
BEES: Bandwidth- and Energy- Efficient Image
Sharing for Real-time Situation Awareness

Pengfei Zuo, Yu Hua�, Xue Liu†, Dan Feng, Wen Xia, Shunde Cao, Jie Wu, Yuanyuan Sun, Yuncheng Guo

Wuhan National Laboratory for Optoelectronics

School of Computer, Huazhong University of Science and Technology, Wuhan, China
† McGill University, Montreal, Canada

� Corresponding Author: csyhua@hust.edu.cn

Abstract—In order to save human lives and reduce injury
and property loss, Situation Awareness (SA) information is
essential and important for rescue workers to perform the
effective and timely disaster relief. The information is generally
derived from the shared images via widely used smartphones.
However, conventional smartphone-based image sharing schemes
fail to efficiently meet the needs of SA applications due to
two main reasons, i.e., real-time transmission requirement and
application-level image redundancy, which is exacerbated by
limited bandwidth and energy availability. In order to provide
efficient image sharing in disasters, we propose a bandwidth-
and energy- efficient image sharing system, called BEES. The
salient feature behind BEES is to propose the concept of
Approximate Image Sharing (AIS), which explores and exploits
approximate feature extraction, redundancy detection, and image
uploading to trade the slightly low quality of computation
results in content-based redundancy elimination for higher
bandwidth and energy efficiency. Nevertheless, the boundaries
of the tradeoffs between the quality of computation results and
efficiency are generally subjective and qualitative. We hence
propose the energy-aware adaptive schemes in AIS to leverage
the physical energy availability to objectively and quantitatively
determine the tradeoffs between the quality of computation
results and efficiency. Moreover, unlike existing work only for
cross-batch similar images, BEES further eliminates in-batch
ones via a similarity-aware submodular maximization model. We
have implemented the BEES prototype which is evaluated via
three real-world image datasets. Extensive experimental results
demonstrate the efficacy and efficiency of BEES.

I. INTRODUCTION

According to the most recent World Disasters Report [1],

a total of over 6,000 disasters worldwide occurred between

2006 and 2015, which resulted in more than 0.77 million

people casualties, affected other nearly 2 billion people, and

caused the total amount of estimated damage of over 1.4

trillion US dollars. During disaster events, Situation Awareness

(SA) information, such as the surroundings and individuals,

road conditions, resource information, etc., is essential and

important, since the real-time responders and rescue workers

rely on the SA information to perform the effective and timely

disaster relief to save human lives and reduce injury and

property loss [2]–[4].
Images are full of rich information (e.g., people, locations,

and events) to present the real situations and provide vivid de-

scription of in-situ objects, which play an important role in the

disaster relief [2]–[5]. Due to the extensive use and easy access

to Internet of smartphones, smartphones based crowdsourcing

for sharing image-based information is important and helpful

to support SA. For example, crowdsourcing has been applied

in the Nepal earthquake to collect the latest information from

earthquake-affected areas and create a dynamic map that

shows the locations in which aid and relief are needed [6].

In the Typhoon Haiyan (2013), as part of the relief efforts,

social medias using the shared images have been exploited

and explored by volunteers to show where the most help is

needed [7].

Although the image-based information is beneficial for

SA, the image sharing via smartphones based crowdsourcing

fails to efficiently support the SA in the disaster relief due

to three main limitations. 1) Bandwidth Bottleneck. Due to

the potential damages on communication infrastructure in

disasters, network bandwidth possibly becomes very limited

in capacity. Even though some schemes are utilized to

remedy the network communication, such as, delay tolerant

networks [8], [9] and mobile ad hoc networks [10], [11],

the strict bandwidth constraint remains [12]. 2) Energy

Constraint. The smartphones are used to take and upload

massive images. It is well-known that smartphones have

a low battery lifetime that is the main concern for users.

For example, ChangeWave conducted a market study for

smartphone dislikes, which shows 38% of the respondents

listed battery lifetime as their biggest complaint [13]. More

importantly, it is difficult for limited-energy smartphones to be

re-charged in the context of disasters due to the infrastructure

destruction [5]. 3) Real-time Transmission Inefficiency. Real-

time data analytics are important for time-sensitive decision

making in disaster relief [2], such as, the prediction about

the impact of the disasters and the selection of the suitable

responses to the disasters. To support real-time data analytics,

we need to timely deliver the images with SA information

taken by smartphones to the servers.

A large number of images that users upload during the

disaster events contain significant redundancies. For example,

53% and 22% similar images exist respectively in the

San Diego fire (2007) and the Haiti earthquake (2010)

imagesets [4]. Specifically, according to the observations of

Facebook [14], users prefer to upload a batch of images

(e.g., an album) instead of a single image. Thus the batch
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upload produces the cross-batch and in-batch similar images.

In general, cross-batch similar images are the images that are

similar to the images in the servers uploaded by other batches,

which are produced by the cases that multiple users take

pictures for the same objects or situations. In-batch similar
images are the similar images among the images belonging

to the same batch, which is also a common situation, such

as, burst shooting and taking multiple pictures for identical

objects. Image sharing in disasters mainly aims to provide

the SA information and clues for disaster relief. Sharing

redundant images consumes the limited resources but provides

repetitive information [4], [5], [15], [16]. Hence, it is important

to eliminate the transmission of redundant/similar images to

obtain bandwidth and energy savings. However, to achieve the

goals of the bandwidth and energy efficiency when eliminating

the similar images, there are several challenges to address.

1) Efficiently identify in-batch similar images. Existing

schemes [4], [5], [16] only eliminate the cross-batch similar

images while overlooking in-batch similar images. The former

is easy to be identified by querying the server index. For a

queried image, if there exist similar images in the servers, the

image does not need to be uploaded. Otherwise, it will be

uploaded. However, identifying the latter is nontrivial. Only

querying the server index cannot identify in-batch similar

images since these images are not uploaded and hence their

image features do not exist in the index. The key problem to

identify in-batch similar images is how to select the retained

unique images in a batch.

