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Abstract—Due to the high complexity in software hierarchy
and the shared queue & lock mechanism for synchronized access,
existing I/O stack for remote target access in FCoE-based SAN
storage becomes a performance bottleneck, thus leading to a high
I/O overhead and limited I/O scalability in multi-core servers.
For scalable performance, existing works focus on improving
the efficiency of lock algorithm or reducing the number of
synchronization points to decrease the synchronization overhead.
However, the synchronization problem still exists and leads to a
limited I/O scalability.

In this paper, we propose FastFCoE, a protocol stack frame-
work for remote storage access in FCoE based SAN storage.
FastFCoE uses private per-CPU structures and disables the
kernel preemption to process I/Os. This method avoids the
synchronization overhead. For further I/O efficiency, FastFCoE
directly maps the requests from the block-layer to the FCoE
frames. A salient feature of FastFCoE is using the standard
interfaces, thus supporting all upper softwares (such as existing
file systems and applications) and offering flexible use in existing
infrastructure (e.g., adaptors, switches, storage devices). Our
results demonstrate that FastFCoE achieves efficient and scalable
I/O throughput, obtaining 1107.3K/831.3K IOPS (5.43/4.88 times
as much as Open-FCoE stack) for read/write requests.

Keywords—Fiber Channel over Ethernet; Multi-core frame-
work; Storage architecture;

I. INTRODUCTION

In order to increase multi-core hardware utilization and
reduce the total cost of ownership (TCO), many consoli-
dation schemes have been widely used, for example server
consolidation through virtual machine technologies and I/O
consolidation through converged network adapters (CNAs,
which combine the functionality of a host bus adapter (HBA)
with a network interface controller (NIC)). The Fiber Channel
over Ethernet (FCoE) standard [1], [2], [3] allows the Fibre
Channel storage area network (SAN) traffic to be consolidated
in a converged Ethernet without additional requirements for
FC switches or FCoE switches in data centers. Currently
converged Ethernet has the advantages of availability, cost-
efficiency and simple management. Quite a few corporations
(such as Intel, IBM, EMC, NetApp, Mallenox, Brocade,
Broadcom, VMware, HuaWei, Cisco, etc.) have released F-
CoE SAN related hardware/software solutions. To meet the
demands of high-speed data transmission, more IT industries
consider high-performance FCoE storage connectivity when
upgrading existing IT configurations or building new data
centers. And TechNavio [4] reports that the Global FCoE
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market will grow at a CAGR (Gross Annual Growth Rate)
of 37.93% by 2018.

Modern data centers have to handle physical constraints
in space and power [1]. These constraints limit the system
scale (the number of nodes or servers) when considering the
computational density and energy consumption per server [5].
In such cases, improving the scaling-up capacities of system
components would be a significant way to alleviate the require-
ments for servers and system costs. These system capacities
include the computing or I/O capacity of individual computa-
tion node. Hence, an efficient and scalable stack for accessing
remote storage in FCoE-based SAN storage is important to
meet the growing demands of users. Moreover, scaling up is
well suited to the needs of business-critical applications such
as large databases, big data analytics, as well as academic
workloads and research.

The software I/O stack suffers from the scaling-up pres-
sure in FCoE-based SAN storage systems with the following
features: (1) More cores/CPUs. The availability of powerful,
inexpensive multi-core processors can support more instances
of multi-threaded applications or virtual machines. And this
incurs a large number of I/O requests to remote storage
devices. (2) Super high-speed network. The 40 Gbps Ethernet
adaptors support the access speed of end nodes in the scale
of 40Gbps. (3) Super-high IOPS storage devices. With the
increasing number of the connected end nodes, such as mobile
and smart devices, data center administrators are inclined to
improve the throughput and latency by using the non-volatile
memory (NVM) based storage devices. In such cases, software
designers need to rethink the importance and role of software
in scaling-up storage systems [6], [7], [8].

The Linux FCoE protocol stack (Open-FCoE) is widely
used in FCoE-based SAN storage systems. Through exper-
iments and analysis we find that its shared queue & lock
mechanism for synchronized accessing the shared queue is
apt to lead to a high I/O overhead and limited I/O scalability
in multi-core servers. In the Open-FCoE stack, even if we
increase the number of cores submitting the 4KB I/Os to a
single remote target, the total throughput is no more than
620MB/s in 10Gbps link. This result is only a small fraction of
the maximum throughput (around 1200MB/s) in 10Gbps link,
thus access bottleneck would worsen in the 40Gbps link.

Lock contention has long been considered as a key im-
pediment to software scalability [9], [10], [11], [12]. Existing
works focus on improving the efficiency of lock algorithm
(such as [12], [10]) or reducing the number of locks (such



as MultiLanes [13] and Tyche [14]) to decrease the synchro-
nization overhead. However, the synchronization problem still
exists and leads to a limited scalability. Tyche minimizes
the synchronization overhead by reducing the number of
synchronization points (spin-locks) to provide scaling with
the number of NICs and cores in a server. But Tyche gains
less than 2GB/s for 4KB request size with six 10Gbps NICs.
Unlike existing solutions, our approach uses private per-CPU
structures and disables the kernel preemption [15] to avoid
the synchronization overhead. On one hand, each core only
accesses its own private per-CPU structures, thus avoiding the
concurrent accessing from the threads running in other cores.
On the other hand, when the kernel preemption is disabled,
the current task (thread) will not be switched out during the
period of access to the private structures, thus avoiding the
concurrent access from the threads in the same cores. This
approach avoids the synchronization overhead. Our scheme
achieves 4315.6MB/s throughput with four 10Gbps CNAs for
4KB read requests.

