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Abstract—Non-volatile memory (NVM) technologies are con-
sidered as promising candidates of the next-generation main
memory. However, the non-volatility of NVMs leads to new
security vulnerabilities. For example, it is not difficult to access
sensitive data stored on stolen NVMs. Memory encryption can be
employed to mitigate the security vulnerabilities, but it increases
the number of bits written to NVMs due to the diffusion property
and thereby aggravates the NVM wear-out induced by writes.
To address these security and endurance challenges, this paper
proposes DeWrite, a secure and deduplication-aware scheme to
enhance the performance and endurance of encrypted NVMs
based on a new in-line deduplication technique and the synergis-
tic integrations of deduplication and memory encryption. Specif-
ically, it performs low-latency in-line deduplication to exploit
the abundant cache-line-level duplications leveraging the intrinsic
read/write asymmetry of NVMs and light-weight hashing. It also
opportunistically parallelizes the operations of deduplication and
encryption and allows them to co-locate the metadata for high
time and space efficiency. DeWrite was implemented on the
gem5 with NVMain and evaluated using 20 applications from
SPEC CPU2006 and PARSEC. Extensive experimental results
demonstrate that DeWrite reduces on average 54% writes to
encrypted NVMs, and speeds up memory writes and reads of
encrypted NVMs by 4.2× and 3.1×, respectively. Meanwhile,
DeWrite improves the system IPC by 82% and reduces 40% of
energy consumption on average.

I. INTRODUCTION

As DRAM technology suffers from high power leakage and

limited scalability, non-volatile memory technologies (NVMs),

such as PCM, ReRAM, and STT-RAM, have been proposed

as promising candidates of the next-generation main memo-

ry [1]–[4], due to having the advantages of high density, high

scalability, and requiring near-zero standby power [5], [6].

However, NVMs also face the following obstacles in order

to be effectively used in memory systems.

The first problem is the limited write endurance and perfor-

mance. NVMs typically have limited write endurance, e.g.,

107 − 108 writes for PCM [6]–[9]. Writes on NVMs not

only consume the limited endurance, but also cause higher

latency (i.e., 3 − 8×) and energy overhead than reads [10],

[11]. Moreover, NVMs are expected to store data as persistent

memory for instantaneous failure recovery [12]–[14]. In per-

sistent memory, writes are on the critical path of application

execution, since achieving data consistency needs to ensure

the ordering of memory writes [15]–[19]. Thus a processor

has to stall and wait for a memory write to be completed

before issuing the next one. Hence, reducing write operations

is non-trivial in NVMs.

The second problem is data remanence vulnerability, i.e.,

NVMs still retain data after systems are powered down due

to their non-volatility. In general, when encryption is used to

protect the privacy of data, the encrypted data are retained in

disks, while raw data are maintained in main memory [20].

If a DRAM DIMM is stolen, data are quickly lost due to the

volatility without information leakage. In contrast, if an NVM

DIMM is physically removed from the system, an attacker

can directly stream out the data from the DIMM [21]–[24].

Hence, memory encryption becomes important to enhance the

data security in NVMs. Unfortunately, memory encryption

in NVMs exacerbates the problem of write endurance, as a

good encryption algorithm generally has the strong diffusion

property, which means that the change of a single bit in the

plaintext leads to the change of about half of the bits in the

ciphertext [25].

The diffusion property makes existing subline-level (i.e., bit-

level) write reduction techniques, such as Data Comparison

Write (DCW) [9] and Flip-N-Write (FNW) [26], ineffective

for encrypted non-volatile main memory (NVMM) [21]–[23].

These techniques reduce the number of bits written to NVMM

based on the observation that only a small number of bits

are modified for a write. DCW only writes the modified bits

in a cache line to NVMM by comparing old and new data.

FNW further inverts the data if more than 50% of the bits

are modified, which ensures that the number of bits written to

NVMM is no more than half of bits in a cache line. With the

diffusion property of encryption, the change of a single bit in

a cache line will cause half of the bits to be modified when

written to the encrypted NVMM [22], [25]. Hence, existing

techniques like DCW and FNW cannot achieve significant

data reduction for encrypted NVMM, which remains to be

an important and challenging problem.

There is, however, abundant data duplication at the line level
which can be exploited to reduce the number of writes to
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secure NVMM. Specifically, we observe that a large number

of cache lines written to the memory are identical to existing

ones in the memory in many real-world applications. From

the results of our experiments, the duplicate lines written to

memory account for 58% on average in the 20 applications

from SPEC CPU2006 [27] and PARSEC [28], and reach

upwards 98% in some applications. These observations mo-

tivate us to perform cache-line-level deduplication on secure

NVMM. Eliminating a large number of duplicate writes not

only extends the endurance of NVMM, but also significantly

improves the system performance. First, eliminating duplicate

writes efficiently removes the high write latency off from

the critical path of application execution. In the meantime,

eliminating duplicate writes also speeds up read and non-

duplicate write requests by reducing their waiting time. When

a write request is served by an NVM bank, the following

read/write requests to the same bank are blocked and wait until

the current write request is completed [29]. If many duplicate

write requests are avoided, the waiting time of the following

read/write requests is significantly reduced, thus improving

the read/write performance. However, a number of challenges

need to be addressed when designing a secure NVMM that

leverages deduplication to reduce writes.

The first challenge is how to perform in-line deduplication

in NVMM without the decrease of system performance. In

order to reduce writes to NVMM, deduplication needs to

be performed in-line, i.e., duplicate cache lines have to be

identified and eliminated before being written to NVMM.

Traditional memory deduplication techniques [30]–[33] per-

form out-of-line deduplication, which cannot reduce writes

to memory because duplicate data are first written into main

memory and then identified and merged in the background.

Furthermore, since main memory is highly latency-sensitive,

duplicate write detection is not allowed to incur high latency as

it is performed in the critical path of memory writes. Tradition-

al in-line deduplication solutions [34]–[37] use cryptographic

hash functions, e.g., SHA-1 [38] and MD5 [39], to compute

the fingerprints of data for detecting duplication. Data are

considered to be duplicate if their fingerprints are matched.

However, computing the cryptographic hash is expensive and

not suitable for in-line deduplication of NVMM. For example,

the latency of computing MD5/SHA-1 in hardware implemen-

tations is generally more than 300 ns [40], [41], which is close

to the latency of an NVM write.

