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ABSTRACT
Existing distributed graph-processing frameworks, e.g.,GPS,
Pregel and Giraph, handle large-scale graphs in the mem-
ory of clusters built of commodity compute nodes for better
scalability and performance. While capable of scaling out
according to the size of graphs up to thousands of compute
nodes, for graphs beyond a certain size, these frameworks
usually require the investments of machines that are either
beyond the financial capability of or unprofitable for most
small and medium-sized organizations. At the other end of
the spectrum of graph-processing frameworks research, the
single-node disk-based graph-processing frameworks, e.g.,
GraphChi, handle large-scale graphs on one commodity com-
puter, leading to high efficiency in the use of hardware but
at the cost of low user performance and limited scalabil-
ity. Motivated by this dichotomy, in this paper we propose
a distributed disk-based graph-processing framework, called
DD-Graph, that can process super-large graphs on a small
cluster while achieving the high performance of existing dis-
tributed in-memory graph-processing frameworks.
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1. INTRODUCTION

With the rapid growth of data, there has been a recent
surge of interest in processing large graphs in both academia
and industry. Due to the fact that many graph algorithms
exhibit irregular access patterns [2], most graph processing
frameworks require that the graphs fit entirely in memory,
necessitating either a supercomputer or a very large cluster
to process large graphs [3,5].
Several graph-processing frameworks, e.g., GraphChi [1]

and XStream [9], have been proposed to process graphs with
billions of edges on just one commodity computer, by relying
on secondary storage [1, 9]. However, the performance of
these frameworks is limited by the limited secondary storage
bandwidth of a single compute node [4] and the significant
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difference in the access speeds between secondary storage
and main-memory [7]. Furthermore, the limited amount of
storage of a single commodity computer can potentially limit
the scale of the processed graphs, since graphs continue to
grow in size [6].

The key difference between the distributed in-memory
graph-processing frameworks and single-node secondary stor-
age based graph-processing frameworks lies in the trade-off
between the hardware cost and performance, with the for-
mer trading off hardware cost for performance while the lat-
ter doing the exact opposite. In this paper, we propose a
highly cost-effective distributed disk-based graph-processing
framework, called DD-Graph that has the salient feature of
both the low hardware cost and high performance.

There are two key challenges in the design of a distributed
external memory based framework, that is, the expensive
communication in distributed in-memory graph-processing
frameworks and the high disk I/O latency that the designers
of external memory based graph-processing frameworks are
most concerned about. By using a small cluster to hide the
latencies of the communication and disk I/O intelligently,
DD-Graph overcomes the two key challenges and thus re-
duces the overall runtime to the computation time of the
compute nodes, achieving the comparable performance with
existing distributed in-memory graph-processing frameworks.

The rest of the paper is structured as follows. Section 2
introduces DD-Graph framework. Experimental evaluations
are presented in Section 3. We discuss related work in Sec-
tion 4 and conclude the paper in Section 5.

2. DD-GRAPH FRAMEWORK

Key components and unique features of the DD-Graph
framework are detailed in the subsections that follow.

2.1 Definitions
An input graph is partitioned into P subgraphs in pre-

processing phase. A graph-computing job consists of N it-
erations. A task is defined as the execution process of a
subgraph in one iteration, therefore there are T = P × N
tasks, ordered as T0, T1,· · · , TP×N-1. A task is decom-
posed into three stages: 1) loading subgraph from the disk,
2) computation, and 3) communication and saving results
to the disk.

In the preprocessing phase, the edge values of each sub-
graph are organized into a local-edge data block, P-1 remote
in-edge data blocks and P-1 remote out-edge data blocks in-
telligently. Each remote out-edge data block includes the
values of all the out-edges whose destination vertices re-
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side within one of the remote subgraphs. Each remote in-
edge data block includes the values of all the in-edges whose
source vertices reside within one of the remote subgraphs.
Since the out-edges of a given vertex are the in-edges of its
neighbors, each remote out-edge data block is an exact copy
of a remote in-edge data block of one of the other subgraphs.
The local-edge data block is a special case because both the
source vertices and destination vertices of the edges are in
the same subgraph. This block-based edge-value organiza-
tion method enables an efficient block-based communication
model, described in the next subsection.

2.2 Architecture of DD-Graph

The DD-Graph architecture consists of a master node and
M compute nodes. The master node schedules the tasks of
the graph-computing job. Each compute node is responsi-
ble for managing and executing its assigned tasks. Without
the loss of generality, we assume that there are three com-
pute nodes, a graph is partitioned into six subgraphs, and a
graph-computing job consists of two iterations. Thus, there
are 12 tasks in total (T0, T1,· · · , T11). We describe the key
components and unique features of the DD-Graph architec-
ture as following.
Task Assignment: Tasks are assigned in order by using

a hash of the task ID to select a compute node, the hash
function is defined as H (t) = t mod M, where t is the ID of
task t and M is the number of compute nodes. As shown
in Table 1, the tasks T0,T3,T6,T9 are assigned to compute
node 0, the tasks T1,T4,T7,T10 are assigned to compute
node 1, and the tasks T2,T5,T8,T11 are assigned to compute
node 2. Each compute node employs a task queue to store
its tasks.