In this paper, we propose FastFCoE, a storage I/O s-
tack for remote storage access in FCoE based SAN storage.
FastFCoE is based on the next-generation multi-queue block
layer [11], designed by Bjørling and Jens Axboe et al.. The
multi-queue block layer allows each core to have per-CPU
queue for submitting I/O. For further I/O efficiency, FastFCoE
directly maps the requests from the block-layer to the FCoE
frames. In this way, FastFCoE significantly decreases the I/O
process overhead and improves the single core throughput.
For instance, when we use one core to submit random 4KB
read (write) requests with all FCoE related hardware offload
capacities enabled, the throughput of current Open-FCoE s-
tack is 142.25 (216.78)MB/s and the average CPU utilization
is 19.65% (13.25%); in contrast, FastFCoE achieves 561.37
(415.39)MB/s and only 15.66% (10.31%) CPU utilization.

Our contributions are summarized as follows:

1. To analyse the performance bottlenecks of FCoE initiator
in the existing FCoE-based SAN storage stack, we study the
current Open-FCoE stack. In current Open-FCoE stack, each
I/O request has to go through several expensive layers, result-
ing in extra CPU overhead and processing latency. Moreover,
in each of SCSI/FCP/FCoE layers, there is a global lock to
provide synchronized access to the shared queue in multi-
core systems. This shared queue & lock mechanism would
lead to happen of LLC cache miss frequently and limited I/O
throughput scalability, no more than 21K IOPS.

2. To support an efficient and scalable I/O for remote
storage access in the FCoE-based SAN storage in the multi-
core servers, we propose a software I/O framework FastFCoE
for FCoE initiator. The main features of our design include (i)
Improve the parallel I/O capacity. FastFCoE uses the private
per-CPU structures for both transmitting and receiving sides
and disables the kernel preemption to avoid synchronization
overhead. (ii) Shorten I/O path and Reduce Overhead. Fast-
FCoE directly initializes the FCoE frames with I/O request-
s from the block layer, thus avoiding inter-operations and
intra-operations between SCSI/FCP/FCoE layers. In addition,
FastFCoE runs under the block layer and supports all upper
softwares, such as file systems and applications. FastFCoE
call the standard network interfaces. Hence, FastFCoE can
use the existing hardware offload features of CNAs (such as

scatter/gather I/O, FCoE segmentation offload, CRC offload,
FCoE Coalescing and Direct Data Placement offload [16])
and offer flexible use in existing infrastructure (e.g., adaptors,
switches, storage devices).

3. We evaluate our FastFCoE, compared with the Open-
FCoE stack. Experimental results demonstrate that FastFCoE
not only improves single core I/O performance for remote
target access performance in FCoE based SAN storage, but
also enhances the I/O scalability with the increasing number
of cores in multi-core servers. For instance, when using a
single thread to submit 64 outstanding 4KB random read/write
requests, the throughput of the Open-FCoE is 36408/67006
IOPS, whereas FastFCoE is 143695/106308 IOPS. Further
more, to examine the I/O scalability of FastFCoE, we bond
four Intel 10Gbps X520 CNAs as a 40Gbps CNA in Initiator
and Target servers. FastFCoE can obtain up to 1100K/830K
(for 4KB size read/write) IOPS to a remote target and achieves
the near maximum throughput for 8KB or larger request sizes.

The remainder of the paper is organized as follows. In
Section 2 we review the current implementation of the Linux
Open-FCoE protocol stack and analyse its performance bottle-
necks detailedly. In Section 3 we propose and detail FastFCoE,
an efficient and scalable framework for FCoE protocol stack.
Section 4 evaluates the performance and scalability of FastF-
CoE. We discuss the related work in Section 5 and conclude
in Section 6.

II. OPEN-FCOE

Open-FCoE project [17], the de-facto standard protocol
stack for Fibre Channel over Ethernet in different operat-
ing systems, is an open-source implementation of an FCoE
initiator. Figure 1 shows the layered architecture of Linux
Open-FCoE. Each I/O has to traverse several layers from
application to hardware. The block layer allows applications to
access diverse storage devices in a uniform way and provides
the storage device drivers with a single point of entry from
all applications, thus alleviating the complexity and diversity
of storage devices. The SCSI layer mainly constructs SCSI
commands with I/O requests from the block layer. The Libfc
(FCP) layer maps SCSI commands to Fibre Channel (FC)
frames as defined in standard Fibre Channel Protocol for SCSI
(FCP) [18]. The FCoE layer encapsulates FC frames into FCoE
frames or de-encapsulates FCoE frames into FC frames as
FC-BB-6 standard [3]. The Ethernet driver transmits/receives
FCoE frames to/from hardware.

A. Revisiting the I/O process in Open-FCoE

Figure 2 shows the general implementation of the SC-
SI/FCP/FCoE layers when multiple cores/threads submit I/O
requests to the same remote target in multi-core systems. We
describe the I/O transmission in Open-FCoE as follows :

1) The SCSI layer builds the SCSI command structure
describing the I/O operation from the block layer;
then acquires the shared lock before: (1) enqueueing
the SCSI command into the shared queue in the SCSI
layer;(2) dispatching the SCSI command from the
shared queue in the SCSI layer to the FCP layer.

2) The FCP layer builds the internal data structure
(FCP request) to describe the SCSI command from



Fig. 1. The architecture of Linux Open-FCoE stack.

the SCSI layer and acquires the shared lock before
enqueueing the FCP request into the internal shared
queue in the FCP layer. Then, it initializes an FC
frame with sk buff structure for the FCP request, and
delivers it to the FCoE layer.

3) The FCoE layer encapsulates FC frame into FCoE
frame; then acquires the shared lock before: (1)
enqueueing the FCoE frame; (2) dequeueing and
transmitting the FCoE frame to network device with
the standard interface dev queue xmit().

There are similar lock acquires in the process of I/O com-
pletion, which would significantly impact on the software
performance in multi-core systems.

Fig. 2. The process of I/O requests transmission in current Open-FCoE stack.