The second challenge is how to integrate deduplication with

NVM encryption while delivering good performance. Dupli-

cation detection determines whether a cache line is duplicate

to existing data in NVMM. If a cache line is duplicate, the

write is cancelled. Otherwise, it is encrypted and written

to NVMM. Thus duplication detection and data encryption

are executed serially in the critical path of memory writes,

which incur high latency to the writes of non-duplicate cache

lines. Moreover, both encryption and deduplication have heavy

metadata overhead. To ensure data security, counter mode

encryption is often employed to encrypt data in NVMM due

to its low decryption overhead [21]–[23], [41], [42], which

requires metadata such as the per-line counters. At the same

time, to eliminate duplicate lines, deduplication also requires

metadata including the per-line hashes and address mappings.

The storage and processing of these metadata incur substantial

time and space overheads.

To address these challenges, we propose DeWrite, a novel

solution for enhancing both the lifetime and performance of

secure NVMM with new in-line deduplication technique and

synergistic integration schemes of deduplication and encryp-

tion. Specifically, DeWrite makes the following contributions:

• Light-weight Deduplication Leveraging Asymmetric
Reads and Writes. To perform low-latency in-line deduplica-

tion, DeWrite proposes a light-weight deduplication scheme

for NVMM. DeWrite computes the light-weight hash of a

cache line. If the hash of the cache line matches that of an

existing line in NVMM, DeWrite reads the line and compares

the corresponding data to confirm duplication. DeWrite thus

eliminates a duplicate write at the cost of a read latency, im-

proving the system performance due to the intrinsic read/write

asymmetry of NVMs where write latency is much higher than

read latency (i.e., 3 ∼ 8×) [10], [29].

• Efficient Synergization of Deduplication and Encryption
via Parallelism and Metadata Colocation. To achieve good

performance in deduplication and NVM encryption, DeWrite

opportunistically performs the two operations in parallel based

on a simple yet effective duplication prediction scheme. If

a cache line is predicted to be non-duplicate, DeWrite de-

tects duplication in parallel with data encryption to reduce

write latency. Otherwise, DeWrite detects duplication with-

out encrypting data to save the computation (and energy)

overhead from encryption. Moreover, DeWrite proposes a co-

located metadata storage scheme between deduplication and

encryption, by embedding the per-line counters into the null

locations in the data structures for supporting deduplication,

thus reducing the space overhead from counter storage.

• System Implementation and Evaluation. We have im-

plemented DeWrite on the gem5 [43] with NVMain [44],

and comprehensively evaluated its performance using SPEC

CPU2006 [27] and PARSEC [28]. Experimental results show

DeWrite eliminates on average 54% of writes to secure N-

VMM. Furthermore, DeWrite speeds up the memory writes

and reads of secure NVMM by 4.2× and 3.1×, respectively,

and reduces the energy overhead by 40% on average, while

incurring only 6.25% metadata storage overhead.

II. BACKGROUND AND MOTIVATION

A. Threat Models

Like existing threat models [21]–[23], our paper aims to

protect NVMM from two well-known physical access based

attacks, including stolen DIMM and bus snooping attacks.

Specifically, due to not the user of a computer, an attacker

fails to visit or control the software systems, but can physically

access to the NVMM via theft, repair, or improper disposal. In

the stolen DIMM attack, due to the non-volatility of NVMs,

an attacker stealing the NVM DIMM or acting as a machine

repairman can directly stream out all the data from the DIMM.

443



Fig. 1: Counter mode encryption.

In the bus snooping attack, since NVMM is accessed through

the memory bus, an attacker can insert a bus snooper or a

memory scanner in the bus to obtain the data communicated

between the processor chip and NVMM.

B. Memory Encryption

To defend against the stolen DIMM attack, the data in the

NVMM should be encrypted. To further defend against the

bus snooping attack, we should encrypt the data in the CPU

side instead of the memory side, thus avoiding the plaintext

passing through the memory bus [21]–[23]. In general, there

are two CPU-side memory encryption models, including direct

encryption and counter mode encryption, to encrypt the data

in the memory. First, in the direct encryption, each cache

line is encrypted by employing a block cipher algorithm, e.g.,

AES [45], when written back to the memory from the last

level cache, and decrypted after being read from the memory.

However, direct encryption incurs high decryption latency in

the critical path of memory reads [21], [22], thus decreasing

the system performance. Second, in the counter mode encryp-
tion, data decryption can be executed in parallel with memory

read, thus reducing the decryption latency. Counter mode

encryption generates a one-time pad (OTP) using a counter

and encrypts/decrypts data by XORing the plaintext/ciphertext

with the OTP, as shown in Figure 1. Counters are buffered in

an on-chip counter cache managed by the memory controller.

For a data access, if its counter is found in the counter cache,

the OTP is computed in parallel with the memory read, thus

hiding the decryption latency in memory access latency. Only

the slight latency of XOR operation is added into the critical

path of memory read.

The security of counter mode encryption is ensured if each

OTP is never reused for data encryption [41], [46], [47]. The

counter mode encryption uses a secret key, the line address

and the per-line counter to generate the OTP through the AES

circuit, as shown in Figure 1. Thus data stored at different

addresses are encrypted by different OTPs. Moreover, the per-

line counter increases on each write and generates different

OTPs for data rewrites of the same address. Hence, the OTPs

are never reused.

C. Observation and Motivation

The DeWrite scheme proposed in this paper leverages the

counter mode encryption to achieve low decryption laten-

cy [21]–[23], [41], [42], and more importantly, it addresses

the lack of consideration for write endurance in memory

encryption. The use of encryption in NVMs in fact exacerbates

the write endurance due to the strong diffusion property [25],

which renders the existing bit-level write reduction techniques

Fig. 2: The percentage of duplicate lines. (The first 12
applications are from the SPEC CPU2006 and the following
8 applications are from the PARSEC.)

(e.g., DCW [9] and FNW [26]) ineffective [22], [23]. DeWrite

instead exploits line-level data deduplication to improve the

endurance and performance of secure NVMM.

A number of existing works [48]–[51] demonstrate that

CPU caches contain abundant cache-line-level data dupli-

cations. These duplications are generally produced by the

program behaviors such as copying and assignment [48],

similar/duplicate data inputs [52], and memory initializa-

tion [21]. The fact that the data in CPU caches are read

from main memory motivates us to consider whether abundant

line-level duplications also exist in main memory. If true,

we can directly cancel the writes of duplicate cache lines,

which significantly improves the performance and endurance

of NVMM. To explore how many cache lines written to main

memory are duplicate, we have examined 20 applications from

SPEC CPU2006 [27] and PARSEC 2.1 [28] benchmark suites.

