
A Write-friendly Hashing Scheme for Non-volatile
Memory Systems

Pengfei Zuo and Yu Hua
Wuhan National Laboratory for Optoelectronics

School of Computer, Huazhong University of Science and Technology, Wuhan, China
Corresponding author: Yu Hua (csyhua@hust.edu.cn)

Abstract—Emerging non-volatile memory technologies (NVMs)
have been considered as promising candidates for replacing
DRAM and SRAM, due to their advantages of high density,
high scalability, and requiring near-zero standby power, while
suffering from the limited endurance and asymmetric properties
of reads and writes. The significant changes of low-level memory
devices cause nontrivial challenges to high-level in-memory and
in-cache data structure design due to overlooking the NVM device
properties. In this paper, we study an important and common
data structure, hash table, which is ubiquitous and widely used
to construct the index and lookup table in main memory and
caches. Based on the observations that existing hashing schemes
cause many extra writes to NVMs, we propose a cost-efficient
write-friendly hashing scheme, called path hashing, which incurs
no extra writes to NVMs while delivers high performance. The
basic idea of path hashing is to leverage a novel hash-collision
resolution method, i.e., position sharing, which meets the needs
of insertion and deletion requests without extra writes to NVMs.
By further exploiting double-path hashing and path shortening
techniques, path hashing delivers high performance of hash
tables in terms of space utilization and request latency. We have
implemented path hashing and used a gem5 full system simulator
with NVMain to evaluate its performance in the context of NVMs.
Extensive experimental results demonstrate that path hashing
incurs no extra writes to NVMs, and achieves up to 95% space
utilization ratio as well as low request latency, compared with
existing state-of-the-art hashing schemes.

I. INTRODUCTION

Traditional memory technologies, including DRAM and
SRAM, have been widely used as the main memory and on-
chip caches in the memory hierarchy, which however suffers
from the increasing leakage power dissipation and limited
scalability [1], [2]. Non-volatile memory (NVM) technologies,
e.g., phase-change memory (PCM), resistive random access
memory (ReRAM), and spin-transfer torque RAM (STT-
RAM), are promising candidates of next-generation memo-
ry [3], [4], due to their advantages of high density, high
scalability, and requiring near-zero standby power [5], [6],
[7]. NVMs however have the limitations in terms of write
endurance and performance. NVMs typically have limited
write endurance, e.g., 107−108 writes for PCM [8]. The writes
on NVMs not only consume the limited endurance, but also
cause higher latency and energy than reads [9].

With the significant changes of memory characteristics in
computer architecture, an important problem arises [2], [10],
[11], [12], [13], i.e., how could in-memory and in-cache data

structures be modified to efficiently adapt to NVMs? The
paper focuses on the hashing-based data structures, which are
ubiquitous and widely used to construct the index and lookup
table in main memory (e.g., main memory database) [14],
[15], [16] and caches [17], [18], due to fast query response
and constant-scale addressing complexity. Designing hashing
schemes on traditional memory technologies, i.e., DRAM
and SRAM, mainly considers two performance parameters,
including space utilization and request latency [19]. Compared
with DRAM and SRAM, one main challenge in designing
NVM-friendly hashing schemes is to cope with the limited
write endurance and intrinsic asymmetric properties of reads
and writes. NVM writes incur much higher latency (i.e.,
3 − 8X [20]) and energy than reads, as well as harm the
limited endurance. Hence, one important design goal of NVM-
friendly hashing schemes is to reduce the NVM writes, while
delivering high performance.

Hash collisions are difficult to be fully avoided in hashing-
based data structures due to probabilistic property [21].
Traditional hashing techniques dealing with hash collisions
generally include chained hashing [22], linear probing [23],
[24], 2-choice hashing [25] and cuckoo hashing [19]. However,
based on both our empirical analysis and experimental
evaluation, we observe that most commonly used hashing
techniques usually result in many extra writes, i.e., a single
item request (e.g., insertion and deletion) to hash table writes
multiple items in NVMs, which are not friendly to the NVM
write endurance.

In this paper, we present a write-friendly hashing scheme,
called path hashing, for NVMs to minimize the writes while
efficiently dealing with the hash collisions. Path hashing
leverages a novel solution, i.e., position sharing, to deal with
hash collisions, which is not used in any previous hashing
schemes. Storage cells in the path hashing are logically
organized as an inverted complete binary tree. The last level of
the inverted binary tree, i.e., all leaf nodes, is addressable by
the hash functions. All nodes in the remaining levels are non-
addressable and considered as the shared standby positions
of the leaf nodes to deal with hash collisions. When hash
collisions occur in a leaf node, the empty standby positions
of the leaf node are used to store the conflicting items. Thus
insertion and deletion requests in path hashing only need to

978-1-5386-2032-8/17/$31.00 c⃝ 2017 IEEE



probe the leaf node and its standby positions for finding an
empty position or the target item, resulting in no extra writes.
In summary, the main contributions of this paper include:

• We investigate the influence of existing hashing schemes
on the writes to NVMs based on both empirical analysis
and experimental evaluation. Our main insight is that
most of existing hashing schemes usually result in many
extra writes to NVMs. It is necessary to improve existing
hashing schemes to efficiently adapt to NVMs.

• We propose a novel write-friendly hashing scheme, i.e.,
path hashing, which leverages position sharing technique
to deal with hash collisions, incurring no extra NVM
writes for insertion and deletion requests. By further
exploiting double-path hashing and path shortening tech-
niques, path hashing delivers high performance of hash
tables in terms of space utilization ratio and request
latency.

• We have implemented path hashing and evaluated it using
the gem5 [26] full system simulator with NVMain [27].
Experimental results show that path hashing incurs no
extra writes to NVMs, and achieves up to 95% space
utilization ratio as well as low request latency, compared
with existing state-of-the-art hashing schemes.

The rest of this paper is organized as follows. Section II
presents the background and motivation. Section III describes
the design of path hashing. Section IV presents the evaluation
methodology and results. Section V discusses the related work
and Section VI concludes our paper.

