
An Efficient Parallel Scheduling Scheme on Multi-partition
PCM Architecture

Wen Zhou, Dan Feng, Yu Hua, Jingning Liu
∗

, Fangting Huang, Yu Chen
Wuhan National Lab for Optoelectronics, School of Computer Science

Huazhong University of Science and Technology
Wuhan 430074, China

{zhouwen, dfeng, csyhua, jnliu, huangfangting, chenyu0713}@hust.edu.cn

ABSTRACT
Phase Change Memory (PCM) is an emerging non-volatile
memory with the salient features of large-scale, high-speed,
low-power and radiation resistance. It hence becomes an ideal
candidate for the next-generation storage media of main memory.
However, PCM suffers from inefficient I/O performance due to
long write latency. Recent studies propose a multi-partition (or
multi-subarray) architecture within each bank to enhance internal
parallelism. However, conventional scheduling schemes fail to
exploit the advantage of multiple partitions and incur inefficient
bank utilization. In this paper, we propose a Write Priority overlap
Read (WPoR) scheduling scheme which preferentially serves for a
write request in one partition and allows other partitions to
perform as many read requests as possible within this partition’s
program duration. Experimental results demonstrate that WPoR
reduces the write latency by 24.7% (on average) compared with
state-of-the-art scheduling algorithms. Meanwhile, the IPC
indicator of WPoR scheduling increases respectively 6%, 7% and
26% (on average) compared with Read Priority, Write Pausing and
Write Cancellation schemes.

CCS Concepts
•Information systems → Phase change memory; •Hardware →
Memory and dense storage;

Keywords
PCM; multiple partitions; parallel scheduling

1. INTRODUCTION
Currently, applications have higher requirements on the

processor and memory system. Over the past decades, the rapid
development of multi-core technology has improved the
parallelism and the performance of the processors, which allows
many threads or applications to run simultaneously [19]. However,
traditional memory systems fail to meet the needs of fast I/O

∗Jingning Liu is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISLPED ’16, August 08-10, 2016, San Francisco Airport, CA, USA
c⃝ 2016 ACM. ISBN 978-1-4503-4185-1/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2934583.2934610

operations and large capacity. The performance gap between
computation (e.g., the multi-core processors) and storage (e.g.,
DRAM) causes the performance degradation in the entire system.
The advent of 20-nanometer semiconductor technology has been
challenged by power and scalability of the refresh operation in
Dynamic Random Access Memory (DRAM) medium. For
example, Lefurgy [9] pointed out 40% of the energy consumption
by the main memory in the IBM eServer servers. Non-volatile
memory technology can replace DRAM and build a large-capacity
and energy-efficient storage system, such as Phase Change
Memory (PCM), Magnetic Random Access Memory (MRAM)
and Resistive Random Access Memory (ReRAM). Among them,
PCM is the most promising candidate for building main-memory
systems [8, 15, 20].

Compared with DRAM technology, PCM shows asymmetrical
read/write latency. The latency of write operation is 4 ∼ 8 times
longer than that of read operation, which incurs severe bank
conflicts. The long write latency is more likely to block incoming
memory accesses to the same bank. Bank conflicts, coupled with
the write latency, significantly reduces memory bandwidth
utilization and can cause cores to stall, leading to lower system
performance [7]. In order to address this problem, recent studies
[18] propose an accurate-and-tight power management technique
for the PCM system, which exploits current difference between
writing bit 0 and bit 1 so as to leverage the surplus unused power
budget to serve more requests within a bank. This technique has
been applied into the practical PCM chips [2, 12], which develop a
multi-partition architecture within each bank. The new chips show
the advanced feature that a read operation is possible to be served
in one partition while write in another partition. Thus, it provides
a new way to enhance system performance by exploring
partition-level parallelism. Compared with banks that are the
smallest independent structure, the parallelism among partitions
has more restrictions. For example, two or more write operations
are not allowed to be simultaneously performed in different
partitions within a bank for limited power constraint. Therefore
the partition-level parallelism is weaker than the bank-level one.