2) Deal with the inefficiency of simply eliminating similar
images. The second challenge is that simply eliminating

redundant images becomes inefficient to low redundancy.

Existing schemes [3]–[5], [16] only aim to eliminate the image

redundancy to improve the efficiency of image sharing, whose

performance heavily relies on the percentage of redundant

images to be uploaded. In the worst case, although not

impossible, few redundant images exist in the uploaded

images. These schemes become ineffective, and even consume

more energy than directly uploading images due to requiring

to extract image features for similarity detection.

3) Obtain suitable tradeoffs in similar images elim-
ination. There exist a series of approximate computing

processes during eliminating redundant images, such as image

feature extraction and similar image detection. However,

the boundaries of the tradeoffs between the quality of

computation results and energy and bandwidth efficiency in

these approximate computing processes are usually subjective

and qualitative. For example, extracting high-quality image

features results in high detection precision while consuming

high energy. It is difficult to deal with the tradeoff between

detection precision and energy efficiency for feature extraction.

To address these challenges, we propose a Bandwidth- and

Energy- Efficient image Sharing system, called BEES 1, to

offer real-time SA in the disaster environments. BEES aims to

1BEES collecting images in disaster areas via crowdsourcing looks like a
number of bees gathering pollen in a flower field.

substantially reduce the consumption of bandwidth and energy

during image sharing, and maintain the high efficiency even in

the worst case where few redundant images exist. Moreover,

by monitoring the energy availability, BEES adaptively adjusts

its behaviors and carefully handles the tradeoffs between the

quality of computation results and energy consumption to

obtain energy savings and extend the battery life. To achieve

these design goals, we have the following contributions.

• To identify and eliminate in-batch similar images, we

propose a similarity-aware submodular [17] maximization

model (SSMM) in BEES to compute the unique image

subset for each uploaded image batch.

• To deal with the inefficiency of simply eliminating

similar images, we propose the concept of Approxi-

mate Image Sharing (AIS), which leverages approximate

feature extraction, approximate redundancy detection,

and approximate image uploading to trade the slightly

low quality of computation results in content-based

redundancy elimination for higher bandwidth and energy

efficiency.

• To obtain suitable tradeoffs in approximate computing

processes of AIS, we propose the energy-aware adaptive

schemes to leverage the physical energy availability to

determine the tradeoffs between the quality of computa-

tion results and efficiency, which provides an objective

and quantitative tradeoff boundary.

• We have implemented the BEES prototype and evalu-

ated its performance by using three real-world image

datasets. Compared with the state-of-the-art schemes,

including SmartEye [5] and MRC [16], experimental

results demonstrate that BEES reduces more than 67.3%
energy overhead, 77.4% bandwidth overhead, 70.4%
average image uploading delay, and extends the battery

lifetime by 84.3%. Moreover, the energy-aware adaptive

schemes in BEES further extend the battery lifetime by

about 20%, compared with BEES without energy-aware

adaptive schemes.

The rest of this paper is organized as follows. Section II

presents the system architecture of BEES. The design details

of BEES are described in Section III. We evaluate the

performance in Section IV. Section V discusses the related

work and Section VI concludes this paper.

II. THE SYSTEM ARCHITECTURE OF BEES

In this section, we first describe the traditional system

architecture for smartphone-based image sharing. We then

present the system architecture of BEES.

In the traditional system architecture [5], [16], as shown in

Figure 1, there are three key components, i.e., Image Feature

Extraction (IFE), Image Redundancy Detection (IRD) and

Unique Image Uploading (UIU). IFE extracts the features

(e.g., PCA-SIFT [18] and ORB [19]) of a batch of images in

smartphones, and sends the image features to cloud servers.

IRD queries the image features in the server index to determine

whether there exist similar images in the cloud servers, and

responds the query results to the smartphones. UIU only
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Fig. 1. The traditional system architecture.

uploads the unique images in the image batch to the servers.

The traditional framework is inefficient in terms of bandwidth

and energy due to overlooking the several problems, i.e.,

failing to eliminate in-batch similar images and becoming

inefficient when few similar images exist, as described in

Section I.

Therefore, we propose a new system architecture, i.e.,

BEES, for bandwidth- and energy- efficient image sharing, as

shown in Figure 2. BEES introduces three new key techniques.

First, BEES proposes SSMM to detect in-batch similar images.

Second, BEES proposes the concept of Approximate Image

Sharing (AIS) to obtain bandwidth and energy savings via

trading the quality of computation results. Specifically, in AFE,

since extracting features consumes substantial energy, BEES

explores and exploits bitmap compression to trade the feature

computation quality for higher energy efficiency. In ARD,

BEES adjusts the similarity detection threshold to select the

images with the lower redundancy for saving bandwidth and

energy. In AIU, BEES leverages image quality and resolution

compression to trade image quality for higher bandwidth and

energy efficiency. Third, it is a challenge to objectively and

quantitatively handle the tradeoffs between the quality of

computation results and efficiency. To address the challenge,

three energy-aware adaptive schemes (EAAS) are respectively

proposed in the three components (i.e., AFE, ARD and AIU)

to objectively and quantitatively adjust the tradeoffs between

the quality of computation results and efficiency by using the

remaining energy of smartphones (Ebat). When the Ebat is

sufficient, EAAS provides high-quality computation results;

when the Ebat is insufficient, EAAS aims to save energy by

slightly reducing the quality of computation results.

