-latency processing: Many round trips

10

Coordinator

A’s primary

A’s backup

Execution Validation

A B C

Locking

A B C

B’s primary

B’s backup

C’s primary

C’s backup

Data

Version

Lock

Unlock

RTT

Redo log

Txn begin
Read A,B,C
Write A=A+C
Write B=B-C
Txn commit

Challenge 1

➢ Long-latency processing: Many round trips

10

Coordinator

A’s primary

A’s backup

Commit BackupExecution Validation

A B C

Locking

A BA B C

B’s primary

B’s backup

C’s primary

C’s backup

Data

Version

Lock

Unlock

RTT

Redo log

Txn begin
Read A,B,C
Write A=A+C
Write B=B-C
Txn commit

Challenge 1

➢ Long-latency processing: Many round trips

10

Coordinator

A’s primary

A’s backup

Commit BackupExecution Validation

A B C

Locking

A B BAA B C

Commit Primary

B’s primary

B’s backup

C’s primary

C’s backup

Data

Version

Lock

Unlock

RTT

Redo log

Txn begin
Read A,B,C
Write A=A+C
Write B=B-C
Txn commit

Challenge 1

➢ Long-latency processing: Many round trips

11

Coordinator

A’s primary

A’s backup

Execution

A B C A B BAA B C

B’s primary

B’s backup

C’s primary

C’s backup

Data

Version

Lock

Unlock

RTT

Redo log

Txn begin
Read A,B,C
Write A=A+C
Write B=B-C
Txn commit

Locking Commit BackupValidation Commit Primary

Challenge 1

➢ Long-latency processing: Many round trips

11

Coordinator

A’s primary

A’s backup

Execution

A B C A B BAA B C

B’s primary

B’s backup

C’s primary

C’s backup

Data

Version

Lock

Unlock

RTT

Redo log

Read-write set consumes 3 RTTs

Txn begin
Read A,B,C
Write A=A+C
Write B=B-C
Txn commit

Locking Commit BackupValidation Commit Primary

Challenge 1

➢ Long-latency processing: Many round trips

11

Coordinator

A’s primary

A’s backup

Execution

A B C A B BAA B C

B’s primary

B’s backup

C’s primary

C’s backup

Data

Version

Lock

Unlock

RTT

Redo log

Read-write set consumes 3 RTTs 2 RTTs to commit

Txn begin
Read A,B,C
Write A=A+C
Write B=B-C
Txn commit

Locking Commit BackupValidation Commit Primary

Challenge 1

➢ Long-latency processing: Many round trips

11

Coordinator

A’s primary

A’s backup

Execution

A B C A B BAA B C

B’s primary

B’s backup

C’s primary

C’s backup

Data

Version

Lock

Unlock

RTT

Redo log

Read-write set consumes 3 RTTs 2 RTTs to commit

Coordinators and replicas are separated: All transactions are distributed

Txn begin
Read A,B,C
Write A=A+C
Write B=B-C
Txn commit

Locking Commit BackupValidation Commit Primary

Challenge 1

➢ Long-latency processing: Many round trips

11

Coordinator

A’s primary

A’s backup

Execution

A B C A B BAA B C

B’s primary

B’s backup

C’s primary

C’s backup

Data

Version

Lock

Unlock

RTT

Redo log

Read-write set consumes 3 RTTs 2 RTTs to commit

Coordinators and replicas are separated: All transactions are distributed

Inevitable

Txn begin
Read A,B,C
Write A=A+C
Write B=B-C
Txn commit

Locking Commit BackupValidation Commit Primary

Challenge 1

➢ Long-latency processing: Many round trips

11

Coordinator

A’s primary

A’s backup

Execution

A B C A B BAA B C

B’s primary

B’s backup

C’s primary

C’s backup

Data

Version

Lock

Unlock

RTT

Redo log

Read-write set consumes 3 RTTs 2 RTTs to commit

Coordinators and replicas are separated: All transactions are distributed

Inevitable

Txn begin
Read A,B,C
Write A=A+C
Write B=B-C
Txn commit

5 RTTs on Path

Locking Commit BackupValidation Commit Primary

➢ Limited PM bandwidth: High loads on primary

Challenge 2

12

1 RDMA NIC 2 Mellanox ConnectX-6/dual-port ConnectX-5 VPI Card
3 Six interleaved 256GB Intel Optane PM [Jian Yang, et al.@FAST’20]

