
A Write-Friendly and Fast-Recovery Scheme for Security

Metadata in Non-Volatile Memories

Jianming Huang, Yu Hua

Huazhong University of Science and Technology

HPCA 2021

Outline

Background and Motivation

STAR Mechanism

Evaluation

Conclusion

2

Non-Volatile Memory

Reg

Cache

Memory

Disk

Volatile

Non-Volatile

NV Memory

Non-volatile boundary changes

Persistent memory

NVMs need to ensure the data crash-consistency after system

crashes and reboots
3

Threat Models in NVM

Leaking sensitive data to attackers

Snooping bus; Scanning memory; Stealing DIMM ……

Modifying data without authentication

Tampering data; Replaying data ……

Solution: Encryption
[Silent shredder@asplos16,Secret@DAC16…]

Solution: Integrity Verification
[Anubis@ISCA19,Triad-NVM@ISCA19…]

NVM

Processor

Data accessed by attackers

Tampered data used by processor

4

Direct Encryption

AES
Encrypted

Data
Data

Memory

Controller NVM

Read critical path

Insecure
Unchanged secret key

Low performance
Decryption on the read critical path

CPU

Write path

Read path

5

Counter Mode Encryption

Major counter
Minor

counter

Line

address

AES

OTP

⊕ Encrypted

Data

Data

CPU

NVM

Read critical path

Memory

Controller

⊕ AES CtrAddr
OTP

Safer than direct AES
 One-time padding(OTP) changing on each write

Lower performance penalty than

direct AES
 Encryption in parallel with readWe use CME to encrypt data

Encryption

Decryption

6

Data

Encrypted

Data

64-bit 7-bit

Integrity Verification

SGX Integrity Tree (SIT): Counters and Message Authentication Codes (MACs)

User Data block

Counter block

Intermediate tree node

…

C MACC C C C C C C

C MACC C C C C C C

Hash

D MACD D D D D D D

Hash

D MACD D D D D D D

C MACC C C C C C C

C MACC C C C C C C

Hash

C MACC C C C C C C

… …

… …

…

C MACC C C C C C C Root

Line address

Secret key

Line address

Secret key

Line address

Secret key

7

Security Metadata

DataUser Data Data Data Data Data Data Data Data

C C C C

C C C

……

C C

Root

Counter blocks for

encrypting user data

SIT nodes for integrity

verification of user data
Security

Metadata

C

…

…

…

8

Metadata Inconsistency

Cache in Memory Controller

Security metadata in NVM

Fresh Metadata

Modified Metadata

Stale Metadata
System Crash

Stale security metadata can’t ensure the system security after reboots
9

Problems of Recovering Metadata

 High write overheads
 Persisting tree nodes from leaves to root

……

Integrity tree

NVM

……

10

Problems of Recovering Metadata

 High write overheads
 Persisting tree nodes from leaves to root

 Long recovery time

 Reconstructing all nodes layer by layer
……

11

Problems of Recovering Metadata

 High write overheads
 Persisting tree nodes from leaves to root

 Long recovery time

 Reconstructing all nodes layer by layer

 Incorrectly recovery

 Attacking nodes during recovery

Our design goal: correctly recover the security metadata with low

write overhead and short recovery time

replayed

12

Observation

Eager update

…

…

Lazy update

…

…

Ctr MACCtr Ctr Ctr Ctr Ctr Ctr Ctr

Only the corresponding counter increases by 1, and MAC is updated

Modified

Clean

Modifications in the updated nodes

13

Observation

Unused space in MAC (Message Authentication Code) field

64-bit MAC field in data line
 54-bit MAC is also safe[1].

[1] Saileshwar, Gururaj and Nair, Prashant J and Ramrakhyani, Prakash and Elsasser, Wendy and Joao, Jose A and Qureshi, Moinuddin K. Morphable

Counters: Enabling Compact Integrity Trees For Low-Overhead Secure Memories. MICRO18

MAC

64bit

54bit

Used Unused

Data/Ctr MAC

14

Solutions

 Store the right metadata with low overhead
 Recovering stale metadata using right metadata

