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Non-Volatile Memory
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NVMs need to ensure the data crash-consistency after system 

crashes and reboots
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Threat Models in NVM

Leaking sensitive data to attackers

Snooping bus; Scanning memory; Stealing DIMM ……

Modifying data without authentication 

Tampering data; Replaying data ……

Solution: Encryption
[Silent shredder@asplos16,Secret@DAC16…]

Solution: Integrity Verification
[Anubis@ISCA19,Triad-NVM@ISCA19…]

NVM

Processor

Data accessed by attackers

Tampered data used by processor
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Direct Encryption
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Counter Mode Encryption
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Safer than direct AES
 One-time padding(OTP) changing on each write

Lower performance penalty than 

direct AES
 Encryption in parallel with readWe use CME to encrypt data
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Integrity Verification

SGX Integrity Tree (SIT): Counters and Message Authentication Codes (MACs) 
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Security Metadata
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Metadata Inconsistency

Cache in Memory Controller

Security metadata in NVM

Fresh Metadata 

Modified Metadata 

Stale Metadata 
System Crash

Stale security metadata can’t ensure the system security after reboots
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Problems of Recovering Metadata

 High write overheads
 Persisting tree nodes from leaves to root

……

Integrity tree

NVM

……

10



Problems of Recovering Metadata

 High write overheads
 Persisting tree nodes from leaves to root

 Long recovery time

 Reconstructing all nodes layer by layer
……
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Problems of Recovering Metadata

 High write overheads
 Persisting tree nodes from leaves to root

 Long recovery time

 Reconstructing all nodes layer by layer

 Incorrectly recovery

 Attacking nodes during recovery

Our design goal: correctly recover the security metadata with low 

write overhead and short recovery time

replayed
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Observation

Eager update
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Lazy update
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Only the corresponding counter increases by 1, and MAC is updated
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Clean 

Modifications in the updated nodes
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Observation

Unused space in MAC (Message Authentication Code) field

64-bit MAC field in data line 
 54-bit MAC is also safe[1].

[1] Saileshwar, Gururaj and Nair, Prashant J and Ramrakhyani, Prakash and Elsasser, Wendy and Joao, Jose A and Qureshi, Moinuddin K. Morphable

Counters: Enabling Compact Integrity Trees For Low-Overhead Secure Memories. MICRO18

MAC

64bit

54bit

Used Unused

Data/Ctr MAC
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Solutions

 Store the right metadata with low overhead
 Recovering stale metadata using right metadata

 Identify the stale metadata
 Only restoring the stale metadata

 Verify the recovery process
 Detecting the attacks occurring during recovery

We propose an efficient recovery scheme STAR
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STAR Components

Counter-MAC synergization 
Persist the modifications w/o extra writes

Bitmap lines
Record the locations of stale metadata for

reducing recovery time

Cache tree
Detect the attacks occurring during recovery

LLC

Metadata cache

Cache tree

Counter-MAC synergization
Bitmap 

lines

MetadataUser data 
Recovery

Area 

ADR support

Memory 

Controller

NVM
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STAR Components

Counter-MAC synergization
Persist the modifications w/o extra writes

Bitmap lines
Record the locations of stale metadata for reducing recovery time

Cache tree
Detect the attacks during recovery
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Counter-MAC Synergization

……

C0 MACC1 C2 C3 C4 C5 C6 C7

C0 MACC1 C2 C3 C4 C5 C6 C7

Data/Ctr MACOn-chip Cache

NVM

C2 MAC

Incurring modifications in parent node via persisting child node
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Counter-MAC Synergization

……

C0 MACC1 C2 C3 C4 C5 C6 C7

C0 MACC1 C2 C3 C4 C5 C6 C7

On-chip Cache

NVM

C2 MAC

Data/Ctr MAC
10 LSBs of C2

Persisting the child node and modifications in one write
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C2C2

Counter-MAC Synergization
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Data MAC
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+
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MAC

 Restoring stale counter and MAC

Fresh data

Stale data
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STAR Components

Counter-MAC synergization
Persist the modifications w/o extra writes

Bitmap lines
Record the locations of stale metadata for reducing recovery time

Cache tree
Detect the attacks during recovery
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Bitmap Lines
Metadata lines in metadata cache
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Bitmap Lines 

……
Metadata Cache (KBs~MBs)

Metadata Region in NVM (GBs)

……

……

00 1 1 1 0 0 …… 0 0 0 0 00 0 0 0 0 0 …… 1 0 0 000 0 0 0 0 0 …… 0 0 0 0 00 0 0 0 0 0 …… 0 0 0 0 ……

Zero Bitmap Line Non-Zero Bitmap LineNon-Zero Bitmap Line

Reading zero bitmap lines is useless to locate stale metadata

Dirty metadata in cache

Stale metadata in NVM
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Multi-layer Index 

Zero lines

……

Non-zero lines Non-zero lines

……

Bitmap lines

…… Metadata

Indicating the non-zero bitmap lines and stale metadata

Only reading non-zero bitmap lines

Level2

Level1
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STAR Components

Counter-MAC synergization
Persist the modifications w/o extra writes

Bitmap lines
Record the locations of stale metadata for reducing recovery time

Cache tree
Detect the attacks during recovery
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O_MAC

Attacks during recovery 

Persisted user data with LSBs

Replay

O_Data O_MAC 0x10 Replayed user data with LSBs

Data MAC 0x11

C2C0 MACC1 C3

O_Data

Fresh MSBs of C2

+
Old LSBs of C2

= C2

incorrect C2

Attacks can’t be detected in traditional integrity verification schemes

 Incorrect recovery

 Replay attack

C2 MAC

Fresh data

Stale data

Attacked data
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Cache Structure
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Cache tree

Set-Way cache: 8 ways in a set 

Logically order the dirty lines via the ascending addresses 

Generate the Set-MAC via dirty lines in the set 

Set-MAC
hash
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Cache tree

Set-MAC

Set-MACs

Order all Set-MACs via set number

Construct cache tree

……

……

Root
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Cache tree

During recovery, we reconstruct the cache tree to detect the attacks

……

……

Replayed

≠
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Experimental Setup

Gem5 + NVMain

Processor 8 cores(2 GHz); L1(64 KB), L2(512 KB), L3(4 MB) Caches

Memory Controller Security Metadata Cache(512 KB);    Bitmap Lines(16 lines, 1 KB)

NVM 16 GB; tRCD/tCL/tCWD/tFAW/tWTR/tWR =48/15/13/50/7.5/300 ns

Secure Parameters SIT (9 levels);    Cache Tree (4 levels)

Comparisons

Write-back cache (WB) Baseline, fail to recover system

STAR Our work

Anubis[ISCA19] 1x extra memory writes

Strict Persistence Persist all nodes in a branch of tree
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Write traffic
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SATR reduces 92% extra writes than Anubis

Our work
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Energy Consumption 

Compared with Anubis, SATR reduces 42% energy overheads
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Conclusion 

Correctly recovering the stale security metadata with low write overhead 

and short recovery time

STAR disaggregates the persistence of modifications and addresses of 

metadata and provides recovery verification
 Counter-MAC synergization : reduce memory writes

 Bitmap lines: locate the stale metadata

 Cache tree: verify the recovery process

STAR reduces 92% extra writes than Anubis and fast recovers the 

security metadata

Design Goal

Key Idea

Result
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