RNIC[1]

Primary

25 GB/s[2]

PM

12.9 GB/s[3]

➢ Limited PM bandwidth: High loads on primary

Challenge 2

12

1 RDMA NIC 2 Mellanox ConnectX-6/dual-port ConnectX-5 VPI Card
3 Six interleaved 256GB Intel Optane PM [Jian Yang, et al.@FAST’20]

RNIC[1]

Primary

25 GB/s[2]

＞ PM

12.9 GB/s[3]

➢ Limited PM bandwidth: High loads on primary

Challenge 2

12

1 RDMA NIC 2 Mellanox ConnectX-6/dual-port ConnectX-5 VPI Card
3 Six interleaved 256GB Intel Optane PM [Jian Yang, et al.@FAST’20]

RNIC[1]

Primary

25 GB/s[2]

＞ PM

12.9 GB/s[3]

RNIC[1]

Backup

PM

Read/Write

Coordinator

RDMA

➢ Limited PM bandwidth: High loads on primary

Challenge 2

12

1 RDMA NIC 2 Mellanox ConnectX-6/dual-port ConnectX-5 VPI Card
3 Six interleaved 256GB Intel Optane PM [Jian Yang, et al.@FAST’20]

RNIC[1]

Primary

25 GB/s[2]

＞ PM

12.9 GB/s[3]

RNIC[1]

Backup

PM

Apply redo logs

Read/Write

Coordinator

RDMA

➢ Limited PM bandwidth: High loads on primary

Challenge 2

12

1 RDMA NIC 2 Mellanox ConnectX-6/dual-port ConnectX-5 VPI Card
3 Six interleaved 256GB Intel Optane PM [Jian Yang, et al.@FAST’20]

RNIC[1]

Primary

25 GB/s[2]

＞ PM

12.9 GB/s[3]

RNIC[1]

Backup

PM

Apply redo logs

Read/Write

Coordinator

RDMA

Can’t read

➢ Limited PM bandwidth: High loads on primary

Challenge 2

12

1 RDMA NIC 2 Mellanox ConnectX-6/dual-port ConnectX-5 VPI Card
3 Six interleaved 256GB Intel Optane PM [Jian Yang, et al.@FAST’20]

RNIC[1]

Primary

25 GB/s[2]

＞ PM

12.9 GB/s[3]

RNIC[1]

Backup

PM

Apply redo logs

Read/Write

Coordinator

RDMA

Bottleneck

Can’t read

➢ Limited PM bandwidth: High loads on primary

Challenge 2

12

1 RDMA NIC 2 Mellanox ConnectX-6/dual-port ConnectX-5 VPI Card
3 Six interleaved 256GB Intel Optane PM [Jian Yang, et al.@FAST’20]

RNIC[1]

Primary

25 GB/s[2]

＞ PM

12.9 GB/s[3]

RNIC[1]

