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Abstract
Non-volatile memory (NVM) as persistent memory is
expected to substitute or complement DRAM in memory
hierarchy, due to the strengths of non-volatility, high
density, and near-zero standby power. However, due to
the requirement of data consistency and hardware limita-
tions of NVM, traditional indexing techniques originally
designed for DRAM become inefficient in persistent
memory. To efficiently index the data in persistent
memory, this paper proposes a write-optimized and
high-performance hashing index scheme, called level
hashing, with low-overhead consistency guarantee and
cost-efficient resizing. Level hashing provides a sharing-
based two-level hash table, which achieves a constant-
scale search/insertion/deletion/update time complexity in
the worst case and rarely incurs extra NVM writes. To
guarantee the consistency with low overhead, level hash-
ing leverages log-free consistency schemes for insertion,
deletion, and resizing operations, and an opportunistic
log-free scheme for update operation. To cost-efficiently
resize this hash table, level hashing leverages an in-
place resizing scheme that only needs to rehash 1/3 of
buckets instead of the entire table, thus significantly
reducing the number of rehashed buckets and improving
the resizing performance. Experimental results demon-
strate that level hashing achieves 1.4×−3.0× speedup
for insertions, 1.2×−2.1× speedup for updates, and
over 4.3× speedup for resizing, while maintaining high
search and deletion performance, compared with state-
of-the-art hashing schemes.

1 Introduction
As DRAM technology is facing significant challenges in
density scaling and power leakage [44, 56], non-volatile
memory (NVM) technologies, such as ReRAM [9],
PCM [61], STT-RAM [10] and 3D XPoint [1], are
promising candidates for building future memory sys-
tems. The non-volatility enables data to be persistently
stored into NVM as persistent memory for instantaneous

failure recovery. Due to byte-addressable benefit and
the access latency close to DRAM, persistent memory
can be directly accessed through the memory bus by
using CPU load and store instructions, thus avoiding high
overheads of conventional block-based interfaces [18,
39, 63, 64]. However, NVM typically suffers from the
limited endurance and low write performance [50, 67].

The significant changes of memory architectures and
characteristics result in the inefficiency of indexing
data in the conventional manner that overlooks the
requirement of data consistency and new NVM device
properties [35, 46, 58, 64, 68]. A large amount of
existing work has improved tree-based index structures
for efficiently adapting to persistent memory, such as
CDDS B-tree [58], NV-Tree [64], wB+-Tree [17], FP-
Tree [46], WORT [35], and FAST&FAIR [30]. Tree-
based index structures are typically with the lookup time
complexity of average O(log(N)) where N is the size
of data structures [12, 19]. Unlike tree-based index
structures, hashing-based index structures are flat data
structures, which are able to achieve constant lookup
time complexity, i.e., O(1), which is independent of
N [42]. Due to providing fast lookup responses, hashing
index structures are widely used in main memory sys-
tems. For example, they are fundamental components
in main memory databases [27, 33, 38, 65], and used to
index in-memory key-value stores [7, 8, 25, 36, 66], e.g.,
Redis and Memcached. However, when hashing index
structures are maintained in persistent memory, multiple
non-trivial challenges exist which are rarely touched by
existing work.

1) High Overhead for Consistency Guarantee. Data
structures in persistent memory should avoid any data
inconsistency (i.e., data loss or partial updates) when
system failures occur [28, 35, 46]. However, the
new architecture that NVM is directly accessed through
the memory bus causes high overhead to guarantee
consistency. First, memory writes are usually reordered
by CPU and memory controller [18, 20]. To ensure the
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ordering of memory writes for consistency guarantee,
we have to employ cache line flush and memory fence,
introducing high performance overhead [17, 31, 45, 64].
Second, the atomic write unit for modern processors is
generally no larger than the memory bus width (e.g.,
8 bytes for 64-bit processors) [17, 20, 24, 60]. If the
written data is larger than an atomic write unit, we need
to employ expensive logging or copy-on-write (CoW)
mechanisms to guarantee consistency [30, 35, 58, 64].

2) Performance Degradation for Reducing Writes.
Memory writes in NVM consume the limited endurance
and cause higher latency and energy than reads [50, 67].
Moreover, more writes in persistent memory also cause
more cache line flushes and memory fences as well as
possible logging or CoW operations, significantly de-
creasing the system performance. Hence, write reduction
matters in NVM. Previous work [22, 68] demonstrates
that common hashing schemes such as chained hashing,
hopscotch hashing [29] and cuckoo hashing [47, 55]
usually cause many extra memory writes for dealing with
hash collisions. The write-friendly hashing schemes,
such as PFHT [22] and path hashing [68], are proposed
to reduce NVM writes in hashing index structures but
at the cost of decreasing access performance (i.e., the
throughput of search, insertion and deletion operations).

3) Cost Inefficiency for Resizing Hash Table. With
the increase of the load factor (i.e., the ratio of the
number of stored items to that of total storage units) of
a hash table, the number of hash collisions increases,
resulting in the decrease of access performance as well
as insertion failure. Resizing is essential for a hash
table to increase the size when its load factor reaches a
threshold or an insertion failure occurs [26, 29, 48, 57].
Resizing a hash table needs to create a new hash table
whose size is usually doubled, and then iteratively rehash
all the items in the old hash table into the new one.
Resizing is an expensive operation due to requiring O(N)
time complexity to complete where N is the number of
items in the hash table. Resizing also incurs N insertion
operations, resulting in a large number of NVM writes
with cache line flushes and memory fences in persistent
memory.

To address these challenges, this paper proposes
level hashing, a write-optimized and high-performance
hashing index scheme with low-overhead consisten-
cy guarantee and cost-efficient resizing for persistent
memory. Specifically, this paper makes the following
contributions:
• Low-overhead Consistency Guarantee. We propose

log-free consistency guarantee schemes for insertion,
deletion, and resizing operations in level hashing. The
three operations can be atomically executed for consis-
tency guarantee by leveraging the token in each bucket
whose size is no larger than an atomic write unit, without

the need of expensive logging/CoW. Furthermore, for
update operation, we propose an opportunistic log-
free scheme to update an item without the need of
logging/CoW in most cases. If the bucket storing the
item to be updated has an empty slot, an item can be
atomically updated without using logging/CoW.
•Write-optimized Hash Table Structure. We propose

a sharing-based two-level hash table structure, in which
a search/deletion/update operation only needs to probe
at most four buckets to find the target key-value item,
and hence has the constant-scale time complexity in the
worst case with high performance. An insertion probes
at most four buckets to find an empty location in most
cases, and in rare cases only moves at most one item,
with the constant-scale worst-case time complexity.
• Cost-efficient Resizing. To improve the resizing

performance, we propose a cost-efficient in-place re-
sizing scheme for level hashing, which rehashes only
1/3 of buckets in the hash table instead of the entire
hash table, thus significantly reducing NVM writes and
improving the resizing performance. Moreover, the in-
place resizing scheme enables the resizing process to
take place in a single hash table. Hence, search and
deletion operations only need to probe one table during
the resizing, improving the access performance.
• Real Implementation and Evaluation. We have

implemented level hashing1 and evaluated it in both real-
world DRAM and simulated NVM platforms. Extensive
experimental results show that the level hashing speeds
up insertions by 1.4×−3.0×, updates by 1.2×−2.1×,
and resizing by over 4.3× while maintaining high search
and deletion performance, compared with start-of-the-art
hashing schemes including BCH [25], PFHT [22] and
path hashing [68]. The concurrent level hashing im-
proves the request throughput by 1.6×−2.1×, compared
with the start-of-the-art concurrent hashing scheme, i.e.,
libcuckoo [37].

