
Write Deduplication and
Hash Mode Encryption
for Secure Nonvolatile
Main Memory

Pengfei Zuo
Huazhong University of Science and Technology

Yu Hua
Huazhong University of Science and Technology

Ming Zhao
Arizona State University

Wen Zhou
Huazhong University of Science and Technology

Yuncheng Guo
Huazhong University of Science and Technology

Abstract—For nonvolatile main memory (NVMM), both security and endurance are

important. However, the diffusion property of memory encryption renders existing

bit-level write reduction techniques ineffective. This paper proposes DeWrite, a line-level

write reduction technique to enhance the endurance and performance of secure NVMM.

Moreover, DeWrite leverages a new encryption technique, i.e., hash mode encryption,

and exploits opportunistic parallelism between encryption and deduplication operations

to efficiently synergize deduplication and encryption for space and time savings.

& NONVOLATILE MEMORY (NVM) technologies

are considered as promising candidates of the

next-generationmainmemory.8 NVMhas high scal-

ability and low energy consumption but suffers

from the problems of low endurance and security.

First, NVM is vulnerable to physical access

based attacks, including stolen DIMM and bus

snooping attacks,3–6 due to still retaining data

after systems are powered down. For example,

an attacker stealing the NVM DIMM or acting as a

machine repairman can directly stream out all

the data from the DIMM. Hence, memory encryp-

tion becomes important to ensure the data secu-

rity in NVM. Second, NVMs typically have limited

write endurance, e.g., 107–108 writes for PCM.

Writes on NVM also cause higher latency

(i.e., 3–8�) and energy overhead than reads.

The bit-level write reduction techniques, such as

data comparison write (DCW)1 and flip-n-write

Digital Object Identifier 10.1109/MM.2018.2886176

Date of publication 11 December 2018; date of current

version 21 February 2019.

Emerging Memory Technologies

44
0272-1732 � 2018 IEEE IEEE MicroPublished by the IEEE Computer Society

(FNW),2 are able to significantly reduce the num-

ber of bits written to NVM, based on the observa-

tion that only a small number of bits are modified

for a write.

However, memory encryption renders exist-

ing bit-level write reduction techniques ineffec-

tive for encrypted nonvolatile main memory

(NVMM), due to the diffusion property of encr-

pytion.3 Because of this property, the change of

a single bit in the plaintext leads to the change

of about half of the bits in the ciphertext. Hence,

existing techniques such as DCW1 and FNW2

cannot achieve significant data reduction for

encrypted NVMM.

We observe that abundant data duplication

at the line level exist that can be exploited to

reduce the number of writes to encrypted

NVMM. These observations motivate us to pro-

pose DeWrite,7 a novel solution for enhancing

both the lifetime and performance of encrypted

NVMM with new write deduplication and encryp-

tion techniques and their opportunistic parallel-

ism. Specifically, DeWrite makes the following

contributions.

� Write deduplication. To reduce the number of

NVM writes, DeWrite introduces write dedu-

plication, which eliminates a duplicate write

at the cost of a read latency, improving the

system performance due to the intrinsic

read/write asymmetry of NVM.

� Hash mode encryption (HME). To reduce the

metadata overhead, DeWrite leverages a

space-efficient encryption model, i.e., HME,

by replacing the per-line counters used in

the counter mode encryption with per-line

hashes and reusing the same hash store

employed by deduplication.

� Prediction-based parallelism. To achieve

good performance in deduplication and

NVM encryption, DeWrite opportunistically

performs these two operations in parallel

based on a simple yet effective duplication

prediction scheme.

WRITE DEDUPLICATION
To explore how many cache lines written to

main memory are duplicate, we have examined

20 applications from SPEC CPU2006 and PARSEC

2.1 benchmark suites. We observe that the

percentage of duplicate lines vary from 18.6% to

98.4% across the 20 applications.7 Eliminating

these duplicate lines via line-level deduplication

would result in much high write reductions.

Hence, in DeWrite, we study the use of dedupli-

cation for enhancing the endurance and perfor-

mance of secure NVMM.