During executing these applications, we measure the number

of duplicate lines written to NVMM, as shown in Figure 2.

Figure 2 shows that the percentages of duplicate lines vary

from 18.6% to 98.4% across the 20 applications. We also

observe that in only one application, i.e., sjeng, the duplicate

lines are dominated by zero lines. The duplicate lines in

other applications are mostly non-zero lines. Related work

Silent Shredder [21] proposed to eliminate zero-content lines

to reduce the writes to NVMM, which in our experiments

reduces on average 16% of the writes. In comparison, elim-

inating all duplicate lines via line-level deduplication results

in much higher write reductions for the applications, which

is 58% on average. Hence, in DeWrite, we study the use of

deduplication for enhancing the endurance and performance

of secure NVMM, which is detailed in the rest of the paper.

III. THE DESIGN OF DEWRITE

Directly performing encryption and deduplication in the

NVMM incurs two important issues. First, the latency of

memory encryption and duplication detection are brought

into the critical path of memory writes, which significantly

decrease the system performance. This is because memory

writes in the NVMM are on the critical path of application

execution [15]–[18], which is different from traditional volatile

memory. In traditional DRAM-based main memory, a proces-

sor can append a write in the write queue (WRQ) and further

issue the next write without waiting for the completion of the

previous one [53]. Thus writes are usually off the critical path
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(a) The direct way (b) The parallel way

Fig. 3: Integrating deduplication and encryption.

of application execution due to the use of WRQ and do not

incur processor stall cycles. In contrast, by using NVMs as

persistent memory, the ordering of memory writes has to be

ensured for consistency guarantee via cache line flushes and

memory fences [12], [13], [54]–[56]. Thus the processor has

to stall and wait for a memory write to be completed before

issuing the next one. Thus memory encryption and duplication

detection incur more processor stall cycles as they need to

be performed before writing cache lines. Second, both NVM

encryption and deduplication cause heavy metadata overheads.

Counter mode encryption requires metadata such as the per-

line counters. At the same time, to eliminate duplicate lines,

deduplication also requires metadata including the per-line

hashes and address mappings as shown in Section III-B. The

storage and processing of these metadata incur substantial time

and space overheads.

To address these issues, DeWrite judiciously integrates

NVM encryption and deduplication by proposing a prediction-

based parallel scheme (§ III-A) to improve the system per-

formance, as well as a co-located metadata storage scheme

(§ III-C) to reduce the metadata space overhead. Our proposed

lightweight deduplication scheme is presented in § III-B.

A. Prediction-based Parallelism between Dedup & Encryption

In the traditional secure NVMM solutions [21]–[23], the

cache lines are first encrypted and then written to NVMM.

DeWrite leverages deduplication to reduce the number of

writes to the secure NVMM by eliminating the writes of

duplicate cache lines. The direct way to perform deduplication

on the encrypted NVMM is shown in Figure 3a. For a

cache line to be written to the NVMM, DeWrite first detects

duplication. If the duplication exists in the NVMM, it cancels

the write of the cache line and stores the address mapping

relationship between the eliminated cache line and its duplicate

in the NVMM into an address mapping table (presented in

Section III-B). Otherwise, the cache line is encrypted and

written to the NVMM. The former reduces the write latency

by cancelling the write. The latter however increases write

latency since the duplication detection and data encryption

are executed serially in the critical path of the memory write.

Thus the direct way is inefficient for applications where most

lines are non-duplicate, such as bzip2 and vips.

To avoid the serialization of detecting duplication and

encrypting data, we consider a parallel way to perform d-

eduplication on encrypted NVMM. As shown in Figure 3b,

for a cache line to be written to the NVMM, cache line

Fig. 4: The prediction accuracy. (The ‘1’, ‘3’, and ‘4’ indicate
the use of 1, 3, and 4 most recent memory writes respectively.)

encryption and duplication detection are carried out in parallel.

If no duplicates exist in the NVMM, the encrypted cache line

is directly written to the NVMM. Otherwise, the encrypted

cache line is discarded. However, for applications where most

cache lines are duplicate, such as cactusADM and lbm,

the parallel way becomes inefficient since the encryption

is unnecessary and causes extra computation (and energy

consumption) overhead from the AES circuit [57].

In summary, the direct way is efficient for the duplicate

cache lines but inefficient for the non-duplicate cache lines.

The parallel way has the opposite effects. Intuitively, the best

solution is to use the direct way for duplicate cache lines and

the parallel way for non-duplicate cache lines, respectively.

To address the problem of identifying whether a cache line

is duplicate beforehand, we propose a simple yet effective

prediction scheme by exploiting the duplication states of the

most recent memory writes recorded using a history window.

Specifically, DeWrite maintains an on-chip history window

for the whole main memory. The history window records

the duplication states of the most recent cache lines written

into main memory. If the most recent memory writes are

mostly duplicate (or non-duplicate), the next memory write

is predicted to be duplicate (or non-duplicate). The rationale

comes from our observation that the duplication states of

cache lines written to main memory have temporal locality,

i.e., duplicate (or non-duplicate) memory writes are usually

consecutive. As shown in Figure 4, the duplication states of

average 92% memory writes are the same as those of their

previous ones. This observation can be interpreted that if

a cache line written to main memory is duplicate (or non-

duplicate), its next cache line written to main memory is also

duplicate (or non-duplicate) with 92% probability.

The history window records the duplication state of only the

previous one memory write, achieving about 92% prediction

accuracy. In order to improve prediction accuracy, we further

record the duplication states of the multiple most recent

memory writes in the history window. We give some examples

in the following. We first analyze the use of two most recent

memory writes, which has four cases, i.e., ‘0 0’, ‘0 1’, ‘1 0’,

and ‘1 1’(‘1’ and ‘0’ respectively correspond to duplicate and

non-duplicate writes). We observe that the prediction results of

using the two most recent memory writes are the same as those

of using the previous one memory write. Furthermore, the use

of the three most recent memory writes produces two cases.
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TABLE I: Traditional Deduplication v.s. DeWrite

(a) Comparisons of hash computation latency and sizes

Hash Functions SHA-1 MD5 CRC-32
Latency 321 ns 312 ns 15 ns

Size 160 bits 128 bits 32 bits

(b) Comparisons of duplication detection latency

Methods Traditional DeWrite
A duplicate line ≥ 312 ns + tQ 91 ns + t′Q

A non-duplicate line ≥ 312 ns + tQ 15 ns + t′Q

If the number of ‘1’ is larger than that of ‘0’ in the three most

recent memory writes, the prediction result is ‘1’. Otherwise,

the result is ‘0’. The prediction accuracy is shown in Figure 4.