III. THE DESIGN DETAILS

In this section, we present the design details of BEES, in-

cluding approximate feature extraction, redundancy detection

and image uploading. We also present how we select the image

feature extraction algorithm used in BEES.

A. Approximate Feature Extraction
To detect image similarity, image features are first extracted

and uploaded to the servers. Even though we select a relatively
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Fig. 2. The system architecture of BEES.

optimal extraction algorithm (described in Section III-D), i.e.,

ORB [19], the energy overhead to extract image features is

still high when the image size is too large. We observe that

compressing the in-memory bitmaps of images before extract-

ing their features can significantly decrease the computation

(energy) overhead. However, computing the features from

compressed image bitmaps also decreases the quality of image

features. The low-quality features cause the low precision of

similarity detection. Therefore, we need to obtain a suitable

tradeoff between the energy overhead and the precision of

similarity detection for image bitmap compression.

We first explore the relationships among the bitmap

compression proportion, the precision of similarity detection,

and the energy overhead of extracting features, via extensive

experiments. The bitmap compression proportion is defined

as the ratio of the decrement in the length or width of the

compressed image bitmap to those of the original bitmap. We

use a well-known public imageset (University of Kentucky

imageset [20]) which contains 10,200 images in groups of 4

images from one scene. The 4 images in the same group are

similar to each other in the imageset. We select one image from

each group and 200 images in total as the queried images.

The average number of the similar images in top-4 query

results is used to measure the query precision (defined in

Equation 3) [16], [20]. We compress the bitmaps of queried

images with the proportions from 0 to 0.9 with the interval

of 0.05, and then extract their ORB features for similarity

detection. In the meantime, we capture the energy overhead

of extracting features.

Precision vs. Compression proportion: We normalize

the query precision of compressed image bitmaps to that of

original images as shown in Figure 3(a). With the increase

of the compression proportion, the normalized precision

decreases. We also observe that we can still ensure a high

precision when significantly compressing image bitmaps.

For example, when the compression proportion is 0.4, the

normalized precision is higher than 0.9.

Energy overhead vs. Compression proportion: We

180418011512
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(b) Normalized energy overhead

Fig. 3. The impact of bitmap compression proportion on precision and energy
overhead (We also use 400, 800 images to examine precision and energy
overhead when obtaining near-identical results).

normalize the energy overhead of compressed images to that of

original images, as shown in Figure 3(b). With the increase of

the compression proportion, the energy overhead of extracting

the ORB features from compressed image bitmaps decreases.

We observe that there is an approximate linear relationship

between the compression proportion and energy overhead.

Motivated by the observations, in order to obtain a

suitable tradeoff between the energy overhead and detection

precision, we present an energy-aware adaptive compression

(EAC) scheme to dynamically adjust the bitmap compression

proportion according to the remaining energy (Ebat). When

the energy is sufficient, EAC provides high detection precision;

when the energy is insufficient, EAC is designed to save energy

with a slight loss in detection precision.

In general, less than 10% errors for approximate computing

processes are considered to be acceptable [21], [22]. In

the EAC scheme, we design the relationship between the

compression proportion (C) and the remaining energy (Ebat)

as a linear function. Specifically, in order to ensure the

compromising precision smaller than 10%, we set the function

as C = 0.4 − 0.4Ebat based on the statistic analysis of

the practical measured data. The function can ensure a high

precision while significantly saving energy in the case of low

energy. For example, when Ebat is 5%, C is set to 0.38
according to the function, which can save about 40% energy of

extracting features while ensuring higher than 90% precision,

as shown in Figure 3.

B. Approximate Redundancy Detection

For a given image batch in a smartphone, redundant

image detection in BEES includes two parts, i.e., cross-

batch redundancy detection (CBRD) and in-batch redundancy

detection (IBRD). CBRD detects the similarity between the

images in the given image batch and the images in the servers

which are previously uploaded by other batches/smartphones.

CBRD eliminates cross-batch similar images by querying

the server index. However, only querying the index cannot

eliminate in-batch similar images since these images are not

uploaded and hence their image features do not exist in the

index. Therefore, we propose IBRD to detect the redundancy

among the images in a batch.
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Fig. 4. The similarity distribution.

1) Cross-batch Redundancy Detection: In the context of

this paper, a redundant image is determined by the maximum

similarity which is defined as the similarity between the

queried image and its most similar image (i.e., the image that

has the highest similarity score) in the servers. If the maximum

similarity is more than a similarity threshold T , the queried

image is considered to be redundant and will not be uploaded.

Otherwise, the image is unique. Note that the similarity score

is defined in Euqation 2.

A reasonable similarity threshold relies on the subjective

viewpoints from users and the objective similarity scores

computed by using ORB features. In order to explore the

similarity property of similar and dissimilar image pairs, we

respectively select 5,000-pair similar and dissimilar images

from the Kentucky imageset (described in Section IV-A). In

the imageset, if two images of an image pair belong to the

same group, the image pair is considered as a similar image

pair. Otherwise, it is a dissimilar image pair. We extract the

features of these images and compute their similarity (defined

in Equation 2). The similarity distributions of similar and

dissimilar image pairs are shown in Figure 4.

Figure 4 shows the true positive rates (similar images are

accurately detected) and false positive rates (dissimilar images

are detected to be similar) for similarity detection given a

similarity threshold. For example, the similarity of 95.4%
similar images is larger than 0.01 and the similarity of 26.2%
dissimilar images is larger than 0.01. Thus, if the similarity

threshold is set to 0.01, the true positive rate is 95.4% and

the false positive rate is 26.2%. We can also observe that both

true and false positive rates decrease with the increase of the

threshold. Hence, a reasonable threshold is a tradeoff between

the high true positive and the low false positive rates.