II. BACKGROUND AND MOTIVATION

In this section, we introduce the background of non-volatile
memory technologies and existing hashing schemes. We then
analyze the influence of existing hashing schemes on the
number of NVM writes.

A. Non-volatile Memory Technologies

Unlike traditional DRAM and SRAM using electric charges,
emerging non-volatile memory technologies, e.g., PCM, R-
eRAM, and STT-RAM, use resistive memory to store infor-
mation, which have higher cell density and near-zero leakage
power. Hence, NVMs have been considered as promising
candidates of next-generation main memory and caches.

PCM exploits the resistance difference between amorphous
and crystalline states in phase change materials to store binary
data, e.g., the high-resistance state represents ‘0’, and the low-
resistance state represents ‘1’. The cell of ReRAM typically
has the Metal-Insulator-Metal structure which can be changed
between a high-resistance state (representing ‘0’) and a low-
resistance state (representing ‘1’). STT-RAM is a magnetic
RAM which switches the memory states using spin-transfer
torque.

Although different materials and technologies are used in
these NVMs, some common limitations are shared. First,
they all have the intrinsic asymmetric properties of reads and
writes. Write latency is much higher than read latency (i.e.,
3− 8X) [5], [6], [20], and writes also consume higher energy

than reads. Second, NVMs generally have the limited write
endurance, e.g., 107 − 108 writes for PCM [8]. Therefore,
NVM systems are designed to reduce writes.

B. Existing Main Hashing Schemes

Hashing-based data structures have been widely used to
construct the index or lookup table in the main memory [15]
and caches [18], due to fast query response and constant-scale
addressing complexity. Hash collisions, i.e., two or more keys
being hashed to the same cell, are practically unavoidable in
hashing-based data structures. Typical examples of existing
hashing schemes to deal with hash collisions are described as
follows.

Chained hashing stores the conflicting items in a linked list
and links the list to the conflicting cell [22]. Chained hashing
is popular due to the simple data structure and algorithms.
However, when querying an item, the chained hashing needs
to scan the list that is linked with the cell. The querying
performance is poor when the linked lists are too long.
Moreover, the chained hashing also inherits the weaknesses of
linked lists in heavy space overhead of pointers when storing
small keys and values.

Linear probing needs to probe the hash table for the closest
following empty cell when the hash computation results in a
collision in a cell. To search a key x, linear probing searches
the cell at index h(x) and the following cells, h(x)+1, h(x)+
2, ..., until observing either the cell with the key x or an empty
cell. Deleting an item in linear probing is complicated, which
needs to rehash/move multiple items to fill the empty positions
in the lookup sequence [24].

2-choice hashing uses two different hash functions h1(x)
and h2(x) to compute two positions for each item [22]. An
inserted item is stored in any one empty position between
the two positions. The insertion fails when both two positions
are occupied. The query and deletion are simple, which only
need to probe two positions. However, the space utilization is
usually low due to only two positions used to deal with hash
collisions for an inserted item which are easily both occupied.

Cuckoo hashing uses d (d ≥ 2) hash functions to compute
d positions for each item. The inserted item is stored in any one
empty position among the d positions. If all the d positions are
occupied, cuckoo hashing randomly evicts the item in one of d
positions. The evicted item further searches the empty position
in its d positions. Cuckoo hashing has higher space utilization
than 2-choice hashing due to evictions, and achieves constant
lookup time, i.e., probing d positions. However, the frequent
evictions for inserting an item usually result in high insertion
latency and possible endless loop [19], [28]. In practice, d = 2
is most often used due to sufficient flexibility when using only
two hash functions [14], [29].

C. The Influence of Existing Hashing Schemes on NVMs

Designing hashing schemes on traditional memory tech-
nologies, i.e., DRAM and SRAM, mainly considers two per-
formance parameters, including space utilization and request
latency [19]. When designing hashing schemes on NVMs, the



a b c

d

e

g f

h

70 1 2 3 4 5 6

f

a d e b c

70 1 2 3 4 5 6

70 1 2 3 4 5 6

a b

70 1 2 3 4 5 6

x
h1(x) h2(x)

Evict

(a) Chained Hashing (b) Linear Probing

(c) 2-choice Hashing (d) Cuckoo Hashing

x
h1(x) h2(x)

Fig. 1. Existing main hashing schemes.

third important parameter, i.e., the number of NVM writes,
should be also considered due to the intrinsic asymmetric
properties and the limited write endurance of NVMs. We
analyze the influence of existing hashing schemes on the
number of NVM writes.

In the chained hashing, when inserting and deleting an
item in the linked list, besides changing the item itself, the
pointers of other items also need to change, which results in
extra writes to NVMs. For example, as shown in Figure 1(a),
when deleting the item d, the pointer of a should point to e.
In the linear probing, when removing an item, the following
multiple items move forward, which results in multiple NVM
writes. In Figure 1(b), a, d, and e have the same hashing
positions, i.e., h(a) = h(d) = h(e) = 1. When deleting item
a, d moves to the position 1 and e moves to the position 2.
2-choice hashing does not cause extra NVM writes, due to
only probing two locations for inserting/deleting an item as
shown in Figure 1(c). In the cuckoo hashing, during inserting
an item, multiple items are evicted and rewritten to new
positions. When the hash table has a high load factor, e.g.,
> 50%, an insertion usually causes tens of eviction operations,
which results in the corresponding number of NVM writes.
As shown in Figure 1(d), when inserting the item x, both
hashing positions, i.e., 1 and 4, are occupied. Cuckoo hashing
randomly evicts the item in one of the two positions, e.g.,
b. b further searches its another hashing position, 7. If the
position 7 is also occupied, the data item in 7 will be evicted.
The eviction operations may be endless, called endless loop.
If endless loop occurs, the size of hash table needs to be
extended and all stored items are rehashed. We also evaluate
these hashing schemes in experimental evaluation in terms of
the number of NVM writes as shown in Section IV-B1.