Although the new architecture provides advanced features,
existing scheduling schemes show inefficiency on multi-partition
architecture. For example, the First Come First Serve (FCFS)
scheduling serves for requests according to their arrival orders,
while the Read Priority scheme preferentially serves for read
requests. Hence, the array program durations (i.e., the internal
execution phase of the write requests) are not fully utilized. Based
on the above observation, we propose an efficient scheduling
scheme, called WPoR. By changing the serving order of
read/write requests, WPoR allows more read requests to be served
within the program duration of the write requests. Finally, WPoR



scheduling reduces the whole runtime and saves energy
consumption simultaneously.

In this paper, the main contributions can be summarized as
follows.

First, we introduce a novel multi-partition PCM model to
address the poor I/O performance problem existing in traditional
PCM architectures. After that, we explore and exploit the feasible
parallelism within PCM banks to improve PCM performance.

Second, to improve PCM bank utilization, we propose WPoR
scheduling scheme which exploits the restricted parallelism among
the partitions, overlapping the program duration of write request
to serve for read requests that have different partition addresses.
In addition, we propose the effective address mapping scheme to
enhance partition-level parallelism under various applications.

Finally, simulation experiments are conducted on Gem5
simulator [1], and we evaluate WPoR and other scheduling
schemes by the indicators in terms of the average read/write
latency, throughput and IPC. Experimental results show that
WPoR performs better than existing schemes in terms of memory
throughput and system IPC.

The rest of this paper is organized as follows. Section 2
introduces the background and motivation for the WPoR research.
Section 3 gives detailed design of WPoR scheme and Section 4
shows the extensive evaluation of WPoR. Section 5 summarizes
the related work of PCM-based scheduling algorithms. Finally, in
Section 6, we conclude the paper.

2. BACKGROUND AND MOTIVATION
PCM is a non-volatile memory device and uses two states of

Ge2Sb2Te5 (GST) phase-change material to store data. GST
material is used to quickly heat and quench the glass or hold it in
its crystallization temperature range for some time, thus making it
high-resistance amorphous state or switching it to a low-resistance
crystalline state. Under the two states, GST material has different
resistance values. Data make use of this characteristic for storage.
Reading the content of PCM cells requires low and short current to
sense the material resistance value. Therefore, both energy
consumption and latency of the write operation are higher than
those of read operation.

To migrate the poor write performance, scientists propose a
multi-partition architecture within each bank [2, 12]. In this
section, we analyze the timing constraints of real chips to help us
exploit the partition-level parallelism.

Firstly, we refer to a unified PCM timing model proposed in
[11] to simplify the operating procedure of read and write
requests. The read and write requests are implemented by a series
of bank commands, including Preactive (PRE), Active (ACT ),
Read (RD) and write (WR). The combination of PRE and ACT
commands is to fetch the data of that memory line from the PCM
array to row buffer. The RD command obtains data from the given
row buffer, while the WR command transmits the data to the row
buffer and then write it to PCM cell. Therefore, the read request is
executed by the PRE-ACT-RD command sequence, and the write
request is satisfied by the PRE-ACT-WR command sequence. For
write request, data are not actually written to the memory array
immediately after the write commands are issued into the PCM
bank, but will delay for a long time. This stage is known as array
program. Usually, a bank does not receive external commands
when the memory array is in array program state. Otherwise, the
on-going operation will be terminated. Fortunately, the
multi-partition technique separates the read and write operations
in different partitions. Hence, a read and a write requests can be
performed within a bank concurrently, as shown in Figure 1 (a).

R2 request with partition address being PA1 can be served within
the array program duration of W1 request with partition address
(PA0). Moreover, for current constraints, a read and a write
requests are not allowed to perform concurrently within a
partition. As shown in Figure 1 (b), R3(PA0) will be served after
W1(PA0) completes, which incurs a partition conflict. The
partition conflict will obstruct the following requests and decrease
bank utilization.

timet0 t1 t4

PRE ACT WR Array ProgramPA0

PA1

PRE ACT RD

PRE ACT WR Array Program

PRE ACT RD

t2 t3

S

S

S

S

saved

PA0

R2(PA1)

R3(PA0)

(b)

(a)

PA0

W1 
(write)

R2 
(read)

R3 
(read)

Figure 1: The timing constraint of partition-level parallelism.

Although the multi-partition PCM provides partition-level
parallelism, existing scheduling schemes fail to explore this
advantage. We illustrate the effect of request scheduling between
write and read requests on runtime with an example. As shown in
Figure 2, there are five requests served on the bank with five
scheduling schemes. The partition address of each request is
referred on the bracket.