B. understanding process overhead

1) Single Core Overhead Breakdown: As shown in Fig-
ure 1, there are multiple software layers for each I/O to
traverse from the block layer to network hardware. This
layered architecture in Open-FCoE stack increases the process
CPU overhead and latency.

To evaluate how much time is consumed in the process of
I/O operation, we have defined some tracepoints for the read
request in Linux (kernel 3.13) to investigate the execute time
in various layers. Table I shows the path and execution time
in different layers when generating an FCoE command frame.
The “delta” column indicates the time consumed at each layer.

TABLE I. THE PATH AND EXECUTION TIME FOR ONE I/O REQUEST IN

OPEN-FCOE

Function Delta(μs)

Block layer Submit bio 24.235

SCSI layer Blk peek request 22.762

FCP layer Fc queuecommand 22.143

FCoE layer Fcoe xmit 7.390

As shown in Table I, we observe that the Block/SCSI/FCP
layers in the stack consume large fractions of execution time.
The execution time proportion of the Block:SCSI:FCP:FCoE
layer is 24.235μs:22.762μs:22.143μs:7.390μs. We find several
functions in SCSI/FCP/FCoE layers take a long time to trans-
late I/O request into FCoE command frame. For example, the
main function of SCSI layer is to allocate and initialize a SCSI
command structure with the request structure. In the FCP layer,
the internal structure (FCP structure) is allocated and initialized
with the SCSI command; then allocates the FC format frame
and fills the values in its related fields, such as copying
the SCSI CDB to the frame. Extra costs are consumed in
SCSI/FCP/FCoE layers, such as SCSI command/FCP structure
related operations and copying the SCSI CDB to the frame. We
classify all the extra overheads into two types, the inter-layer
and intra-layer overheads. In this paper we directly initialize
the FCoE frame with the I/O request from the block layer.
This method cuts the extra inter-layer and intra-layer cost and
significantly improves the I/O efficiency (detailed analysis in
subsection IV-B).

2) Multi-core Scalability Analysis: For scalability purpose,
modern servers employ cache coherent Non Uniform Memory
Access (cc-NUMA ) in multi-core architecture, such as the one
depicted in Figure 3 that corresponds to the evaluation system
in this paper. In such architecture, there are some representative
features [19], [20], [21], [11], [22], [23], [24], [25] that cause
significantly impacts on the software performance, such as
Migratory Sharing, False Sharing and significant performance
difference when accessing local or remote memory. These
features bring challenges to the developers for multi-threaded
software in cc-NUMA multi-core systems.

We investigate the I/O scalability of Open-FCoE stack with
the mainstream cc-NUMA multi-core architecture. We find that
there are bottlenecks not only in the block layer [11] but also
in the SCSI/FCP/FCoE layers in terms of the I/O scalability
with the increasing number of cores. Specifically, we describe
the details of the problems as follows :



Fig. 3. The multi-core architecture with cache coherent Non-Uniform
Memory Access (cc-NUMA).

Single queue and global shared lock: As shown in Figure 2,
in each layer of the Open-FCoE stack, there is one shared
queue and lock. The lock provides coordinated access to the
shared data when multiple cores are updating the global queue
or list. A high lock contention can slow down the system
performance. The more intensive I/Os there are, the more time
it consumes to acquire the lock. This bottleneck significantly
limits the I/O scalability in multi-core systems.
Migratory sharing: We illustrate this problem with two cas-
es [21]. (1) First, when one or more cores are to privately cache
a block in a read-only state, another core requests for writing
the block by updating its private cache. In this case, it can lead
to incoherence behavior that the cores are caching an old value
indefinitely. In the coherence protocol, the shared cache (LLC,
Last Layer Cache) forwards the request to all private caches.
These private caches invalidate their copies of the block. This
increases the load in the interconnection network between the
cores and decreases performance when a core is waiting for
coherence permissions to access a block. (2) If no other cores
cache the block, a request has the negligible overhead of only
updating the block in the private cache. Unfortunately, the
migratory sharing pattern (i.e. the first case) generally occurs
in the shared data access in the current Open-FCoE stack.
There are several major sources of migratory sharing patterns
in the Open-FCoE stack: (i) shared lock, such as lock/unlock
before enqueue/dequeue operations in SCSI/FCP/FCoE layers,
exchange memory allocation/free from one global mempool in
the FCP layer. (ii) insert or remove the elements from a shared
queue or list. Each of SCSI/FCP/FCoE/block layer has one or
more shared queues or lists, as shown in Figure 2.

The “false sharing” [21] means that two cores are reading
and writing different data on the same cache block respectively.
In the remote memory access on NUMA system, the remote
cache line invalidation and the large cache directory structures
are expensive, thus leading to performance decrease. The
shared lock contention, which can frequently result in these
problems, will be exacerbated [11] and adds extra access
overheads for each I/O in multi-core processors systems.

When multiple cores distributing on different sockets issue
intensive I/O requests to a remote target, the shared queue &
lock mechanism causes lots of shared data access overheads
due to the LLC cache misses and remote memory access. As
shown in Figure 4, 4KB I/Os are submitted to a remote target
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Fig. 4. The average LLC cache misses per I/O and throughput(IOPS) for
4KB random I/O using Open-FCoE stack as a function of number of cores
issuing I/Os in a 2 sockets system. The cores are distributed uniformly in a 2
sockets system.

with the current Open-FCoE stack. The average number of
cache misses per I/O is depicted in Figure 4(a) as a function
of the number of cores that submit I/Os simultaneously. We
observe that the average throughput, as shown in Figure 4(b),
does not increase too much with the increasing number of
cores. But each I/O generates much more average LLC cache
misses compared with only one core in Figure 4(a).

III. FASTFCOE DESIGN

The analysis in Section 2 shows that current I/O stack has
two challenges: (1)How to decrease the overhead for each
I/O request? (2)How to improve system scalability in terms
of throughput with the increasing number of cores? These
problems, which become the bottlenecks in high-performance
FCoE-based SAN storage, should be considered along with the
evolution of high-performance storage device and high-speed
network. In this Section, we present the design of FastFCoE
which runs at servers for remote target access in FCoE-based
SAN storage. Before we detail our design, we present the
design goals and principles.