Backup

PM

Apply redo logs

Read/Write

Coordinator

RDMA

Bottleneck

No CPU
Can’t read

Challenge 3

13

➢ Lack of remote persistency guarantee: Inconsistent write

RDMA Replicas

4 3 2 1Coordinator

Challenge 3

13

➢ Lack of remote persistency guarantee: Inconsistent write

RDMA Replicas

4 3 2 1

Data5

Coordinator

Challenge 3

13

➢ Lack of remote persistency guarantee: Inconsistent write

RDMA Replicas

4 3 2 15

Data5

Coordinator

Challenge 3

13

➢ Lack of remote persistency guarantee: Inconsistent write

RDMA

Volatile buffer

Replicas

4 3 2 15

Data5

Coordinator

Challenge 3

13

➢ Lack of remote persistency guarantee: Inconsistent write

Ack

RDMA

Volatile buffer

Replicas

4 3 2 15

Data5

Coordinator

Fast

Challenge 3

13

➢ Lack of remote persistency guarantee: Inconsistent write

Ack

RDMA

Volatile buffer

Replicas

4 3 2 15

Data5

Data5 is
persisted

Coordinator

Fast

Challenge 3

13

➢ Lack of remote persistency guarantee: Inconsistent write

Ack

RDMA

Volatile buffer

Replicas

4 3 2 15

Data5

Data5 is
persisted

Coordinator

Fast

Slow

Challenge 3

14

➢ Lack of remote persistency guarantee: Inconsistent write

RDMA

Volatile buffer

Replicas

4 3 2 1Coordinator

Data5 is
persisted

Inconsistency

Challenge 3

14

➢ Lack of remote persistency guarantee: Inconsistent write

RDMA

Volatile buffer

Replicas

4 3 2 1Coordinator

Data5 is
persisted

FORD: Solutions

15

➢ Long-latency processing: Many round trips

➢ Limited PM bandwidth: High loads on primary

➢ Lack of remote persistency guarantee: Inconsistent write

FORD: Solutions

15

➢ Long-latency processing: Many round trips

➢ Limited PM bandwidth: High loads on primary

➢ Lack of remote persistency guarantee: Inconsistent write

• Hitchhiked Locking

• Coalescent Commit

Reduce round trips to decrease latency

FORD: Solutions

15

➢ Long-latency processing: Many round trips

➢ Limited PM bandwidth: High loads on primary

➢ Lack of remote persistency guarantee: Inconsistent write

• Hitchhiked Locking

• Coalescent Commit

Reduce round trips to decrease latency

• Backup-enabled Read

Balance load to improve throughput

FORD: Solutions

15

➢ Long-latency processing: Many round trips

➢ Limited PM bandwidth: High loads on primary

➢ Lack of remote persistency guarantee: Inconsistent write

• Hitchhiked Locking

• Coalescent Commit

Reduce round trips to decrease latency

• Backup-enabled Read

Balance load to improve throughput

• Selective Remote Flush

Guarantee remote persistency with low overhead

Overview

16

DB Tables

PM BladeCompute Blade

Coordinators

Compute Pool PM Pool

Clients

Connection

Manager

Connection

Manager

• Init:❶-❷

• Run:❸-❺

Overview

16

DB Tables

PM BladeCompute Blade

Coordinators

Build
connection

Compute Pool PM Pool

Clients

Connection

Manager

Connection

Manager
Send

metadata

❷

Allocate memory and load table❶

• Init:❶-❷

• Run:❸-❺

Overview

16

DB Tables

PM BladeCompute Blade

Coordinators

Build
connection

❸

Compute Pool PM Pool

Clients

Connection

Manager

Connection

Manager
Send

metadata

Issue txn

❷

Allocate memory and load table❶

• Init:❶-❷

• Run:❸-❺

Overview

16

DB Tables

PM BladeCompute Blade

Coordinators
One-sided

Build
connection

❸

❹

Compute Pool PM Pool

Clients

Connection

Manager

Connection

Manager
Send

metadata

Issue txn

❷

Allocate memory and load table

RDMA

❶

• Init:❶-❷

• Run:❸-❺

Overview

16

DB Tables

PM BladeCompute Blade

Coordinators
One-sided

Build
connection

❸

❹

❺

Compute Pool PM Pool

Clients

Connection

Manager

Connection

Manager
Send

metadata

Commit
or

Abort

Issue txn

❷

Allocate memory and load table

RDMA

❶

• Init:❶-❷

• Run:❸-❺

Overview

16