To perform inline deduplication, DeWrite lev-

erages the asymmetric property of NVMs, in

which the write latency is much higher than

read latency (i.e., 3–8 times). To detect duplicate

cache lines, DeWrite computes a light-weight

hash to summarize the contents of cache lines,

rather than the cryptographic hash with high

computation latency. If the hash of the cache

line matches that of an existing line in NVMM,

DeWrite reads the line and compares the corre-

sponding data byte by byte. Thus, DeWrite elimi-

nates a duplicate write at the cost of a read.

We compare the latency of duplication detec-

tionbetween traditional deduplication andDeWrite

in Table 1. Traditional deduplication includes exist-

ing main memory deduplication and external stor-

age deduplication, which use a cryptographic hash

function (e.g., SHA-1 and MD5) to compute the

fingerprints of data and assume no hash collisions.

Thus, the data are considered to be duplicate

if their fingerprints are identical. The detection

latency using the cryptographic hash function,

regardless of the duplication of the cache line, is

more than 312 ns þ tQ, where tQ denotes the

latency of querying the fingerprint store, as shown

in Table 1(a). The duplication detection latency is

even higher than the NVM write latency (300 ns).

Table 1. Traditional deduplication versus DeWrite.

(a) The comparisons of hash computation latency

and sizes.

Hash Functions SHA-1 MD5 CRC-32

Latency
321

ns

312

ns
15 ns

Size
160

bits

128

bits
32 bits

(b) The comparisons of duplication detection latency.

Methods
Traditional

Deduplication DeWrite

A duplicate line � 312 ns þ tQ 91 ns þ t0Q

A nonduplicate line � 312 ns þ tQ 15 ns þ t0Q

January/February 2019 45

Hence, traditional deduplication is not cost effec-

tive to eliminate cache-line-level duplication.

Instead, DeWrite uses the light-weight hash,

i.e., CRC-32, where hash collisions are practically

unavoidable. Thus, if the hash of the cache line

matches that of an existing line in NVMM, DeWrite

reads the line and compares the corresponding

data. Only when the data are identical, the cache

line is considered to be duplicate. The latency of

computing a CRC-32 hash is 15 ns and the latency

of reading a line is 75 ns.3,4 The comparison of two

lines can be implemented in hardware logic with

low latency,1 i.e., 1 cycle. Hence, if a cache line is

duplicate, the latency to detect the duplic-

ate cache line in DeWrite is about 91 ð¼ 15þ
75þ 1Þ ns þ t0Q, where t0Q denotes the latency of

querying the hash store. If a cache line is nondupli-

cate, its hash value will not be found in the hash

store and the read can be saved. Thus, the latency

to determine a nonduplicate cache line is

15ns þ t0Q. Moreover, when a cache is employed

to accelerate accesses to the hash store, the cache

can store more CRC-32 hashes than SHA-1/MD5

hashes, because the former is much smaller.

Hence, given the same size of cache, using CRC-32

hashes leads to a higher cache hit rate and corre-

spondingly a lower access latency, i.e., t0Q < tQ. In

summary, DeWrite significantly reduces the dupli-

cation detection latency by leveraging the read/

write asymmetric property of NVM and light-

weight hashing.

The hardware architecture of DeWrite for sup-

porting cache-line-level deduplication in the

secure NVMM is shown in Figure 1. In order to

reduce the metadata accesses to NVMM, existing

works3–5 on counter mode encryption extend the

memory controller to include a write-back meta-

data cache used for buffering the counters. DeW-

rite uses this metadata cache to buffer the

deduplication-related metadata. A memory region

in the encrypted NVMM is used to store the coun-

ters. We use this region to store the metadata of

deduplication. Hence, compared with existing

works,3–5 the only one new component in DeWrite

is the deduplication logic that is used to deter-

mine whether a cache line is duplicate. The data

are encrypted using HME. To avoid storing the

hashes of the metadata, the metadata are

encrypted using the direct encryption scheme,

i.e., directly encrypting the metadata using AES

with a global key. In this case, the latency of load-

ing the metadata into the metadata cache

increases since the decryption cannot be exe-

cuted with memory access in parallel. However, it

does not significantly affect the performance

since the miss ratio in the metadata cache is very

low. We consider the 256 B of deduplication gran-

ularity to reduce the metadata overheads. Thus,

the sizes of a memory line in the NVMM and a

cache line in the last level cache are 256 B. This

cache line size has been widely used in the exist-

ing work on NVMM.9 Moreover, the commercial

processors, e.g., IBM z systems processors,10 also

use the 256-B cache line size for all CPU caches.