Table 1: Task Assignment.
Compute Node 0 Compute Node 1 Compute Node 2

T0,T3,T6,T9 T1,T4,T7,T10 T2,T5,T8,T11

Table 2: Subgraph Assignment.
Compute Node 0 Compute Node 1 Compute Node 2

S0,S3 S1,S4 S2,S5

Subgraph Assignment: Subgraphs are assigned in or-
der by using a hash of the subgraph ID to select a compute
node, with the hash function being defined as H (s) = s
mod M, where s is the ID of subgraph s. As shown in Ta-
ble 2, subgraphs S0 and S3 are assigned to compute node
0, subgraphs S1 and S4 are assigned to compute node 1,
and subgraphs S2 and S5 are assigned to compute node 2.
In order to avoid multiple copies of a subgraph, we impose
a constraint condition that the number of subgraphs P is
divisible by M.

Table 3: Associate Task with Subgraph.
Compute Node 0 Compute Node 1 Compute Node 2

<T0,S0><T3,S3> <T1,S1><T4,S4> <T2,S2><T5,S5>

<T6,S0><T9,S3> <T7,S1><T10,S4> <T8,S2><T11,S5>

Association between Task with Subgraph: Each
task is associated with a subgraph by using a hash of the task
ID to select a subgraph, with a hash function H (t) = t mod
P, where t is the ID of task t and P is the number of the sub-
graphs. As shown in Table 3, for compute node 0, the tasks
T0,T3,T6,T9 are associated respectively with Subgraphs S0,
S3, S0, S3; for compute node 1, the tasks T1,T4,T7,T10 are
associated respectively with Subgraphs S1, S4, S1, S4; and
for compute node 2, the tasks T2,T5,T8,T11 are associated
respectively with Subgraphs S2, S5, S2, S5.

Figure 1: Job Execution Process.
Job Execution Process: As shown in Figure 1, all com-

pute nodes start at time T0. Each compute node launches
its first task from its task queue and loads the subgraph of
that task. When the stage of loading subgraph has finished,
the compute node either immediately executes the compu-
tation stage of the task t currently being launched or wait
for a short time period for the arrival of the last remote out-
edge data block, called the “crucial block”, which is sent by
the task t-1. The task T0 is a special case because it is the
first one. The short waiting time period indicates that the
computation stage of task t-1 has not finished. It can be
eliminated by using more compute nodes. This is a trade-
off between the system performance and hardware costs, as
discussed in the following subsections.

In the computation stage, a user-definedUpdate(v) func-
tion is invoked for each vertex v in the subgraph in parallel.
Inside Update(v), the vertex v updates its state by its
in-edge values and then updates its out-edge values. The in-
edge values of vertex v were updated by the source vertices
of the in-edges in the previous P-1 tasks, and the out-edge
values of vertex v will be used by the destination vertices of
the out-edges in the subsequent P-1 tasks.

Then, the compute node starts the block-based commu-
nication and result-saving processes simultaneously. In the
block-based communication process, edge values are moved
to implement the interactions between vertices, since the
out-edges of a vertex are the in-edges of its neighboring ver-
tices. The compute node sends P-1 remote out-edge data
blocks to the subsequent P-1 tasks sequentially in order.
Each of these P-1 tasks updates the corresponding remote
in-edge data block of its subgraph by using the received re-
mote out-edge block. In the result-saving process, the com-
pute node saves the local-edge data block and the vertex
values of the subgraph currently being executed to the disk.

Finally, the compute node either repeats for the next task,
or stops when it is demanded by the master node or the task
queue is empty.

Number of Iterations: DD-Graph can run a fixed num-
ber of iterations by assigning N a fixed number. The graph-
computing job can also proceed in an uncertain number
of iterations until the convergence condition of the graph-
computing job is met. In this case, a very large default value
(such as 9999) of N is automatically assigned by DD-Graph.

2.3 Hardware Cost and Performance

DD-Graph overcomes two key challenges, including the
high communication costs in distributed graph-processing
frameworks and the high disk I/O latency in single-node
external memory based graph-processing frameworks.