DB Tables

PM BladeCompute Blade

Transaction

Processing

Library

Coordinators
One-sided

Build
connection

❸

❹

❺

Compute Pool PM Pool

Clients

Connection

Manager

Connection

Manager
Send

metadata

Commit
or

Abort

Issue txn

❷

Allocate memory and load table

RDMA

❶

• Init:❶-❷

• Run:❸-❺

Overview

16

DB Tables

PM BladeCompute Blade

Transaction

Processing

Library

Coordinators
One-sided

Build
connection

❸

❹

❺

Compute Pool PM Pool

Clients

Index

Structures

Connection

Manager

Connection

Manager
Send

metadata

Commit
or

Abort

Issue txn

❷

Allocate memory and load table

RDMA

❶

• Init:❶-❷

• Run:❸-❺

Overview

16

DB Tables

PM BladeCompute Blade

Transaction

Processing

Library

Coordinators
One-sided

Build
connection

❸

❹

❺

Compute Pool PM Pool

Clients

Index

Structures

Connection

Manager

Connection

Manager
Send

metadata

Commit
or

Abort

Issue txn

❷

Allocate memory and load table

RDMA

❶

• Init:❶-❷

• Run:❸-❺

➢ Read and lock the read-write (RW) set in execution
• Avoid subsequent locking and validations

• No lock on the read-only data

Hitchhiked Locking

17

Coordinator

A’s Primary

B’s Primary

C’s Primary

A B C

Execution Locking Validation

A CB

RW set

Txn begin
Read A,B,C
Write A=A+C
Write B=B-C
Txn commit

➢ Read and lock the read-write (RW) set in execution
• Avoid subsequent locking and validations

• No lock on the read-only data

Hitchhiked Locking

17

Coordinator

A’s Primary

B’s Primary

C’s Primary

A B C

Execution Locking Validation

A CB A B C

Execution

RW set

Txn begin
Read A,B,C
Write A=A+C
Write B=B-C
Txn commit

➢ Read and lock the read-write (RW) set in execution
• Avoid subsequent locking and validations

• No lock on the read-only data

Hitchhiked Locking

17

Coordinator

A’s Primary

B’s Primary

C’s Primary

A B C

Execution Locking Validation

A CB A B C

Execution

C R R
C

C: RDMA CAS
R: RDMA READ

Separate Batched

RW set

Txn begin
Read A,B,C
Write A=A+C
Write B=B-C
Txn commit

In one round trip

➢ Read and lock the read-write (RW) set in execution
• Avoid subsequent locking and validations

• No lock on the read-only data

Hitchhiked Locking

17

Coordinator

A’s Primary

B’s Primary

C’s Primary

A B C

Execution Locking Validation

A CB A B C

Execution Validation

C

C R R
C

C: RDMA CAS
R: RDMA READ

Separate Batched

RW set

Txn begin
Read A,B,C
Write A=A+C
Write B=B-C
Txn commit

In one round trip

➢ Read and lock the read-write (RW) set in execution
• Avoid subsequent locking and validations

• No lock on the read-only data

Hitchhiked Locking

17

Coordinator

A’s Primary

B’s Primary

C’s Primary

A B C

Execution Locking Validation

A CB SavedA B C

Execution Validation

C

C R R
C

C: RDMA CAS
R: RDMA READ

Separate Batched

RW set

Txn begin
Read A,B,C
Write A=A+C
Write B=B-C
Txn commit

3 RTTs 2 RTTs

In one round trip

➢ Commit all replicas together in one round trip
• In-place update: Parallel undo logging in execution phase

• Prevent reading partial updates: Control data visibility

Coalescent Commit

18

Coordinator

A’s primary

A’s backup

Commit
Backup

A

B’s backup

B’s primary

B

Tx_committed
Commit
Primary Commit

A B AA BB

Separate Commit Coalescent Commit

➢ Commit all replicas together in one round trip
• In-place update: Parallel undo logging in execution phase

• Prevent reading partial updates: Control data visibility

Coalescent Commit

18

Coordinator

A’s primary

A’s backup

Commit
Backup

A

B’s backup

B’s primary

B I I I I

Tx_committed
Commit
Primary Commit

A B AA BB

I Invisible

Separate Commit Coalescent Commit

➢ Commit all replicas together in one round trip
• In-place update: Parallel undo logging in execution phase