Figure 2: The timing diagram showing the runtime of four read
requests and one write request under five scheduling algorithms: (a)
FCFS scheduling; (b) Read Priority Scheduling; (c) Read Priority
+ Write Pausing; (d) Read Priority + Write Cancellation; (e)
Overlapped Scheduling.

We analyze this stream on five systems with different
management schemes respectively. Figure 2 (a) shows the timeline
of a system that uses the FCFS scheduling. Such a system serves
for requests according to their arrival orders. We observe that only
R3 can be overlapped served with W2 request. Compared with the
single-partition system, the runtime of FCFS scheduling scheme
with multi-partition system reduces tR (i.e., a read latency). Figure
2 (b) exhibits the timing diagram of Read Priority scheduling. To
reduce read latency, R1 and R3 are performed before W2 request.
As R4 is conflicted with W2 request, R4 is blocked until W2
completes. The Read Priority scheduling does not reduce runtime.
Considering inevitable partition conflicts existed in the FCFS and
Read Priority scheduling schemes, the write pausing and write
cancellation commands are explored to further reduce the waiting
time for incoming read requests. The Write Pausing scheme
suspends W2 instantly and serves for R4 and R5 requests. After



the pending read requests are completed, a resume command is
required to re-active W2, as shown in Figure 2 (c). The Write
Cancellation terminates W2 instantly and serves for the pending
read requests. As shown in Figure 2 (d), after R4 and R5 are
completed, an integrated write command is executed to re-serve
W2. Write Pausing and Write Cancellation schemes introduce
extra overheads and thus result in longer runtime. The above four
algorithms fail to leverage the advantages of the parallel
operations in the multi-partition architecture, and lead to relatively
long runtime. In this paper, we propose an overlapped scheduling
scheme to exploit partition parallelism of overlapping write
requests to serve read requests among different partitions. As
shown in Figure 2 (e), after re-ordering the pending requests, R1,
R3 and R5 requests can serve with W2 in parallel, and the runtime
saves 3×tR. The proposed overlapped scheduling requires shorter
runtime and saves more energy compared with existing scheduling
algorithms.

In the real-world environments, scheduling algorithms also need
to consider dynamic request queues and read/write partition
conflicts. Therefore, we propose WPoR scheme to exploit the
advantages of multi-partition parallelism. More details about
WPoR are discussed in the next section.

3. DESIGN AND IMPLEMENTATION
Deploying multi-partition PCM in a practical system proves to

be a promising solution to bridge the gap between the fast-running
multi-core processor and the long-access-latency secondary
storage devices. However, as is well known, PCM naturally has
long write latency. Hence, to balance read and write latency,
practical systems usually employ a small-sized DRAM as PCM’s
buffer. The overall architecture of such system is shown in Figure
3. The memory controller has a read queue and a write queue,
which stores the pending read and write requests, respectively. In
general, the read requests are derived from the processor directly,
while the write requests are generated by DRAM buffer to evict
the dirty data. To achieve high system performance, a scheduler is
responsible to schedule these requests efficiently. For example,
once the read queue is full, the memory requests derived from the
processor should be blocked.

The existing scheduling schemes, designed for DRAM or
conventional PCM devices, adopt a serial scheduling pattern and
thus show poor efficiency on multi-partition PCM devices. In this
section, we design an efficient parallel scheduling scheme, called
WPoR, which allows more read requests to be overlapped served
with the ongoing write requests in parallel. In what follows, we
illustrate the procedure of WPoR scheduling in detail.

PCM Controller

Read Requests

Write Requests
Core 1

Core 2

Core 3

Core 4

DRAM
Cache
(LLC)

WPoR 
scheduling

PCM Banks
Multi-Core
Processor

cm
d 

de
co

de
r

Partition 0

Partition 1

Partition 2

Partition 3

RAL

Figure 3: The overall architecture of PCM-based main memory.

3.1 The Scheduling of WPoR Scheme
The goal of WPoR scheduling is to allow more requests to serve

on PCM bank parallelly, thus achieving shorter response time and
higher I/O throughput. By using WPoR, for memory-sparse
applications, the controller could activate relevant banks and
respond the pending requests one by one. For memory-intensive

applications, since there are too many requests in the controller
queues, WPoR reordering the serving sequence of the requests to
exploit the potential partition-level parallelism.