The use of the three most recent memory writes improves on

average 1.5% of accuracy (from 92.1% to 93.6%) compared

with using one. We also evaluated the accuracy of using more

than three ones, which leads to negligible increase in accuracy.

DeWrite hence only needs to record the duplication states of

three most recent memory writes to NVMM, and thus the

storage overhead of the history window is 3 bits.

In summary, DeWrite maintains a 3-bit history window

for the whole main memory to predict whether a cache

line to be written into NVMM is duplicate. If a cache line

is predicted to be non-duplicate, DeWrite encrypts data in

parallel with duplication detection to reduce write latency.

Otherwise, DeWrite detects duplication without encrypting

data to reduce energy overhead from encryption.

B. Light-weight Deduplication for NVMM

We first present an overview of light-weight in-line dedu-

plication for NVMM in DeWrite. We then present the data

structures for supporting the in-line deduplication.

1) An Architecture Overview: To perform in-line dedupli-

cation, DeWrite leverages the asymmetric property of NVMs

that write latency is much higher than read latency (i.e.,

3 ∼ 8×) [10], [21], [29]. To detect duplicate cache lines,

DeWrite computes a light-weight hash to summarize the

contents of cache lines, rather than the cryptographic hash

with high computation latency. If the hash of the cache line

matches that of an existing line in NVMM, DeWrite reads the

line and compares the corresponding data byte by byte. Thus

DeWrite eliminates a duplicate write at the cost of a read.

We compare the latency of duplication detection between

traditional deduplication and DeWrite in Table I. Traditional

deduplication includes existing main memory deduplication

and external storage deduplication as discussed in Section V,

which use a cryptographic hash function (e.g., SHA-1 [38] and

MD5 [39]) to compute the fingerprints of data and assume no

hash collisions. Thus the data are considered to be duplicate if

their fingerprints are identical. The detection latency using the

cryptographic hash function, regardless of the duplication of

the cache line, is more than 312 ns + tQ, where tQ denotes the

latency of querying the fingerprint store, as shown in Table Ib.

The duplication detection latency is even higher than the NVM

write latency (300 ns). Hence, traditional deduplication is not

cost-effective to eliminate cache-line-level duplications.

Fig. 5: The hardware architecture of DeWrite. (We use
the counter storage and counter cache in existing secure
NVMMs [21]–[23] respectively as the metadata storage and
metadata cache. The dedup logic is the new component.)

Instead, DeWrite uses the light-weight hash, i.e., CRC-

32, where hash collisions are practically unavoidable. Thus,

if the hash of the cache line matches that of an existing

line in NVMM, DeWrite reads the line and compares the

corresponding data. Only when the data are identical, the cache

line is considered to be duplicate. The latency of computing

a CRC-32 hash is 15 ns and the latency of reading a line is

75 ns [21], [22], as the configurations shown in Section IV-A.

The comparison of two lines can be implemented in hardware

logic with low latency [9], i.e., 1 cycle. Hence, if a cache line

is duplicate, the latency to detect the duplicate cache line in

DeWrite is about 91 (=15+75+1) ns + t′Q, where t′Q denotes

the latency of querying the hash store. If a cache line is non-

duplicate, its hash value will not be found in the hash store

and the read can be saved. Thus the latency to determine a

non-duplicate cache line is 15 ns + t′Q. Moreover, when a

cache is employed to accelerate accesses to the hash store,

the cache can store more CRC-32 hashes than SHA-1/MD5

hashes, because the former is much smaller. Hence, given the

same size of cache, using CRC-32 hashes leads to a higher

cache hit rate and correspondingly a lower access latency,

i.e., t′Q < tQ. In summary, DeWrite significantly reduces

the duplication detection latency by leveraging the read/write

asymmetric property of NVMs and light-weight hashing.

The hardware architecture of DeWrite for supporting cache-

line-level deduplication in the secure NVMM is shown in

Figure 5. In order to reduce the metadata accesses to NVMM,

existing work [21]–[23] on counter mode encryption extends

the memory controller to include a write-back metadata cache

used for buffering the counters. DeWrite uses this metadata

cache to buffer the deduplication-related metadata and coun-

ters. The metadata persistency problem in the metadata cache

is discussed in Section V. The required size of the metadata

cache is evaluated in Section IV-E1. A memory region in the

encrypted NVMM [21]–[23] is used to store the counters. We

use this region to store the co-located metadata of dedupli-

cation and encryption, as presented in Section III-C. Hence,

compared with existing work [21]–[23], the new component

in DeWrite is the dedup logic that is used to determine

whether a cache line is duplicate. The data are encrypted

using counter mode encryption (CME). To avoid storing the
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Fig. 6: The hash collision probability.

counters of the metadata, the metadata are encrypted using

the direct encryption scheme presented in Section II-B. In this

case, the latency of loading the metadata into the metadata

cache increases since the decryption cannot be executed with

memory access in parallel. However, it does not significantly

affect the performance since the metadata cache miss ratio is

very low as shown in Section IV-E2.

We consider the 256B of deduplication granularity to reduce

the metadata overheads. Thus the sizes of a memory line

in the NVMM and a cache line in the last level cache are

256B. The 256B cache line size is widely used in the existing

work on NVMM [4], [8], [24], [29], [58], [59]. Moreover, the

commercial processors, e.g., IBM z systems processors [60],

[61], also use the 256B cache line size for all CPU caches.

2) Data Structures for Supporting Deduplication: To sup-

port in-line deduplication, DeWrite uses four data structures

for duplication detection and data management, including

address mapping table, hash table, inverted hash table, and

free space management table. These data structures are stored

in the encrypted NVMM and the hot entries are maintained in

the metadata cache. In the hash table, we reuse the prediction

scheme presented in Section III-A to reduce NVM accesses.

In the remaining three tables, we leverage the prefetching

technique to improve the cache hit rates. The store space

of these data structures is evaluated in Section IV-E1. In the

following, we present the design of the four data structures.

• Address Mapping Management. For regular NVMM, the

mapping between a cache line’s address number and its stor-

age location (i.e., rank/bank/row/column) is one-to-one. The

storage location is directly computed by the address number.