• Prevent reading partial updates: Control data visibility

Coalescent Commit

18

Coordinator

A’s primary

A’s backup

Commit
Backup

A

B’s backup

B’s primary

B I I I I V V V V

Tx_committed
Commit
Primary Commit Release

A B AA BB

I Invisible
V Visible

Separate Commit Coalescent Commit

➢ Commit all replicas together in one round trip
• In-place update: Parallel undo logging in execution phase

• Prevent reading partial updates: Control data visibility

Coalescent Commit

18

Coordinator

A’s primary

A’s backup

Commit
Backup

A

B’s backup

B’s primary

B I I I I V V V V

Tx_committed
Commit
Primary Commit Release

A B AA BB

0 or 0.5 RTT in
background

I Invisible
V Visible

Separate Commit Coalescent Commit

➢ Commit all replicas together in one round trip
• In-place update: Parallel undo logging in execution phase

• Prevent reading partial updates: Control data visibility

Coalescent Commit

18

Coordinator

A’s primary

A’s backup

Commit
Backup

A

B’s backup

B’s primary

B I I I I V V V V

Tx_committed
Commit
Primary Commit Release

A B AA BB

0 or 0.5 RTT in
background

I Invisible
V Visible

Separate Commit Coalescent Commit

2 RTTs 1 RTT

Backup-enabled Read

➢ Allows backups to serve read-only (RO) data
• In-place update → No address redirection

• Undo logging → No data migration → No CPU involvement in PM pool

19

BackupsPrimary

RDMA requests from coordinators

Read RO
Read Version

Write back

Read + Lock RW
Read Version
Write back

Undo Data Undo Data Undo Data Undo Data

Balance load ➔ Improve throughput

Backup-enabled Read

➢ Allows backups to serve read-only (RO) data
• In-place update → No address redirection

• Undo logging → No data migration → No CPU involvement in PM pool

19

BackupsPrimary

RDMA requests from coordinators

Read RO
Read Version

Write back

Read + Lock RW
Read Version
Write back

Undo Data Undo Data Undo Data Undo Data

Balance load ➔ Improve throughput

Read oldTx1

Tx2

Read new Tx1

Tx2

Version
CheckTx1

Tx2

Correctness guarantee

Before Commit Commit After Commit

Before Commit Commit After Commit

Before Commit Commit After Commit

➢ Only issue remote flushes to backups after the final write
• Guarantee remote persistency

• Ensure recoverability by backups

• Reduce flushing round trips

• Compatible with different flush primitives [1]

Selective Remote Flush

20
1 One-sided RDMA FLUSH or READ (READ-after-WRITE)

➢ Only issue remote flushes to backups after the final write
• Guarantee remote persistency

• Ensure recoverability by backups

• Reduce flushing round trips

• Compatible with different flush primitives [1]

Selective Remote Flush

20

CPU

Local PM

Cachelines
clwb

Single Node

1 One-sided RDMA FLUSH or READ (READ-after-WRITE)

➢ Only issue remote flushes to backups after the final write
• Guarantee remote persistency

• Ensure recoverability by backups

• Reduce flushing round trips

• Compatible with different flush primitives [1]

Selective Remote Flush

20

CPU

Local PM

Cachelines
clwb

Single Node

CPU

Data

Remote PM

Remote Node

1 One-sided RDMA FLUSH or READ (READ-after-WRITE)

➢ Only issue remote flushes to backups after the final write
• Guarantee remote persistency

• Ensure recoverability by backups

• Reduce flushing round trips

• Compatible with different flush primitives [1]

Selective Remote Flush

20

remote
flush

CPU

Local PM

Cachelines
clwb

Single Node

CPU

Data

Remote PM

Remote Node

1 One-sided RDMA FLUSH or READ (READ-after-WRITE)

➢ Only issue remote flushes to backups after the final write
• Guarantee remote persistency

• Ensure recoverability by backups

• Reduce flushing round trips

• Compatible with different flush primitives [1]