In summary, most existing hashing schemes incur extra
writes which are not friendly to the NVM write performance
and endurance. Even though not causing extra NVM writes,
2-choice hashing has extremely low space utilization as
evaluated in Section IV-B2, since only two positions for an

item are used to deal with hash collisions. The space utilization
is a very important parameter especially in the context of
space-limited NVM caches and main memory. Hence, it is
important for designing a hashing scheme to minimize the
NVM writes while ensuring the high performance in terms of
space utilization and request latency.

III. THE DESIGN OF PATH HASHING

In this section, we present the path hashing, which leverages
position sharing technique to deal with hash collisions
without extra NVM writes, and double-path hashing and path
shortening techniques to deliver high performance in terms of
space utilization and request latency.

Path hashing leverages position sharing to allocate several
standby cells for each addressable cell in the hash table to deal
with hash collisions. The addressable cells in the hash table are
addressable by the hash functions and the standby cells are not
addressable. When the hash collisions occur in an addressable
cell in the hash table, the conflicting items can be stored in
its standby cells. An insertion/deletion request only needs to
search an addressable cell in the hash table and its standby
cells for an empty position or the target item, without extra
writes. The standby cells of each addressable cell in the hash
table are shared by other addressable cells, which prevents
uneven hashing to produce lots of empty standby cells, thus
improving the space utilization. An addressable cell and all
its standby cells are likely to be occupied, which results in
insertion failure. Path hashing leverages double-path hashing
to compute two addressable cells for each item by using two
hash functions, which further alleviates hash collisions and
improves space utilization. Moreover, a read request needs to
probe multiple standby cells in two paths to find the target
item. Path shortening is proposed to reduce the number of
probed cells in a request. We present the physical storage
structure of path hashing in Section III-D, which allows that
all nodes in a read path can be accessed in parallel with the
time complexity of O(1).

A. Position Sharing

Path hashing leverages a novel collision-resolution scheme
to deal with hash collisions, i.e., position sharing. Storage
cells in the path hashing is logically organized as an inverted
complete binary tree. As shown in Figure 2, the binary tree
has L + 1 levels ranging from the root level 0 to the leaf

Level  L

Level  2

Level  1

Level  0

Addressable cells

Shared standby cells

0 1 2 3 4 5 6 7

x
h(x)

Fig. 2. An illustration of path hashing architecture with L = 3.



level L. Only the leaf nodes in the level L can be addressable
by the hash functions, i.e., addressable cells. The nodes in
the remaining levels ranging from level 0 to level L − 1 are
the shared standby positions to deal with hash collisions, i.e.,
standby cells. When an item is inserted into an occupied leaf
node ℓ, path hashing searches for an empty standby cell in
the path-ℓ. Path-ℓ is defined as the path descending from the
occupied leaf node ℓ to the root.

For example, as shown in Figure 2, a new item x is hashed
in the position of the leaf node 2. If the leaf node 2 is occupied,
path hashing scans the path-2 from the leaf node 2 to the root
for an empty position. Path hashing leverages the overlaps
among different paths to share the standby positions in the
level 0 to level L−1. As shown in Figure 2, each node in the
level 2 is shared by two leaf nodes to deal with hash collisions.
Each node in level 1 is shared by four leaf nodes. The root
node is shared by all leaf nodes.

Insertion and deletion requests in path hashing only need to
read the nodes in a path for finding an empty position or the
target item, which hence do not cause any extra writes. The
nodes in the levels from 0 to L−1 are shared to deal with hash
collisions, which prevents uneven hashing to produce lots of
empty standby cells, thus improving the space utilization.

B. Double-path Hashing

Since a path in the binary tree only has L+1 positions, the
use of one path can only deal with at most L hash collisions in
an addressable position. The hashing scheme using one path
fails when more than L + 1 items are hashed into the same
position. To address this problem, we propose the double-path
hashing which uses two hash functions for each item in the
path hashing. Different from 2-choice hashing which seeks
two cells for an item using two hash functions, double-path
hashing seeks two paths.

As shown in Figure 3, a new item x has two hashing
positions, i.e., 2 and 5, computed by two different hash
functions, h1(x) and h2(x). The item x is inserted into an
empty position between the leaf nodes 2 and 5. If both two
nodes are occupied, the path hashing simultaneously scans the
path-2 and path-5 to find an empty position. It is important
that the two hash functions should be independent and not
related with each other.

Level  L

Level  2

Level  1

Level  0

0 1 2 3 4 5 6 7

x
h1(x) h2(x)

Fig. 3. An illustration of path hashing (L = 3) with two hash functions.

������������������������ 	 
 � � 
 � � � � � 
	 

 
� 
� 

 
�����������������
Fig. 4. An illustration of path hashing (L = 4) with path shortening.

Based on the position sharing, double-path hashing can
further alleviate the hash collisions via providing more
available positions for conflicting items. Moreover, due to the
randomization of two independent hash functions, the two
paths for an inserted item have no empty position with a low
probability, which enables path hashing to maintain a high
space utilization, as evaluated in Section IV-B2.

C. Path Shortening

For the path hashing with L+ 1 levels, each query request
needs to probe two paths with L+1 nodes. We observe that the
nodes in the bottom levels of the inverted binary tree provide
a few standby positions to deal with hash collisions, while
increasing the length of the read path. For example, the level
0 only contains 1 position but adds by 1 in the length of the
read path, as shown in Figure 4.

To reduce the length of the read path, we propose the path
shortening to reduce the number of read nodes in a read path.
Path shortening removes multiple levels in the bottom of the
inverted binary tree and only reserves several top levels. For a
query request which is hashed in the leaf ℓ, path hashing only
reads the nodes in the reserved levels in the path-ℓ, which
reduces the length of the read path. As shown in Figure 4,
the levels 0 and 1 are removed. The levels 2, 3, and 4, are
reserved levels. When reading a path, e.g., path-4, we only
read the nodes in the reserved levels 2, 3, and 4 in the path.
Removing the bottom levels reduces the length of paths, which
however reduces the number of positions to deal with hash
collisions, thus decreasing the space utilization of hash table.
We investigate the influence of the number of reserved levels
on space utilization as shown in Section IV-B3, and observe
that reserving a small part of levels can also achieve a high
space utilization in path hashing.