A. Design Goals

We design the FastFCoE with the following goals:

1) Reduce the process overhead per I/O request and
achieve good I/O scalability with the increasing num-
ber of cores in multi-core systems.

2) Obtain the efficiency without the cost of decreasing
compatibility and flexibility. Fully meet the related
standards such as FC-BB-6 [3] and FCP [18]. Use the
standard software interfaces and need not to revamp
the upper and lower layer softwares. Also a distinctive
feature of FastFCoE is simple to use and tightly
integrated with existing Linux system without the
needs of specific devices or hardware features.

B. Architecture Overview

Figure 5 illustrates the architecture and the overall primary
abstractions of FastFCoE. We mainly focus on the I/O subsys-
tem. At the top of the architecture, there are multiple cores that
implement the application threads and submit I/O requests to
the multi-queue block layer for remote target access. The block
layer hides the complexity and diversity of storage devices
from the applications while providing common services that



are valuable to applications. Our design is based on the multi-
queue block layer [11] that allows each core to have per-CPU
queue for submitting I/O.

Our proposed FastFCoE is under the multi-queue block
layer and consists of three key components: FCoE Manager,
Frame Encapsulation and Frame Process. The key insights
include (1) In order to fully leverage parallel I/O capacity with
multiple cores, we implement private per-CPU structures (per-
CPU variables used by CRC Manager, Exchange Manager,
etc.,detailed in Section III-C) to process I/Os instead of the
global shared variables accessing, such as single shared queue
& lock mechanism. For example, the Exchange Manager
uses related per-CPU variables to manage the Exchange ID
respectively for each I/O. During the ultra-short period of
accessing the per-CPU data, the kernel preemption is disabled
and the current Exchange Manager task (thread) will not be
switched out. This method avoids the synchronization overhead
and significantly improves the parallel I/O capacity. Each core
has its own per-CPU structure, thus causing extra spatial
overhead for duplicate data in the software layer. Due to the
slight spatial overhead (768 Byte private per CPU structures for
one core), it has a slight impact on entire system performance.
(2) For a shorter I/O path, we directly encapsulate FCoE
frames with I/O requests from the block layer and call standard
network interfaces to transmit/receive FCoE frames to/from
network hardware. This reduces the inter-layer and intra-layer
overheads from SCSI/FCP/FCoE layers.

Tx ring Tx ringRx ringRx ring

Fig. 5. The FastFCoE architecture in multi-core server. Note: The remote
FCoE SAN storage target is mapped as a block device.

The network link layer is under the FastFCoE. The frames
from FastFCoE is transmitted to the network device (C-
NA, converged network adaptor) by the standard interface
dev queue xmit(). The standard interface netif receive skb()
processes the received frames from network. All the hardware
complexity and diversity of CNAs are transparent to FastFCoE.

In addition, almost all modern converged network adaptors
have multiple hardware Tx/Rx queues to enable transmitting
or receiving parallelization, as shown in Figure 5. For instance,

the Intel X520 10GbE converged network adaptor has 128 Tx
queues and Rx queues.

C. Design Components

FastFCoE provides a low process overhead and high I/O
throughput scalability for remote target access in FCoE-based
SAN storage, which mainly consists of the FCoE Manager,
the FCoE Frame Encapsulation, and the FCoE Frame Process.
Other functions have no impacts on I/O performance and are
overlooked in this paper, such as fabric login/logout, N Port
login/logout and Fibre Channel link services, etc. as defined
in FCP [18] or FCoE standards [3].

1) FCoE Manager: The FCoE Manager has two compo-
nents: (1) the Port Manager, which mainly manages the states
or information of the local port and remote port etc. (2) the
Exchange Manager, which mainly manages the allocation/free
of Exchange and Sequence ID. A sequence is a set of one
or more related Frames transmitted unidirectionally from one
end Node to another end Node. An Exchange consists of
one or more unidirectional Sequences, initiated by either
the Exchange Originator or the Exchange Responder. Each
FCoE/FCP I/O request is identified by the initiator address
identifier, the target address identifier, the Exchange Identifier
for the Originator (OX ID) and the Exchange Identifier for the
Responder (RX ID). All these field values are provided by the
Port Manager and the Exchange Manager.

Port Manager. All the information or states of the Fab-
ric, the Enode1, the Virtual Links2 and VN Ports3, etc. are
managed and maintained by the Port Manager. The Port
Manager can provide the related field values to initialize the
transmitted FCoE frames and decide the received FCoE frames
to implement the I/O operations for remote storage access.

Exchange Manager. Each I/O operation defined by Fibre
Channel Protocol for SCSI (FCP) standard [18] is mapped
into an Exchange. For each I/O operation, the Enode (Initia-
tor) originates an Exchange and assigns a unique Originator
Exchange ID (called OX ID). When the Responder Enode
(Target) receives the first Sequence of the Exchange, it assigns
a Responder Exchange ID (RX ID) to the newly established
Exchange. As mentioned above, the allocation efficiency of
Exchange ID is very important to the performance of each I/O
request.

FastFCoE allocates/frees the Exchange ID for each I/O
request by this Exchange Manager. To allocate/free the Ex-
change ID efficiently, we use the simple and useful method
that all values of Exchange IDs are distributed in each core.
The main structure of the Exchange Manager is consisted of a
pre-allocated and per-CPU array, as shown in Figure 6. Each
element in array associates with an Exchange ID value and a
pointer. If the pointer points to a request, this Exchange ID
has been used by an Exchange. Otherwise if the pointer is
NULL, this Exchange ID can be used for a new Exchange.
To avoid the synchronization overhead, we also disable the
kernel preemption to allocate/free the Exchange ID one by

1FCoE Node is called ENode, such as FCoE Initiator and Target.
2FCoE Virtual Links replace the physical Fibre Channel links by encapsu-

lating FC frames in Ethernet frames.
3A device virtual port that generates/terminates FC traffic is called VN Port.