Selective Remote Flush

20

remote
flush

CPU

Local PM

Cachelines
clwb

Single Node

CPU

Data

Remote PM

Remote Node

1 One-sided RDMA FLUSH or READ (READ-after-WRITE)

CPU RNIC RNIC PM
RDMA write

Write ACK
Flush request[1]

Flush ACK

Fl
u

sh

Remote flush

➢ Only issue remote flushes to backups after the final write
• Guarantee remote persistency

• Ensure recoverability by backups

• Reduce flushing round trips

• Compatible with different flush primitives [1]

Selective Remote Flush

20

remote
flush

CPU

Local PM

Cachelines
clwb

Single Node

CPU

Data

Remote PM

Remote Node

Coordinator

Primary

Backup

FF 1 F21 F 2

1 Data1 2 Data2 Remote flushF

Full Flush

1 One-sided RDMA FLUSH or READ (READ-after-WRITE)

CPU RNIC RNIC PM
RDMA write

Write ACK
Flush request[1]

Flush ACK

Fl
u

sh

Remote flush

➢ Only issue remote flushes to backups after the final write
• Guarantee remote persistency

• Ensure recoverability by backups

• Reduce flushing round trips

• Compatible with different flush primitives [1]

Selective Remote Flush

20

remote
flush

CPU

Local PM

Cachelines
clwb

Single Node

CPU

Data

Remote PM

Remote Node

Coordinator

Primary

Backup

FF 1 F21 F 2

1 Data1 2 Data2 Remote flushF

Full Flush

1 One-sided RDMA FLUSH or READ (READ-after-WRITE)

(Many round trips)

CPU RNIC RNIC PM
RDMA write

Write ACK
Flush request[1]

Flush ACK

Fl
u

sh

Remote flush

➢ Only issue remote flushes to backups after the final write
• Guarantee remote persistency

• Ensure recoverability by backups

• Reduce flushing round trips

• Compatible with different flush primitives [1]

Selective Remote Flush

20

remote
flush

CPU

Local PM

Cachelines
clwb

Single Node

CPU

Data

Remote PM

Remote Node

Coordinator

Primary

Backup

FF 1 F21 F 2

1 Data1 2 Data2 Remote flushF

Full Flush

1 One-sided RDMA FLUSH or READ (READ-after-WRITE)

1 1 2F
2

Selective Flush
(Many round trips)

CPU RNIC RNIC PM
RDMA write

Write ACK
Flush request[1]