D. Physical Storage Structure

Even though storage cells in path hashing are logically
organized as a binary tree, the physical storage structure of
path hashing is simple and efficient. Unlike the traditional

0 1 2 2
L
-1 2

L
………………………… …… …… ……

Level L Level L-1 Level L-k

Fig. 5. Physical storage structure of path hashing.



binary tree built via pointers, the path hashing can be
stored in a flat-addressed one-dimensional structure, e.g., a
one-dimensional array. Figure 5 shows the physical storage
structure of the path hashing with L + 1 levels and k + 1
reserved levels (k ≤ L). The leaf nodes in the level L are
stored in the first 2L positions in the one-dimensional structure.
The level L−1 is stored in the following 2L−1 positions, and
so on. The removed bottom levels by path shortening do not
need to be stored. In the storage structure, given a leaf node ℓ,
it is easy to find all nodes of the path-ℓ in the one-dimensional
structure, as described in Algorithm 1.

The flat-addressed storage structure allows all nodes in a
path to be read in parallel from NVMs since the node accesses
are independent to each other, which has the time complexity
of O(1). The node access pattern of path hashing is different
from that of chained hashing in which the nodes in a chain
can only be sequentially accessed. For example, as shown
in Figure 1, for a query request to position 2, the chained
hashing first reads a and then obtains the storage position of
d according to the pointer stored in a. The storage position
of e can be only obtained by the pointer stored in d. The
structure of linked lists in the chained hashing results in low
access performance.

Algorithm 1 Computing the storage locations of all nodes in
path-ℓ
Input: The number of levels L + 1, the number of reserved
levels k + 1, and the leaf node ℓ (stored in the ℓ-th position
in the one-dimensional structure);
Output: The storage locations of all nodes in path-ℓ: P [ ]

1: P [0] = ℓ
2: for (i = 1; i < k + 1; i++) do
3: ℓ = ⌊ ℓ

2⌋
4: P [i] = ℓ+ 2L+1 − 2L−i+1

5: return P [ ]

E. Practical Operations

For a path hashing with L+1 levels and k+1 reserved levels
(k ≤ L), its physical storage structure is a one-dimensional
array with 2L+1 − 2L−k cells. Each cell stores a <key, value,
token>, where the token denotes whether the cell is empty
or not, e.g., ‘token == 0’ represents empty and ‘token == 1’
represents non-empty. Path hashing determines whether a cell
is empty by checking the value of its token. We present the
practical operations in path hashing including insertion, query
and deletion.

1) Insertion: For inserting a new item <Key, Value>, path
hashing first computes two locations, ℓ1 and ℓ2, by using
two different hash functions, h1() and h2(), as shown in
Algorithm 2. If an empty cell exists in the leaf nodes ℓ1 and
ℓ2 in the level L, path hashing inserts the new item into the
empty cell and changes the token of the cell to ‘1’. If both the
two leaf nodes are non-empty, path hashing further iteratively
checks the nodes of path-ℓ1 and path-ℓ2 in the next level until

finding an empty cell. In Algorithm 2, Path-ℓ(i) denotes the
node of path-ℓ in the level i, whose storage location in the
one-dimensional array can be computed by Algorithm 1.

Algorithm 2 Insert(Key, Value)
1: ℓ1 = h1(Key)
2: ℓ2 = h2(Key)
3: for (i = L; i > L− k − 1; i−−) do
4: if Path-ℓ1(i) != NULL then
5: Insert <Key, Value> in Path-ℓ1(i)
6: Return TRUE
7: if Path-ℓ2(i) != NULL then
8: Insert <Key, Value> in Path-ℓ2(i)
9: Return TRUE

10: Return FALSE

2) Query: In the query operation, path hashing first
computes its two paths, path-ℓ1 and path-ℓ2, based on the key
of the queried item. Path hashing then checks the nodes of
two paths from the level L to level L − k until finding the
target item, as shown in Algorithm 3. If the item can not be
found in the two paths, it means the item does not exist in the
hash table.

Algorithm 3 Query(Key)
1: ℓ1 = h1(Key)
2: ℓ2 = h2(Key)
3: for (i = L; i > L− k − 1; i−−) do
4: if Path-ℓ1(i) != NULL && Path-ℓ1(i).key == Key then
5: Return Path-ℓ1(i).value
6: if Path-ℓ2(i) != NULL && Path-ℓ2(i).key == Key then
7: Return Path-ℓ2(i).value
8: Return NULL

3) Deletion: In the deletion operation, path hashing first
queries the cell storing the item to be deleted, and then deletes
the item from the cell by changing the token of the cell to ‘0’,
as shown in Algorithm 4.

Algorithm 4 Delete(Key)
1: ℓ1 = h1(Key)
2: ℓ2 = h2(Key)
3: for (i = L; i > L− k − 1; i−−) do
4: if Path-ℓ1(i) != NULL && Path-ℓ1(i).key == Key then
5: Delete the item in Path-ℓ1(i)
6: Return TRUE
7: if Path-ℓ2(i) != NULL && Path-ℓ2(i).key == Key then
8: Delete the item in Path-ℓ2(i)
9: Return TRUE

10: Return FALSE

Note that we present only the algorithms (Algorithms 2, 3
and 4) of insertion, query and deletion operations under the
non-parallel mode. In practice, all nodes in the two paths can
be accessed in parallel as described in Section III-D.



TABLE I
EXPERIMENTAL CONFIGURATIONS

Processor and Cache
CPU 4 cores, X86-64 processor, 2 GHz

Private L1 cache 32 KB (each core), 2-way, LRU, 2-cycle latency
Shared L2 cache 4 MB, 8-way, LRU, 20-cycle latency
Shared L3 cache 32 MB, 8-way, LRU, 50-cycle latency

Memory Controller FCFRFS
Main Memory using PCM

Capacity 16 GB
Read latency 75 ns
Write latency 150 ns

IV. PERFORMANCE EVALUATION

In this section, we evaluate our proposed path hashing by
being compared with existing hashing schemes in terms of the
number of NVM writes, space utilization ratio, and request
latency.