To support in-line deduplication, DeWrite uses

four data structures7 for duplication detection and

data management, including an address mapping

table, a hash table, an inverted hash table, and a

free space management table. These data struc-

tures are stored in the encrypted NVMM and the

hot entries are maintained in the metadata cache.

Themetadata storage includes four tables, i.e.,

the address mapping table, the inverted hash

table, the hash table, and the free-space manage-

ment table. In the inverted hash and address map-

ping tables, the storage overhead is 4 B þ 1 bit/

line, due to the 4-B real address/hash and 1 bit flag

in each entry. The 4-B real address can address up

to 1 TB of NVMM with 256-B line size, which is

Figure 1. Hardware architecture of DeWrite. (We

use the counter storage and counter cache in

existing secure NVMMs as the metadata storage and

metadata cache, respectively. The deduplication

logic is the new component.)

Emerging Memory Technologies

46 IEEE MicroPublished by the IEEE Computer Society

sufficiently large for the 16-GB NVMM in our

configurations. In the hash table, each entry is 9B

and the number of entries is related to

the deduplication ratio. Since the deduplication

ratios range from 18.6% to 98.4% across the

20 applications,7 the storage overhead in the

hash table is less than 9�(1%–18.6%) < 8 B/line.

The storage overhead of FSM table is 1 bit/line.

Hence, the total storage overhead of metadata

is (4 B þ 4 B þ 8 B þ 3 bit)/256 B � 6.25% of

the NVM capacity.

HASH MODE ENCRYPTION

Space-Efficient Encryption Scheme

In general, there are two CPU-side memory

encryption models, including direct encryption

and counter mode encryption, to encrypt the data

in the memory. In direct encryption, each cache

line is encrypted by employing a block cipher algo-

rithm, e.g., AES, when written back to the memory

from the last level cache, and decrypted after

being read from the memory. However, direct

encryption incurs high decryption latency in the

critical path of memory reads, thus significantly

impacting the system performance. In comparison,

in counter mode encryption, data decryption can

be executed in parallel with memory read, thus

reducing the decryption latency. Counter mode

encryption generates a one-time pad (OTP) using

a counter and encrypts/decrypts data by XORing

the plaintext/ciphertext with the OTP. However,

counter mode

encryption3,4 has to

use the per-line

counters to gener-

ate the OTPs, incur-

ring high metadata

overhead. The per-

line counter is 28

bits for each line.3

To reduce the space overhead of metadata, we

propose a HME by replacing the counters in the

counter mode encryption with the hash values of

cache lines. HME is inspired by the convergent

encryption,11 a traditional encrypted deduplica-

tion method. Convergent encryption uses the

hash of the data as the key to encrypt the data in

order to allow deduplication to be performed on

encrypted data, while ensuring the data security.

Different from convergent encryption, HME uses a

secret key, the line address and the per-line hash

to generate the OTP. By reusing the hash store

(storing the mappings of physical addresses to

hash values) for deduplication, HME does not

need extra space to store the counters, and

avoids the problem of counter overflow in existing

counter mode encryption. Specifically, in counter

mode encryption, when a counter of a memory

line overflows, the entire memory needs to be re-

encrypted using a new global key. The re-encryp-

tion of entire memory significantly degrades the

system performance. In comparison, HME does

not need to re-encrypt the entire memory.

Security Analysis

To analyze the security of HME, we need to

consider two cases: 1) whether the data in differ-

ent addresses are encrypted by different OTPs;

and 2) whether the data rewritten in the same

address are re-encrypted by different OTPs.

For the first case, due to using the line

addresses to generate OTPs, the HME always

encrypts the data in different addresses by

different OTPs. For the second case, we first

discuss the case of the different data rewritten in

the same address, in which the hash value of

data changes with the modified data in the same

address. Hence, HME generates different OTPs

for the different data rewritten in the same

address. Nevertheless, for the case of the same

data rewritten in the same address, HME will

use the same OTP to encrypt the same data value

since the same data have the same hashes, like

the convergent encryption. Hence, HME achieves

the same security level as convergent encryption.