To achieve this goal, WPoR employs several strategies.
Generally, a write request has higher priority than a read request in
WPoR because write operation has longer latency and obviously
should be responded earlier. After the timing commands of a write
request are issued, the relevant bank turns into the array program
state. During the write operation stage, WPoR could serve for
remainder read requests whose addresses are in different partitions
with the on-going write operation. The ideal situation is that all
the read requests in read queue have no conflicts with the write
requests in write queue. In this situation, all read requests are able
to be processed with write requests in parallel, and they are served
according to their arrival orders.

However, in most cases, there are two or more read/write
requests with same partition address in the controller queue.
Hence, WPoR needs to tune the serving order of read requests to
prevent such potential partition conflicts. Obviously, the
conflicting read requests should be maintained in controller queue
and will be scheduled after the on-gong write request completes.
Given that a read request may be blocked too long, we leverage a
timeout threshold for the pending read requests and WPoR will
serve for the overtime read requests preferentially.

Since WPoR scheduling changes the serving order of read and
write requests, the memory systems suffer from potential
read-after-write hazard. To prevent data contention, we design an
address comparison circuit which consists of a Requested Address
List (RAL) to store the metadata of the pending requests. The
RAL entries are sorted according to their arriving orders. Each
entry contains a request number, read/write type and physical
address. Once a write request is picked out, WPoR removes
relevant entry from RAL and compares its physical address with
the earlier arrived read requests’. If their physical addresses are
identical, the write request will be blocked. Moreover, when a
read request is selected to be served, WPoR compares its address
with earlier arrived write requests. If they are the same, the read
data could be obtained from the write request directly. Above all,
WPoR is able to serve for read/write requests in parallel, avoiding
data contention.

In summary, the complete procedure of WPoR scheduling can
be summarized as follows. When PCM bank turns into idle state,
the memory controller first serves for the timeout read requests
from read queue. Second, PCM activates one of the earliest
arrived write requests. Third, during the array program stage of
the write request, PCM circularly performs the read requests that
have different partition addresses with the on-going write request.
In the meantime, the address comparer checks those read requests
to avoid data contention. Finally, as the write request completes,
WPoR enters a new round and PCM could serve for the next write
request instantly.

3.2 Effective Address Mapping Scheme
Previous researches [6, 17] have shown that spatial locality is

widely existed in various applications. Sequential Requests can be
served from the row buffer with lower latency than accessing the
PCM array. Hence, exploiting the row-buffer locality with
row-interleaved address mapping to enhance PCM bank’s
performance is meaningful. However, with the increasing trend of
worker processes, a recent study [11] demonstrates that the
memory requests show weak locality in the practical systems.
Hence, the block-interleaved address mapping achieves higher
performance than row-interleaved mapping, especially under



applications with random access patterns. Because the read and
write requests are distributed in different partitions, which reduces
partition conflicts and is good for WPoR scheduling. Therefore,
we adopt block-interleaved mapping scheme in our system.

4. PERFORMANCE EVALUATION

4.1 Experiment Setup
We evaluate the WPoR algorithm on Gem5 simulator [1] that is

a full-system simulation tool developed by the University of
Michigan. Gem5 is an open-source architecture simulator that is
capable of emulating various instruction sets, processors and
memory models. We extend multi-partition PCM memory model
on the Gem5 simulator, and implement several request scheduling
algorithms in the memory controller, including FCFS, Read
Priority, Write Cancellation and Write Pausing. Table 1 shows the
configuration parameters of our simulation system. The processor
contains an 8-core CMP, 32KB L1 Cache and 2MB L2 Cache.
Main memory contains a 32MB pure-write DRAM buffer that is
organized as a private cache for PCM. Both read and write
latencies of DRAM are 50ns. The 16GB PCM-based main
memory contains 2 channel and 8 banks within each channel. A
bank consists of 4 partitions. The read and write latencies of PCM
are 250ns and 2us, respectively [14].