Fig. 6. The structures in FastFCoE in transmitting and receiving the FCoE
FCP DATA frames(sk buff).

one by changing the pointer value, which is also a per-CPU
variable.

2) FCoE Frame Encapsulation: FCoE Frame Encapsula-
tion implements different types of FCoE frames manufacture
and transmission, mainly including FCP CMND (representing
the data delivery request) and FCP DATA (representing the
data delivery) frames at Initiator.

As shown in Figure 6, the I/O request from the block
layer consists of several segments, which are contiguous on
the block device, but not necessarily contiguous in physical
memory, depicting the mapping between a block device sector
region and some individual memory segments. Hence, the
FCP DATA frame payloads (the transferred data) are not
contiguous in physical memory and the length of FCP DATA
frame payloads is almost larger than the FCoE standard
MTU(adapter maximum transmission unit). On the other hand,
the hardware function, scatter/gather I/O, directly transfers
the multiple non-liner memory segments to the hardware by
DMA. In addition, FCoE segmentation offload (FSO) [16] is
a technique for increasing the outbound throughput of high-
bandwidth converged network adaptor (CNA) by reducing
CPU overhead and it works by queueing up large frames and
allowing the hardware (CNA) to be split into multiple FCoE
frames. To reduce the overhead and support these hardware
capacities, we use the linear buffer of the sk buff structure
to represent the header of FCoE FCP DATA frame and the
skb shared info structure to point to these non-linear buffers
to present a large transferred data. These non-linear buffers
include request segments in memory page and the CRC,
EOF (not shown in Figure 6) fields in FCP DATA frame.
In addition, to improve system efficiency, we use the pre-
allocation method that obtains a special memory page to
manage the CRC and EOF allocation for each core.

The FCoE FCP CMND frame encapsulation is similar
with FCP DATA frame, but only uses the linear buffer of
the sk buff structure to depict the frame. Moreover, the FCoE
Frame Encapsulation also supports the hardware Direct Data
Placement offload (DDP) [16] capacity which reduces CPU
overhead by directly tranfering the FCP DATA frame payload
to the request memory segments. For read requests, the FCoE

Frame Encapsulation sets up the function of hardware DDP
offload by standard interface ndo fcoe ddp setup().

Rather than using several layers to handle and queue the
I/O requests, the FCoE Frame Encapsulation quickly allocates
and initializes the FCP CMND frames with the information
from the FCoE Manager and the I/O requests. To avoid
queue operations or other extra overheads, the FCoE Frame
Encapsulation component does not have any queues and di-
rectly sends the frames to the lower layer using the common
network interface dev queue xmit(). These schemes improve
Cores/CPUs parallel I/O capacity and reduce the overhead with
a shorter I/O path.

3) FCoE Frame Process: The main function of FCoE
Frame Process buffers and deals with the received FCoE
frames. There is a private per-CPU queue for each core, called
Receive Queues as shown in Figure 6. All the received FCoE
frames are mapped into the corresponding private queue by the
OX ID field. For each private per-CPU queue, FastFCoE uses
a spin-lock for synchronization when buffering the received
FCoE frames. By this way multiple locks are distributed
on different per-CPU queues, thus significantly reducing the
intensity of lock contention and the synchronization overheads.
This per-CPU receive queue design improves parallel I/O
capacity in multi-core systems. All FCoE frames from Receive
Queues are processed, as defined in FCP standard [18].

Our design has low process overhead and high throughput
to perform for both read and write operations. It uses the
standard interfaces and needs not to revamp the upper and
lower layers. Moreover, the hardware capacities, such as
scatter/gather I/O, FCoE segmentation offload (FSO), CRC
offload, FCoE Coalescing and Direct Data Placement offload
(DDP) [16], can be used as usual.

IV. EXPERIMENTAL EVALUATION

In modern data centers, there are two common deploy-
ment solutions for servers, including traditional non-virtualized
server (a physical machine) and virtualized server (a virtual
machine). In this section, we use experimental results to
answer the following questions under both non-virtualized and
virtualized systems: (1) Does FastFCoE consume less process
overhead per I/O request than standard Open-FCoE stack?
(2) Does FastFCoE achieve better I/O scalability with the
increasing number of cores on multi-core platform? (3) How
is the performance of FastFCoE influenced under different
degrees of CPU loads? Before answering these questions, we
describe the experimental environment.

A. Experimental Method and Setup

To understand the basic aspects of our FastFCoE, we
evaluate the main features with two micro-benchmark FIO [26]
and Orion [27]. FIO is a flexible workload generator. Orion is
designed for simulating Oracle database I/O workloads and
uses the same I/O software stack as Oracle databases.

In addition, we analyze the impact of throughput perfor-
mance under different degrees of CPU loads with real world
TPC-C [28] and TPC-E [29] benchmark traces, which are used
extensively for evaluating OLTP performance by industry and
research community.



We use the Open-FCoE stack in the Linux kernel as
baseline to carry out the comparisons. Our experimental plat-
form consists of two systems (initiator and target), connected
back-to-back with multiple CNAs. Both initiator server and
target server are configured with Dell PowerEdge R720, Dual
Intel Xeon Processor E5-2630 (6 cores, 15MB Cache, 2.30
GHz, 7.20 GT/s Intel QPI), 64GB DDR3, Intel X520 10Gbps
CNAs, with hyperthreading capabilities enabled. The Open-
FCoE or FastFCoE stack runs in the host or virtual machines
with CentOS 7 (3.13.9 kernel). The target system is based
on the modified Linux I/O target (LIO) 4.0 with CentOS
7 (3.14.0 kernel) and uses 40GB ram as a disk. Note that
we use ram based disk and back-to-back connection only to
avoid the influences from network and slow target system.
Hardware Direct Data Placement offload (DDP) [21], the
hardware offload functions for FCoE protocol, is enabled when
the request size is equal to or larger than 4KB.