Metadata Overhead Comparison

As presented in the previous section, DeWrite

has the 6.25% metadata storage overhead. Due to

employing the HME, DeWrite achieves lower meta-

data overhead than the related work DEUCE.3

DEUCE has two kinds of metadata. First, DEUCE

needs a 1-bit flag per word in each line to indicate

whether the word is modified. Each word is 16 bits

in DEUCE and hence the storage overhead of the

flags is 1 bit/16 bits ¼ 6.25%. Second, DEUCE uses

the counter mode encryption in which the storage

overhead of the per-line counter is 28 bits/line.

DeWrite only has the 6.25% metadata storage

To reduce the space

overhead of metadata,

we propose a HME by

replacing the counters

in the counter mode

encryption with the hash

values of cache lines.

January/February 2019 47

overhead from deduplication without metadata

storage overhead from memory encryption since

the HME reuses the metadata from deduplication,

to save themetadata space.

PREDICTION-BASED PARALLELISM
In the traditional secure NVMM solutions,3–5

the cache lines are first encrypted and then written

to NVMM. DeWrite leverages deduplication to

reduce the number of writes to the secure NVMM

by eliminating the writes of duplicate cache lines.

The direct way to perform deduplication on the

encrypted NVMM is shown in Figure 2(a). For a

cache line to be written to the NVMM, DeWrite first

detects duplication. If the duplication exists in the

NVMM, it cancels the write of the cache line and

stores the address mapping relationship between

the eliminated cache line and its duplicate in the

NVMM into an address mapping table. Otherwise,

the cache line is encrypted and written to the

NVMM. The former reduces the write latency by

canceling the write. The latter, however, increases

write latency since the duplication detection and

data encryption are executed serially in the critical

path of the memory write. Thus, the direct way is

inefficient for applications where most lines are

nonduplicate, such as bzip2 and vips.

To avoid the serialization of detecting duplica-

tion and encrypting data, we consider a parallel

way to perform deduplication on encrypted

NVMM. As shown in Figure 2(b), for a cache line to

be written to the NVMM, cache line encryption

and duplication detection are carried out in paral-

lel. If no duplicates exist in the NVMM, the

encrypted cache line is directly written to the

NVMM. Otherwise, the encrypted cache line is dis-

carded. However, for applications where most

cache lines are duplicate,

such as cactusADM and

lbm, the parallel way

becomes inefficient since

the encryption is unneces-

sary and causes extra com-

putation (and energy

consumption) overhead

from the AES circuit.

In summary, the direct

way is efficient for the

duplicate cache lines but

inefficient for the nondu-

plicate cache lines. The parallel way has the

opposite effects. Intuitively, the best solution is

to use the direct way for duplicate cache lines

and the parallel way for nonduplicate cache

lines, respectively.

In order to identify whether a cache line is

duplicate beforehand, we propose a simple yet

effective prediction scheme by exploiting the

duplication states of the most recent mem-

ory writes recorded by using a history window.

Specifically, DeWrite maintains a history window

for the whole main memory. The history window

records the duplication states of the most recent

cache lines written into main memory. If the most

recent memory writes are mostly duplicate (or

nonduplicate), the nextmemorywrite is predicted

to be duplicate (or nonduplicate). The rationale

comes from our observation that the duplication

states of cache lines written tomainmemory have

temporal locality, i.e., duplicate (or nonduplicate)

memory writes are usually consecutive. Based on

our evaluation, the duplication states of average

92% memory writes are the same as those of their

previous ones. This observation can be inter-

preted as if a cache line written tomainmemory is

duplicate (or nonduplicate), its next cache line

written to main memory is also duplicate (or non-

duplicate) with 92% probability. The history win-

dow records the duplication state of only the

previous one memory write, achieving about 92%

prediction accuracy. In order to improve predic-

tion accuracy, we record the duplication states of

the three most recent memory writes in the his-

torywindow.

In summary, DeWrite maintains a history

window for the whole main memory to predict

whether a cache line to be written into NVMM

Figure 2. Integrating deduplication and encryption. (a) The direct way. (b) The parallel way.

Emerging Memory Technologies

48 IEEE MicroPublished by the IEEE Computer Society

is duplicate. If a cache line

is predicted to be nondupli-

cate, DeWrite encrypts data

in parallel with duplication

detection to reduce write

latency.Otherwise, DeWrite

detects duplication without

encrypting data to reduce

computation overhead

(and energy consumption)

from encryption.