Table 1: The configuration of the simulation system

Processor
8 cores, in-order CMP, 3.2GHz,
32KB L1 instruction/data cache,
2MB L2 cache

DRAM Cache
32MB, 8-way, 64B linesize,
50 ns access latency, writeback policy

Memory Controller
16 GB PCM, 400MHz, Offchipbus,
128-entry request queues, 2 channels,
8 banks and 4 partitions

PCM latency 250ns read latency, 2us write latency

Table 2: The characteristic of the mixed benchmarks

Name Description Read
PKI

Write
PKI

WSS
(MB)

astar 8 copies of 473.astar 8.0 4.7 208
bwaves 8 copies of 410.bwaves 36.2 34.1 3794.4
dealII 8 copies of 447.dealII 0.2 0.1 117.6
gamess 8 copies of 416.gamess 1.6 0.03 4.8
gcc 8 copies of 403.gcc 4.7 1.3 527.2
gobmk 8 copies of 445.gobmk 45.2 42.7 132
leslie3d 8 copies of 437.leslie3d 20.5 19.4 601.6
mcf 8 copies of 429.mcf 3.9 2.0 5446.4
namd 8 copies of 444.namd 0.53 0.49 81.6
perlbench 8 copies of 400.perlbench 1.5 0.8 51.2
soplex 8 copies of 450.soplex 3.4 0.7 217.6
zeusmp 8 copies of 434.zeusmp 57.3 54.2 2160.8
gromacs 8 copies of 435.gromacs 1.5 0.23 68.8
hmmer 8 copies of 456.hmmer 1.07 1.03 65.6
libquantum 8 copies of 462.libquantum 7.8 7.4 261.6
wrf 8 copies of 481.wrf 12.1 11.4 1308

We use 16 benchmarks from the SPEC CPU2006 suite which is
widely used for evaluating the performance of the main memory
[4, 10]: astar, bwaves, dealII, games, gcc, gobmk, leslie3d, mc f ,
namd, perlbench, soplex, zeusmp, gromacs, hmmer, libquantum
and wr f . These benchmarks are chosen due to their various
densities of memory access. In order to measure the maximum
service capability of various scheduling algorithms, we conduct a
pressure test on main memory and run 8 copies of these
benchmarks in the full system. Each copy runs in an independent
CPU core. Therefore, the mixed benchmarks have higher memory

access frequency. We adopt block-interleaved technique in address
mapping ensuring high partition-level parallelism. Table 2 shows
the amount of memory access, read (RPKI) and write (WPKI)
requests per 1000 instructions out of the 32MB DRAM cache. The
Working Set Size (WSS) is an estimate of how much memory is
actively used by an application. The result from Table 2 exhibits
that the smaller value of WSS is, the lesser write requests are
served by PCM because many dirty data have been absorbed by
DRAM cache. To accurately evaluate the performance of the main
memory, we analyze the results after running 5×1015 ticks.

4.2 Experiment Results
We evaluate the performance of FCFS, Read Priority, Write

Cancellation, Write Pausing and WPoR algorithms under the same
configuration. We use average response time of read/write
requests, memory throughput and system IPC as our indicators.

4.2.1 The Average Response Time of Read Requests
Figure 4 shows the average response time of read requests under

five scheduling algorithms. The results exhibit that the FCFS
scheme has the longest read latency than others and the average
value reaches up to 1263 ns (on harmonic mean). The main reason
is that the read requests are not allowed to be processed until all
the early arrived write requests complete, even if the bank has idle
partition to serve read requests during write requests being served.
Especially in the write-intensive applications, such as bwaves,
gobmk, zeusmp, libquantum and wr f , the WPKIs reach or
approach to 10 and the average read latencies exceed 2us. The
Read Priority scheme that gives higher priority to read requests
has an obvious effect on reducing read latency. The average read
latency under Read Priority scheme decreases to 720 ns which is
43% lower than that of FCFS algorithm. Moreover, the Write
Cancellation and Write Pausing algorithms that terminate the
on-going write requests are able to achieve lower response
latencies for read requests, and the average latencies decrease to
445 ns and 500 ns, respectively. It is worth noting that the Write
Pausing has higher read latency than that of the Write Cancellation
algorithm due to the long suspending latency brought by pausing
operation, during which the bank prohibits all the external
commands. In contrast to previous algorithms, the read latency of
WPoR scheduling is slightly lower than that of Read Priority and
the average value achieves 694 ns.

a s t a rb w a v e sd e a l I
I

g a m e s s g c cg o b m
k

l e s l i e
3 d m c fn a m d

p e r l b
e n c hs o p l e

x
z e u s m

p
g r o m

a c sh m m e r
l i b q u

a n t u m w r f
H m e a n

0 . 00 . 51 . 01 . 52 . 02 . 53 . 03 . 54 . 0

Av
g R

ead
 La

ten
cy 

(us
)  F C F S    R e a d  P r i o r i t y    W P o R

 W r i t e  C a n c e l l a t i o n    W r i t e  P a u s i n g   

Figure 4: Average response time of read requests under five
scheduling algorithms.