Minimizing Communication Cost: As illustrated in
Figure 1, by using a small cluster, DD-Graph almost hides
the communication latency by overlapping the communica-

260



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

100

200

300

400

500

600

fail fail fail fail fail fail

 Communication Latency  Computation Latency

Compute Nodes

R
u

n
ti

m
e
(s

)
fail

Peak Performance

   ( 284 seconds)

(a) GPS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900

 Disk I/O & Communication Latency  Computation Latency

R
u

n
ti

m
e
(s

)

Compute Nodes

Peak Performance

    ( 253 seconds)

(b) DD-Graph
Figure 2: Runtime Breakdown.

tion of each compute node with the computations of other
compute nodes. Furthermore, in the communication process
of each task, the compute node of the task only needs to
send P-1 out-edge data blocks to the subsequent P-1 tasks
sequentially in order. This communication model not only
utilizes network bandwidth more efficiently but also depends
weakly on the network bandwidth.
Hiding Disk I/O Latency: In order to mitigate the

costly disk I/O latency [1], DD-Graph fully overlaps the pro-
cesses of loading subgraph and saving results of a task with
the computations of other physically distributed tasks.
By using a small cluster, the overall runtime is almost re-

duced to the computation time of compute nodes, achieving
a comparable high-performance with Pregel-like distributed
in-memory graph-processing frameworks, such as GPS [10].

2.4 Balancing Efficiency and Performance

There are gaps and lags during the execution process in
DD-Graph, as shown in Figure 1. A gap represents an idle
period between the loading subgraph stage and the compu-
tation stage of a task. For example, while L3, the subgraph
loading for the next task (Task 3), has finished, C2, the
computation of the current task (Task 2) has not finished,
meaning that compute node 0 will be idle for a short period
in which the computation stage of Task 3 waits for the com-
putation stage of Task 2 to complete and the crucial block
from Task 2. A lag signifies a short time span between two
adjacent computations. For example, C3, the computation
of the current task (Task 3), has finished, but L4, the sub-
graph loading for the next task (Task 4), has not finished,
delaying the start of C4. While lags bring extra latency
between two adjacent computations and thus lengthen the
overall run time, gaps result in the waste of computational
resources and lead to efficiency loss.
More compute nodes bring more and longer gaps but fewer

and shorter lags. The lags can be eliminated completely
when the number of compute nodes is sufficiently large.
In this case, DD-Graph reaches its peak performance. In-
versely, fewer compute nodes result in fewer and shorter gaps
but more and longer lags. DD-Graph can increase or de-
crease the system scale to tradeoff between performance and
efficiency. In general, while the performance of DD-Graph
increases with the system scale, its efficiency is inversely cor-
related to the system scale. The efficiency reaches a maxi-
mum value when system scale=1.
The system scale that achieves the peak performance de-

pends on the specific graph algorithm since the computation
time and load/store time vary from one graph algorithm to
another. Even so, the peak-performance system scales are
usually much smaller than those of existing distributed in-
memory graph-processing frameworks while achieving the
high performance of the latter, as shown in Section 3.

3. EXPERIMENTAL EVALUATION

In this section, we conduct extensive experiments to eval-
uate the performance of DD-Graph. Experiments are con-
ducted on a 50-node cluster. Each node has two quad-core
Intel Xeon E5620 processors with 32GB of RAM.

We implement four graph algorithms to evaluate DD-Graph:
PageRank (PR), Community Detection (CD), Connected
Components (CC) and RandomWalks (RW). We evaluate
DD-Graph by using two real-world graph datasets and six
synthetic graph datasets that are summarized in Table 4.
We compare DD-Graph with two baseline frameworks. One
is an up-to-date version of GPS, which is an open-source
Pregel implementation from Stanford InfoLab [10]. The
other is GraphChi, an open-source project from CMU [1].

Table 4: Summary of Graph Datasets.
DataSets Vertices Undirected Edges Type

Twitter-2010 41×106 1.4×109 Social Network

UK-2007-05 106×106 3.7×109 Web

RMAT27 128×106 2×109 Synthetic

RMAT28 256×106 4×109 Synthetic

RMAT29 512×106 8×109 Synthetic

RMAT30 1×109 16×109 Synthetic

RMAT31 2×109 32×109 Synthetic

RMAT32 4×109 64×109 Synthetic

3.1 Hardware Cost & Performance

In order to have a clear understanding about how DD-
Graph achieves high performance and low hardware costs,
experiments are conducted to investigate the runtime break-
downs of DD-Graph and GPS. Each framework runs 10 it-
erations of PR on the Twitter-2010 graph repeatedly, with
the number of compute nodes ranging from 1 to 32. We de-
compose the runtime of DD-Graph into two parts: (1) com-
putation latency and (2) disk I/O & communication latency.
The runtime of GPS consists of two parts: (1) computation
latency and (2) communication latency.

