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»Background and Motivation



Non-Volatile Memory

» Persistent memory

» Non-volatile boundary changes

Volatile
omvoiatie

NVMs need to ensure the data crash-consistency after system
crashes and reboots



Threat Models in NVM

» Leaking sensitive data to attackers
® Snooping bus; Scanning memory; Stealing DIMM ......

Data accessed by attackers

Solution: Encryption
[Silent shredder@asplos16,Secret@DAC16...] NV I
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Tampered data used by processor

» Modifying data without authentication
® Tampering data; Replaying data ...... Processor

Solution: Integrity Verification
[Anubis@ISCA19,Triad-NVM@ISCA19.. ] I:l



Direct Encryption

Memory
CPU Controller

—) \Write path

44— Read path
NVM P

—

Encrypted
Data

. . B —

Read critical path

»Insecure
® Unchanged secret key

»Low performance

® Decryption on the read critical path



Counter Mode Encryption
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» Lower performance penalty than

We use CME to encrypt data




Integrity Verification

» SGX Integrity Tree (SIT): Counters and
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Security Metadata
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Metadata Inconsistency

Cache in Memory Controller I Fresh Metadata
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System Crash e 0

T |

Security metadata in NVM

Modified Metadata

Stale Metadata

Stale security metadata can’t ensure the system security after reboots
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Problems of Recovering Metadata

> High write overheads Integrity tree
® Persisting tree nodes from leaves to root
I [
I I
I I I

NVM
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Problems of Recovering Metadata

» High write overheads
® Persisting tree nodes from leaves to root

» Long recovery time
® Reconstructing all nodes layer by layer

11



Problems of Recovering Metadata

» High write overheads
® Persisting tree nodes from leaves to root

» Long recovery time
® Reconstructing all nodes layer by layer

> Incorrectly recovery B =22 s

® Attackina nodes durina recoverv
Our design goal: correctly recover the security metadata with low
write overhead and short recovery time




Observation

Modifications In the updated nodes

Eager update Lazy update
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Only the corresponding counter increases by 1, and MAC is updated




Observation

Unused space in MAC (Message Authentication Code) field

64-bit MAC field in data line
® 54-bit MAC Is also safe[1].
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[1] Saileshwar, Gururaj and Nair, Prashant J and Ramrakhyani, Prakash and Elsasser, Wendy and Joao, Jose A and Qureshi, Moinuddin K. Morphable
Counters: Enabling Compact Integrity Trees For Low-Overhead Secure Memories. MICRO18



Solutions

» Store the right metadata with low overhead
® Recovering stale metadata using right metadata

» |dentify the stale metadata
® Only restoring the stale metadata

» Verify the recovery process
® Detecting the attacks occurring during recovery

We propose an efficient recovery scheme STAR
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»STAR Mechanism



STAR Components

» Counter-MAC synergization
Persist the modifications w/o extra writes

LLC

Memory

ADR support | €ontroller

»Bitmap lines
Record the locations of stale metadata for
reducing recovery time

»Cache tree
Detect the attacks occurring during recovery

NVM

N

| Metadata cache
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| |

Recovery
Area

User data Metadata
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STAR Components

» Counter-MAC synergization
Persist the modifications w/o extra writes



Counter-MAC Synergization

MAC

On-chip Cache

NVM

Incurring modifications in parent node via persisting child node
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Counter-MAC Synergization

MAC

On-chip Cache

~
10 LSBs of C2

NVM

Persisting the child node and modifications in one write
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Counter-MAC Synergization

» Restoring stale counter and MAC

LSBs of C2

- c

MSBs of C2

- Fresh data

Stale data
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STAR Components

»Bitmap lines
Record the locations of stale metadata for reducing recovery time



Bitmap Lines

Metadata lines in metadata cache

------ lofolofo) ‘
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Bitmap lines in write queue with ADR

I Clean line

Dirty line

Recovery area in NVM

512-bit bitmap line

32KB continuous metadata lines (512x64B=32KB)
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Bitmap Lines

Metadata Cache (KBs~MBs) [ """

Non-Zero Bitmap Line Zero Bitmap Line

— Dirty metadata in cache
B Stale metadata in NVM

Non-Zero Bitmap Line
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Reading zero bitmap lines is useless to locate stale metadata



Multi-layer Index

Only reading non-zero bitmap lines

Level2 z

Bitmap lines

Non-zero lines Non-zero lines S

Zero lines

| ] | ] | ] 1 | Levell

------------ Metadata

Indicating the non-zero bitmap lines and stale metadata



STAR Components

»Cache tree
Detect the attacks during recovery



Attacks during recovery
» Replay attack

Data MAC [ 0x11 Persisted user data with LSBs
l Replay
O_Data ORVNOROUSIN Replayed user data with LSBs
> Incorrect recovery I Fresh data
Stale data
C2

- Attacked data

Old LSBs of C2

Fresh MSBs of C2 incorrect C2

Attacks can’t be detected in traditional integrity verification schemesﬂ



Cache Structure

Cache

Set 0

Set 1

Set 2

Set 3

line O
line 1
line 2
line 3

line S

line S+1
line S+2
line S+3

Memory
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Cache tree

Set-Way cache: 8 ways in a set

Logically order the dirty lines via the ascending addresses

hash
—> Set-MAC

Generate the Set-MAC via dirty lines in the set




Cache tree

Construct cache tree

Root

Set-MAC

Order all Set-MACs via set number

Set-MACs




Cache tree

During recovery, we reconstruct the cache tree to detect the attacks

Replayed
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» Evaluation



Experimental Setup

Gem5 + NVMain

Processor

8 cores(2 GHz); L1(64 KB), L2(512 KB), L3(4 MB) Caches

Memory Controller

Security Metadata Cache(512 KB); Bitmap Lines(16 lines, 1 KB)

NVM

16 GB; tRCD/tCLACWD/AFAWNMWTR/AWR =48/15/13/50/7.5/300 ns

Secure Parameters

SIT (9 levels); Cache Tree (4 levels)

Comparisons
Write-back cache (WB) | Baseline, fail to recover system
STAR Our work
Anubis[ISCA19] 1x extra memory writes

Strict Persistence

Persist all nodes in a branch of tree
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Write traffic

Our work
[ JWB[__|STAR[___]Anubis[ ] Strict Persistence
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SATR reduces 92% extra writes than Anubis



Energy Consumption

Our work

\
[ JwB[__]STAR[___]Anubis

3 & & &> ¥
F & x® S &
&

Compared with Anubis, SATR reduces 42% energy overheads
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» Conclusion



Conclusion

Design Goal

» Correctly recovering the stale security metadata with low write overhead
and short recovery time

Key ldea

» STAR disaggregates the persistence of modifications and addresses of

metadata and provides recovery verification

® Counter-MAC synergization : reduce memory writes
® Bitmap lines: locate the stale metadata

® Cache tree: verify the recovery process

Result

» STAR reduces 92% extra writes than Anubis and fast recovers the
security metadata
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