However, when using deduplication, the relationship between

the address number and the storage location becomes many-to-

one since duplicate lines are removed from the initial locations.

Hence, DeWrite uses an address mapping table to maintain the

many-to-one mapping relationships. Each entry in the address

mapping table denotes a <initAddr,realAddr> pair. The

realAddr denotes the address number of the line storing the

real data. The initAddr denotes the initial address number

of the referenced line that contains the same data as the line

stored at realAddr. The address mapping table is a data

structure of sequential storage, e.g., a one-dimensional array.

The address mapping table stores only the real addresses, since

the corresponding initial addresses can be denoted by their

locations in the table.

DeWrite stores the address mapping table in the encrypted

NVMM and maintains the recently-accessed address mappings

Fig. 7: The CDF of duplicate lines.

in the metadata cache. The sequential storage in the address

mapping table retains the space locality of initial addresses.

When an address mapping is read, the following address

mappings are also prefetched to the metadata cache. For

example, if the data size in each read is 256B and the size of

the real address is 4B, an NVM access prefetches 64 sequential

<initAddr,realAddr> pairs. The storage structure re-

duces the NVM accesses when querying the address mappings

due to the access locality.

• Hash Table for Duplication Detection. In order to quickly

locate the duplicate lines in NVMM, DeWrite maintains a

hash table, in which each entry contains three items, i.e.,

<hash,realAddr,reference>. We use the 32-bit hash

values to index the entries, where each entry stores the

address of the corresponding line and its reference count. The

reference denotes the number of initial addresses that are

mapped to the realAddr. Each hash entry possibly contains

multiple values due to hash collisions. However, the collision

probability is extremely low (less than 0.01% on average), as

shown in Figure 6. The reference is 8 bits, which is sufficiently

large for counting the references of lines, since more than

99.999% lines have a reference that is smaller than 255, based

on our experimental results in Figure 7. In the rare cases where

a reference reaches 255, we consider the corresponding line

as a highly referenced line and no longer increase its value.

When a new cache line is duplicate with a highly referenced

line, DeWrite does not process it as a duplicate and avoids

overflowing the reference.

DeWrite stores the hash table in the encrypted NVMM and

maintains recently-accessed hash entries in the metadata cache.

When there is no matching entry in the cache for a hash query,

a memory access is required to query the hash table in the N-

VMM. However, if still no match in the hash table, the latency

becomes high due to the extra latency of memory access. In

order to reduce the NVM accesses during the hash query, we

leverage a prediction-based NVM access (PNA) scheme which

reuses the prediction scheme described in Section III-A. If

the hash query for a cache line finds no match in the cache,

only when the prediction result is duplicate, DeWrite further

queries the in-NVM hash table. Otherwise, DeWrite directly

treats the cache line as non-duplicate and carries out writes

to NVM without further querying the in-NVM hash table.

Due to the high prediction accuracy as shown in Figure 4,

the PNA scheme eliminates most unnecessary NVM accesses

from the duplication detection for non-duplicate cache lines.

Our evaluation in Section IV-B also confirms this performance
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……

Fig. 8: The metadata storage of deduplication. (The memory
lines with the initAddr 2, 4, and 5, are deduplicated. ‘a�’: the
real address; ‘h�’: the hash value; ‘−’: null.)

……

……

Fig. 9: The co-located metadata storage between deduplication

and encryption. (‘c�’: the counter.)

improvement scheme does not comprise DeWrite’s enhance-

ment on endurance.

• Inverted Hash Table for Stale Hash Cleaning. When a

memory line is rewritten, the hash value of the old data in

the line should be removed from hash table. An inverted hash

table is required to query the stale hash entry in hash table

based on the line address. The inverted hash table maps the

addresses of memory lines to their hash values, in which each

entry denotes a <initAddr,hash> pair. DeWrite stores the

inverted hash table in the encrypted NVMM and maintains

the recently-accessed entries in the metadata cache. The LRU

replacement policy is used for the data eviction in the metadata

cache. The inverted hash table is stored sequentially by the real

addresses and prefetching is used to reduce NVM accesses like

the address mapping table.

• Free Space Management. Due to deduplication, when

a new write arrives, the old data in the corresponding line

stored in NVMM is possibly referenced by one or more other

initial addresses. In this case, the old data in the line cannot

be overwritten and the system needs to find a free location to

write the new data. A free space management (FSM) table is

used to manage the free lines in the NVMM. A one-bit flag is

used to label whether a line is free. The FSM table is also a

data structure of sequential storage maintained in the NVMM

and the recently-accessed entries are buffered in the metadata

cache. Since the flag of each initial address is only one bit,

one memory access can prefetch the flags of a large number

of sequential initial addresses.

C. Metadata Colocation between Dedup & Encryption

Existing counter mode encryption needs to store per-line

counters to encrypt/decrypt data. The per-line counter is 28 bits

for each line [22]. Deduplication also produces some metadata.

To reduce the space overhead of metadata, we propose a co-

located metadata storage scheme between deduplication and

encryption via embedding the per-line counters into the data

structures for deduplication.

Figure 8 shows the initial address mapping table and

inverted hash table for deduplication. There are two kinds

…

… …

… … …

Fig. 10: The workflow of a write operation.

… …

………

Fig. 11: The workflow of a read operation. (Step 2 and Step
4 can be executed in parallel with Step 3.)

of memory lines in the NVMM, i.e., deduplicated lines and

non-deduplicated lines. For the deduplicated lines, e.g., the

memory lines with the initAddr 2, 4, and 5 in Figure 8a,

the real addresses containing their data contents are stored in

the address mapping table. But their corresponding locations

in the inverted hash table are null as shown in Figure 8b, since

the deduplicated lines does not contain valid data. For the non-

deduplicated lines, e.g., the memory lines with the initAddr
0, 1, and 3 in Figure 8a, their storage locations in the address

mapping table are null due to no deduplication, and their hash

values are stored in the inverted hash table. Therefore, we

observe that for each memory lines in the NVMM, either its

realAddr location or its hash location is null.

Based on the above observation, we embed the counter of

each memory line into the null location either in the address

mapping table or in the inverted hash table, as shown in

Figure 9. Moreover, we use 1-bit flag in each location in the

two tables. In the address mapping table, the flag bit is used

to distinguish whether the location stores a real address or a

counter, and in the inverted hash table, the flag bit is used to

distinguish whether the location stores a hash or a counter. As

a result, the traditional counter table is removed, reducing the

metadata storage overhead.