In BEES, the similarity threshold T is not fixed. We

propose the Energy Defined Redundancy (EDR) which uses

the remaining energy (Ebat) to dynamically adjust T to

determine whether an image is redundant. EDR aims to

eliminate the higher-similarity images when the energy is

sufficient, and eliminate more images by reducing T when

the energy is insufficient. Based on the experimental results

shown in Figure 4, we argue that the similarity threshold

should be larger than 0.013, which leads to 90% true positive

rate and 10% false positive rate. In order to ensure the

false positive ratio not larger than 10% [21], [22], EDR

defines the relationship between the threshold T and Ebat as

T = 0.013 + k ∗ Ebat (k = 0.006).

180518021513



EDR is more important when the smartphones are in low

battery status and fail to upload all images. Smartphones only

need to upload the images which have low/no similarity with

the images in the servers using the limited energy, since EDR

reduces T in low battery status.
2) In-batch Redundancy Detection: In a batch of images,

there may exist multiple images similar to each other. The

key problem is how to select the retained unique images in

the uploaded batch. A simple solution is to enumerate all

image subsets, and then sort them based on distance-based

metric and select the top one, which unfortunately results in

high computation and time overheads. In order to address

this problem, we propose a similarity-aware submodular

maximization model (SSMM).

We first formulate the problem and define an image batch

as a weighted graph G = (V,E,w). V is the set of images.

E is the set of edges that connect two images in set V . Each

edge (i, j) ∈ E has a non-negative weight wi,j that is scored

by the similarity between images i and j. Given a batch of

images V = {v1, v2, ..., vn}, we aim to find a subset S ⊆ V ,

which best summarizes the batch and represents the images

using the smallest number. We leverage a scoring function

(F : 2V → R) to quantitatively represent the quality of a

summary. The image subset can be computed:

S∗ ∈ argmaxS⊆V F (S) s.t. |S| ≤ b (1)

Given a constraint |S| ≤ b, Equation 1 can be modeled

as the form of submodular maximization subject to knapsack

constraints which is NP-complete [23]. Moreover, if the

function F is the monotone submodular function, a simple

greedy algorithm can efficiently and near-optimally address

Equation 1 with the worst-case guarantee of F (Ŝ) ≥ (1 −
1/e)F (Sop) ≈ 0.632F (Sop), where Sop is the optimal subset

and Ŝ is the subset obtained by a greedy algorithm [23], [24].

Equation 1 needs a constraint, and otherwise, it is NP-hard.

In the constraint |S| ≤ b, |S| is the number of images in

S and b is the budget. In the existing work [24], [25], the

budget is fixed and assigned by users. For example, a user

wants to select the maximum of 9 images to post on Facebook

from an image collection taken in a holiday, and thus the

budget b is 9. However, the fixed budget is inefficient in our

application situation, since the budget should be the number of

non-redundant images which is different from batch to batch.

Hence, we propose the SSMM to adaptively determine the

budget b based on the similarities among the images in V ,

which aims to achieve that the higher the similarities among

the images in V are, the lower the budget b is. In the weighted

graph G = {V,E,w}, SSMM cuts the edges of which the

weight w is smaller than a threshold Tw. Thus the graph

G is partitioned into multiple subgraphs. There are higher

similarities among the images within the subgraph. SSMM

takes the number of the partitioned subgraphs as the budget

b. Thus the higher the similarities among the images in V
are, the smaller the number of the partitioned subgraphs is,

which results the lower budget. Moreover, the number of the

partitioned subgraphs, i.e., the budget b, not only depends on

the similarities among the images in V but also the threshold

Tw. It is obvious that the larger the threshold Tw is, the

more the partitioned subgraphs is, the larger the budget b is.

We also dynamically adjust the threshold Tw based on Ebat.

Specifically, we design Tw = 0.013 + k ∗ Ebat (k = 0.006)
referring to the parameters in EDR.

In the following, we first present the submodular [17],

and then describe submodular component functions and the

simliarity-aware greedy algorithm used in SSMM.

Definition 1 (Submodular): Given a finite set V , a function

f : 2V → R is submodular if for any set A ⊆ B ⊂ V , and

any element v ∈ V \ B, f satisfies: f(A
⋃{v}) − f(A) ≥

f(B
⋃{v})− f(B).

This means that the benefit of adding v to set A is more

than the benefit of adding v to a larger set B ⊇ A.

Submodular Component Functions. If a series of func-

tions fi(i = 1, 2, ...,m) are submodular, their weighted sum∑m
i=1 λifi is also submodular where λi is non-negative. In

BEES, we design F (S) as the weighted sum of multiple

submodular component functions, i.e., F (S) =
∑m

i=1 λifi(S),
λi ≥ 0. Nevertheless, good image batch summaries can be

characterized by two general properties, i.e, coverage and

diversity [24], [25]. Thus we build the coverage and diversity

component functions.

Coverage Function: A summary with good coverage allows

all distinct contents in the batch to have their corresponding

representatives in the summary. The summary coverage can

be quantified by the sum of the similarity between image i in

V and the most similar image j in S which is formulated into

fcov =
∑

i∈V maxj∈S wi,j .

Diversity Function: A summary with good diversity does

not contain multiple images that are similar to each other.

As mentioned above, we use SSMM to partition the graph G
into b subgraphs: g1, g2, ..., gb. Ii is the set of images in the

subgraph gi. A better summary covers more subgraphs and

contains fewer images in the same subgraph. We define the

diversity function fdiv =
∑b

i=1 N(S, Ii). If S and Ii share no

element, N(S, Ii) = 0. Otherwise, N(S, Ii) = 1.

Similarity-aware Greedy Algorithm. We show how to

determine the submodular function F (S) and the budget b
above. We can generate the unique image subset using the

greedy algorithm as shown in Algorithm 1.