A. Experimental Configurations

Since real NVM devices are not available for us yet, we
implement path hashing and existing hashing schemes in the
gem5 [26] full-system simulator with NVMain [27] to evaluate
their performance in the context of NVMs. NVMain is a
timing-accurate main memory simulator for emerging non-
volatile memory technologies. The configuration parameters of
the system are shown in Table I. The system has a three-level
cache hierarchy. L1 cache is private and L2 cache is shared. L3
cache is DRAM, whose capacity is equally partitioned among
all the cores [30]. The size of all cache lines is 64 bytes.
Without loss of generality, we model PCM technologies [31]
as the main memory to evaluate path hashing that in fact can
be also used in other NVMs. The read latency of the PCM is
75 ns and the write latency is 150 ns, like the configurations
in [30], [32].

We compare path hashing with existing hashing schemes
described in Section II-B, i.e., chained hashing, linear prob-
ing, 2-choice hashing, and cuckoo hashing. We use three
datasets including a random-number dataset and two real-
world datasets as follows.

• RandomNum. We generate the random integer data
ranging from 0 − 226 via a pseudo-random number
generator. We use the randomly generated numbers as the
keys of the items in hash tables. The randomly generated
integer is a commonly used dataset for evaluating the
performance of hashing schemes [14], [19], [33].

• DocWord. The dataset consists of five text collections
in the form of bags-of-words [34], in which we use
the largest collection, PubMed abstracts, for evaluation.
PubMed abstracts contains 8.2 million documents and
about 730 million words in total. We use the combinations
of document IDs and word IDs as the keys of the items
in hash tables.

• Fingerprint. The dataset is extracted from MacOS [35],
[36] which contains the daily snapshots of a Mac OS X

6.5

0.5

1

1.5

2

2.5

3

0.6 0.8

N
o

. 
o

f 
M

o
d

if
ie

d
 I

te
m

s

Load Factor

Chained Linear 2-choice

Cuckoo Path

(a) RandomNum

9.2

0.5

1

1.5

2

2.5

3

0.6 0.8

N
o

. 
o

f 
M

o
d

if
ie

d
 I

te
m

s

Load Factor

Chained Linear 2-choice

Cuckoo Path

(b) DocWord

6.6

0.5

1

1.5

2

2.5

3

0.6 0.8

N
o

. 
o

f 
M

o
d

if
ie

d
 I

te
m

s

Load Factor

Chained Linear 2-choice

Cuckoo Path

(c) Fingerprint

Fig. 6. The normalized number of modified items.

server running in an academic computer lab collected by
File system and Storage Lab at Stony Brook University.
We use the MD5 fingerprints of data chunks in MacOS
as the keys of the items in hash tables.

B. Evaluation Results

1) NVM Writes: Only insertion and deletion requests cause
the writes to NVMs. We first insert n items into a hash table
and then delete 0.5n items from this hash table, using the
five hashing schemes respectively. We use the hash tables
with 223 cells for random-number dataset, with 224 cells for
DocWord dataset, and with 225 cells for Fingerprint dataset.
Load factor in hash table is defined as the ratio of the
number of the inserted items to the total number of cells
in hash table [19]. We evaluate the performance under two
load factors, i.e., 0.6 and 0.8. The higher load factor naturally
produces higher hash collision ratio. For 2-choice hashing and
cuckoo hashing with a high load factor, many items fail to be
inserted into the hash table due to their low space utilizations.
We store these insertion-failure items in an extra stash, like
ChunkStash [37], and continue to insert other items. The total



7.3

0

1

2

3

4

0.6 0.8

N
o

. 
o

f 
W

ri
tt

e
n

 L
in

e
s

Load Factor

Chained Linear 2-choice

Cuckoo Path

(a) RandomNum

14.2

0

2

4

6

8

10

0.6 0.8

N
o

. 
o

f 
W

ri
tt

e
n

 L
in

e
s

Load Factor

Chained Linear 2-choice

Cuckoo Path

(b) DocWord

7.9

1

2

3

4

5

0.6 0.8

N
o

. 
o

f 
W

r
it

te
n

 L
in

e
s

Load Factor

Chained Linear 2-choice

Cuckoo Path

(c) Fingerprint

Fig. 7. The average number of written cache lines for each request.

number of modified items is normalized to the total number
of requests (i.e., 1.5n), as shown in Figure 6.

As shown in Figure 6, chained hashing, linear probing,
and cuckoo hashing modify extra items which naturally incur
more writes to NVMs. Higher load factor results in more
extra modified items. Among these hashing schemes, cuckoo
hashing needs to modify most items, due to frequently evicting
and rewriting items during insertion. Linear probing moves
many items to deal with deletion requests especially when the
hash table is in a relatively high load factor, i.e., 0.8. Chained
hashing needs to modify the pointers of other items when
inserting and deleting an item in the linked lists. To execute a
deletion/insertion request, path hashing and 2-choice hashing
only write the deleted/inserted item without modifying extra
items, which are write-friendly for NVMs.

We also evaluate the average number of the written cache
lines to NVMs for each request, as shown in Figure 7. The
average number of written cache lines is approximatively
proportional to the average number of modified items in each
scheme. The average number of written cache lines in the
DocWord dataset is much larger than those of the RandomNum

0%

20%

40%

60%

80%

100%

RandomNum DocWord Fingerprint

S
p

a
ce

 U
ti

li
za

ti
o

n
 R

a
ti

o

Chained 2-choice Cuckoo Path

Fig. 8. Space utilization ratios of hashing schemes.

and Fingerprint datasets due to the larger item size.
2) Space Utilization: Space utilization ratio is defined as

the load factor of hash tables when insertion failure occurs.
Higher space utilization ratio means that more items can
be stored in a given-size hash table, which is a significant
parameter in the context of main memory and the caches with
limited space. For chained hashing, a half of memory is used
for hash table positions, and a half for list positions [19]. If
the chained hashing runs out of list positions, the insertion
failure occurs. For cuckoo hashing and 2-choice hashing, we
respectively allocate a stash with the 1% size of hash table,
which is not large. Otherwise, linearly searching the items
stored in the stash results in high latency. For cuckoo hashing,
when the number of evictions for an item achieves 100 [33],
we store the item into the stash. For 2-choice hashing, when
both the two positions of an item are occupied, we store the
items in the stash. When the space of the stash runs out, the
insertion failure occurs. For path hashing, when all nodes in
the two paths for an item are occupied, the insertion failure
occurs. Their space utilization ratios are shown in Figure 8.