Finally, we present the main workflows of write and read

operations in DeWrite, as shown in Figures 10 and 11.

IV. EVALUATION

A. Methodology

As real hardware is not available for implementing NVMM

and the proposed deduplication and encryption techniques,
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Fig. 12: The savings on writes to NVM-

M.
Fig. 13: The average bit flips per write

using different techniques.

Fig. 14: The write speedup compared

with the traditional secure NVMM.

we use gem5 [43] with NVMain [44] to evaluate DeWrite.

NVMain is a main memory simulator for emerging NVM

technologies, which can accurately simulate the timing and

energy information of NVM systems. We have implemented

a DeWrite prototype including deduplication and encryption

modules in NVMain. We compare DeWrite with the traditional

secure NVM system that uses the counter mode encryp-

tion without deduplication. The configuration parameters are

shown in Table II. This system consists of a four-level cache

hierarchy, following the expected trend of modern architec-

ture [21], [62]. The size of all CPU cache lines is 256B, which

is widely used in existing work [4], [8], [24], [29], [58], [59]

and real systems [60], [61]. The metadata cache’s size is 2MB,

to maintain the recently-accessed counters in the traditional

secure NVM system, and the recently-accessed metadata in

DeWrite. Moreover, without loss of generality, we model PCM

technologies [63] to evaluate DeWrite that in fact can be also

used in other NVMs. The PCM is modeled like Xu et al.’s

work [64]. Since NVMain does not include encryption-related

configurations, we set the latency of AES encryption to 96ns

per line and the energy overhead of AES encryption to 5.9nJ

per 128-bit block based on the specifications [65]–[67].

We evaluate DeWrite on both single-threaded and multiple-

threaded applications from SPEC CPU2006 [27] and PAR-

SEC 2.1 [28] benchmark suites. The two benchmark suites

contain rich and diverse real-world applications chosen from

many different areas, e.g., computer vision, enterprise servers,

physics computing, artificial intelligence, enterprise storage,

etc, which are widely used to evaluate the performance of

memory systems [4], [9], [21]–[23], [58]. The SPEC CPU2006

benchmarks are single-threaded and run with the ref input set.

To evaluate the performance on multiple-threaded benchmarks,

we run 8 applications from PARSEC 2.1 with the simlarge
input set, where the number of threads is set to 4. We configure

all the applications with the default settings. We first warm up

the system caches for 10 million instructions, and then run

TABLE II: The configurations of the NVM system.

Processor
CPU 4 cores, X86-64 processor, 2GHz

Private L1 cache 32KB, 8-way, LRU, 2-CPU-cycle latency

Private L2 cache 128KB, 8-way, LRU, 8-CPU-cycle latency

Shared L3 cache 2MB, 8-way, LRU, 25-CPU-cycle latency

Shared L4 cache 32MB, 8-way, LRU, 50-CPU-cycle latency

Main Memory Using PCM
Capacity 16GB, (16 banks, distributed in 2 ranks)

Read/write latency 75ns/300ns

Metadata cache 2MB, LRU, 25-CPU-cycle latency

each application for 4 billion instructions.

In the rest of this section, we show the improvements

made by DeWrite in endurance, performance, and energy

consumption, as well as its overhead.

B. NVM Endurance

One of main objectives of DeWrite is to reduce the number

of writes to NVMM and enhance its endurance by identifying

and eliminating the writes of duplicate cache lines. As shown

in Figure 12, we observe that DeWrite reduces on average

54% of whole-line memory writes across all applications.

For some applications which contain a large number of du-

plicate writes, e.g, cactusADM, libquantum, lbm, and

blackscholes, DeWrite even reduces more than 80% of

whole-line memory writes. Nevertheless, the memory writes

reduced by DeWrite (on average 54%) is less than the total

number of duplication lines existing in these applications (on

average 58%), as shown in Figure 2. About 4% of write

reduction is missed due to two reasons. First, due to the

prediction-based NVM access scheme and the limited range

of the hash table references (Section III-B2), DeWrite fails to

detect a small number of duplicate lines, i.e., on average 1.5%.

Moreover, the dirty data evicted from the metadata cache

incur on average 2.6% extra writes. The amount of metadata

writes to the NVMM is small due to the high hit rate (over

98%) achieved by the metadata cache, which is discussed in

Section IV-E.

As DeWrite is a line-level write reduction technique for

eliminating the whole-line writes of duplicate lines, it can be

combined with the bit-level write reduction techniques, such

as DCW [9], FNW [26] and DEUCE [22], for reducing the

bit writes of non-duplicate lines. We compare DeWrte with

these state-of-the-art write reduction techniques in terms of the

average bit flips per write, as shown in Figure 13. We observe

that DCW and FNW cause high bit-flip ratios, i.e., 50% and

43% due to the diffusion property of data encryption. DEUCE

reduces the bit-flip ratio to 24% by using partial-line re-

encryption. Silent Shredder [21] is a line-level write reduction

technique which aims to eliminate the writes of full-zero

cache lines from data shredding. However, since the full-zero

lines are not common, i.e., about 16% on average, as shown

in Figure 2, Silent Shredder reduces only a small number

of bit flips when combined with the bit-level techniques. In

contrast, DeWrite eliminates the writes of duplicate lines that

are abundant besides full-zero lines. When combined with

DCW, FNW, and DEUCE, DeWrite reduces the average bit
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Fig. 15: The write latency normalized

to that of the direct way.

Fig. 16: The read speedup compared

with the traditional secure NVMM.

Fig. 17: The relative IPC compared with

the traditional secure NVMM.

flips from 50% to 22%, from 43% to 19%, and from 24%
to 11%, respectively. Therefore, based on these bit-level write

reduction techniques, DeWrite further reduces over half of bit

flips, and thus increases the NVM lifetime substantially.

C. System Performance

1) Write Speedup: DeWrite reduces the write latency from

two aspects. First, DeWrite removes the write latency of

duplicate writes. Second, DeWrite eliminates duplicate writes,

which also reduces the write latency of other non-duplicate

writes to the same bank via decreasing their wait time. The

speedup ratio of memory write is interpreted as the write laten-

cy of the traditional secure NVM system without deduplication

divided by that of DeWrite, as shown in Figure 14. We observe

that DeWrite achieves an on average 4.2× speedup ratio in

memory writes across 20 applications. The speedup ratio of

memory writes depends on the fraction of the number of elim-

inated memory writes in the applications. In some applications

with high write reduction ratios (e.g., cactusADM and lbm),

the write speedup ratios are up to 8×.