Algorithm 1 The Similarity-aware Greedy Algorithm

Input: Submodular function: F (), The weighted graph G =
{V,E,w}, the remaining energy Ebat.

Output: Sk where k is the number of iterations.
1: Determine the threshold Tw based on Ebat;
2: Partition graph G using Tw;
3: Get the number of partitioned subgraphs b;
4: Choose v1 arbitrarily;
5: S1 ← v1;
6: while |Si| ≤ b do
7: Choose vi ∈ argmaxvi∈V \Si

F (Si

⋃{vi});
8: Si+1 ← Si

⋃{vi};
9: i← i+ 1;

10: end while
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C. Approximate Image Uploading

By carrying out the redundancy detection, redundant images

are eliminated and the unique images need to be uploaded.

Nevertheless, the images taken by smartphones are typically

large-size. The average size of high-quality images taken by

modern smartphones can be more than 2MB [16]. Uploading

the large-size images consumes too much bandwidth and

energy. We argue that the high resolution and quality of

images are not necessary for such disaster environments

due to the constrained energy and real-time transmission

requirements [21]. We hence explore how to compress the

images to reduce their file size before uploading. There are

two kinds of image compression methods, as described in the

following.

Quality Compression. Quality compression uses mathe-

matical operations to convert pixels of an image from the

spatial domain into the frequency domain for reducing the

required storage space of an image, which does not change

the resolution of an image. Our experiments explore the

relationship between the file size and compression proportion

in quality compression. The compression proportion in quality

compression is defined as the ratio of the number of

compressed pixels to the number of initial pixels. There

are many quality image compression standards, such as,

JPEG [26], PNG [27] and WebP [28]. We use JPEG as a

concrete example due to its widespread use. JPEG is a lossy

compression method. We argue that the slight loss in image

quality is acceptable in such disaster environments [21].

Resolution Compression. Resolution compression aims to

directly reduce the resolutions of images to reduce the file size,

e.g., compressing an image with the resolution 1200 ∗ 800
to 600 ∗ 400. We also perform experiments to explore the

relationship between the file size and compression proportion

in resolution compression. The compression proportion in

resolution compression is defined as the ratio of the decrement

in the length or width of the resolution of the compressed

image to those of the original resolution. For example, an

image with the resolution 1000∗500 is compressed to 800∗400,

where the compression proportion is 0.2.

We respectively compress 100, 200, 300 images with dif-

ferent compression proportions using JPEG and resolution

compressions, and then upload them from smartphones to the

servers. Their bandwidth overheads are shown in Figure 5.

We use the SSIM (Structural SIMilarity) index [29],

which is a well-known method for image quality assessment,

to evaluate the influence of different quality compression

proportions on image quality as shown in Figure 5(a). We

observe that quality compression can significantly reduce

bandwidth overheads while also causes the decrease of

image quality. Due to causing the slight loss in image

quality, we suggest to compress the image quality with a

fixed compression proportion, i.e., 0.85. If the compression

proportion is larger than 0.85, the image quality will be

significantly decreased, as shown in Figure 5(a).

As shown in Figure 5(b), resolution compression can also
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(b) Resolution compression

Fig. 5. The influences of quality compression and resolution compression to
bandwidth overheads.

obtain significant bandwidth savings. The reduced resolutions

are unrecoverable. Therefore, it is a tradeoff between the

bandwidth overhead and the image resolution. In order

to obtain a suitable tradeoff, we propose an energy-aware

adaptive uploading (EAU) scheme to adaptively adjust the

resolution compression proportion based on the remaining

energy (Ebat). When the energy is sufficient, BEES aims to

upload higher-resolution images; Otherwise, to save energy,

BEES uploads the lower-resolution images, which also results

in more images to be uploaded regardless of the low resolution.

In the EAU scheme, we describe the relationship between the

resolution compression proportion (Cr) and Ebat as a linear

function. Specifically, to ensure a relatively high resolution

even in the case of low energy, we design the function as

Cr = 0.8 − 0.8 ∗ Ebat. For example, when Ebat is 5%,

Cr is 0.76. For a smartphone with 8 million-pixels camera

taking 2448∗3264px photos, the resolutions of the compressed

photos are still 588∗783px while reducing about 87% file size

compared with Ebat = 100%.

D. Image Features

Both global features and local features of images can be

used to detect similar images. Global features generalize the

entire content of an image with a single feature vector, which

can be computed by color histogram, texture values, shape

parameters of images, etc. Local features are computed at

small patches in the images. Since local features have more

robust and higher accuracy than global features for similarity

detection [4], [16], we focus on the local features in BEES.

There are several common local feature algorithms.

SIFT [30] is a widely used algorithm to find and describe

local features in images. Each feature in SIFT is a 128-

dimension vector. SIFT has high accuracy, but causes

high computation complexity. PCA-SIFT [18] reduces the

dimensions of features from 128 to 36 while increasing

the time of computing features. ORB [19] computes binary

visual descriptors rather than the vector-based descriptors

computed by the above several algorithms. Each ORB feature

is described by 256 binary digits. Existing work [19] shows

that ORB is about two orders faster than SIFT while obtaining

approximate accuracy with SIFT in similarity detection. Thus

ORB has lower computation and time overheads than other

algorithms, which closely matches our cost-efficient design
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goal. Hence, we choose ORB to extract image features in

BEES.

An image Ii can be represented as a set of ORB features

Si. The similarity of two images I1 and I2 can be computed

as the Jaccard similarity of sets S1 and S2:

sim(I1, I2) =
|S1

⋂
S2|

|S1

⋃
S2| (2)

IV. PERFORMANCE EVALUATION

We have implemented the BEES prototype. In this section,

we present the performance evaluation based on the prototype.