The rest of this paper is organized as follows. Sec-
tion 2 describes the background and motivation. Sec-
tion 3 presents the design details. The performance
evaluation is shown in Section 4. Section 5 discusses
the related work and Section 6 concludes this paper.

2 Background and Motivation
In this section, we present the background of the data
consistency issue in persistent memory and hashing
index structures.

2.1 Data Consistency in NVM
In order to improve system reliability and efficiently
handle possible system failures (e.g., power loss and

1The source code of level hashing is available at https://

github.com/Pfzuo/Level-Hashing.
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system crashes), the non-volatility property of NVM
has been well explored and exploited to build persistent
memory systems. However, since the persistent systems
typically contain volatile storage components, e.g., CPU
caches, we have to address the potential problem of
data consistency that is interpreted as preventing data
from being lost or partially updated in case of a system
failure. To achieve data consistency in NVM, it is
essential to ensure the ordering of memory writes to
NVM [17, 35, 64]. However, the CPU and memory
controller may reorder memory writes. We need to
use the cache line flush instruction (CLFLUSH for short),
e.g., cl f lush, cl f lushopt and clwb, and memory fence
instruction (MFENCE for short), e.g., m f ence and s f ence,
to ensure the ordering of memory writes, like existing
state-of-the-art schemes [17, 35, 46, 58, 64]. The
CLFULSH and MFENCE instructions are provided by the
Intel x86 architecture [4]. Specifically, CLFULSH evicts
a dirty cache line from caches and writes it back to
NVM. MFENCE issues a memory fence, which blocks
the memory access instructions after the fence, until
those before the fence complete. Since only MFENCE can
order CLFLUSH, CLFLUSH is used with MFENCE to ensure
the ordering of CLFLUSH instructions [4]. However,
the CLFLUSH and MFEMCE instructions cause significant
system performance overhead [17, 20, 58]. Hence, it is
more important to reduce writes in persistent memory.

It is well-recognized that the atomic memory write
of NVM is 8 bytes, which is equal to the memory bus
width for 64-bit CPUs [17, 35, 46, 58, 64]. If the size
of the updated data is larger than 8 bytes and a system
failure occurs before completing the update, the data will
be corrupted. Existing techniques, such as logging and
copy-on-write (CoW), are used to guarantee consistency
of the data whose sizes are larger than an atomic-write
size. The logging technique first stores the old data (undo
logging) or new data (redo logging) into a log and then
updates the old data in place. The CoW first creates
a new copy of data and then performs updates on the
copy. The pointers that point to the old data are finally
modified. Nevertheless, logging and CoW have to write
twice for each updated data. The ordering of the two-
time writes also needs to be ensured using CLFLUSH and
MFENCE, significantly hurting the system performance.

2.2 Hashing Index Structures for NVM

2.2.1 Conventional Hashing Schemes

Hashing index structures are widely used in current
main memory databases [23, 27, 33, 38, 65], and key-
value stores [7, 8, 25, 36, 51], to provide fast query
responses. Hash collisions, i.e., two or more keys are
hashed into the same bucket, are practically unavoidable
in hashing index structures. Chained hashing [32] is

a popular scheme to deal with hash collisions, which
stores the conflicting items in a linked list via pointers.
However, the chained hashing consumes extra memory
space due to maintaining the pointers, and decreases
access performance when the linked lists are too long.

Open addressing is another kind of hashing scheme
to deal with hash collisions without pointers, in which
each item has a fixed probe sequence. The item must
be in one bucket of its probe sequence. Bucketized
cuckoo hashing (BCH) [13, 25, 37] is a memory-efficient
open-addressing scheme, which has been widely used
due to the constant lookup time complexity in the worst
case and memory efficiency (i.e., achieving a high load
factor). BCH uses f ( f ≥ 2) hash functions to compute
f bucket locations for each item. Each bucket includes
multiple slots. An inserted item can be stored in any
empty slot in its corresponding f buckets. If all slots in
the f buckets are occupied, BCH randomly evicts an item
in one slot. The evicted item further iteratively evicts
other existing items until finding an empty location. For
a search operation, BCH probes at most f buckets and
hence has a constant search time complexity in the worst
case. Due to sufficient flexibility with only two hash
functions, f = 2 is actually used in BCH [13, 22, 25, 37].
Hence, the BCH in our paper uses two hash functions.

2.2.2 Hashing Schemes for NVM

The mentioned hashing schemes above mainly consider
the properties of the traditional memory devices, such
as DRAM and SRAM. Unlike them, the new persistent
memory systems are tightly related with the significant
changes of memory architectures and characteristics,
which bring the non-trivial challenges to hashing index
structures. For example, NVM typically has limited en-
durance and incurs higher write latency than DRAM [50,
67]. The chained hashing results in extra NVM writes
due to the modifications of pointers and BCH caus-
es cascading NVM writes due to frequently evicting
and rewriting items for insertion operations, which
exacerbate the endurance of NVM and the insertion
performance of hash tables [22, 68]. More importantly,
the traditional hashing schemes do not consider data
consistency and hence cannot directly work on persistent
memory.

Hashing schemes [22, 68] have been improved to effi-
ciently adapt to NVM, which mainly focus on reducing
NVM writes in hash tables. Debnath et al. [22] propose
a PCM-friendly Hash Table (PFHT) which is a variant
of BCH for reducing writes to PCM. PFHT modifies
the BCH to only allow one-time eviction when inserting
a new item, which can reduce the NVM writes from
frequent evictions but results in low load factor. In
order to improve the load factor, PFHT further uses a
stash to store the items failing to be inserted into the
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Table 1: Comparisons among level hashing and state-
of-the-art memory-efficient hashing schemes. (In this
table, “×” indicates a bad performance, “

√
” indicates

a good performance and “−” indicates a moderate
performance in the corresponding metrics.)

BCH PFHT Path hashing Level hashing
Memory Efficiency

√ √ √ √

Search
√

− −
√

Deletion
√

− −
√

Insertion × − −
√

NVM Writes ×
√ √ √

Resizing × × ×
√

Consistency × × ×
√

hash table. However, PFHT needs to linearly search the
stash when failing to find an item in the hash table, thus
increasing the search latency. Our previous work [68, 69]
proposes the path hashing that supports insertion and
deletion operations without any extra NVM writes. Path
hashing logically organizes the buckets in the hash table
as an inverted complete binary tree. Each bucket stores
one item. Only the leaf nodes are addressable by hash
functions. When hash collisions occur in the leaf node
of a path, all non-leaf nodes in the same path are used
to store the conflicting key-value items. Thus insertions
and deletions in the path hashing only need to probe
the nodes within two paths for finding an empty bucket
or the target item, without extra writes. However, path
hashing offers a low search performance due to the need
of traversing two paths until finding the target item for
each search operation.