4.2.2 Average Response Time of Write Requests
Figure 5 shows the average response time of write requests

under five scheduling algorithms. Although the Write
Cancellation and Write Pausing schemes have the lower read
latency, they terminate the on-going write requests and incur
expensive write penalty. The results from Figure 5 show that the



write latencies of Write Cancellation and Write Pausing increase
to 94.9us and 30.7us, which are longer than Read Priority’s (i.e.,
27.9 us). The write latency of WPoR algorithm is slightly higher
than that of FCFS scheduling (i.e., 18.2us), reaching 23.6 us.
Because WPoR scheduling suffers from more numbers of memory
requests in the controller queue.

a s t a rb w a v e sd e a l I
I

g a m e s s g c cg o b m
k

l e s l i e
3 d m c fn a m d

p e r l b
e n c hs o p l e

x
z e u s m

p
g r o m

a c sh m m e r
l i b q u

a n t u m w r f
H m e a n

0
2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0

Av
g W

rite
 La

ten
cy 

(us
)  F C F S    R e a d  P r i o r i t y    W P o R

 W r i t e  C a n c e l l a t i o n    W r i t e  P a u s i n g   

Figure 5: Average response time of write requests under five
scheduling algorithms.

4.2.3 Memory Throughput and System IPC
Since the values of the memory throughput and system IPC

span a large range under various benchmarks, we use normalized
indicators to evaluate the various scheduling schemes. We use
FCFS as a baseline approach. Figure 6 shows the normalized
throughput of scheduling algorithms under 16 benchmarks. The
results exhibit the performance improvements on WPoR
scheduling are 6%, 7% and 26% higher than Read Priority, Write
Pausing and Write Cancellation, respectively. In this
multi-partition architecture, bank conflicts rarely occur and read
requests wait for a short time to be served in most case, so that
Write Cancellation and Write Pausing cannot obtain better
performance by reducing read latency. Instead, pausing and
cancellation overheads have many negative effects on
performance. Also, the experiments demonstrate exploiting
scheduling schemes to avoid partition conflicts achieve better
performance than using advanced commands to address conflicts.

a s t a rb w a v e s d e a l I
I

g a m e s s g c cg o b m
k

l e s l i e
3 d m c f n a m d

p e r l b
e n c hs o p l e

x
z e u s m

p
g r o m

a c sh m m e r
l i b q u

a n t u m w r f
H m e a n

0 . 4
0 . 6
0 . 8
1 . 0
1 . 2

No
rm

ali
zed

 Th
rou

gh
pu

t  R e a d  P r i o r i t y    W r i t e  C a n c e l l a t i o n    W r i t e  P a u s i n g    W P o R

Figure 6: The memory throughput of Read Priority, Write
Cancellation, Write Pausing and WPoR normalized to FCFS
(Baseline).

Figure 7 shows the normalized IPC of scheduling schemes.
Since system IPC is linearly associated with memory throughput,
the results show the similar feature as memory throughput.
Although WPoR incurs slightly higher read latency compared
with Write Cancellation and Write Pausing schemes, it shows the
highest efficiency for memory utilization with hybrid read and
write requests. Hence WPoR show higher IPC performance than
other policies.

a s t a rb w a v e s d e a l I
I

g a m e s s g c cg o b m
k

l e s l i e
3 d m c f n a m d

p e r l b
e n c hs o p l e

x
z e u s m

p
g r o m

a c sh m m e r
l i b q u

a n t u m w r f
H m e a n

0 . 4
0 . 6
0 . 8
1 . 0
1 . 2

No
rm

ali
zed

 IP
C

 R e a d  P r i o r i t y    W r i t e  C a n c e l l a t i o n    W r i t e  P a u s i n g    W P o R

Figure 7: The System IPC of Read Priority, Write Cancellation,
Write Pausing and WPoR normalized to FCFS (Baseline).