B. Performance Results

First, we compare FastFCoE with Open-FCoE in terms
of the average CPU overhead and latency by sending “sim-
ple/meaningless/no real data” I/O requests. Then, We evaluate
the I/O scalability with the increasing number of concurrent
I/Os using Orion and the I/O scalability with the increasing
number of cores submitting I/Os using FIO. Finally, we
use two benchmark traces (TPC-C and TPC-E) to evaluate
throughput performance between FastFCoE and the Open-
FCoE under different degrees of CPU loads.

1) CPU usage and Latency Evaluation: The CPU usage
and latency are measured by issuing a single outstanding I/O
per participating cores at a time and using the libaio interface
of the Linux kernel in the non-virtualized and virtualized
systems with 10Gbps CNA respectively.
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Fig. 7. The CPU utilization evaluation with FIO. The CPU utilization of
FastFCoE and Open-FCoE, by issuing a 512B size single outstanding I/O per
participating core at a time.

The CPU usage is the system time utilization plus user time
utilization. Due to the layered architecture, Open-FCoE has
to traverse SCSI/FCP/FCoE layers, which results in the extra
inter-operations and intra-operations between SCSI/FCP/FCoE
layers, whereas FastFCoE avoids those extra CPU overheads.
As a result, FastFCoE has less CPU overhead for each I/O
request than Open-FCoE. Figure 7 shows the average CPU
utilization depending on the number of cores. For the non-
virtualized system, the average CPU utilization of FastFCoE
has a decrease of 1.97%∼8.5% and 2.8%∼3.98% for read and
write respectively. For the virtualized system, the average CPU

utilization of FastFCoE has a decrease of 1.77%∼4.16% and
1.65%∼3.53% for read and write respectively. The hareware
capacity of DDP is disabled in 512B read operation, thus
requiring higher CPU overhead than write operation.
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Fig. 8. The latency of FastFCoE and Open-FCoE, by issuing a 512B size
single outstanding I/O per participating core at a time.

The latency is measured as the time from the application,
through the kernel, into the network. Our FastFCoE has a short
I/O path. Hence, FastFCoE has a smaller average latency than
Open-FCoE. Figure 8 shows the average latency depending
on the number of cores. For the non-virtualzied system, the
average latency of FastFCoE has a decrease of 5.92∼16.14
and 5.33∼15.58 microseconds for read and write request
respectively. For the virtualized system, the average latency
of FastFCoE has a decrease of 7.33∼36.68 and 7.12∼19.17
microseconds for read and write request respectively. The write
operation causes higher complexity in FCP protocol [18] than
read operation. Therefore, the write operation has a larger
latency than read operation.

2) I/O scalability Evaluation: The improvements of the I/O
scalability with the increasing number of concurrent I/Os and
the increasing number of cores submitting I/Os are important
to I/O subsystem. In this subsection, we use FIO and Ori-
on [27] to evaluate the I/O scalability of FastFCoE in the non-
virtualized and virtualized systems respectively.

We use a single Orion instance to simulate OLTP (Online
transaction processing) and DSS (Decission support system)
application scenarios. OLTP applications generate small ran-
dom reads and writes, typically 8KB. Such applications usually
pay more attention to the throughput in I/Os Per Second(IOPS)
and the average latency (I/O turn-around time) per request.
These parameters directly determine the transaction rate and
transaction turn-around time at the application layer. DSS
applications generate random 1MB I/Os, stripped over several
disks. Such applications process large amounts of data, and
typically examine the overall data throughput in MegaBytes
per second(MB/S).

We evaluate the performance in OLTP (as shown in Fig-
ure 9) and DSS (as shown in Figure 10) application scenarios
with 50% write requests on FastFCoE and Open-FCoE in
10Gbps Ethernet link respectively. With the increasing number
of concurrent I/Os, the I/Os become more intensive. Since
FastFCoE has better scalability than Open-FCoE in both non-
virtualied and virtualied systems, the performance gap in terms
of throughput and latency becomes larger when using more
concurrent I/Os. For OLTP, the average throughput (IOPS)
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Fig. 9. I/O scalability Evaluation with Orion (50% write). The Figure shows
the average throughput and latency obtained by FastFCoE and Open-FCoE in
different numbers of outstanding IOs for OLTP test, with the non-virtualized
and virtualized systems respectively.
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Fig. 10. I/O scalability Evaluation with Orion(50% write). The figure
shows the average throughput obtained by FastFCoE and Open-FCoE in
different numbers of outstanding IOs for DSS test, with the non-virtualized
and virtualized systems respectively.

of FastFCoE outperforms Open-FCoE by 1.35X and 1.28X
at most, in the non-virtualied and virtualied system. At the
same time the average latencies have 26.8% and 28.9% re-
duction respectively. For DSS, the throughput of FastFCoE
outperforms Open-FCoE by 1.350X and 1.489X at most, in
the non-virtualied and the virtualied system. This is because
that FastFCoE has smaller process overheads than Open-FCoE.

One challenge for I/O stack is the limited I/O scalability
for small size requests in multi-core systems [14]. To show
the scalability behavior for small size requests, we use FIO
to evaluate the I/O scalability with the increasing number of
cores submitting I/Os. We set the permitted number of cores
with 100% utility and bind one thread for each permitted core.