A. Experimental Setup

The BEES prototype consists of two parts, i.e., the

client application and cloud server. The client application is

programmed in Java and native C++ (JNI) and linked with

the openCV library [31] for feature extraction. We reduce the

size of the client APP, which is only 593 KB in the latest

version. The size of the APP is smaller than that of an image,

and users can download it with very low bandwidth overhead

in disasters. We install the client APP into the Android-based

smartphones for evaluation. The smartphone is equipped with

Helio X10 8-core CPU at 2.2 GHz, a 32 GB ROM and a 3

GB RAM, in which the battery capacity is 3150 mAh with a

voltage of 3.8 Volts. The server is programmed in C++ and

also uses openCV library to extract image features. The server

is implemented in the Ubuntu 14.04 operating system running

on a 16-core CPU each at 3.40 GHz, with a 32 GB RAM and

a 2 TB hard disk.

Network bandwidth is very limited in capacity in the

disaster environments. Existing schemes [3], [32], [33] limit

their bandwidth to several hundred Kbps to simulate the

low bandwidth. Hence, in our experiments, the smartphones

communicate with the servers via the WiFi network, in which

the transmission bandwidth of each smartphone fluctuates

from 0Kbps to 512Kbps to emulate the low-bandwidth

network.

Three real-world imagesets are used in our experimental

evaluation.

• The Kentucky imageset [20]: The imageset contains

10,200 images in 2,550 groups. In each group, four

images are taken from the same object or scene which

can be considered to be similar to each other. Since the

imageset is widely used for evaluating the precision of

similarity detection [16], [20], we also use it to evaluate

precision in Section IV-B1.

• The disaster imageset: We use the Google and Bing

image search services to collect 1,000 images taken in

Nepal earthquake in 2015 [6]. The imageset is used for

general tests in Sections IV-B3, IV-B4, and IV-B5.

• The Paris imageset [34]: The imageset contains 501,356

geotagged images, which is collected from Flickr and

Panoramio using a geographic bounding box around the

inner city of Paris. The geographical positions of images

in the Paris imageset have a real-world distribution. Due

to the large number of images, the imageset is used for

large-scale tests in Sections IV-B3 and IV-B6.

Note that for the following experiments, to simulate real

conditions, all used images are resized to about 700KB which

reflects the average size of normal-quality images taken by

smartphones [16].

For evaluating the precision of similarity detection, we

compare BEES with the state-of-the-art algorithms for sim-

ilarity detection, i.e., SIFT and PCA-SIFT. For evaluating the

energy overhead, delay and bandwidth overhead, we examine

a baseline scheme, i.e., directly uploading images. We also

compare BEES with the state-of-the-art schemes for image-

based SA in disasters, i.e., SmartEye [5] and MRC [16]. Due

to our lack of the source code of MRC, we implement the

MRC based on the scheme described in its paper [16] for

evaluation.

B. Results and Analysis

1) Precision of Similarity Detection: To evaluate the

effectiveness of similarity detection, we use the measure of

precision (also called positive predictive value), which is the

fraction of retrieved instances that are relevant. In the image

similarity detection, we can define precision as:

precision =
|{similar images}|⋂ |{retrieved images}|

|{retrieved images}| (3)

In the Kentucky imageset, it is easy to determine if a

queried image is similar to existing ones. Thus we evaluate

the precision using the Kentucky imageset that was widely

used for evaluating the precision [16], [20]. We select one

image from each group as the queried image. Without loss

of generality, we respectively execute 500, 1000, and 1500

queries to compute the average precisions. As the baseline

comparison, we also evaluate the precisions of SIFT and PCA-

SIFT. Moreover, due to the energy-aware adaptive bitmap

compression (presented in Section III-A) in BEES, Ebat is

also related with the precision. We also evaluate the precisions

of BEES under the conditions of different Ebat. Precisions of

all schemes are normalized to that of SIFT in Figure 6.

As shown in Figure 6, SIFT obtains the highest precision.

Compared with SIFT, the precision in BEES(100) is higher

than 90.3%, which is close to PCA-SIFT. We observe that

the precision of BEES slightly decreases with the decrease

of Ebat, since BEES improves the energy efficiency with
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Fig. 6. The normalized precision (BEES(X) means the BEES under the
condition of X% Ebat).
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Fig. 7. Energy overhead.
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Fig. 8. Energy-aware adaptation.
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Fig. 9. Battery lifetime.

a slight decrease in precision in the low battery status.

Moreover, BEES(10) obtains over 84.9% precision compared

with SIFT. SIFT and PCA-SIFT obtain a little higher precision

than BEES, which however are not suitable in the disaster

environments to be uploaded and used to detect similarity

due to their huge space overheads as shown in the following

subsection.

2) Space Overhead of Image Features: We respectively

extract SIFT, PCA-SIFT and ORB features of images in

Kentucky and Paris imagesets. For clarity, we also normalize

their space overheads to that of SIFT features as shown in

Table I. SIFT consumes the largest space overhead, which may

be even larger than the space overhead of images themselves.

The space overhead of BEES using ORB is about one order

smaller than that of PCA-SIFT, and about two orders smaller

than that of SIFT. Hence, BEES requires small space and

bandwidth overheads to store and upload image features, thus

meeting the needs of disaster environments.

TABLE I
SPACE OVERHEADS

Imagesets Image size SIFT PCA-SIFT BEES
Kentucky 6.67 GB 3.40 GB 956 MB 155.6 MB

(100%) (25%) (4.46%)
Paris 361.5 GB 424.3 GB 119.3 GB 7.47 GB

(100%) (25%) (1.76%)

3) Energy Overhead: 1) Energy Overhead. We investi-

gate the impact of different schemes on energy overheads.