As shown in Figure 8, 2-choice hashing has extremely low
space utilization ratio since only two positions for an item are
used to deal with hash collisions, which are easily occupied by
other items. Cuckoo hashing obtains higher space utilization
ratio than 2-choice hashing, due to further evicting one of
items in the occupied positions when both positions of an item
are occupied. Linear probing is not shown in the figure, since
linear probing does not have a fixed space utilization ratio.
Its load factor can be up to 1, while the query performance

30%

40%

50%

60%

70%

80%

90%

100%

3 5 7 9 11 13 15 17 19 21 23 25

S
p

a
ce

 U
ti

li
za

ti
o

n
 R

a
ti

o

The Number of Reserved Levels

RandomNum (L = 22)

DocWord (L = 23)

Fingerprint (L = 24)

Fig. 9. The number of reserved levels vs. space utilization ratio.



6.4

0.5

1

1.5

2

2.5

3

3.5

0.6 0.8

In
se

rt
io

n
 L

a
te

n
cy

 (
u

s)

Load Factor

Chained Linear 2-choice

Cuckoo Path

(a) RandomNum

15.3

1

2

3

4

5

6

0.6 0.8

In
se

rt
io

n
 L

a
te

n
cy

 (
u

s)

Load Factor

Chained Linear 2-choice

Cuckoo Path

(b) DocWord

8.5

1

1.5

2

2.5

3

3.5

0.6 0.8

In
se

rt
io

n
 L

a
te

n
cy

 (
u

s)

Load Factor

Chained Linear 2-choice

Cuckoo Path

(c) Fingerprint

Fig. 10. Average latency of inserting an item.

is close to that of the linear list. Chained hashing has a high
space utilization ratio since the conflicting items can always
link with the lists until running out of list positions. The space
utilization ratio of our proposed path hashing achieves about
95% in the three datasets, which is more than that of chained
hashing, due to efficiently dealing with hash collisions via
position sharing and double-path hashing.

3) The Number of Reserved Levels vs. Space Utilization:
As described in Section III-C, we remove multiple levels in the
bottom of path hashing to reduce the length of the read path.
However, removing the bottom levels also reduces the number
of positions to deal with hash collisions, thus reducing the
space utilization ratio. We hence investigate the relationship
between the number of the reserved levels and space utilization
ratio of path hashing.

As shown in Figure 9, we observe that reserving a small
part of levels can also achieve a high space utilization ratio
in path hashing. For example, reserving 9 levels achieves over
92% space utilization ratio for a binary tree with 25 levels in
the Fingerprint dataset. Reserving 11 levels can achieve the
space utilization ratio close to that of a full binary tree.

0.4

0.8

1.2

1.6

2

0.6 0.8

D
e

le
ti

o
n

 L
a

te
n

cy
 (

u
s)

Load Factor

Chained Linear

2-choice Cuckoo

Path

(a) RandomNum

3.5

0.5

1

1.5

2

2.5

0.6 0.8

D
e

le
ti

o
n

 L
a

te
n

cy
 (

u
s)

Load Factor

Chained Linear

P-2-choice P-Cuckoo

Path

(b) DocWord

0.5

1

1.5

2

2.5

0.6 0.8

D
e

le
ti

o
n

 L
a

te
n

cy
 (

u
s)

Load Factor

Chained Linear

2-choice Cuckoo

Path

(c) Fingerprint

Fig. 11. Average latency of deleting an item.

4) Insertion Latency: We insert the same number of items
in the five kinds of hash tables and store the insertion-
failure items in the stashes for 2-choice hashing and cuckoo
hashing. We compare the average insertion latency of different
hashing schemes, as shown in Figure 10. Cuckoo hashing has
the highest insertion latency, due to frequently evicting and
rewriting items. Its insertion latency dramatically increases
with increasing the load factor from 0.6 to 0.8, since the higher
hash collision ratio causes much more evictions. Chained
hashing incurs high insertion latency due to modifying extra
items during insertion. 2-choice hashing has the lowest
insertion latency due to only probing two positions for each
insertion. Path hashing and linear hashing have the low latency
close to 2-choice hashing, due to only probing empty positions
for insertion.

5) Deletion Latency: We compare the average deletion
latency of different hashing schemes, as shown in Figure 11.
We observe that linear probing has the highest deletion latency
due to moving multiple items when deleting an item, which
dramatically increases with the growing load factor of hash
tables. Chained hashing incurs high deletion latency due to



0.2

0.4

0.6

0.8

0.6 0.8

Q
u

e
ry

 L
a

te
n

cy
 (

u
s)

Load Factor

Chained Linear P-2-choice

P-Cuckoo Path P-Path

(a) RandomNum

0.2

0.4

0.6

0.8

1

0.6 0.8

Q
u

e
ry

 L
a

te
n

cy
 (

u
s)

Load Factor

Chained Linear P-2-choice

P-Cuckoo Path P-Path

(b) DocWord

0.2

0.4

0.6

0.8

1

0.6 0.8

Q
u

e
ry

 L
a

te
n

cy
 (

u
s)

Load Factor

Chained Linear P-2-choice

P-Cuckoo Path P-Path

(c) Fingerprint

Fig. 12. Average latency of querying an item.

traversing the linked lists and modifying other items. 2-choice
hashing and cuckoo hashing have the low deletion latency due
to only probing two positions. Path hashing has the slightly
higher latency than 2-choice hashing due to probing multiple
positions in several levels. Note that for cuckoo hashing and
2-choice hashing, we do not evaluate their delete/query latency
to the stash due to only focusing on the delete/query latency
to hash table.