Figure 11 shows the total throughput by submitting 64
outstanding asynchronous random 512B,4KB and 8KB size re-
quests with different numbers of cores with 10Gbps CNA. For
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Fig. 11. Scalability Evaluation with FIO (random workload). The figure
shows the total throughput of FastFCoE and Open-FCoE when changing the
number of cores submitting 64 outstanding 512,4KB and 8KB I/O requests in
the non-virtualized and virtualized systems with 10Gbps CNA.

the non-virtualized system, when using one core, our FastFCoE
shows higher throughput than Open-FCoE by 1.71/1.58X,
3.95/1.92X and 3.02/1.56X on 512B, 4KB, 8KB read/write
requests. For 512B read requests, FastFCoE achieves al-
most the highest throughput of a single CNA, 529011 IOP-
S(258.34MB/s) with only 4 cores, whereas the Open-FCoE
is 204074(99.66MB/s). This shows that Open-FCoE has the
limited throughput (IOPS), about 20K. The non-virtualized
system has a better throughput than the virtualized system.
For 4KB and 8KB requests, the non-virtualized system can
achieve near maximum throughput in 10Gbps link with 2 or 3
cores. For the virtualized system, when using one core, FastF-
CoE gets higher throughput than Open-FCoE by 1.63/1.53X,
1.35/1.51X and 1.28/1.47X on 512B, 4kB, 8kB read/write
requests. For 512B read/write requests, FastFCoE achieves
302970/191881 IOPS (148.46/93.69MB/s) at most, whereas
the Open-FCoE is 184879/132223 IOPS (90.28/64.56MB/s).
Our approach in FastFCoE uses the private per-CPU sturctures
on both transmitting and receiving sides and disables kernel
preemption to avoid synchronization overhead. This approach
significantly improves the I/O scalability with the number of
cores.

To further study the I/O scalability of FastFCoE, while
avoiding the influence from limited capacity of adapter (CNA),
we bond four Intel X520 10Gbps CNAs for both the Initiator
(non-virtualized server) and Target, running as a single 40Gbps
ethernet CNA for the upper layers. The throughput results
show that FastFCoE has quite good I/O scalability capacity,
as shown in Figure 12. For 4KB read requests, the IOPS of
FastFCoE can improve with the increasing number of cores
to submit request until around 1.1M IOPS(4315.6MB/s). All
though the write operation has higher complexity in FCP
protocol [18] than read operation, for 4KB random write,
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Fig. 12. Scalability Evaluation with FIO in 40Gbps link. IOPS obtained
by FastFCoE depends on the number of cores with 4KB and 64KB random
read/write request when bonding four 10Gbps CNAs as one 40Gbps CNA in
non-virtualization system.

FastFCoE still achieves up to 831250 IOPS(4059.3MB/s).

Since I/O stack usually exhibits higher throughput with
larger request size [14], for larger size requests, FastFCoE can
achieve the higher throughput with less number of cores. With
FIO using one thread, FastFCoE obtains 4392.6MB/s for 64KB
random read requests. FastFCoE hence has sufficient capacity
to fit with 40Gbps link in the FCoE-based SAN storage.

3) TPC-C and TPC-E tests Using OLTP Disk Traces:
Many applications consume a large amount of CPU resource
and affect I/O subsystem. To show the throughput of FastFCoE
over Open-FCoE under different degrees of CPU loads, we
analyze the throughput in both the non-virtualized and virtual-
ized systems with a 10Gbps CNA by using OLTP benchmark
traces: TPC-C and TPC-E. These traces are obtained from test
using HammerDB [30] with Mysql Database and collected at
Microsoftware [31]. TPC-E is more read intensive with a 9.7:1
read-to-write ratio I/O, while TPC-C shows a 1.9:1 read-to-
write ratio; and the I/O access pattern of TPC-E is random
like TPC-C.

The specified loads are generated by FIO tool. We sim-
plely use 5%/50%/90% CPU loads to represent three de-
grees of CPU loads. To compare the throughput under the
same environment, we replay these workloads with the same
time stamps within the trace logs. Figure 13 shows the
superiority of FastFCoE over Open-FCoE in both the non-
virtualized and virtualized systems. The average through-
put degrades with the increasing CPU loads for both the
TPC-C and TPC-E benchmarks. For the TPC-C benchmark,
FastFCoE outperforms Open-FCoE by 1.127X/1.410X/1.629X
and 1.467X/1.424X/1.471X in the non-virtualized and virtu-
alized systems with 5%/50%/90% CPU loads respectively.
For TPC-E benchmark, FastFCoE outperforms Open-FCoE
by 1.500X/1.256X/1.468X and 1.353X/1.224X/1.463X in the
non-virtualized and virtualized systems with 5%/50%/90%
CPU loads respectively.

V. RELATED WORK

The Scalability on Multi-core Systems. Over the last
few years, a number of studies have attempted to improve the
scalability of operating systems in current multi-core systems.
The lock contention is regarded as one of primary reasons
for poor scalability [9], [10], [11], [12]. HaLock [10] is a
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Fig. 13. Throughput Evaluation with TPC-C and TPC-E. The Figure shows
the throughputs achieved by FastFCoE and Open-FCoE, with 5%/50%/90%
CUP loads in the non-virtualized and virtualized systems respectively.

hardware assisted lock profiling mechanism which leverages
a specific hardware memory tracing tool to record the large
amount of profiling data with negligible overhead and impact
on even large scale multithreaded programs. RCL [12] is a lock
algorithm that aims to improve the performance of critical sec-
tions in legacy applications on multi-core architectures. Mul-
tiLanes [13] builds an isolated I/O stack on top of virtualized
storage devices for each VE to eliminate contention on kernel
data structures and locks between them, thus scaling them to
many cores. Gonzlez-Frez et al.[14] present Tyche, a network
storage protocol directly on top of Ethernet. It minimizes the
synchronization overheads by reducing the number of spin-
locks to provide scaling with the number of NICs and cores.

In this paper, to provide a scalable I/O stack, we reasonably
use the private per-CPU structures and disable kernel preemp-
tion to process I/Os. This method avoids lock contention for
synchronization, which significantly decreases the performance
scalability in multi-core servers.