Table 1 shows a high-level comprehensive comparison
among these state-of-the-art memory-efficient hashing
schemes including BCH, PFHT and path hashing. In
summary, BCH is inefficient for insertion due to frequent
data evictions. PFHT and path hashing reduce NVM
writes in the insertion and deletion operations but at the
cost of decreasing access performance. More important-
ly, these hashing schemes overlook the data consistency
issue of hash tables in NVM as well as the efficiency of
the resizing operation that often causes a large number
of NVM writes. Our paper proposes the level hashing
that achieves good performance in terms of all these
metrics as shown in Section 3, which is also verified in
the performance evaluation as shown in Section 4.

2.2.3 Resizing a Hash Table

With the increase of the load factor of a hash table,
the number of hash collisions increases, resulting in the
decrease of the access performance as well as insertion
failure [48, 57]. Once a new item fails to be inserted
into a hash table, this hash table has to be resized by
growing its size. Traditional resizing schemes [40, 48,
53] perform out-of-place resizing, in which expanding a
hash table needs to create a new hash table whose size is

larger than that of the old one, and then iteratively rehash
all items from the old hash table to the new one.

The size of the new hash table is usually double size
of the old one [40, 53, 54, 57], due to two main reasons.
First, the initial size of a hash table is usually set to
be a power of 2, since it allows very cheap modulo
operations. For a hash table with power-of-2 (i.e., 2n)
buckets, computing the location of a key based on its
hash value, i.e., hash(key)%2n, is a simple bit shift,
which is much faster than computing an integral division,
e.g., hash(key)%(2n-1). Thus, if doubling the size in
resizing a hash table, the size of the new hash table is
still a power of 2. Second, the access performance of
a hash table depends on the size of the hash table [57].
If resizing the hash table to a too small size, the new
hash table may result in high hash collision rate and
poor insertion performance, which will quickly incur
another resizing operation. If resizing the hash table
to a too large size for inserting a few new items, the
new hash table consumes too much memory, reducing
the memory space available for other applications. In
general, doubling the size when resizing a hash table has
been widely recognized [53, 54, 57]. For example, in the
real-world applications, such as Java HashMap [5] and
Memcached [7], doubling the size is the default setting
for resizing a hash table.

When the stored items are far fewer than the storage
units in a hash table, the hash table also needs to be
resized via shrinking its size. Resizing is an expensive
operation that consumes O(N) time to complete, where N
is the number of buckets in the old hash table. Moreover,
during the resizing, each search or deletion operation
needs to check both old and new hash tables, decreasing
the access performance. For hashing index structures
maintained in persistent memory, resizing causes a
large number of NVM writes with cache line flushes
and memory fences, significantly hurting the NVM
endurance and decreasing the resizing performance.

3 The Level Hashing Design

We propose level hashing, a write-optimized and high-
performance hashing index scheme with cost-efficient
resizing and low-overhead consistency guarantee for
persistent memory. In this section, we first present the
basic data structure of level hashing (§3.1), i.e., level
hash table, which aims to achieve the high performance
as well as high load factor, and rarely incurs extra
writes. We then present a cost-efficient in-place resizing
scheme (§3.2) for level hashing to reduce NVM writes
and improve the resizing performance. We then present
the (opportunistic) log-free schemes (§3.3) to reduce the
consistency overhead. We finally present the concurrent
level hashing leveraging fine-grained locking (§3.4).
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Figure 1: The hash table structure of level hashing with
4 slots per bucket. (In these tables, “TL” indicates the
top level, and “BL” indicates the bottom level.)

3.1 Write-optimized Hash Table Structure
A level hash table is a new open-addressing structure
with all the strengths of BCH, PFHT and path hashing,
including memory-efficient, write-optimized, and high
performance, while avoiding their weaknesses, via per-
forming the following major design decisions.

D1: Multiple Slots per Bucket. According to mul-
tiple key-value workload characteristics published by
Facebook [11] and Baidu [34], small key-value items
whose sizes are smaller than a cache-line size dominate
in current key-value stores. For example, the size of
most keys is smaller than 32 bytes, and 16 or 21-byte
key with 2-byte value is a common request type in
Facebook’s key-value store [11]. Motivated by the real-
world workload characteristics, we enable the level hash
table to be cache-efficient by setting multiple slots in
each bucket, e.g., 4 slots per bucket as shown in Figure 1.
Thus a bucket can store multiple key-value items each
in one slot. When accessing a bucket in the level hash
table, multiple key-value items in the same bucket can
be prefetched into CPU caches in one memory access,
which improves the cache efficiency and thus reduces the
number of memory accesses.

D2: Two Hash Locations for Each Key. Since each
bucket has k slots, the hash table can deal with at most
k−1 hash collisions occurring in a single hash position.
It is possible that more than k key-value items are hashed
into the same position. In this case, insertion failure
easily occurs, resulting in a low load factor. To address
this problem, we enable each key to have two hash
locations via using two different hash functions, i.e.,
hash1() and hash2(), like BCH [13, 25, 37], PCHT [22]
and path hashing [68, 69]. A new key-value item is
inserted into the less-loaded bucket between the two
hash locations [14]. Due to the randomization of two
independent hash functions, the load factor of hash table
is significantly improved as shown in Figure 2.
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Figure 2: The maximum load factors when adding
different design decisions. (D1: a one-level hash table
with 4 slots per bucket; D1 + D2: a hash table with
design decisions D1 and D2; D1 +D2 +D3: a hash table
with D1, D2 and D3; All: level hash table that uses
D1 +D2 +D3 +D4.)

D3: Sharing-based Two-level Structure. The buckets
in the level hash table are divided into two levels, i,e.,
a top level and a bottom level, as shown in Figure 1a.
Only the buckets in the top level are addressable by hash
functions. The bottom level is not addressable and used
to provide standby positions for the top level to store
conflicting key-value items. Each bottom-level bucket
is shared by two top-level buckets, and thus the size
of the bottom level is half of the top level. If a hash
collision occurs in a top-level bucket and all positions in
the bucket are occupied, the conflicting key-value item
can be stored in its corresponding standby bucket in the
bottom level. By using the two-level structure, the load
factor of hash table is significantly improved as shown
in Figure 2. Moreover, since each addressable bucket
has one standby bucket, a search operation only needs
to probe at most four buckets, having the constant-scale
time complexity in the worst case.