4.2.4 Hardware Overhead
In this subsection, we estimate the hardware overhead of the

WPoR algorithm. Given that K represents the length of read/write
queue and S denotes the size of memory request, the read/write
queues takes up K × S. The data of the read and write requests are
stored on SRAM in memory controller. The RAL consists of K ×
C entries, where C denotes the size of each entry, including
address, type and request number. To reduce address-comparison
latency, we store RAL entries on registers in memory controller.

According to our experimental configuration, the read and write
queue consists of 128 entries, respectively. Hence, the spatial
overhead of request queue reaches 2 × 128 × 256B= 64KBytes,
while that of RAL occupies 2 × 128 × 12B= 3KBytes (each item
includes 4Byte) register resources. In short, the WPoR scheduling
algorithm consumes affordable hardware overhead.

In summary, without optimizing the memory scheduling, the
FCFS scheme shows the worse performance than WPoR.
Especially in read latency, FCFS is 2 times longer than WPoR.
Read Priority that first serves for read requests exacerbates
partition-level parallelism, incurring longer read/write latencies
and lower system IPC than those of WPoR. Write Pausing and
Write Cancellation sacrifice their write performance to obtain
better read latencies, but the extra write penalty overheads
decrease the entire system performance. Finally, our experimental
results demonstrate that we take both read and write requests into
account to achieve the significant performance improvements.
Based on this observation, our WPoR scheduling preferentially
serves for write request and overlaps the array program duration to
serve for read requests, and achieves higher system IPC than the
state-of-the-art scheduling algorithms.

5. RELATED WORK
Development on multi-partition (multi-subarray)

architecture. Recently, many studies exploit the existence of
partition (subarray) within each bank mitigating the effect of bank
conflicts. Kim et al. [7] propose a subarray-level parallelism
(SALP) mechanism to explore timing constraints among subarrays
within each DRAM bank, which overlaps the latency of accesses
to different subarrays. Inspired by the multiple subarrays
technology in DRAM, Yue et al. [18] propose a new power
allocation scheme to explore the existence of subarray in PCM
system. The scheme leverages subarray-level parallelism to enable
a bank to serve for a write and multiple reads in parallel without
violating power constraints. Micron and Samsung propose
multi-partition based chips [2] [12], which support parallel read
and write operations for users. Therefore, the multi-partition
architecture has significant performance advantage. However, to



the best of our knowledge, the partition-level based scheduling has
been rarely touched by existing work. Our work is the first work
for PCM scheduling on multi-partition architecture, which
leverages the unique features of PCM.

Scheduling policies for PCM. PCM has long write latency,
incurring poor I/O performance. There are several scheduling
policies trying to address this problem. Read Priority scheduling
[3] is widely used in asymmetric NVM devices, which gives a
high priority to read requests and thus reduces waiting time for
pending read requests. In order to reduce waiting time of
incoming read requests which is obstructed by on-going write
requests, Qureshi et al. [14] propose write cancellation and write
pausing scheduling policies, which terminate the on-going write
request and response pending read requests instantly. Although
these schemes further reduce the read delay, they cause nontrivial
pausing and cancelling overheads, which reduce service capacity
and consume more energy. In comparison with these schemes, our
WPoR prevents conflict and conceals long write latency by
intelligent scheduling. In addition, there are several more complex
algorithms for the asymmetric NVM devices, such as Flash I/O
scheduler (FIOS) [13], Round Robin (RR) [16] and Completely
Fair Queuing (CFQ) [5] algorithms, which can be applied to the
PCM device. These policies achieve an OS-level fairness by
allocating a time slice for each request or thread. These OS-level
scheduling algorithms are orthogonal to hardware-level scheduling
algorithms and can co-operate with our WPoR to optimize the I/O
performance in different level. Existing scheduling schemes [7]
designed for multi-subarray DRAM show inefficiency on PCM
since long write latency is not hidden. The work proposes the
partition-level scheduling to exploiting the parallelism among
partitions. The scheme is more suitable for applying in
multi-partition PCM-based main memory.