6) Query Latency: Cuckoo hashing and 2-choice hashing
require two memory accesses for querying an item. The two
memory accesses are independent and can be executed in
parallel. To evaluate their parallel query performance, i.e., P-
Cuckoo and P-2-choice, we only evaluate the second hash
query after the first hash query fails, like the method in [19].
For path hashing, the node accesses in the read paths are also
independent and can be executed in parallel as descried in
Section III-D. We also evaluate the parallel query performance
of path hashing, i.e., P-Path.

We compare the average query latency of different hashing

schemes, as shown in Figure 12. We observe that chained
hashing causes the highest query latency, due to serially
accessing the long linked lists which results in multiple
random memory accesses. Comparing the results of the load
factors 0.6 and 0.8, higher load factor results in longer linked
lists in chained hashing, thus causing higher query latency.
Linear probing has high query latency due to scanning the
successive table cells, which increases with the growing of the
load factor. We observe that P-Cuckoo and P-2-choice have the
lowest query latency due to the time complexity of O(1) when
executed in parallel. Path hashing without parallelism has the
higher query latency than cuckoo hashing due to probing
multiple nodes in the read paths, while being still lower than
those of linear probing and chained hashing. Parallel path
hashing (P-Path) has the approximate query latency as P-
Cuckoo and P-2-choice.

V. RELATED WORK

As emerging NVMs become promising to play an important
role in the memory hierarchy, e.g., main memory and
caches. The changes of the memory characteristics bring the
challenges to the in-memory or in-cache data structure design.
In order to efficiently adapt to the new memory characteristics
and support hardware-software co-design in memory systems,
data structures have been improved to enhance the endurance
and performance of NVM systems.

Existing work has mainly focused on the tree-based data
structures stored in NVMs. Chen et al. [10] propose unsorted-
node schemes to improve B+-tree algorithm for PCM. They
show that the use of unsorted nodes, instead of sorted nodes
in B+-tree, can reduce PCM writes. Chi et al. [12] observe
that using unsorted nodes in B+-tree suffers from several
problems, e.g., CPU-costly for insertion and wasting space for
deletion. They further improve B+-tree algorithm for NVMs
via three techniques including the sub-balanced unsorted node,
overflow node, and merging factor schemes. CDDS B-Tree [2]
and NV-Tree [11] aim to reduce the consistency cost of B+-
tree when maintained in NVMs. Chen et al. [13] propose
wB+-tree to minimize the movement of index entries from
insertion and deletion requests by achieving write atomicity,
thus reducing the extra NVM writes. Oukid et al. [38] consider
B+-tree in a hybrid NVM-DRAM main memory and propose
the FP-tree, in which the leaf nodes of B+-tree are persisted
in NVM while the inner nodes are stored in DRAM to deliver
high performance. Lee et al. [39] focus on the radix tree
data structure and analyze the limitations of the radix tree for
NVMs. They then propose the WORT (Write Optimal Radix
Tree) to eliminate the duplicate-copy writes for logging or
copy-on-write in the radix tree.

Hashing-based data structures are also popular and widely
used to construct the index and lookup table in main memory
(e.g., main memory databases) [14], [15], [16] and caches [17],
[18]. Debnath et al. [40] propose a PCM-friendly cuckoo
hashing variant called PFHB which prohibits the eviction
operations of cuckoo hashing and uses larger buckets. PFHB
reduces the writes of cuckoo hashing to PCM at the expense



of significantly reducing the lookup performance. Our work
investigates the influence of hashing-based data structures on
the writes to NVMs, and proposes a write-friendly hashing
scheme, path hashing, which allows insertion and deletion
requests of hash table do not cause any extra writes to NVMs
while delivers high performance in terms of space utilization
and request latency.

VI. CONCLUSION

In this paper, we propose a cost-efficient write-friendly
hashing scheme, called path hashing, for NVMs to minimize
the NVM writes while maintaining high performance of hash
tables. Path hashing leverages position sharing technique to
deal with hash collisions without extra NVM writes, and
double-path hashing and path shortening techniques to deliver
high performance in terms of space utilization and request
latency. We have implemented path hashing and evaluated it
in gem5 with NVMain using a random-number dataset and
two real-world datasets. Extensive experimental results show
that path hashing incurs no extra NVM writes, and achieves up
to 95% space utilization ratio as well as low request latency,
compared with existing state-of-the-art hashing schemes.

ACKNOWLEDGEMENT

This work was supported by National Key Research and De-
velopment Program of China under Grant 2016YFB1000202.

REFERENCES

[1] Y. Xie, “Modeling, Architecture, and Applications for Emerging
Memory Technologies,” IEEE Design & Test of Computers, vol. 28,
no. 1, pp. 44–51, 2011.

[2] S. Venkataraman, N. Tolia, P. Ranganathan, R. H. Campbell et al.,
“Consistent and Durable Data Structures for Non-Volatile Byte-
Addressable Memory.” in Proc. USENIX FAST, 2011.

[3] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: a processing-
in-memory architecture for bulk bitwise operations in emerging non-
volatile memories,” in Proc. ACM DAC, 2016.

[4] J. Xu and S. Swanson, “NOVA: A Log-structured File System for Hybrid
Volatile/Non-volatile Main Memories,” in Proc. USENIX FAST, 2016.

[5] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and
B. Abali, “Enhancing lifetime and security of pcm-based main memory
with start-gap wear leveling,” in Proc. MICRO, 2009.

[6] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for
computing,” Nature nanotechnology, vol. 8, no. 1, pp. 13–24, 2013.

[7] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high
performance main memory system using phase-change memory
technology,” In Proc. ISCA, 2009.

[8] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient
main memory using phase change memory technology,” in Proc. ISCA,
2009.