D4: At Most One Movement for Each Successful
Insertion. To enable key-value items to be evenly
distributed among buckets, if both buckets are full during
inserting an item in the BCH [13, 22, 25, 37], BCH
iteratively evicts one of existing items and thus incurs
cascading writes, which is not friendly for NVMs. To
avoid the problem of the cascading writes, instead, level
hashing allows the movement of at most one item for
each insertion. Specifically, during inserting a new item
(Inew), if the two top-level buckets are full, we check
whether it is possible to move any key-value item from
one of its two top-level buckets to its alternative top-
level location. If no movement is possible, we further
insert the new item Inew into the bottom level. If the
two bottom-level buckets are full, we also check whether
it is possible to move any key-value item from one of
its two bottom-level buckets to its alternative bottom-
level location. If the movement still fails, the insertion
fails and the hash table needs to be resized. Note that
the movement is saved if the alternative location of the
moved item has no empty slot. Allowing one movement
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redistributes the items among buckets, thus improving
the maximum load factor, as shown in Figure 2.

Put them all together, the hash table structure of level
hashing is shown in Figure 1. Figure 1a shows the logical
structure of a level hash table that contains two-level
buckets. The links between two levels indicate the bucket
sharing relationships, instead of pointers. Figure 1b
shows the physical storage of a level hash table, in which
each level is stored in a one-dimensional array. For a key-
value item with the key K, its corresponding two buckets
in the top level (i.e., the No.Lt1 and No.Lt2 buckets)
and its two standby buckets in the bottom level (i.e.,
the No.Lb1 and No.Lb2 buckets) can be obtained via the
following equations:

Lt1 = hash1(K)%N,Lt2 = hash2(K)%N (1)

Lb1 = hash1(K)%(N/2),Lb2 = hash2(K)%(N/2) (2)

The computations of Equations 1 and 2 only require
the simple bit shift operation since N is a power of 2.
The simple yet efficient hash table structure shown in
Figure 1 has the following strengths:
• Write-optimized. Level hashing does not cause the

cascading writes via allowing at most one movement for
each insertion. Moreover, only a very small number of
insertions incur one movement. Based on our experi-
ments, when continuously inserting key-value items into
a level hash table until reaching its maximum load factor,
only 1.2% of insertions incur one movement.
• High-performance. For a search/deletion/update

operation, level hashing probes at most four buckets to
find the target item. For an insertion operation, level
hashing probes at most four buckets to find an empty
location in most cases, and in rare cases further moves
at most one existing item. Hence, level hashing achieves
the constant-scale worst-case time complexity for all
operations.
• Memory-efficient. In the level hash table, two hash

locations for each key enables the key-value items in
the top level to be evenly distributed [43]. Each un-
addressable bucket is shared by two addressable buckets
to store the conflicting items, which enables the items
in the bottom level to be evenly distributed. Allowing
one movement enables items to be evenly redistributed.
These design decisions enable the level hash table to
be load-balanced and memory-efficient, thus achieving
more than 90% load factor as shown in Figure 2.

Moreover, the level hashing has a good resizing
performance via a cost-efficient in-place resizing scheme
as shown in Section 3.2. We guarantees the data
consistency in the level hashing with low overhead
via the (opportunistic) log-free schemes as shown in
Section 3.3.

……………………

0 1 2 3 N-1N-2

TL:

BL:

……………………

2 3 4 5 6 7 2N-22N-32N-40 1 2N-1

……………………

Rehashing

TL:

BL:

IL:

(Old TL)

(Old BL)

……………………

2 3 4 5 6 7 2N-22N-32N-40 1 2N-1

TL:

BL:

(a) The old level hash table before resizing

(b) The level hash table during resizing

(c) The new level hash table after resizing

Figure 3: The cost-efficient in-place resizing in the level
hashing. (“IL” indicates the interim level.)

3.2 Cost-efficient In-place Resizing

To reduce NVM writes and improve the resizing per-
formance, we propose a cost-efficient in-place resizing
scheme. The basic idea of the in-place resizing scheme
is to put a new level on the top of the old hash table and
only rehash the items in the bottom level of the old hash
table when expanding a level hash table.

1) An Overview of Resizing. A high-level overview
of the in-place resizing process in the level hashing
is shown in Figure 3. Before the resizing, the level
hash table is a two-level structure, including a top level
(TL) with N buckets and a bottom level (BL) with N/2
buckets, as shown in Figure 3a. During the resizing,
we first allocate the memory space with 2N buckets
as the new top level and put it on the top of the old
hash table. The level hash table becomes a three-level
structure during the resizing, as shown in Figure 3b.
The third level is called the interim level (IL). The in-
place resizing scheme rehashes the items in the IL into
the top-two levels. Each rehashing operation includes
reading an item in the IL, inserting the item into the top-
two levels and deleting the item from the IL. After all
items in the IL are rehashed into the top-two levels, the
memory space of the IL is reclaimed. After the resizing,
the new hash table becomes a two-level structure again,
as shown in Figure 3c. The rehashing failure (which
indicates a rehashed item fails to be inserted into the top-
two levels) does not occur when the resizing is underway,
since currently the total number of stored items is smaller
than half of the total size of the new level hash table, and
level hashing is able to achieve the load factor of higher
than 0.9 (> 0.5) as evaluated in Section 4.2.1.

We observe that the new hash table with 3N buck-
ets is exactly double size of the old hash table with
1.5N buckets, which meets the demand of real-world
applications as discussed in Section 2.2.3. Unlike the
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traditional out-of-place resizing scheme [48] in which
the resizing occurs between the old and new tables, the
in-place resizing enables the whole resizing process to
occur in a single hash table. Thus during resizing, search
and deletion operations only need to probe one table
and compute the hash functions once, thus improving
the access performance. Moreover, the in-place resizing
rehashes only the bottom level of the old hash table
instead of the entire table. The bottom level only contains
1/3(= 0.5N/1.5N) of all buckets in the old hash table,
thus significantly reducing data movements and NVM
writes during the resizing, as well as improving the
resizing performance.

We can also shrink the level hash table in place which
is an inverse process of expanding the level hash table.
Specifically, to shrink the level hash table, we first
allocate the memory space with N/4 buckets as the new
bottom level which is placed on the bottom of the old
hash table. We then rehash all items in the old top level
into the bottom-two levels.

2) Improving the Maximum Load Factor after Re-
sizing. In the level hash table, each item is stored in
the bottom level only when its corresponding two top-
level buckets are full. Thus before resizing, the top-level
buckets are mostly full and the bottom-level buckets are
mostly non-full. After resizing, the top level in the old
hash table becomes the bottom level in the new hash table
as shown in Figure 3. Thus the bottom-level buckets in
the new hash table are mostly full, which easily incur an
insertion failure, reducing the maximum load factor. The
blue line in Figure 4 shows the load factors of the level
hash table when the multiple successive resizings occur.
We observe that the maximum load factors in the 2-nd,
4-th, and 6-th resizings are reduced, compared with those
in the 1-st, 3-rd and 5-th resizings. The reason is that the
bottom-level buckets are mostly full in the 2-nd, 4-th and
6-th resizings.

