A Write-Friendly and Fast-Recovery Scheme for Security
Metadata in Non-Volatile Memories

Jianming Huang, Yu Hua
Huazhong University of Science and Technology

HPCA 2021

Outline

»Background and Motivation

Non-Volatile Memory

» Persistent memory

» Non-volatile boundary changes

Volatile
omvoiatie

NVMs need to ensure the data crash-consistency after system
crashes and reboots

Threat Models in NVM

» Leaking sensitive data to attackers
® Snooping bus; Scanning memory; Stealing DIMM

Data accessed by attackers

Solution: Encryption
[Silent shredder@asplos16,Secret@DAC16...] NV I

LA
-’

Tampered data used by processor

» Modifying data without authentication
® Tampering data; Replaying data Processor

Solution: Integrity Verification
[Anubis@ISCA19,Triad-NVM@ISCA19..] I:l

Direct Encryption

Memory
CPU Controller

—) \Write path

44— Read path
NVM P

—

Encrypted
Data

. . B —

Read critical path

»Insecure
® Unchanged secret key

»Low performance

® Decryption on the read critical path

Counter Mode Encryption

64-bit =—Pp—7-bit =P

Data

Line . Minor
Major counter
address counter
AES

lOTP

—) S Encrypted
+— @ +— Data

- Encryption
4 Decryption

» Safer than direct AES

CPU

QHA

Read critical path :

Memory

Controller

OoTP

Ctr

2
"

Encrypted
Data

NVM

» Lower performance penalty than

We use CME to encrypt data

Integrity Verification

» SGX Integrity Tree (SIT): Counters and

clclclclTcTlcTcTc Root

cjcljcjcjljcjljcjlcglc

Secre% ash l \
Line address (.~ ~

cljcljcjcljcjljcjlcg|c rLcjcjcljcjcjlclcyc

Secr% ash \In‘termediate tree node
Line address ~ l

cjlcljcjcjljcljcjljclc L cjcjljcjcjljclcjipcgc

Secret key% 2sh \ Counter block
Line address(o— ~ l

DI D|ID|D]ID]ID]J|D]|D ==« | DI DI DD} D|D]|D]D
User Data block

Security Metadata

Security
Metadata

User Data

Root
C
C C
Data | | Data | | Data | | Data

C

-

C

\C

ol

|

SIT nodes for integrity

Sverification of user data

==

Data

Data

Data

Data

Counter blocks for
encrypting user data

Metadata Inconsistency

Cache in Memory Controller I Fresh Metadata

il ‘

System Crash e 0

T |

Security metadata in NVM

Modified Metadata

Stale Metadata

Stale security metadata can’t ensure the system security after reboots

9

Problems of Recovering Metadata

> High write overheads Integrity tree
® Persisting tree nodes from leaves to root
I [
I I
I I I

NVM

10

Problems of Recovering Metadata

» High write overheads
® Persisting tree nodes from leaves to root

» Long recovery time
® Reconstructing all nodes layer by layer

11

Problems of Recovering Metadata

» High write overheads
® Persisting tree nodes from leaves to root

» Long recovery time
® Reconstructing all nodes layer by layer

> Incorrectly recovery B =22 s

® Attackina nodes durina recoverv
Our design goal: correctly recover the security metadata with low
write overhead and short recovery time

Observation

Modifications In the updated nodes

Eager update Lazy update

B Clean
‘\ Modified

Ctr [Ctr [Cir [Ctr [Ctr [Cir | Ctr | Ctr [MAC @ «

Only the corresponding counter increases by 1, and MAC is updated

Observation

Unused space in MAC (Message Authentication Code) field

64-bit MAC field in data line
® 54-bit MAC Is also safe[1].

- 64bit -]
Data/Ctr |MAC

-54bit-

R

Used Unused

[1] Saileshwar, Gururaj and Nair, Prashant J and Ramrakhyani, Prakash and Elsasser, Wendy and Joao, Jose A and Qureshi, Moinuddin K. Morphable
Counters: Enabling Compact Integrity Trees For Low-Overhead Secure Memories. MICRO18

Solutions

» Store the right metadata with low overhead
® Recovering stale metadata using right metadata

» |dentify the stale metadata
® Only restoring the stale metadata

» Verify the recovery process
® Detecting the attacks occurring during recovery

We propose an efficient recovery scheme STAR

Outline

»STAR Mechanism

STAR Components

» Counter-MAC synergization
Persist the modifications w/o extra writes

LLC

Memory

ADR support | €ontroller

»Bitmap lines
Record the locations of stale metadata for
reducing recovery time

»Cache tree
Detect the attacks occurring during recovery

NVM

N

| Metadata cache

!