EVALUATION

Endurance

One of the main objec-

tives of DeWrite is to reduce

the number of writes to

NVMM and enhance its

endurance by identifying

and eliminating the writes

of duplicate cache lines. As

shown in Figure 3(a), we

observe that DeWrite

reduces on average 54% of

whole-line memory writes

across all applications.

For some applications that

contain a large number of

duplicate writes, e.g, cactu-

sADM, libquantum, lbm,

and blackscholes, DeWrite even reduces more

than 80% of whole-line memory writes. Neverthe-

less, the memory writes reduced by DeWrite

(on average 54%) is less than the total number of

duplicate lines existing in these applications (on

average 58%), as shown in Figure 3(a). About 4%

of write reduction is missed due to two reasons.

First, due to the limited range of the hash table

references, DeWrite fails to detect a small num-

ber of duplicate lines, i.e., on average 1.5%.

Moreover, the dirty data evicted from the meta-

data cache incur on average 2.6% extra writes.

The amount of metadata writes to the NVMM is

small due to the high hit rate (over 98%) achieved

by themetadata cache.

Performance

DeWrite reduces the write latency from two

aspects. First, DeWrite removes the write latency

of duplicate writes. Second, DeWrite eliminates

duplicate writes, which also reduces the write

latency of other nonduplicate writes to the same

bank via decreasing their wait time. Moreover,

DeWrite reduces the wait time of read requests

to improve read performance by eliminating

duplicate write requests. But to handle a single

read request, DeWrite needs to first query the

address mapping table and then read the actual

data, which slightly increases the read latency.

Nevertheless, the increased latency of accessing

the address mapping table is negligible, com-

pared with the reduced read latency from

eliminating duplicate writes.

Due to the elimination of duplicate writes,

the write and read latencies are reduced, which

improves the overall performance of the system,

i.e., instructions per cycle (IPC). Figure 3(b)

shows the relative IPC of DeWrite normalized to

the traditional secure NVM system. We observe

Figure 3. Experimental results on (a) savings on writes to NVMM and (b) the relative IPC

compared with the traditional secure NVMM.

January/February 2019 49

that DeWrite achieves on average 82% IPC

improvement across all applications.

RELATED WORK
As both write endurance and security are

important problems for NVMM, many schemes

have been proposed to reduce writes in the

encrypted NVMM. i-NVMM12 proposed that the

hot data are kept in the unencrypted form in the

memory for improving the system performance

and encrypted only when the system is powered

down. However, i-NVMM fails to protect the

memory against the bus snooping attack, since

hot data are unencrypted through the bus.

Unlike i-NVMM, DeWrite encrypts both hot and

cold data written to NVMM and defends against

both the stolen DIMM and bus snooping attacks.

DEUCE3 reduces the bits written to secure

NVMM by only re-encrypting modified words

(i.e., 2 B) in a cache line and keeping unmodified

words in the last encrypted state. Based on

DEUCE, SECRET5 focuses on MLC NVMs and fur-

ther reduces the re-encryption of full-zero words

in a cache line. DeWrite is a line-level write

reduction scheme, which is orthogonal to the

subline-level (word-level) ones, such as DEUCE

and SECRET. Based on these subline-level write

reduction techniques, DeWrite can further

reduce over half of bit flips. Awad et al.4 pro-

posed Silent Shredder, which eliminates the

writes of full-zero cache lines from data shred-

ding. Unlike Silent Shredder, DeWrite eliminates

all duplicate lines besides full-zero lines.

CONCLUSION
In this paper, we present a line-level write

reduction scheme, called DeWrite, to enhance the

lifetime and performance of secure NVMM, along

with a new encryption scheme, i.e., HME. DeWrite

addresses the challenges of performing in-line

deduplication on secure NVMM and integrating

deduplication and NVMencryption to deliver high

performance. Our experimental results demon-

strate that DeWrite eliminates 54% of writes to

secure NVMM, and speeds up memory writes and

reads by 4.2 times and 3.1 times on average.

ACKNOWLEDGMENT
This work was supported by the National

Natural Science Foundation of China under Grant

61772212.

& REFERENCES

1. P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable

and energy efficient main memory using phase

change memory technology,” in Proc. Annu. Int. Symp.