To address this problem, we propose a bottom-to-top
movement (B2T) scheme for level hashing. Specifically,
during inserting an item, if its corresponding two top-
level buckets (Lt1 and Lt2) and two bottom-level buckets
(Lb1 and Lb2) are full, the B2T scheme tries to move one
existing item (Iext ) in the bottom-level bucket Lb1 or Lb2

into the top-level alternative locations of Iext . Only when
the corresponding two top-level buckets of Iext have no
empty slot, the insertion is considered as a failure and
incurs a hash table resizing. By performing the B2T
scheme, the items between top and bottom levels are
redistributed, thus improving the maximum load factor.
The red line in Figure 4 shows the load factors when the
resizings occur via using the B2T scheme. We observe
that the maximum load factors in the 2-nd, 4-th and 6-th
resizings are improved.

3) Improving the Search Performance after Resizing.
After resizing, the search performance possibly decreas-
es. This is because in the original search scheme (called
static search) as shown in Section 3.1, we always first
probe the top level, and if not finding the target item, we
then probe the bottom level. Before resizing, about 2/3
items are in the top level. However, the 2/3 items are in
the bottom level after resizing, since the top level in the
old hash table becomes the bottom level in the new one as
shown in Figure 3. Hence, a single search needs to probe
two levels in most cases (i.e., about 2/3 probability) after
resizing, thus degrading the search performance.

To address this problem, we propose a dynamic search
scheme for level hashing. Specifically, for a search, we
study two cases based on the numbers of items in the top
and bottom levels. First, if the items in the bottom level
are more than those in the top level, we first probe the
bottom level (based on Equation 2), and if not finding
the target item, we then probe the top level (based on
Equation 1). Second, if the items in the bottom level
are less than those in the top level, we first probe the
top level and then the bottom level. Thus after resizing,
the items in the bottom level are more than those in the
top level and hence we first probe the bottom level, thus
improving the search performance. We also demonstrate
the performance improvement in Section 4.2.4.

3.3 Low-overhead Consistency Guarantee
In the open-addressing hash tables, a token associated
with each slot is used to indicate whether the slot is
empty [25, 68]. As shown in Figure 5, in a bucket,
the header area stores the tokens of all slots and the
remaining area stores the slots each with a key-value
item. A token is defined as a 1-bit flag that indicates
whether the corresponding slot is empty. For example,
the token ‘0’ indicates the corresponding slot is empty
and the token ‘1’ indicates the slot is non-empty. The
header area is 1 byte when the number of slots is not
larger than 8, and 2 bytes for the buckets with 16 slots.
Since the header area is always smaller than 8 bytes,
modifying the tokens only needs to perform an atomic
write. But the key-value items are usually larger than
8 bytes. A straightforward approach is to guarantee
the consistency of writing key-value items via logging

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    467



KV KV KVA bucket: … 

SlotsTokens (each 1 bit)

KV…
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or CoW, which however incurs significant performance
overhead as discussed in Section 2.1.

To reduce the overhead of guaranteeing consistency in
level hashing, we propose log-free consistency guarantee
schemes for deletion, insertion, and resizing operations,
and an opportunistic log-free guarantee scheme for up-
date operation, by leveraging the tokens to be performed
in the atomic-write manner.

1) Log-free Deletion. When deleting a key-value item
from a slot, we change the token of the slot from ‘1’ to
‘0’, which invalidates the deleted key-value item. The
deletion operation only needs to perform an atomic write
to change the token. After the token of the slot is changed
to ‘0’, the slot becomes available and can be used to
insert a new item.

2) Log-free Insertion. There are two cases when
inserting a new item into the level hash table.

a) No item movement: The insertion incurs no move-
ment, i.e., inserting a new item to an empty slot. In
this case, we first write the new item into the slot and
then change its token from ‘0’ to ‘1’. The ordering of
writing the item and changing the token is ensured via
an MFENCE. Although the new item is larger than 8 bytes,
writing the item does not require logging or CoW, since
the item becomes valid until the token is set to ‘1’. If a
system failure occurs during writing the item, this item
may be partially written but invalid since the current
token is ‘0’ and this slot is still available. Hence, the
hash table is in a consistent state when system failures
occur.

b) Moving one item: The insertion incurs the move-
ment of one item. In this case, we need to take two
steps to insert an item, and the ordering of executing the
two steps is ensured via an MFENCE. The first step is to
move an existing item into its alternative bucket. We use
slotcur to indicate the current slot of the existing item
and use slotalt to indicate its new slot in the alternative
bucket. Moving this item first copies the item into
slotalt, then modifies the token of slotalt from ‘0’
to ‘1’ and finally modifies the token of slotcur from ‘1’
to ‘0’. If a system failure occurs after changing the token
of slotalt before changing the token of slotcur, the
hash table contains two duplicate key-value items, which
however does not impact on the data consistency. It is
because when searching this key-value item, the returned
value is always correct whichever one of the two items
is queried. When updating this item, one of the two
items is first deleted and the other one is then updated, as
presented in Section 3.3(4). After moving this existing

item, the second step inserts the new item into the empty
slot using the method of “a) no item movement”.

3) Log-free Resizing. During resizing, we need to
rehash all key-value items in the interim level. For a
rehashed item, we use slotold to indicate its old slot in
the interim level and use slotnew to indicate its new slot
in the top-two levels. Rehashing an item in the interim
level can be decomposed into two steps, i.e., inserting
the item into slotnew (Log-free Insertion) and then
deleting the item from slotold (Log-free Deletion).
To guarantee the data consistency during a rehashing
operation, we first copy the key-value item of slotold
into slotnew, and then modifies the token of slotnew
from ‘0’ to ‘1’ and finally modifies the token of slotold
from ‘1’ to ‘0’. The ordering of the three steps is ensured
via MFENCEs. If a system failure occurs when copying
the item, the hash table is in a consistent state since the
slotnew is still available and the item in slotold is
not deleted. If a system failure occurs after changing
the token of slotnew before changing the token of
slotold, slotnew is inserted successfully but the item
in slotold is not deleted. There are two duplicate
items in the hash table, which however has no impact on
the data consistency, since we can easily remove one of
the two duplicates after the system is recovered without
scanning the whole hash table. In case of a system
failure, only the first item (I f irst ) to be rehashed in the
interim level may be inconsistent. To check whether
there are two duplicates of I f irst in the hash table, we only
need to query the key of I f irst in the top-two levels. If two
duplicates exist, we directly delete I f irst . Otherwise, we
rehash it. Therefore, the hash table can be recovered in a
consistent state.

4) Opportunistic Log-free Update. When updating
an existing key-value item, if the updated item has two
copies in the hash table, we first delete one and then
update the other. If we directly update the key-value
item in place, the hash table may be left in the corrupted
state when a system failure occurs, since the old item
is overwritten and lost, and the new item is not written
completely. Intuitively, we address this problem via
first writing the new or old item into a log and then
updating the old item in place, which however incur high
performance overhead.

To reduce the overhead, we leverage an opportunistic
log-free update scheme to guarantee consistency. Specif-
ically, for an update operation (e.g., updating KV1 to
KV1

′), we first check whether there is an empty slot in
the bucket storing the old item (KV1).