In order to show the benefits from the prediction-based

parallel scheme in DeWrite, we compare the write latencies

of the direct way, the parallel way and DeWrite. The write

latencies of the three schemes are normalized to that of the

direct way, as shown in Figure 15. We observe that the parallel

way has the lowest write latency due to executing duplication

detection and encryption in parallel for all writes. DeWrite

executes duplication detection and encryption in parallel for

the writes which are predicted to be non-duplicate. DeWrite

obtains nearly the same write latency as the parallel way

due to the high prediction accuracy. Nevertheless, DeWrite

significantly reduces the energy overhead compared with the

parallel way as presented in Section IV-D. The direct way

has the highest write latency. Compared with the direct way,

DeWrite reduces 27% write latency on average.

2) Read Speedup: DeWrite reduces the wait time of read

requests to improve read performance by eliminating duplicate

write requests. But to handle a single read request, DeWrite

needs to first query the address mapping table and then read

the actual data, which slightly increases the read latency.

Nevertheless, the increased latency of accessing address map-

ping table appears negligible, compared with the reduced read

latency from eliminating duplicate writes. The speedup ratio

of memory read is interpreted as the average read latency of

the traditional secure NVM system divided by that of DeWrite,

as shown in Figure 16. We observe that DeWrite achieves an

average 3.1× read speedup ratio across 20 applications.

3) Instructions per Cycle: Due to the elimination of dupli-

cate writes, the write and read latencies are reduced, which im-

proves the overall performance of the system, i.e., instructions

per cycle (IPC). Figure 17 shows the relative IPC of DeWrite

normalized to the traditional secure NVM system. We observe

that DeWrite achieves on average 82% IPC improvement

across all applications.

4) The Worst-case Performance: DeWrite exploits the d-

eduplication to improve the performance. When there are

no duplicate cache lines written to NVMM which in fact

rarely occurs, DeWrite incurs slight acceptable decrease of

the system performance. To investigate the performance of

DeWrite in the worst case that no duplicate writes exist, we

generate a benchmark by inserting the randomized values into

a two-dimensional array and then traversing the array. Thus

there are no duplicate cache lines written to NVMM in this

benchmark. Figure 18 shows the write latency, read latency

and IPC normalized to the traditional secure NVMM when

running this benchmark.

We observe that DeWrite incurs negligible performance

degradation in the worst case, compared with the traditional

secure NVMM. The reason is that: 1) For the write laten-

cy, since there are no duplicate writes, the prediction-based

parallel scheme in DeWrite always executes the encryption

and duplication detection in parallel, and thus removes the

duplication detection latency off from critical path of memory

writes. Moreover, the writes of deduplication-related metadata

are mostly buffered in the metadata cache. Hence, DeWrite

only slightly increases the write latency. 2) For the read

latency, since there are no duplicate writes, all counters are

stored in the address mapping table in DeWrite as presented

in Section III-C. DeWrite slightly increases the read latency

due to first querying the counter in the metadata cache and

then reading the data. 3) As a result, DeWrite incurs negligible

decrease on the IPC, i.e., less than 3% decrease.

D. Energy Consumption

As writes in NVMs consume significant energy, DeWrite

eliminates a large number of duplicate writes and has a great

impact on the energy consumption of the system. We measure

energy consumption of the secure NVM system including

NVM, AES circuit and dedup logic. We compare the energy

overhead of DeWrite and the traditional secure NVM system
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Fig. 18: The normalized performance in

the worst case. Fig. 19: The energy savings of DeWrite.
Fig. 20: The energy overheads normal-

ized to that of the parallel way.

without deduplication, as shown in Figure 19. We observe that

DeWrite reduces 40% of energy overhead on average across all

applications. The reason is that DeWrite reduces the number

of writes and data encryption. The energy overhead of the

dedup logic including CRC-32 hash computation and cache

line comparison is negligible, compared with that of AES [67].

To show the benefits from the prediction-based parallel

scheme in DeWrite, we also compare the total energy con-

sumptions of the direct way, DeWrite, and the parallel way.

The energy overheads of the three schemes are normalized to

that of the parallel way, as shown in Figure 20. The direct

way has the lowest energy overhead due to only encrypting

non-duplicate writes. DeWrite encrypts the writes that are

predicted to be non-duplicate during duplication detection.

DeWrite obtains nearly the same energy overhead as the direct

way due to the high prediction accuracy. The parallel way

encrypts all writes and hence has the highest energy overhead.

Compared with the parallel way, DeWrite reduces 32% energy

overhead on average.

According to the results shown in Figures 15 and 20, we

observe that the direct way has the highest write latency and

the lowest energy overhead. The parallel way achieves the

opposite results. DeWrite has nearly the same energy overhead

as the direct way while reduces the 27% write latency on

average; it has nearly the same write latency as the parallel way

while reduces 32% energy overhead on average. Therefore,

DeWrite is much better in terms of both the write speedup and

energy reduction by leveraging the prediction-based parallel

scheme with high prediction accuracy.

E. Space Overheads of the Metadata Storage and Cache

1) The Metadata Storage: The metadata storage includes

four tables, i.e., the address mapping table, inverted hash table,

hash table, and FSM table. In the inverted hash and address

mapping tables, the storage overhead is 4B+1bit/line, due to

the 4B real address/hash and 1bit flag in each entry. The 4B

real address can address up to 1TB of NVM with 256B line

size, which is sufficiently large for the 16GB NVM in our

configurations. In the hash table, each entry is 9B and the

number of entries is related with the deduplication ratio. Since

the deduplication ratios range from 18.6% to 98.4% across the

20 applications as shown in Section II-C, the storage overhead

in the hash table is less than 9 ∗ (1 − 18.6%) < 8B/line.

The storage overhead of FSM table is 1 bit/line. Hence, the

total storage overhead of metadata is (4B+4B+8B+3bit)/256B

≈ 6.25% of the NVM capacity.

The approximate 6.25% metadata storage overhead of

DeWrite is lower than that of DEUCE [22]. DEUCE has two

kinds of metadata. First, DEUCE needs a 1-bit flag per word

in each line to indicate whether the word is modified. Each

word is 16 bits in DEUCE and hence the storage overhead

of the flags is 1 bit/ 16 bits = 6.25%. Second, DEUCE uses

the counter mode encryption in which the storage overhead

of the per-line counter is 28 bits/line. DeWrite only has the

6.25% metadata storage overhead from deduplication while

does not have the metadata storage overhead from memory

encryption since our proposed co-located metadata storage

scheme reduces the storage overhead from counters.