SmartEye, MRC and BEES consume extra energy to compute

and upload image features for similarity detection while

saving energy by reducing redundant images to be transmitted,

compared with Direct Upload. Thus different redundancy

ratios of uploaded images produce different energy overheads.

Therefore, we capture the energy overheads when the uploaded

images are at different redundancy ratios. The redundancy ratio

is defined as the ratio of the number of redundant images in

the uploaded images to the total number of uploaded images.

We select an image batch with 100 images from the

disaster imageset as the uploaded images and store the images

in the smartphone. We set different cross-batch redundancy

ratios 0%, 25%, 50%, and 75%, by adding and removing the

redundant images (similar to the uploaded images) into the

servers. Note that the redundant images added in the servers

have the high similarity (i.e., more than 0.3 computed by

Equation 2) with the uploaded images, which ensures all

redundant images can be detected by three different schemes

for fair comparisons. Moreover, 10 in-batch similar images

exist in the 100 images and do not have similar images

in the servers, thus clearly showing the benefit of in-batch

redundancy elimination in BEES. We respectively upload the

100 images using the four schemes and capture their energy

overheads.

As shown in Figure 7, the higher the cross-batch redundancy

ratio is, the less energy SmartEye, MRC and BEES consume

due to eliminating redundant images. The energy overhead

of SmartEye is more than that of MRC, since SmartEye

extracts image features using PCA-SIFT that consumes more

energy than MRC to extract ORB features. BEES produces

much lower energy overhead than SmartEye and MRC, since

in-batch redundancy reduction and using approximate image

sharing in BEES decrease the amounts of the uploaded

data, thus obtaining significant energy savings. Compared

with MRC, BEES reduces 67.3%− 70.8% energy overheads.

Compared with Direct Upload, BEES reduces 67.6%−85.3%
energy overheads. Even in the worst case with no cross-batch

redundancy, BEES also obtains 67.6% energy saving while

SmartEye and MRC consume more energy than Direct Upload.

2) Energy Savings from Energy-aware Adaptation.
Energy-aware adaptation aims to save energy and extend the

battery lifetime when smartphones are in the low battery

status. To verify the energy benefits of energy-aware adaptive

schemes in BEES, we examine the energy overheads when s-

martphones contain different amounts of remaining energy. We

use the same 100 image collection (used in Section IV-B3(1))

with 10 in-batch similar images. We set the same cross-batch

redundancy ratio to be 25% for each uploading. When the

remaining energy of the smartphone is 100%, 70%, 40%, and

10%, we respectively upload the 100 images using BEES

and examine their energy overheads of feature extraction,

uploading features and images.

As shown in Figure 8, the total energy overhead, the energy

overheads of feature extraction and image uploading decrease

with the decrease of Ebat, due to energy-aware adaptation.

The energy overhead of uploading features is small, due to

the lightweight ORB features.

3) Battery Lifetime. We investigate the impact of different

schemes on the battery lifetime of smartphones. Moreover, in

order to demonstrate the efficiency of energy-aware adaptive
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schemes in BEES, we also examine the battery lifetime

using BEES-EA. BEES-EA represents BEES without energy-

aware adaptive schemes in which BEES does not adjust its

behaviors based on the remaining energy. For keeping the

same conditions in each scheme, the initial energy of battery is

full. During uploading images in each scheme, all applications

in the smartphone, except BEES App and the system-related

programs, are always closed and the screen is always bright.

We select 150-group images from the Paris imageset, and store

them in the smartphone in advance. Each group contains 40

images. We set the cross-batch redundancy ratio of each group

to about 50% by adjusting the server index. There are almost

no in-batch similar images in each group. We upload one group

every 20 minutes, until the battery is exhausted. We record the

remaining energy of battery every 20 minutes.

As shown in Figure 9, with the increase of the runtime

of the smartphone, the remaining energy linearly/near-linearly

decreases in Direct Upload, SmartEye, MRC, and BEES-

EA. The relationship of the runtime and Ebat in BEES is a

curve instead of a straight line. The slope of the relationship

curve in BEES slowly decreases with the decrease of Ebat,

since energy-aware adaptive schemes in BEES adaptively

adjusts the behaviors based on Ebat to save energy and slow

down the speed of energy consumption. SmartEye, MRC,

BEES-EA, and BEES, respectively extend 18.0%, 25.7%,

93.4%, and 133.1% battery lifetime, compared with Direct

Upload. Compared with MRC, BEES extends 84.3% battery

lifetime. Compared with BEES-EA, BEES extends 19.8%
battery lifetime due to energy-aware adaptive schemes.

4) Bandwidth Overhead: When examining the energy

overheads of the four schemes in Section IV-B3(1), we

record the bandwidth overhead of each scheme. As shown

in Figure 10, the higher the cross-batch redundancy ratio is,

the lower bandwidth overheads SmartEye, MRC, and BEES

consume. MRC consumes a little more bandwidth overhead

than SmartEye due to requiring thumbnail feedback. BEES is

superior to both SmartEye and MRC due to not only further

reducing in-batch redundancy but also leveraging approximate

image sharing, thus reducing much more bandwidth overheads.

Compared with SmartEye, BEES reduces 77.4% − 79.2%
bandwidth overheads.

5) Delay: We compare the delays of different schemes

in this subsection. We use the same image collection with

100 images used in Section IV-B3(1). There are 10 in-batch
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Fig. 10. Network bandwidth overhead.
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Fig. 11. The average delay of uploading an image.

similar images in the 100 images. We set the same cross-

batch redundancy ratio (50%) for each scheme. The network

bitrate, under which the smartphone communicates with the

servers, affects the uploading delay. Thus we also capture

the delay under different network bitrates with the medians

128Kbps and 512Kbps, besides 256Kbps. The delay consists

of the time of extracting image features, uploading features

and images, without the querying time of the servers, since

we focus on the resource-constrained smartphones and the

network instead of the cloud servers with sufficient resources

in disaster environments.