• Yes. If an empty slot exists in the bucket as
shown in Figure 6a, we directly write the new item
(KV1

′) into the empty slot, and then modify the
tokens of the old item (KV1) and new item (KV1

′)
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Figure 6: The opportunistic log-free update scheme.
((a) The log-free update scheme; (b) The probability
of performing log-free update with the increase of load
factor and the change of the number of slots/bucket.)

simultaneously. The two tokens are stored together
and hence can be simultaneously modified in an
atomic write. The ordering of writing the new item
and modifying the tokens is ensured by an MFENCE.

• No. If no empty bucket exists in the bucket storing
the old item (KV1), we first log the old item and
then update the old item in place. If a system failure
occurs during overwriting the old item, the old item
can be recovered based on the log.

In summary, if there is an empty slot in the bucket
storing the item to be updated, we update the item
without logging. We evaluate the opportunity to perform
log-free update, i.e., the probability that the bucket
storing the updated item contains at least one empty slot,
as shown in Figure 6b. The probability is related with
the number of slots in each bucket and the load factor of
hash table. We observe that when the load factor of hash
table is smaller than about 2/3, the probability of log-free
update is very high and decreases with the increase of
the load factor and the decrease of the number of slots in
each bucket. However, when the load factor is larger than
2/3, the probability increases with the increase of the
load factor. This is because the number of storage units
in the top level is 2/3 of the total storage units. When
the load factor is beyond 2/3, more items are inserted
into the bottom level, and the buckets in the bottom level
have the higher probability to contain an empty slot than
those in the top level.

We further discuss whether the proposed consistency-
guarantee schemes work on other hashing schemes. 1)
The proposed log-free deletion scheme can be used in
other open-addressing hashing schemes, since deletion
only operates on a single item. 2) The opportunistic log-
free update scheme can be used in other multiple-slot
hashing schemes, e.g, BCH, and PFHT. 3) Obviously,
the log-free insertion scheme can be used in the hashing
schemes without data evictions during insertions, e.g.,
path hashing, and the hashing schemes with at most
one eviction, e.g., PFHT. In fact, the log-free insertion

a b

x

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 7: An insertion in the cuckoo hashing.

scheme can also be used in the hashing schemes with
iterative eviction operations during insertions, e.g., cuck-
oo hashing. Specifically, an insertion in cuckoo hashing
may iteratively evict key-value items until finding an
empty location. The sequence of evicted items is called
a cuckoo path [37]. To perform log-free insertion, we
first search for a cuckoo path with an empty location
but do not execute evictions during search. We then
perform evictions starting with the last item in the cuckoo
path and working backward toward the first item. For
example, as shown in Figure 7, the new item x is inserted
into the location L4, and the sequence of x→ a→ b→∅
is a cuckoo path. To perform log-free insertion, we first
move b from L7 to L10, and then move a from L4 to L7,
and finally insert x into L4.

3.4 Concurrent Level Hashing
As current systems are being scaled to larger number
of cores and threads, concurrent data structures become
increasingly important [15, 25, 37, 41]. The level hash
table does not use pointers and has no cascading writes,
which enables level hashing to efficiently support multi-
reader and multi-writer concurrency via simply using
fine-grained locking.

In the concurrent level hashing, the conflicts occur
when different threads concurrently read/write the same
slot. Hence, we allocate a fine-grained locking for each
slot. When reading/writing a slot, the thread first locks
it. Since level hashing allows each insertion to move
at most one existing item, an insertion operation locks
at most two slots, i.e., the current slot and the target
slot that the item will be moved into. Nevertheless, the
probability that an insertion incurs a movement is very
low as presented in Section 3.1. An insertion locks only
one slot in the most cases, and hence the concurrent
level hashing delivers high performance as evaluated in
Section 4.2.7.

4 Performance Evaluation
4.1 Experimental Setup
All our experiments are performed on a Linux server
(kernel version 3.10.0) that has four 6-core Intel Xeon
E5-2620 2.0GHz CPUs (each core with 32KB L1 in-
struction cache, 32KB L1 data cache, and 256KB L2
cache), 15MB last level cache and 32GB DRAM.

Since the real NVM device is not available for us
yet, we conduct our experiments using Hewlett Packard’s
Quartz [2, 59], which is a DRAM-based performance
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emulator for persistent memory and has been widely
used [31, 35, 39, 52, 60]. Quartz emulates the latency
of persistent memory by injecting software created de-
lays per epoch and limiting the DRAM bandwidth by
leveraging DRAM thermal control registers. However,
the current implementation of Quartz [2] does not yet
support the emulation of write latency in the persistent
memory. We hence emulate the write latency by adding
an extra delay after each CLFLUSH instruction, following
the methods in existing work [31, 35, 39, 52, 60].

The evaluation results in PFHT [22] and path hash-
ing [68] demonstrated that PFHT and path hashing
significantly outperform other existing hashing schemes,
including chained hashing, linear probing [49], hop-
scotch hashing [29] and cuckoo hashing [47, 55], in
NVM. Therefore, we compare our proposed level hash-
ing with the state-of-the-art NVM-friendly schemes,
i.e., PFHT and path hashing, and the memory-efficient
hashing scheme for DRAM, i.e., BCH, in both DRAM
and NVM platforms. Since these hashing schemes do
not consider the data consistency issue on persistent
memory, we implement persistent BCH, PFHT, and
path hashing using our proposed consistency guarantee
schemes as discussed in Section 3.3 for fairly comparing
their performance on persistent memory. Moreover, we
also compare the performance of these hashing schemes
without crash consistency guarantee in DRAM.

Since 16-byte key has been widely used in current key-
value stores [11, 34, 62], we use the 16-byte key, the
value that is no longer than 15 bytes, and 1-bit token
for each slot. Two slots align a cache line (64B) via
padding several unused bytes. Every hash table is sized
for 100 million key-value items and thus needs about
3.2GB memory space. Besides examining the single-
thread performance of each kind of operation, we also
use YCSB [21], a benchmark for key-value stores, to
evaluate the concurrent performance of the concurrent
level hashing in multiple mixed workloads. In the
experimental results, each data value is the average of
10-run results.

4.2 Experimental Results

4.2.1 Maximum Load Factor

The maximum load factor is an important metric for
hash table due to directly affecting the number of key-
value items that a hash table can store and the hardware
cost [25, 37]. For evaluating the maximum load factor,
we insert unique string keys into empty BCH, PFHT,
level and path hash tables until an insertion failure
occurs. Specifically, BCH reaches the maximum load
factor when a single insertion operation fails to find an
empty slot after 500 evictions [25, 37]. For PFHT, the
3% space of the total hash table size is used as a stash,
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Figure 9: Maximum load factors of the level hash table
with different-distribution integer keys. (Normal< x,y >
indicates the logarithmic normal distribution with the
parameters µ = x and σ = y.)

following the configuration in the original paper [22].
PFHT reaches the maximum load factor when the stash is
full. Level and path hash tables reach the maximum load
factors when a single insertion fails to find an empty slot
or bucket.