[9] S. Schechter, G. H. Loh, K. Strauss, and D. Burger, “Use ECP, not ECC,
for hard failures in resistive memories,” in Proc. ISCA, 2010.

[10] S. Chen, P. B. Gibbons, and S. Nath, “Rethinking Database Algorithms
for Phase Change Memory,” in Proc. CIDR, 2011.

[11] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He, “NV-Tree:
Reducing Consistency Cost for NVM-based Single Level Systems,” in
Proc. USENIX FAST, 2015.

[12] P. Chi, W. C. Lee, and Y. Xie, “Adapting B+-Tree for Emerging
Nov-volatile Memory Based Main Memory,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 35, no. 9, pp. 1461–1474, 2016.

[13] S. Chen and Q. Jin, “Persistent b+-trees in non-volatile main memory,”
Proceedings of the VLDB Endowment, vol. 8, no. 7, pp. 786–797, 2015.

[14] A. D. Breslow, D. P. Zhang, J. L. Greathouse, N. Jayasena, and D. M.
Tullsen, “Horton tables: fast hash tables for in-memory data-intensive
computing,” in USENIX ATC, 2016.

[15] H. Garcia-Molina and K. Salem, “Main Memory Database Systems: An
Overview,” IEEE Transactions on Knowledge and Data Engineering,
vol. 4, no. 6, pp. 509–516, 1992.

[16] “Memcached,” https://memcached.org/.
[17] Y. Tian, S. M. Khan, D. A. Jiménez, and G. H. Loh, “Last-level cache

deduplication,” in Proceedings of the 28th ACM international conference
on Supercomputing (ICS), 2014.

[18] J. S. Miguel, J. Albericio, A. Moshovos, and N. E. Jerger,
“Doppelgänger: a cache for approximate computing,” in Proc. MICRO,
2015.

[19] R. Pagh and F. F. Rodler, “Cuckoo Hashing,” Journal of Algorithms,
vol. 51, no. 2, pp. 122–144, 2004.

[20] J. Yue and Y. Zhu, “Accelerating write by exploiting PCM asymmetries,”
Proc. IEEE HPCA, 2013.

[21] M. Ajtai, “The complexity of the pigeonhole principle,” in Proc. IEEE
FOCS, 1988.

[22] J. L. Carter and M. N. Wegman, “Universal Classes of Hash Functions,”
Journal of Computer and System Sciences, vol. 18, no. 2, pp. 143–154,
1979.

[23] M. Patrascu and M. Thorup, “On the k -Independence Required by
Linear Probing and Minwise Independence,” Acm Transactions on
Algorithms, vol. 12, no. 1, pp. 715–726, 2016.

[24] B. Pittel, “Linear probing: the probable largest search time grows
logarithmically with the number of records,” Journal of Algorithms,
vol. 8, no. 2, pp. 236–249, 1987.

[25] M. Mitzenmacher, A. W. Richa, and R. Sitaraman, “The Power of Two
Random Choices: A Survey of Techniques and Results,” Handbook of
Randomized Computing, vol. 11, pp. 255–312, 2000.

[26] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

[27] M. Poremba and Y. Xie, “Nvmain: An architectural-level main memory
simulator for emerging non-volatile memories,” in IEEE Computer
Society Annual Symposium on VLSI, 2012.

[28] Y. Hua, H. Jiang, and D. Feng, “Fast: Near real-time searchable data
analytics for the cloud,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC), 2014.

[29] B. Fan, D. G. Andersen, and M. Kaminsky, “MemC3: Compact and
Concurrent MemCache with Dumber Caching and Smarter Hashing.”
in Proc. USENIX NSDI, 2013.

[30] V. Young, P. J. Nair, and M. K. Qureshi, “DEUCE: Write-efficient
encryption for non-volatile memories,” in Proc. ACM ASPLOS, 2015.

[31] Y. Choi, I. Song, M.-H. Park, H. Chung, S. Chang, B. Cho, J. Kim,
Y. Oh, D. Kwon, J. Sunwoo et al., “A 20nm 1.8 v 8gb pram with
40mb/s program bandwidth,” in Proc. ISSCC, 2012.

[32] A. Awad, P. Manadhata, S. Haber, Y. Solihin, and W. Horne, “Silent
shredder: Zero-cost shredding for secure non-volatile main memory
controllers,” in Proc. ACM ASPLOS, 2016.

[33] Y. Sun, Y. Hua, D. Feng, L. Yang, P. Zuo, and S. Cao, “MinCounter:
An efficient cuckoo hashing scheme for cloud storage systems,” in Proc.
IEEE MSST, 2015.

[34] “Bags-of-Words data set,” http://archive.ics.uci.edu/ml/datasets/Bag+
of+Words.

[35] V. Tarasov, A. Mudrankit, W. Buik, P. Shilane, G. Kuenning, and
E. Zadok, “Generating realistic datasets for deduplication analysis,” in
Proc. USENIX ATC, 2012.

[36] Z. Sun, G. Kuenning, S. Mandal, P. Shilane, V. Tarasov, N. Xiao, and
E. Zadok, “A long-term user-centric analysis of deduplication patterns,”
Proc. IEEE MSST, 2016.

[37] B. Debnath, S. Sengupta, and J. Li, “ChunkStash: speeding up inline
storage deduplication using flash memory,” in Proc. USENIX ATC, 2010.

[38] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner, “FPTree:
A Hybrid SCM-DRAM Persistent and Concurrent B-Tree for Storage
Class Memory,” in Proc. SIGMOD, 2016.

[39] S. K. Lee, K. H. Lim, H. Song, B. Nam, and S. H. Noh, “WORT: Write
Optimal Radix Tree for Persistent Memory Storage Systems,” in Proc.
USENIX FAST, 2017.

[40] B. Debnath, A. Haghdoost, A. Kadav, M. G. Khatib, and C. Ungureanu,
“Revisiting hash table design for phase change memory,” in Proceedings
of the 3rd Workshop on Interactions of NVM/FLASH with Operating
Systems and Workloads (INFLOW), 2015.