 Identify the stale metadata
 Only restoring the stale metadata

 Verify the recovery process
 Detecting the attacks occurring during recovery

We propose an efficient recovery scheme STAR
15

Outline

Background and Motivation

STAR Mechanism

Evaluation

Conclusion

16

STAR Components

Counter-MAC synergization
Persist the modifications w/o extra writes

Bitmap lines
Record the locations of stale metadata for

reducing recovery time

Cache tree
Detect the attacks occurring during recovery

LLC

Metadata cache

Cache tree

Counter-MAC synergization
Bitmap

lines

MetadataUser data
Recovery

Area

ADR support

Memory

Controller

NVM

17

STAR Components

Counter-MAC synergization
Persist the modifications w/o extra writes

Bitmap lines
Record the locations of stale metadata for reducing recovery time

Cache tree
Detect the attacks during recovery

18

Counter-MAC Synergization

……

C0 MACC1 C2 C3 C4 C5 C6 C7

C0 MACC1 C2 C3 C4 C5 C6 C7

Data/Ctr MACOn-chip Cache

NVM

C2 MAC

Incurring modifications in parent node via persisting child node

19

Counter-MAC Synergization

……

C0 MACC1 C2 C3 C4 C5 C6 C7

C0 MACC1 C2 C3 C4 C5 C6 C7

On-chip Cache

NVM

C2 MAC

Data/Ctr MAC
10 LSBs of C2

Persisting the child node and modifications in one write

20

C2C2

Counter-MAC Synergization

C0 MACC1 C3 C4 C5 C6 C7

C0 MACC1 C2 C3 C4 C5 C6 C7

Data MAC

MSBs of C2

+
LSBs of C2

= C2

MAC

 Restoring stale counter and MAC

Fresh data

Stale data

21

STAR Components

Counter-MAC synergization
Persist the modifications w/o extra writes

Bitmap lines
Record the locations of stale metadata for reducing recovery time

Cache tree
Detect the attacks during recovery

22

10

Bitmap Lines
Metadata lines in metadata cache

000 000 …… 000 0

……

……

……

1

Bitmap lines in write queue with ADR

0 1 ……

……

……

……

Recovery area in NVM

…………

512-bit bitmap line

32KB continuous metadata lines (512x64B=32KB)

……

Clean line Dirty line

23

Bitmap Lines

……
Metadata Cache (KBs~MBs)

Metadata Region in NVM (GBs)

……

……

00 1 1 1 0 0 …… 0 0 0 0 00 0 0 0 0 0 …… 1 0 0 000 0 0 0 0 0 …… 0 0 0 0 00 0 0 0 0 0 …… 0 0 0 0 ……

Zero Bitmap Line Non-Zero Bitmap LineNon-Zero Bitmap Line

Reading zero bitmap lines is useless to locate stale metadata

Dirty metadata in cache

Stale metadata in NVM

24

Multi-layer Index

Zero lines

……

Non-zero lines Non-zero lines

……

Bitmap lines

…… Metadata

Indicating the non-zero bitmap lines and stale metadata

Only reading non-zero bitmap lines

Level2

Level1

25

STAR Components

Counter-MAC synergization
Persist the modifications w/o extra writes

Bitmap lines
Record the locations of stale metadata for reducing recovery time

Cache tree
Detect the attacks during recovery

26

O_MAC

Attacks during recovery

Persisted user data with LSBs

Replay

O_Data O_MAC 0x10 Replayed user data with LSBs

Data MAC 0x11

C2C0 MACC1 C3

O_Data

Fresh MSBs of C2

+
Old LSBs of C2

= C2

incorrect C2

Attacks can’t be detected in traditional integrity verification schemes

 Incorrect recovery

 Replay attack

C2 MAC

Fresh data

Stale data

Attacked data

27

C4 C5 C6 C7

Cache Structure

……

line 0
line 1
line 2
line 3

line S
line S+1
line S+2
line S+3

…………

Set 0

Set 1

Set 2

Set 3

MemoryCache

28

Cache tree

Set-Way cache: 8 ways in a set

Logically order the dirty lines via the ascending addresses

Generate the Set-MAC via dirty lines in the set

Set-MAC
hash

29

Cache tree

Set-MAC

Set-MACs

Order all Set-MACs via set number

Construct cache tree

……

……

Root

30

Cache tree

During recovery, we reconstruct the cache tree to detect the attacks

……

……

Replayed

≠

31

……

……

Outline

Background and Motivation

STAR Mechanism

Evaluation

Conclusion

32

Experimental Setup

Gem5 + NVMain

Processor 8 cores(2 GHz); L1(64 KB), L2(512 KB), L3(4 MB) Caches

Memory Controller Security Metadata Cache(512 KB); Bitmap Lines(16 lines, 1 KB)

NVM 16 GB; tRCD/tCL/tCWD/tFAW/tWTR/tWR =48/15/13/50/7.5/300 ns

Secure Parameters SIT (9 levels); Cache Tree (4 levels)

Comparisons

Write-back cache (WB) Baseline, fail to recover system

STAR Our work

Anubis[ISCA19] 1x extra memory writes

Strict Persistence Persist all nodes in a branch of tree

33

Write traffic

ar
ra

y
bt

re
e

ha
sh

qu
eu

e

rb
tre

e
tp

cc
yc

sb

av
er

ag
e

0

1

2

3

4

5

6

7

8

9

N
o
rm

al
iz

ed
 W

ri
te

 T
ra

ff
ic

 WB STAR Anubis Strict Persistence

SATR reduces 92% extra writes than Anubis

Our work

34

Energy Consumption

Compared with Anubis, SATR reduces 42% energy overheads

ar
ra

y
bt

re
e

ha
sh

qu
eu

e

rb
tre

e
tp

cc
yc

sb

av
er

ag
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
o

rm
al

iz
ed

 E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 WB STAR Anubis

Our work

35

Outline

Background and Motivation

STAR Mechanism

Evaluation

Conclusion

36

Conclusion

Correctly recovering the stale security metadata with low write overhead

and short recovery time

STAR disaggregates the persistence of modifications and addresses of

metadata and provides recovery verification
 Counter-MAC synergization : reduce memory writes

 Bitmap lines: locate the stale metadata

 Cache tree: verify the recovery process

STAR reduces 92% extra writes than Anubis and fast recovers the

security metadata

Design Goal

Key Idea

Result

37

Thanks! Q&A

This presentation and recording belong to the authors. No distribution is allowed without the authors' permission.