| |

Recovery
Area

User data Metadata

17

STAR Components

» Counter-MAC synergization
Persist the modifications w/o extra writes

Counter-MAC Synergization

MAC

On-chip Cache

NVM

Incurring modifications in parent node via persisting child node

19

Counter-MAC Synergization

MAC

On-chip Cache

~
10 LSBs of C2

NVM

Persisting the child node and modifications in one write

20

Counter-MAC Synergization

» Restoring stale counter and MAC

LSBs of C2

- c

MSBs of C2

- Fresh data

Stale data

21

STAR Components

»Bitmap lines
Record the locations of stale metadata for reducing recovery time

Bitmap Lines

Metadata lines in metadata cache

------ lofolofo) ‘
—

Bitmap lines in write queue with ADR

I Clean line

Dirty line

Recovery area in NVM

512-bit bitmap line

32KB continuous metadata lines (512x64B=32KB)

23

Bitmap Lines

Metadata Cache (KBs~MBs) ["""

Non-Zero Bitmap Line Zero Bitmap Line

— Dirty metadata in cache
B Stale metadata in NVM

Non-Zero Bitmap Line

ol1j1j1(o[010f 0] (0] (0] (0] (0] (0] (0] (0] (6] (6] (0] I 0] (0] (o] (o] i (0] (0] (0] (0] (0 (0 (0 ES

Of =====- o[ojojofoo0f 1]0|0{0

Reading zero bitmap lines is useless to locate stale metadata

Multi-layer Index

Only reading non-zero bitmap lines

Level2 z

Bitmap lines

Non-zero lines Non-zero lines S

Zero lines

|] |] |] 1 | Levell

------------ Metadata

Indicating the non-zero bitmap lines and stale metadata

STAR Components

»Cache tree
Detect the attacks during recovery

Attacks during recovery
» Replay attack

Data MAC [0x11 Persisted user data with LSBs
l Replay
O_Data ORVNOROUSIN Replayed user data with LSBs
> Incorrect recovery I Fresh data
Stale data
C2

- Attacked data

Old LSBs of C2

Fresh MSBs of C2 incorrect C2

Attacks can’t be detected in traditional integrity verification schemesﬂ

Cache Structure

Cache

Set 0

Set 1

Set 2

Set 3

line O
line 1
line 2
line 3

line S

line S+1
line S+2
line S+3

Memory

28

Cache tree

Set-Way cache: 8 ways in a set

Logically order the dirty lines via the ascending addresses

hash
—> Set-MAC

Generate the Set-MAC via dirty lines in the set

Cache tree

Construct cache tree

Root

Set-MAC

Order all Set-MACs via set number

Set-MACs

Cache tree

During recovery, we reconstruct the cache tree to detect the attacks

Replayed

Outline

» Evaluation

Experimental Setup

Gem5 + NVMain

Processor

8 cores(2 GHz); L1(64 KB), L2(512 KB), L3(4 MB) Caches

Memory Controller

Security Metadata Cache(512 KB); Bitmap Lines(16 lines, 1 KB)

NVM

16 GB; tRCD/tCLACWD/AFAWNMWTR/AWR =48/15/13/50/7.5/300 ns

Secure Parameters

SIT (9 levels); Cache Tree (4 levels)

Comparisons
Write-back cache (WB) | Baseline, fail to recover system
STAR Our work
Anubis[ISCA19] 1x extra memory writes

Strict Persistence

Persist all nodes in a branch of tree

33

Write traffic

Our work
[JWB[__|STAR[___]Anubis[] Strict Persistence

9
© 8- N _ ~ — ~
= _
5 71 -
I_
e 67
2°]
O 4
N
= 3
<
£ . N L
o

0 \\ 0 AN Q Q) Q Q&

Q& \g@ \be‘p 0\?%0 {Q\\'QJ \,Q() S (2).0)

SATR reduces 92% extra writes than Anubis

Energy Consumption

Our work

\
[JwB[__]STAR[___]Anubis

3 & & &> ¥
F & x® S &
&

Compared with Anubis, SATR reduces 42% energy overheads

Outline

» Conclusion

Conclusion

Design Goal

» Correctly recovering the stale security metadata with low write overhead
and short recovery time

Key ldea

» STAR disaggregates the persistence of modifications and addresses of

metadata and provides recovery verification

® Counter-MAC synergization : reduce memory writes
® Bitmap lines: locate the stale metadata

® Cache tree: verify the recovery process

Result

» STAR reduces 92% extra writes than Anubis and fast recovers the
security metadata

37

Thanks! Q&A

This presentation and recording belong to the authors. No distribution is allowed without the authors' permission.