Figure 8 shows that all the four hash tables can
achieve over 90% of maximum load factor. Figure 8
also compares different hash tables with the different
numbers of slots in each bucket. More slots in each
bucket incur higher maximum load factor for BCH,
PFHT and level hash table. For the same number of
slots in each bucket, PFHT and level hash table have
approximately the same maximum load factor, which
are higher than BCH. Path hash table is a one-item-per-
bucket table and achieves up to 94.2% maximum load
factor.

We also evaluate the maximum load factors of the
level hash table with different-distribution integer keys
including uniform and skewed normal key distributions,
as shown in Figure 9. We observe that the level hash
table achieves the approximate maximum load factors
for the different key distributions. The reason is that
hash functions map keys to random hash values, and
hence whatever the key distribution is, the generated
hash value distribution is still randomized. Keys are
then randomly distributed among buckets of hash table
based on their hash values. Therefore, the skewed
key distribution doesn’t result in the skewed hash value
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Figure 10: Insertion latency of different hashing schemes in DRAM and NVM with different read/write latencies.

distribution without significantly affecting the maximum
load factor of hash table.

In the following experiments, we set 4 slots per
buckets for BCH, PFHT and level hashing, like existing
work [13, 22, 25].

4.2.2 Insertion Latency

To evaluate the insertion latency of different hashing
schemes, we insert unique key-value items to empty
BCH, PFHT, level and path hash tables until reaching
their maximum load factors. In the meantime, we
measure the average latency of each insertion operation
when hash tables are in the different load factors. We
evaluate these hashing schemes on both DRAM and the
persistent memory with different read/write latencies,
i.e., 200ns/200ns, 200ns/600ns, and 200ns/1000ns. On
persistent memory, these hash tables are implemented
with data consistency guarantee as described in Sec-
tion 4.1.

Figure 10a shows the average latency of each inser-
tion operation in different hash tables in DRAM. Fig-
ures 10b, 10c and 10d show the average insertion latency
of different hash tables in persistent memory. Compared
with the experimental results in Figures 10a and 10b, we
observe that the insertion latency in persistent memory is
much higher than that in DRAM, while the read/write
latency of persistent memory (200ns) is close to that
of DRAM (136ns). The main reason is that each
inserted item must be flushed into persistent memory
via CLFLUSH, and the ordering of writes is ensured via
MFENCE for consistency guarantee, significantly increas-
ing the latency.

As shown in Figure 10, with the increase of the load
factors, the insertion latency of BCH sharply increases,
due to causing many eviction operations to deal with
hash collisions. The insertion performance of BCH
becomes worse in persistent memory, since the eviction
operations in BCH cause many cache line flushes and
memory fences. The insertion latency of PFHT increases
since many items need to be inserted in the stash when
the load factor is high. PFHT uses the chained hash
table to manage the items in the stash. An insertion in
the stash needs to allocate the node space and revise

pointers, causing extra writes. The insertion latency of
path hashing is higher than that of PFHT in DRAM as
shown in Figure 10a, while becoming lower than that
of PFHT in persistent memory as shown in Figure 10b,
for a high load factor (e.g., ≥ 0.7). The reason is
that path hashing performs only multiple read operations
to find an empty bucket for inserting an item without
extra write operations. Reads are much cheaper than
writes in persistent memory. In both DRAM and
persistent memory, level hashing has the best insertion
performance due to probing fewer buckets than path
hashing and rarely causes extra writes. From Figure 10b,
we observe when the load factor is larger than 0.8, level
hashing reduces the insertion latency by over 67%, 43%,
and 30%, i.e., speeding up the insertions by over 3.0×,
1.8×, and 1.4×, compared with BCH, PFHT and path
hashing.

4.2.3 Update Latency

We investigate the update latency of different hash tables
with different load factors in persistent memory. The
read/write latency of NVM is 200ns/600ns. As shown in
Figure 11, we observe that the update latencies of BCH,
PFHT, and path hashing are similar since the update only
operates on a single key-value item. In a low load factor
(e.g., < 0.5), their update latency are significantly higher
than their insertion latency as shown in Figure 10c, since
each update operation needs to use the expensive logging
to guarantee consistency.

To show the efficiency of our proposed opportunistic
log-free update scheme as presented in Section 3.3(4),
we also evaluate the update latency of Level w/o Opp
which indicates the level hashing without this oppor-
tunistic scheme. Compared with BCH, PFHT, path
hashing, and Level w/o Opp, we observe that level
hashing efficiently reduces the update latency by 15%∼
52%, i.e., speeding up the updates by 1.2×∼ 2.1×.

4.2.4 Search Latency

We evaluate the performance of both positive and neg-
ative searches in different hash tables on the persistent
memory. For a search operation, if the target item is
found in the hash table, the query is positive. Otherwise,
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searches in level hashing.

it is negative. When hash tables are in two typical load
factors, i.e., 0.6 and 0.8 [68], we perform 1 million
positive and negative searches respectively and measure
their average latency, as shown in Figure 12.

We observe that higher load factor results in higher
search latency for each hash table. Among these hash
tables, BCH has the lowest positive search latency due to
probing the fewest positions to find a target item. The
positive search latency of level hashing is very close
to that of BCH since level hashing probes at most two
buckets in the bottom level when failing to find the target
item in the top level. PFHT has higher positive search
latency than BCH and level hashing, due to linearly
searching the stash when failing to find the target item
in the main hash table. The chains in the stash become
long when the load factor is high, e.g., 0.8. Path hashing
has the highest search latency due to probing multi-level
buckets. Moreover, the negative search has higher search
latency than the positive search for each hash table, since
the negative search must traverse all positions that the
target item may be stored. Level hashing probes at most
four buckets for each search operation, which has the
constant worst-case search time complexity like BCH.
Nevertheless, PFHT uses chained hashing to manage the
items in the stash with the O(N1) worst-case search time
complexity [32], where N1 is the number of items in the
stash. The path hash table has about log(N2)/2 levels,
thus producing the O(log(N2)) worst-case search time
complexity, where N2 is the total number of buckets.
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0

500

1000

1500

2000

 

NVM-200ns/600nsDRAM

0.8

D
e

le
ti
o

n
 L

a
te

n
c
y
 (

n
s
)

 BCH

 PFHT

 Path

 Level

0.6 0.80.6

Figure 14: Average deletion latency of different hashing
schemes in DRAM and NVM.

To show the effectiveness of the proposed dynamic
search scheme in Section 3.2(3), we evaluate the average
latency of positive searches before and after resizing
in level hashing. We insert unique keys into the level
hash table and resize the hash table when its load factor
reaches 0.85, until the level hash table is resized four
times. When the level hash table is in different load
factors, we perform 1-million uniform random searches.
The average search latency is shown in Figure 13. We
observe the search latency using the static search sharply
increases after each resizing since most items are in the
bottom level at this point. By performing the dynamic
search, we efficiently reduce the search latency of the
hash table after the first resizing.