Methods for Optimizing I/O Overhead. Software over-
head from high-speed I/O obtain a lot of attentions, which
consumes substantial system resources and influences on the
system performance [32]. Le, Duy and Huang, Hai et al. [33]
have shown that the choice of the nested file systems on both
hypervisor and guest levels has the significant performance
impact on I/O performance in the virtualized environments.
Jisoo Yang et al. [7] show that when using NVM device polling
for the completion delivers higher performance than traditional
interrupt-driven I/O. Our design of FastFCoE focuses on the
issues at the software interface between the host and the CNA,
which emerges as an important bottleneck in high-performance
FCoE based SAN storage.

To optimize the I/O performance, much work removes the
I/O bottlenecks by replacing multiple layers with one flat or a
pass-through layer in certain cases. Caulfield et al. [6] propose
to bypass the block layer and implement their own driver
and single queue mechanism to improve I/O performance.
In addition, Rizzo and Luigi [34], [35] propose netmap, a
framework that shows user-pace applications to exchange raw
packets with the network adapter, thus making a single core
running at 900 MHz to send or receive 14.88Mpps (the peak
packet rate on in 10Gbps links). Our FastFCoE is under
the block layer and calls the standard network interfaces to
transmit/receive network packets. Therefore, FastFCoE can



support all upper softwares (such as existing file systems
and applications) and be deployed with existing infrastructure
(adaptors, switches, storage devices), without the costs of extra
hardware.

In addition, Bjørling and Jens Axboe et al. [11] demon-
strate that in multi-core systems the single-queue block layer
becomes the bottleneck and design the next-generation multi-
queue block layer. FastFCoE is the first work to introduce the
multi-queue block layer to FCoE protocol process. And it is
also the first work to shorten the I/O path by directly mapping
the requests from the block-layer to the FCoE frames.

VI. CONCLUSION

In the context of high-speed network and fast storage
technologies, the current FCoE I/O stack becomes a bottleneck,
thus leading to a high I/O overhead and limited I/O scalability
in multi-core servers. In this work, we present the design,
implementation, and evaluation of FastFCoE, a storage I/O
stack for remote storage access in FCoE based SAN storage.
To improve the multi-core parallel I/O capacity, FastFCoE uses
the private per-CPU structures and disables kernel preemption
to process I/Os. This method avoids synchronization overhead.
Further more, to reduce the I/O process overhead, FastFCoE
directly maps the I/O requests from the multi-queue block
layer to FCoE frames and calls the standard software interfaces
without the needs of extra hardware. Our results show that
FastFCoE achieves an efficient and scalable I/O throughput.
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[14] P. González-Férez and A. Bilas, “Tyche: An efficient ethernet-based
protocol for converged networked storage,” in IEEE Conference on
Mass Storage Systems and Technologies, 2014.

[15] R. Love, Linux Kernel Development. Pearson Education, 2010.

[16] Intel Corporation, “Intel 82599 10 Gigabit Ethernet Controller
Datasheet,” 2012.

[17] Open-FCoE. http://www.open-fcoe.org.

[18] INCITS Project T11.3/1144-D, “Fibre Channel Protocol for SCSI
(FCP).”

[19] M. M. Martin, M. D. Hill, and D. J. Sorin, “Why on-chip cache
coherence is here to stay,” Communications of the ACM, vol. 55, no. 7,
pp. 78–89, 2012.

[20] M. Lis, K. S. Shim, M. H. Cho, and S. Devadas, “Memory coherence
in the age of multicores,” in International Conference on Computer
Design (ICCD). IEEE, 2011, pp. 1–8.

[21] D. J. Sorin, M. D. Hill, and D. A. Wood, “A primer on memory
consistency and cache coherence,” Synthesis Lectures on Computer
Architecture, vol. 6, no. 3, pp. 1–212, 2011.

[22] D. Zhan, H. Jiang, and S. C. Seth, “Stem: Spatiotemporal manage-
ment of capacity for intra-core last level caches,” in Proceedings of
43rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2010, pp. 163–174.

[23] D. Zhan, H. Jiang, and S. Seth, “Clu: Co-optimizing locality and utility
in thread-aware capacity management for shared last level caches,”
IEEE Transactions on Computers, vol. 63, no. 7, pp. 1656–1667, 2014.

[24] D. Zhan, H. Jiang, and S. C. Seth, “Locality & utility co-optimization
for practical capacity management of shared last level caches,” in Pro-
ceedings of the 26th ACM international conference on Supercomputing.
ACM, 2012, pp. 279–290.

[25] Y. Hua, X. Liu, and D. Feng, “Mercury: a scalable and similarity-aware
scheme in multi-level cache hierarchy,” in Proceedings of International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems. IEEE, 2012, pp. 371–378.

[26] Flexible io generator. http://freecode.com/projects/fio.

[27] ORION, “ ORION: Oracle I/O Numbers Calibration Tool.”

[28] TPC-C specification. http://www.tpc.org/tpcc/default.asp.

[29] TPC-E specification. http://www.tpc.org/tpce/default.asp.

[30] HammerDB. http://www.hammerdb.com/index.html.

[31] Microsoft Enterprise Traces. http://iotta.snia.org.

[32] B. H. Leitao, “Tuning 10gb network cards on linux,” in Proceedings of
the Linux Symposium, 2009.

[33] D. Le, H. Huang, and H. Wang, “Understanding performance implica-
tions of nested file systems in a virtualized environment.” in USENIX
Conference on File and Storage Technologies, 2012, p. 8.

[34] L. Rizzo, “netmap: A novel framework for fast packet i/o.” in USENIX
Annual Technical Conference, 2012, pp. 101–112.

[35] L. Rizzo and M. Landi, “netmap: memory mapped access to network de-
vices,” in ACM SIGCOMM Computer Communication Review, vol. 41,
no. 4. ACM, 2011, pp. 422–423.