6. CONCLUSION
Phase Change Memory (PCM) is a promising candidate for

building main memory systems. One drawback of PCM is its long
write latency which incurs severe bank conflicts and poor I/O
performance. In this paper, we introduce a multi-partition PCM
architecture and propose WPoR scheduling scheme for this
architecture to address these problems. WPoR allows more read
requests to be served along with write requests in parallel. In the
meantime, we have evaluated the WPoR algorithm on Gem5
simulator. Experimental results demonstrate that WPoR
scheduling performs better than the state-of-the-art scheduling
policies, such as Read Priority, Write Cancellation and Write
Pausing, on memory throughput and system IPC.

Acknowledgment
This work was supported by the National High-tech R & D
Program of China (863 Program) No. 2015AA016701, No.
2015AA015301, No. 2013AA013203; NSFC No. 61303046, No.
61402189, No. 61173043; State Key Laboratory of Computer
Architecture under Grant CARCH201505. This work was also
supported by Key Laboratory of Information Storage System,
Ministry of Education, China.

7. REFERENCES
[1] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,

A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,
S. Sardashti, et al. The gem5 simulator. ACM SIGARCH
Computer Architecture News, 2011.

[2] Y. Choi, I. Song, M.-H. Park, H. Chung, S. Chang, B. Cho,
J. Kim, Y. Oh, D. Kwon, J. Sunwoo, et al. A 20nm 1.8 V 8Gb
PRAM with 40MB/s program bandwidth. In ISSCC, 2012.

[3] C. Dirik and B. Jacob. The performance of pc solid-state
disks (ssds) as a function of bandwidth, concurrency, device
architecture, and system organization. In ACM SIGARCH
Computer Architecture News, 2009.

[4] K. Ganesan, J. Jo, and L. K. John. Synthesizing
memory-level parallelism aware miniature clones for spec
cpu2006 and implantbench workloads. In ISPASS, 2010.

[5] S. Hui, Z. Rui, C. Jin, L. Lei, W. Fei, and X. C. Sheng.
Analysis of the File System and Block IO Scheduler for SSD
in Performance and Energy Consumption. In Asia-Pacific
Services Computing Conference, 2011.

[6] M. K. Jeong, D. H. Yoon, D. Sunwoo, M. Sullivan, I. Lee,
and M. Erez. Balancing dram locality and parallelism in
shared memory cmp systems. In HPCA, 2012.

[7] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu. A case for
exploiting subarray-level parallelism (SALP) in DRAM. In
ISCA, 2012.

[8] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting
phase change memory as a scalable dram alternative. ISCA,
2009.

[9] C. Lefurgy, K. Rajamani, F. L. R. III, W. M. Felter,
M. Kistler, and T. W. Keller. Energy Management for
Commercial Servers. IEEE Computer, 2003.

[10] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi. Mcpat: an integrated power, area,
and timing modeling framework for multicore and manycore
architectures. In MICRO, 2009.

[11] J. Meza, J. Li, and O. Mutlu. Evaluating Row Buffer Locality
in Future Non-Volatile Main Memories. Carnegie Mellon
University Technical report, 2012.

[12] Micron Inc. Product Brief LPDDR2-PCM and Mobile
LPDDR2 121-Ball MCP.
http://caxapa.ru/thumbs/441272/LPDDR2-PCM_Br.pdf.

[13] S. Park and K. Shen. FIOS: a fair, efficient flash I/O
scheduler. In FAST, 2012.

[14] M. K. Qureshi, M. M. Franceschini, and L. A.
Lastras-Montao. Improving read performance of Phase
Change Memories via Write Cancellation and Write Pausing.
In HPCA, 2010.

[15] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable high
performance main memory system using phase-change
memory technology. ISCA, 2009.

[16] M. Shreedhar and G. Varghese. Efficient Fair Queueing
Using Deficit Round Robin. Computer Communication
Review, 1995.

[17] K.-C. Wong, K.-S. Leung, and M.-H. Wong. Effect of spatial
locality on an evolutionary algorithm for multimodal
optimization. In Applications of evolutionary computation.
2010.

[18] J. Yue and Y. Zhu. Exploiting subarrays inside a bank to
improve phase change memory performance. In DATE, 2013.

[19] D. Zhan, H. Jiang, and S. C. Seth. Stem: Spatiotemporal
management of capacity for intra-core last level caches. In
43rd MICRO, 2010.

[20] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable and
energy efficient main memory using phase change memory
technology. In ISCA, 2009.