As shown in Figure 11, we observe that Direct Upload

produces the highest delay, and SmartEye, MRC, and BEES

reduce the delay in different degrees via reducing redundancy.

The average delay of SmartEye is more than that of MRC,

since SmartEye extracts image features using PCA-SIFT

which consumes more time than MRC using ORB. BEES

reduces the image uploading time by further reducing in-batch

redundant images and reduces the feature extraction time by

using energy-aware feature extraction, and also obtains much

more time saving by using energy-aware image compression

before uploading images, thus being superior to SmartEye and

MRC. As shown in Figure 11, BEES reduces 83.3%− 88.0%
average delay compared with Direct Upload, and reduces

70.4%−77.8% average delay compared with MRC. In general,

the extremely low delay of BEES meets the needs of disaster

environments in terms of real-time transmission.

6) Coverage: When a disaster occurs, the images uploaded

by smartphones are used for SA. However, the energy of

smartphone battery is limited. It is important for the energy-

constrained smartphones to use the limited energy to collect

more information. We use the region area of the situation

awareness (i.e., the coverage of uploaded images) to quantify

the amount of information obtained by the uploaded images,

and evaluate the coverage of BEES.

We use the Paris imageset to evaluate the coverage, since

each image in the imageset is geotagged to facilitate its

mapping in the real map. Since the complete set of the Paris

imageset is too large, we select a subset as the test imageset

covering the area from 2.31 to 2.34 degrees east longitude

and from 48.855 to 48.872 degrees north latitude. The test

imageset consists of 165,539 images which have 58,818

unique locations (i.e. longitudes and latitudes) in the map.

The densest location has 5,399 images. The real distribution is
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(a) The test imageset (b) Direct Upload (c) BEES

Fig. 12. Coverage. (The x axis is east longitude and the y axis is northern latitude. The values beside the color table are the index of 2. For instance, the
locations colored by the color corresponding to 6 have 26(64) images.)

shown in Figure 12(a). We equally divide the 165,539 images

into 25 groups and respectively store them in 25 smartphones.

The initial energy of all 25 smartphone batteries is full. 40

images are considered as a group in the smartphones. The

25 smartphones respectively upload an image group every

20 minutes. The servers add the features of the uploaded

images into the index for redundancy detection once receiving

the images from BEES clients. After the batteries of all the

smartphones are exhausted, we map all the images that the

servers receive in the map based on their geotags.
Using Direct Upload, the smartphones upload 49,437

images in total. The uploaded images have 23,399 unique

locations in the map. Figure 12(b) shows the coverage of the

images uploaded using Direct Upload in the map. In BEES,

the smartphones upload 58,750 images which have 46,122

unique locations in the map. Figure 12(c) shows the coverage

of the images uploaded using BEES in the map. BEES uploads

18.8% more images while has 97.1% larger coverage (i.e., the

number of unique locations covered) than Direct Upload, since

BEES reduces the redundant images and uses submodular

maximum model to efficiently summarize the uploaded image

batch.

V. RELATED WORK

Data Deduplication in Networks. Deduplication [35], [36]

detects and eliminates exact-matching redundancy to save

bandwidth and storage space. Unfortunately, deduplication is

inefficient to detect similar images, since deduplication detects

redundancy in the byte level while images are similar in the

content level. A small difference in the content may cause

significantly different byte-level encoding [4]. BEES shares

the similar design goals but at the content level and focuses

on identifying redundant images.
Content-based Redundancy Elimination in Disaster

Environments. Several schemes have been proposed to

eliminate the image redundancy in disaster environments,

which can be divided into two categories.
One focuses on eliminating redundant images in delay

tolerant networks (DTNs). PhotoNet [3] presents a content-

based redundancy elimination routing scheme that uses image

metadata, i.e., geotags and color histograms of images, to

approximately evaluate and eliminate similar images in DTNs.

Wu et al. [15] propose a resource-aware framework using

image metadata to eliminate redundant images in the DTNs.

CARE [4] uses image features to perform more accurate

similarity detection than PhotoNet in DTNs.

The other aims to eliminate redundant images in the source

(i.e., smartphones) by uploading image features, which avoids

redundant images passing into the bandwidth-constrained

networks. SmartEye [5] proposes in-network deduplication

based on software defined network (SDN) to eliminate

redundant images in the source. MRC [16] proposes a

framework combining global image features and local image

features to detect and eliminate redundant images in the

source. Both SmartEye and MRC detect similar images

by querying the server index that can only eliminate the

cross-batch redundancy. Besides eliminating the cross-batch

redundancy, BEES builds the submodular maximum model to

eliminate the in-batch redundant images. More importantly,

unlike all existing work, BEES is a complete system which

proposes the approximate image sharing and energy-aware

adaptation to obtain higher bandwidth and energy efficiency.

VI. CONCLUSION

In this paper, we propose a bandwidth- and energy- efficient

image sharing system, called BEES, for real-time SA in

disasters. BEES reduces not only the cross-batch redundant

images but also in-batch redundant images in the source, and

further leverages approximate image sharing to trade the the

quality of computation results in content-based redundancy

elimination for higher bandwidth and energy efficiency.

Moreover, the energy-aware adaptive schemes are introduced

in BEES to offer an objective and quantitative tradeoff between

computation quality and efficiency based on the remaining

energy. Extensive experimental results demonstrate that BEES

reduces more than 67.3% energy overhead, 77.4% bandwidth

overhead, 70.4% average image uploading delay, and extends

84.3% battery lifetime, compared with the state-of-the-art

work.
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