2) The Metadata Cache: DeWrite maintains a metadata

cache to reduce metadata accesses to NVMM. The metadata

cache should be as small as possible while maintaining a high

hit rate. We investigate the influence of the cache size on the

average cache hit rate across the 20 applications.

For the hash table cache, as shown in Figure 21a, we observe

that increasing the cache size beyond 512KB has little impact

on the cache hit rate. For the address mapping and inverted

hash tables, the prefetching granularity also impacts on the

hit rate, and we investigate the cache hit rates with different

prefetching granularities, from 16 to 1024 entries on each

NVM access. Figures 21b and 21c show that the size of 512KB

with the prefetching granularity of 256 achieves high cache hit

rates for both address mapping cache and inverted hash cache.

Larger cache sizes result in only small increase of hit rate.

Considering the tradeoff between the cache size and hit rate,

we configure both caches with a capacity of 512KB. For the

FSM table, as shown in Figure 21d, its cache hit rate achieves

98% for only 4KB cache size and reaches over 99% for 128KB

cache size. This is because the flag of each initial address is

only one bit and thus the size of the FSM table is very small.

We configure the cache of the FSM table with a capacity of

128KB. Therefore, the required total capacity of the metadata

cache is 512KB*3+128KB = 1664KB < 2MB.

V. RELATED WORK

Secure Non-volatile Main Memory. As both write en-

durance and security are important problems for NVMM,

many schemes have been proposed to reduce writes in the

encrypted NVMM. i-NVMM [68] proposed that the hot data

are kept in the unencrypted form in the memory for improving

the system performance and encrypted only when the system

is powered down. However, i-NVMM fails to protect the

memory against the bus snooping attack, since the hot data
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(a) Hash table cache (b) Address mapping cache (c) Inverted hash cache (d) Free space management cache

Fig. 21: The cache hit rates of different caches with different sizes.

are unencrypted through the bus. Unlike i-NVMM, DeWrite

encrypts both hot and cold data written to NVMM and defends

against both the stolen DIMM and bus snooping attacks.

DEUCE [22] reduces the bits written to secure NVMM by

only re-encrypting modified words (i.e., 2 bytes) in a cache

line and keeping unmodified words in the last encrypted state.

Based on DEUCE, SECRET [23] focuses on MLC NVMs

and further reduces the re-encryption of full-zero words in a

cache line. DeWrite is a line-level write reduction scheme,

which is orthogonal with the subline-level (word-level) ones,

like DEUCE and SECRET. Based on these subline-level write

reduction techniques, DeWrite can further reduce over half

of bit flips, as evaluated in Section IV-B. Awad et al. [21]

proposed Silent Shredder, which eliminates the writes of full-

zero cache lines from data shredding. Unlike Silent Shredder,

DeWrite eliminates all duplicate lines besides full-zero lines.

For ensuring the metadata consistency and persistence in

the metadata cache on a system failure (e.g., power failure

and system crash), Silent Shredder [21] uses a battery-backed

write-back metadata cache. Liu et al. [69] introduce a new

programming primitive counter_cache_writeback()
to enable programmers to actively write back the metadata

in the metadata cache into the write queue when necessary,

and leverages the asynchronous DRAM refresh (ADR) [70]–

[72] to persist the data in the write queue on a system failure.

SecPM [73] proposes a counter cache write-through scheme

to guarantee crash consistency of counters. Moreover, NVMs,

e.g., STT-RAM, can be used to achieve a non-volatile metadata

cache [74] to ensure the metadata persistence. These metadata

persistence schemes can be also used in DeWrite.

Main Memory Deduplication. Memory deduplication [30]–

[33], [75] has been studied to save DRAM space by identifying

and merging identical memory pages. DeWrite is different

from memory deduplication in the following aspects. First, in

memory deduplication, the duplicate pages are first written into

the memory and then identified and merged in the background,

which hence fails to reduce the writes to memory. DeWrite

reduces the writes by identifying and eliminating duplicate

cache lines before writing them to NVMs. Second, memory

deduplication eliminates duplicate pages, which is effective

only for special applications, e.g., virtual machines, which

have rich page-level redundancies. DeWrite aims to eliminate

line-level redundancies which generally exist in real-world

applications as shown in Section II-C. Moreover, traditional

memory deduplication suffers from the side channel attacks

when the attacker and victim run their applications in the same

computer [76]–[78]. The side channel attacks are beyond the

scope of this paper that aims to protect NVMM from physical

access based attacks in which the attacker is not the user of

the computer as presented in Section II-A.

Storage Deduplication. Deduplication has been widely used

in storage systems [34]–[37], [79] to reduce the storage over-

head of external memories, e.g., disks and SSDs. For example,

CAFTL [80] and CA-SSD [81] deploy deduplication in the

flash translation layer of SSDs for enhancing their lifespan.

Moreover, NV-Dedup [82] employs deduplication in NVM-

oriented file systems to eliminate data redundancy at the chunk

level (4KB size) for saving NVM space and improving per-

formance. However, these works are fundamentally different

from DeWrite. Because they use cryptographic hash functions,

e.g., SHA-1 [38] and MD5 [39], to compute the fingerprints

of data. Thus duplication can be detected by comparing

fingerprints. In fact, the latency of cryptographic hashing,

typically more than 300 ns [40], [41], makes it unsuitable

for highly latency-sensitive main memory to eliminate cache-

line-level duplications, as analyzed in Section III-B. Unlike

them, DeWrite proposes a cost-efficient cache-line-level d-

eduplication technique by leveraging the intrinsic read/write

asymmetry of NVMs and light-weight hashing, significantly

reducing the latency of detecting duplication.

VI. CONCLUSION

In this paper, we propose DeWrite to enhance lifetime

and performance of secure NVMM through deduplicating

writes. DeWrite addresses the challenges of performing in-line

deduplication on secure NVMM and judiciously integrating

deduplication and NVM encryption to deliver high perfor-

mance. DeWrite is implemented via revising the metadata

store and metadata cache that already exist in secure NVMM

and only adding a dedup logic into the memory controller, thus

achieving the low design complexity. Our experimental results

demonstrate that DeWrite eliminates 54% of writes to secure

NVMM, and speeds up memory writes and reads by 4.2× and

3.1× on average. Meanwhile, DeWrite improves the IPC by

82% and reduces 40% of energy consumption on average.
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