Flush ACK

Fl
u

sh

Remote flush

➢ Put it all together: One-sided RDMA and PM-conscious designs

FORD Transaction

21

Data

Unlock

RTT

Invisible Visible

Version

Undo log

Lock

Remote flush

VI

F

Txn begin
Read A,B,C
Write A=A+C
Write B=B-C
Txn commit

Coordinator

A’s primary

A’s backup

B’s primary

B’s backup

C’s primary

C’s backup
One-sided

RDMA

➢ Put it all together: One-sided RDMA and PM-conscious designs

FORD Transaction

21

Execution

Data

Unlock

RTT

Invisible Visible

Version

Undo log

Lock

Remote flush

VI

F

Txn begin
Read A,B,C
Write A=A+C
Write B=B-C
Txn commit

Coordinator

A’s primary

A’s backup

B’s primary

B’s backup

C’s primary

C’s backup
One-sided

RDMA

➢ Put it all together: One-sided RDMA and PM-conscious designs

FORD Transaction

21

Execution

Batched CAS + READ

A CB

Data

Unlock

RTT

Invisible Visible

Version

Undo log

Lock

Remote flush

VI

F

Txn begin
Read A,B,C
Write A=A+C
Write B=B-C
Txn commit

Coordinator

A’s primary

A’s backup

B’s primary

B’s backup

C’s primary

C’s backup
One-sided

RDMA

➢ Put it all together: One-sided RDMA and PM-conscious designs

FORD Transaction

21

Execution

Batched CAS + READ

A

A

B

B

A CB

Data

Unlock

RTT

Invisible Visible

Version

Undo log

Lock

Remote flush

VI

F

Txn begin
Read A,B,C
Write A=A+C
Write B=B-C
Txn commit

Coordinator

A’s primary

A’s backup

B’s primary

B’s backup

C’s primary

C’s backup
One-sided

RDMA Parallel WRITE

➢ Put it all together: One-sided RDMA and PM-conscious designs

FORD Transaction

21

Execution

Or read backup

Batched CAS + READ

A

A

B

B

A CB

Data

Unlock

RTT

Invisible Visible

Version

Undo log

Lock

Remote flush

VI

F

Txn begin
Read A,B,C
Write A=A+C
Write B=B-C
Txn commit

Coordinator

A’s primary

A’s backup

B’s primary

B’s backup

C’s primary

C’s backup
One-sided

RDMA Parallel WRITE

➢ Put it all together: One-sided RDMA and PM-conscious designs

FORD Transaction

21

Execution

Or read backup

Batched CAS + READ

A

A

B

B

A CB

Serialization
point

Data

Unlock

RTT

Invisible Visible

Version

Undo log

Lock

Remote flush

VI

F

Txn begin
Read A,B,C
Write A=A+C
Write B=B-C
Txn commit

Coordinator

A’s primary

A’s backup

B’s primary

B’s backup

C’s primary

C’s backup
One-sided

RDMA Parallel WRITE

➢ Put it all together: One-sided RDMA and PM-conscious designs

FORD Transaction

21

Execution

Or read backup

Batched CAS + READ

A

A

B

B

A CB

Validation

READ

C

Serialization
point

Data

Unlock

RTT

Invisible Visible

Version

Undo log

Lock

Remote flush

VI

F

Txn begin
Read A,B,C
Write A=A+C
Write B=B-C
Txn commit

Coordinator

A’s primary

A’s backup

B’s primary

B’s backup

C’s primary

C’s backup
One-sided

RDMA Parallel WRITE

➢ Put it all together: One-sided RDMA and PM-conscious designs

FORD Transaction

21

Execution

Or read backup

Batched CAS + READ

A

A

B

B

A CB

Validation

READ

C

Serialization
point

Check all
undo ACKs

Data

Unlock

RTT

Invisible Visible

Version

Undo log

Lock

Remote flush

VI

F

Txn begin
Read A,B,C
Write A=A+C
Write B=B-C
Txn commit

Coordinator

A’s primary

A’s backup

B’s primary

B’s backup

C’s primary

C’s backup
One-sided

RDMA Parallel WRITE

➢ Put it all together: One-sided RDMA and PM-conscious designs

FORD Transaction

21

Execution

Or read backup

Batched CAS + READ

A

A

B

B

A CB

Validation

READ

C

Serialization
point

Check all
undo ACKs

I
A

I

I

Commit
F

Batched
CAS + WRITE

(+ FLUSH)

A
I

B F

B

Data

Unlock

RTT

Invisible Visible

Version

Undo log

Lock

Remote flush

VI

F

Txn begin
Read A,B,C
Write A=A+C
Write B=B-C
Txn commit

Coordinator

A’s primary

A’s backup

B’s primary

B’s backup

C’s primary

C’s backup
One-sided

RDMA Parallel WRITE

➢ Put it all together: One-sided RDMA and PM-conscious designs

FORD Transaction

21

Execution

Or read backup

Batched CAS + READ

A

A

B

B

A CB

Validation

READ

C

Serialization
point

Tx_committedCheck all
undo ACKs

I
A

I

I

Commit
F

Batched
CAS + WRITE

(+ FLUSH)

A
I

B F

B

Data

Unlock

RTT

Invisible Visible

Version

Undo log

Lock

Remote flush

VI

F

Txn begin
Read A,B,C
Write A=A+C
Write B=B-C
Txn commit

Coordinator

A’s primary

A’s backup

B’s primary

B’s backup

C’s primary

C’s backup
One-sided

RDMA Parallel WRITE

➢ Put it all together: One-sided RDMA and PM-conscious designs

FORD Transaction

21

Execution

Or read backup

Batched CAS + READ

A

A

B

B

Release

V

CAS

V V VA CB

Validation

READ

C

Serialization
point

Tx_committedCheck all
undo ACKs

I
A

I

I

Commit
F

Batched
CAS + WRITE

(+ FLUSH)