Comput. Archit., 2009, pp. 14–23.

2. S. Cho and H. Lee, “Flip-N-Write: A simple

deterministic technique to improve PRAM write

performance, energy and endurance,” in Proc. Annu.

IEEE/ACM Int. Symp. Microarchit., 2009, pp. 347–357.

3. V. Young, P. J. Nair, and M. K. Qureshi, “DEUCE:

Write-efficient encryption for non-volatile memories,”

in Proc. 20th Int. Conf. Archit. Support Program. Lang.

Oper. Syst., 2015, pp. 33–44.

4. A. Awad, P. Manadhata, S. Haber, Y. Solihin, and

W. Horne, “Silent Shredder: Zero-cost shredding for

secure non-volatile main memory controllers,” in Proc.

21st Int. Conf. Archit. Support Program. Lang. Oper.

Syst., 2016, pp. 263–276.

5. S. Swami, J. Rakshit, and K. Mohanram, “SECRET:

Smartly encrypted energy efficient non-volatile

memories,” in Proc. 53rd Annu. Design Automat.

Conf., 2016, pp. 1–6.

6. P. Zuo and Y. Hua, “SecPM: A secure and persistent

memory system for non-volatile memory,” in Proc. 10th

USENIX Workshop Hot Topics Storage File Syst.,

2018, pp. 1–7.

7. P. Zuo, Y. Hua, M. Zhao, W. Zhou, and Y. Guo,

“Improving the performance and endurance of

encrypted non-volatile main memory through

deduplicating writes,” in Proc. 51st Annu. IEEE/ACM

Int. Symp. Microarchit., 2018, pp. 442–454.

8. X. Hu, M. Ogleari, J. Zhao, S. Li, A. Basak, and Y. Xie,

“Persistence parallelism optimization: A holistic

approach from memory bus to RDMA network,” in

Proc. 51st Annu. IEEE/ACM Int. Symp. Microarchit.,

2018, pp. 494–506.

9. M. K. Qureshi, V. Srinivasan, and J. A. Rivers,

“Scalable high performance main memory system

using phase-change memory technology,” in Proc.

Annu. Int. Symp. Comput. Archit., 2009, pp. 494–506.

10. “IBM z systems microprocessor optimization primer,”

2018. Available at: https://ibm.co/1qeGrpc

11. J. R. Douceur, A. Adya, W. J. Bolosky, P. Simon, and

M. Theimer, “Reclaiming space from duplicate files in

a serverless distributed file system,” in Proc. 22nd Int.

Conf. Distrib. Comput. Syst., 2002, pp. 617–624.

12. S. Chhabra and Y. Solihin, “i-NVMM: A secure

non-volatile main memory system with incremental

encryption,” in Proc. Annu. Int. Symp. Comput. Archit.,

2011, pp. 177–188.

Emerging Memory Technologies

50 IEEE MicroPublished by the IEEE Computer Society

https://ibm.co/1qeGrpc

Pengfei Zuo is currently working toward the Ph.D.

degree at Huazhong University of Science and

Technology, Wuhan, China. His research interests

include nonvolatile memory architecture and sys-

tem, data deduplication system, key-value store,

and storage security. Contact him at pfzuo@hust.

edu.cn.

Yu Hua is a Professor with Huazhong University

of Science and Technology, Wuhan, China. His

research interests include cloud storage systems,

nonvolatile memory, big data analytics, artificial

intelligence hardware, and software infrastructure.

Contact him at csyhua@hust.edu.cn.

Ming Zhao is an Associate Professor with Arizona

State University, Tempe, AZ, USA. His research

interests include cloud, big-data, and high-

performance computing systems as well as operating

systems and storage systems. Contact him at

mingzhao@asu.edu.

Wen Zhou is currently with Huazhong University

of Science and Technology, Wuhan, China. His

research interests include nonvolatile memory and

storage security. He received the Ph.D. degree from

Huazhong University of Science and Technology.

Contact him at zhouwen@hust.edu.cn.

Yuncheng Guo is currently with Huazhong Uni-

versity of Science and Technology, Wuhan, China.

His research interests include nonvolatile memory

and data compression. He received the Master’s

degree from Huazhong University of Science and

Technology. Contact him at ycguo@hust.edu.cn.

January/February 2019 51

mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