Experimental results, shown in Figure 2, indicate that
the computation latency of DD-Graph maintains a constant
value when the system scale ranges from 1 to 32. The rea-
son for this is that the computations of the physically dis-
tributed tasks are actually executed sequentially in time by
DD-Graph. Due to the parallel execution of computations,
the computation latency and communication latency of GPS
are reduced gradually as the system scale increases from 8 to
30. However, the runtime of GPS maintains a constant value
when the system scale ranges from 30 to 32. The reason is
most likely the limited scalability of GPS. Note that GPS
fails to execute the graph-computing job when system scale
is less than 8. However, the disk I/O & communication la-
tency of DD-Graph is reduced significantly when the system
scale ranges from 1 to 12 and reaches the peak performance
at the system scale of 12. The reason is that most of the
communication and disk I/O time has been overlapped when
12 compute nodes are used. Although the computation la-
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Figure 3: Super-large Scale Graphs.

tency of DD-Graph is longer than that of GPS, the disk
I/O & communication latency of DD-Graph is much shorter
than the communication latency of GPS, leading to slightly
shorter overall runtime of DD-Graph (i.e., 253 seconds vs.
284 seconds). Although there is a significant difference in
the system scale, DD-Graph can achieve the high perfor-
mance of GPS. We also repeat this experiment on CC, CD
and RW respectively, and get the similar results.

3.2 Super-large Scale Graphs

We compare DD-Graph with GPS using a set of graphs,
i.e., RMAT27, RMAT28, RMAT29, RMAT30, RMAT31 and
RMAT32. Since the experimental results, shown in Section
3.1, indicate that DD-Graph can achieve its peak perfor-
mance on 12 compute nodes for the PR graph algorithm.
DD-Graph runs PR with these graphs respectively on the
same 12-node cluster.
GPS first runs PR on the RMAT27 graph repeatedly, by

increasing the system scale. GPS simply crashes when the
system scale falls below 11, but as the system scale increases
its runtime is reduced gradually and reaches the minimum
value (340.6s) when 31 compute nodes are used. However,
DD-Graph with only 12 compute nodes executes the same
graph-computing job in 312.5 seconds. Experiments are re-
peated on RMAT28. Similarly, GPS reaches its peak per-
formance (723.9s) when 48 compute nodes are used, while
DD-Graph with only 12 compute nodes executes the same
graph-computing job in 673.5 seconds. As shown in Figure
3(a), DD-Graph saves more compute nodes when handling
RMAT28 than RMAT27. Furthermore, it can obtain slight
performance improvements when handling both RMAT28
and RMAT27, as shown in Figure 3(b). These experimental
results indicate that DD-Graph is more cost-effective when
handling a larger graph than a smaller one.
As shown in Figure 3, GPS simply crashes when running

on the 50-node cluster with RMAT29, RMAT30, RMAT31
and RMAT32, due to the out-of-memory problem. However,
DD-Graph can process the RMAT29, RMAT30, RMAT31
and RMAT32 respectively on a cluster of 12 compute nodes.

3.3 Comparison with GraphChi

For fair comparison, DD-Graph is deployed on a single
compute node. Each framework runs 10 iterations of PR
on the graphs with different types and sizes. Experimental
results indicate that DD-Graph can process the graphs of
different sizes, and the runtimes of DD-Graph are similar
to those of GPS when running on Twitter-2010, UK-2010-
05, RMAT27, RMAT28 and RMAT29. However, GraphChi
simply crashes when handling RMAT30 and RMAT31 graphs.

4. RELATED WORK

Chaos [8] scales X-Stream [9] out to multiple machines.
This system reduces the disk I/O latency by using two mea-
sures. It avoids the random accesses by streaming com-
pletely unordered edge lists, aiming to improve the disk I/O
performance. Within each machine, the disk I/O is par-

tially overlapped with computation. Chaos’ system perfor-
mance relies heavily on the high-bandwidth networks [8],
while DD-Graph has the higher communication efficiency.
The extreme requirement of network in Chaos is not easily
met for most small and medium-sized organizations. Unlike
Chaos, DD-Graph hides almost all of the communication la-
tency and full I/O latency by overlapping the disk I/O and
communication of each compute node with the computa-
tions of other compute nodes, thus achieving the higher per-
formance but the lower hardware cost. Furthermore, Chaos
adopts an edge-centric programming model while DD-Graph
adopts the vertex-centric programming model that is more
user-friendly.

5. CONCLUSION
This paper proposes DD-Graph, a distributed disk-based

graph-processing framework. By scheduling the tasks of a
graph-computing job on a small cluster, DD-Graph is ca-
pable of processing super-large scale graphs while achieving
the high performance of Pregel-like distributed in-memory
graph-processing frameworks. Extensive evaluation, driven
by very large-scale graph datasets, indicates that the cost-
effective advantage of DD-Graph makes it notably superior
to the existing distributed graph-processing frameworks.
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