A
I

B F

B

Data

Unlock

RTT

Invisible Visible

Version

Undo log

Lock

Remote flush

VI

F

Txn begin
Read A,B,C
Write A=A+C
Write B=B-C
Txn commit

Coordinator

A’s primary

A’s backup

B’s primary

B’s backup

C’s primary

C’s backup
One-sided

RDMA Parallel WRITE

➢ Put it all together: One-sided RDMA and PM-conscious designs

FORD Transaction

21

Execution

Or read backup

Batched CAS + READ

A

A

B

B

Release

V

CAS

V V VA CB

Validation

READ

C

Serialization
point

Tx_committedCheck all
undo ACKs

I
A

I

I

Commit
F

Batched
CAS + WRITE

(+ FLUSH)

A
I

B F

B

Data

Unlock

RTT

Invisible Visible

Version

Undo log

Lock

Remote flush

VI

F

Txn begin
Read A,B,C
Write A=A+C
Write B=B-C
Txn commit

Coordinator

A’s primary

A’s backup

B’s primary

B’s backup

C’s primary

C’s backup
One-sided

RDMA Parallel WRITE

3 RTTs on Path

More Details

➢ Programming Interface

➢ Indexes in PM Pool

➢ Analysis on ACID and Serializability

➢…

22

Evaluation

➢ Benchmarks
• KV store

• 8B key + 40B value

• Skewed (θ = 0.99) + Uniform

• TATP
• RO/RW: 80%/20%, 48B

• SmallBank
• RO/RW: 15%/85%, 16B

• TPCC
• RO/RW: 8%/92%, 672B

➢ Comparisons[1]

• FaRM@SOSP’15

• DrTM+H@OSDI’18
23

PM pool
Each contains six 128GB Intel Optane PM

Compute pool
Intel Xeon Gold 6230R

RDMA Switch
100Gbps SB7890

ConnectX-5 RNIC

Testbed
1 Protocols are re-implemented using one-sided RDMA

ConnectX-5 RNICConnectX-5 RNIC

End-to-End Performance

24

0
100
200
300
400
500

FaRM DrTMH FORD
0

2000

4000

6000

8000

FaRM DrTMH FORD
0

10

20

30

FaRM DrTMH FORD

2.3x
Throughput (K txn/sec)

➢ 112 coordinators

➢ Efficient round trip reduction and backup utilization

50th latency (μs) 99th latency (μs)

74.3% 63.8%

TPCC results

➢ KV store, 1 backup

Read backup

25

0

4

8

12

25:75 50:50 75:25 95:5 100:0

Disable read backups

Enable read backups

0

4

8

12

25:75 50:50 75:25 95:5 100:0

Disable read backups

Enable read backups

Skewed access Uniform access

M txn/sec

Read:Write ratio Read:Write ratio

1.5x 1.4x

➢ KV store, 1 coordinator

Remote flush

26

0

40

80

120

160

200

1 2 3 4 5 6 7 8 9 10

50th-Full Flush 50th-Select Flsuh 99th-Full Flush 99th-Select Flush

0

40

80

120

160

200

1 2 3 4 5 6 7 8 9 10

Skewed access Uniform access

99th 12.4%↓ 99th 14%↓

50th 22.5%↓ 50th 22.8%↓

Number of accessed data per txn Number of accessed data per txn

μs Flush

Conclusion

27

Selective

remote flush

Challenges

https://github.com/minghust/ford

Our
Schemes

Benefits

Backup-enabled

read

Hitchhiked

locking +

Coalescent

commit

Lack of remote

persistency

guarantee

Limited PM

bandwidth

Long-latency

processing

Low-overhead

guarantee
Balance loads

Reduce

round trips

Thank you! Q&A