4.2.5 Deletion Latency

We investigate the deletion latency of different hash
tables in DRAM and persistent memory, as shown in
Figure 14. In DRAM, we observe that the deletion
latency of each hash table is approximate to its search
latency since the deletion operation first searches the
position storing the target item and then sets the position
to null. The set-null operation has very low latency in
DRAM due to being completed in CPU caches. But
in persistent memory, the set-null operation causes high
latency since the modified data have to be flushed into
NVM for consistency guarantee. Like the positive search
performance, BCH and level hashing have better deletion
performance than PFHT and path hashing.
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4.2.6 Resizing Time

To evaluate the resizing performance of different hashing
schemes, we resize the hash tables when their load
factors reach the same threshold, i.e., 0.85 (the maximum
load factor that the 4-slot BCH can achieve as shown
in Figure 8). We measure the total time that different
hashing schemes complete the resizing. In order to show
the benefit of our proposed in-place resizing scheme, we
also evaluate the resizing performance of Level-Trad,
which indicates the level hashing using the traditional
resizing scheme [48], as shown in Figure 15.

We observe that the level hashing reduces the resizing
total time by about 76%, i.e., speeding up the resizing by
4.3×, compared with Level-Trad. The reason is that the
level hashing by using the in-place resizing scheme only
needs to rehash the key-value items in the bottom level,
significantly reducing the number of rehashed items.
The number of buckets in the bottom level is 1/3 of all
buckets. An item is stored in the bottom level only when
both buckets in the top level are full. Hence, the items
in the bottom level to be rehashed are always less than
1/3 of all items in the level hash table. Moreover, BCH,
PFHT, path hashing and Level-Trad have the similar
resizing time, since they need to rehash all items from
the old hash table to the new one.

4.2.7 Concurrent Throughput

Since PFHT and path hashing do not support the con-
current access, we compare the concurrent level hashing
with the state-of-the-art concurrent hash table in DRAM,
i.e., libcuckoo [6, 37]. We focus on general hashing
schemes without special hardware support. We hence
use the libcuckoo with fine-grained locking instead of
that with hardware transaction memory (HTM). We vary
the number of concurrent threads from 2 to 16 and
use the YCSB workloads with different search/insertion
ratios. We use the default configuration of YCSB, i.e.,
zipfian request distribution with 0.99 skewness. The
experimental results are shown in Figure 16. We observe
that the concurrent level hashing has 1.6×−2.1× higher
throughput than libcuckoo in all workloads. This is
because libcuckoo incurs iterative eviction operations
during an insertion. Thus an insertion needs to lock
an entire cuckoo path [37], i.e., locking all slots in
the eviction sequence. As a result, all insertion and
search operations in other threads that access any one
slot in the locked cuckoo path have to wait until the
current insertion completes, thus reducing the concurrent
performance. Unlike libcuckoo, in the concurrent level
hashing, most insertions lock only one slot and a few
insertions lock at most two slots, reducing the concurrent
conflictions and thus delivering high performance.
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Figure 16: The concurrent request throughputs of level
hashing and libcuckoo with 2/4/8/16 threads in DRAM.

5 Related Work
Tree-based Index Structures on NVM. For tree-based

index structures, most work focuses on B-tree [30].
Chen et al. [16] propose a PCM-friendly B+-tree that
reduces PCM writes by allowing leaf nodes to be
unsorted, without considering the data consistency of
B+-tree in PCM. Venkataraman et al. [58] propose the
CDDS B-tree that leverages versioning and CLFLUSH and
MFENCE instructions to achieve data consistency in B-
tree. Yang et al. [64] propose the NV-Tree to guarantee
the consistency of only leaf nodes in B+-tree while
relaxing that of internal nodes. The internal nodes can
be rebuilt based on leaf nodes in case of system failures.
NV-Tree reduces the number of cache line flushes due to
only persisting the leaf nodes. Chen et al. [17] propose
a write-atomic B-tree (wB+-Tree) that adds a bitmap
in each node of B+-tree and achieves consistency via
the atomic update of the bitmap. However, wB+-Tree
requires expensive redo logging for node split operations.
Oukid et al. [46] propose the FP-tree, a persistent B-
Tree for hybrid DRAM-NVM main memory, in which
only the leaf nodes of B+-tree are persisted in NVM
while the internal nodes are stored in DRAM. Hwang et
al. [30] propose the log-free failure-atomic shift (FAST)
and in-place rebalance (FAIR) algorithms for B+-tree in
persistent memory via tolerating transient inconsistency.
Except B-tree, Lee et al. [35] focus on the radix tree
on persistent memory and propose Write Optimal Radix
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Trees (WORT) that achieve data consistency via 8-byte
atomic writes. Unlike them, our paper focuses on the
hashing-based index structure on NVM.

Hashing-based Index Structures on NVM. Existing
work on hashing-based index structures for NVM, such
as PFHT [22] and path hashing [68, 69], mainly fo-
cuses on reducing NVM writes without considering the
consistency issue on NVM. Unlike them, our proposed
level hashing guarantees the consistency of hash table
via (opportunistic) log-free schemes without expensive
logging/CoW mechanisms in most cases, while deliver-
ing high performance and rarely incurring extra NVM
writes. Moreover, we observe that the resizing in hash
tables is expensive for the endurance and performance of
NVM systems, which however is overlooked by existing
work. Our paper proposes a cost-efficient in-place
resizing scheme to significantly reduce the NVM writes
and alleviate performance penalty during resizing.

Concurrent Hashing Index Structures. MemC3 [25]
proposes an optimistic concurrent cuckoo hashing that is
optimized for the multi-reader and single-writer concur-
rency by using a global lock and version counters. The
Intel Threading Building Blocks (TBB) [3] provides a
chaining-based concurrent hash table using per-bucket
fine-grained locking. Libcuckoo [37] is a multi-reader
and multi-writer concurrent cuckoo hashing scheme us-
ing fine-grained locking that delivers higher performance
than the TBB hash table. Our proposed concurrent level
hashing has higher concurrent throughput than libcuckoo
due to locking fewer slots for insertions. To support
variable-length keys and values, MemC3 [25] stores a
short summary of the key and a pointer for each key-
value item in the hash table. This pointer points to the
full key-value term that is stored outside the hash table.
The same method can be added into level hashing as
needed to support variable-length keys and values.

6 Conclusion
In order to efficiently index the data on persistent
memory, this paper proposes a write-optimized and
high-performance hashing index scheme, called level
hashing, along with a cost-efficient in-place resizing
scheme and (opportunistic) log-free consistency guaran-
tee schemes. Level hashing efficiently supports multi-
reader and multi-writer concurrency via simply us-
ing fine-grained locking. We have evaluated level
hashing in both DRAM and NVM platforms. Com-
pared with the state-of-the-art hashing schemes, level
hashing achieves 1.4×−3.0× speedup for insertions,
1.2×−2.1× speedup for updates, and over 4.3× speedup
for resizing while maintaining high search and deletion
performance. Compared with the start-of-the-art con-
current hashing scheme, the concurrent level hashing
improves the throughput by 1.6×−2.1×.
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