
CONTRIBUTED
P A P E R

A Comprehensive Study of the
Past, Present, and Future of
Data Deduplication
This paper provides a comprehensive survey of the state of the art in data

deduplication technologies for storage systems, covering key technologies, main

applications, open problems, and future research directions.

ByWen Xia, Member IEEE, Hong Jiang, Fellow IEEE, Dan Feng, Member IEEE,

Fred Douglis, Senior Member IEEE, Philip Shilane, Yu Hua, Senior Member IEEE,

Min Fu, Yucheng Zhang, and Yukun Zhou

ABSTRACT | Data deduplication, an efficient approach to

data reduction, has gained increasing attention and popular-

ity in large-scale storage systems due to the explosive growth

of digital data. It eliminates redundant data at the file or

subfile level and identifies duplicate content by its crypto-

graphically secure hash signature (i.e., collision-resistant

fingerprint), which is shown to be much more computation-

ally efficient than the traditional compression approaches in

large-scale storage systems. In this paper, we first review the

background and key features of data deduplication, then

summarize and classify the state-of-the-art research in data

deduplication according to the key workflow of the data de-

duplication process. The summary and taxonomy of the state

of the art on deduplication help identify and understand the

most important design considerations for data deduplication

systems. In addition, we discuss the main applications and

industry trend of data deduplication, and provide a list of

the publicly available sources for deduplication research and

studies. Finally, we outline the open problems and future re-

search directions facing deduplication-based storage systems.

KEYWORDS | Data compression; data deduplication; data re-

duction; delta compression; storage security; storage systems

I . INTRODUCTION

The amount of digital data in the world is growing explo-

sively, as evidenced in part by the significant increase in

the estimated amount of data generated in 2010 and

2011 from 1.2 zettabytes to 1.8 zettabytes, respectively
[1], [2], and the predicted amount of data to be produced

in 2020 is 44 zettabytes [3], [4]. As a result of this “data

deluge,” how to manage storage cost-effectively has be-

come one of the most challenging and important tasks in

mass storage systems in the big data era. The workload

studies conducted by Microsoft [5], [6] and EMC [7], [8]

suggest that about 50% and 85% of the data in their pro-

duction primary and secondary storage systems, respec-
tively, are redundant. According to a recent IDC study

[9], almost 80% of corporations surveyed indicated that

they were exploring data deduplication technologies in

their storage systems to reduce redundant data and thus

increase storage efficiency and reduce storage costs.

Data deduplication is an efficient data reduction ap-

proach that not only reduces storage space [5]–[7],

Manuscript received August 16, 2015; revised February 25, 2016 and May 12, 2016;
accepted May 12, 2016. Date of publication August 2, 2016; date of current version
August 18, 2016. This work was supported in part by the National Science Foundation
of China (NSFC) under Grants 61502190 and 61232004; by the 863 Project
2013AA013203; by the State Key Laboratory of Computer Architecture under
Grant CARCH201505; by the Fundamental Research Funds for the Central Universities,
HUST, under Grant 2015MS073; by the U.S. National Science Foundation (NSF) under
Grants CNS-1116606 and CNS-1016609; by the Key Laboratory of Information Storage
System, Ministry of Education, China; and by the EMC Corporation. (Corresponding
author: Dan Feng.)
W. Xia is with the School of Computer Science and Technology, Wuhan National
Laboratory for Optoelectronics, Huazhong University of Science and Technology,
Wuhan 430074, China (e-mail: xia@hust.edu.cn).
H. Jiang is with the Department of Computer Science and Engineering, University of
Texas at Arlington, Arlington, TX 76019 USA (e-mail: hong.jiang@uta.edu).
D. Feng, Y. Hua, M. Fu, Y. Zhang, and Y. Zhou are with the Wuhan National
Laboratory for Optoelectronics, the School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China (e-mail:
dfeng@hust.edu.cn; csyhua@hust.edu.cn; fumin@hust.edu.cn; cszyc@hust.edu.cn;
ykzhou@hust.edu.cn).
F. Douglis and P. Shilane are with EMC Corporation, Princeton, NJ 08540 USA
(e-mail: fred.douglis@emc.com; philip.shilane@emc.com).

Digital Object Identifier: 10.1109/JPROC.2016.2571298

0018-9219 Ó 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Vol. 104, No. 9, September 2016 | Proceedings of the IEEE 1681

mailto:<email content-type=
mailto:<email content-type=
mailto:<email content-type=
mailto:<email content-type=
mailto:<email content-type=
mailto:<email content-type=
mailto:<email content-type=
mailto:<email content-type=
mailto:<email content-type=

[10]–[13] by eliminating duplicate data but also min-
imizes the transmission of redundant data in low-

bandwidth network environments [8], [14], [15]. In

general, a typical chunk-level data deduplication system

splits the input data stream (e.g., backup files, database

snapshots, virtual machine images, etc.) into multiple

data “chunks” that are each uniquely identified and

duplicate-detected by a cryptographically secure hash
signature (e.g., SHA-1), also called a fingerprint [11], [14].
These chunks can be fixed in size [11], like file blocks,

or variable-sized units determined by the content itself

[14]. Deduplication systems then remove duplicate data

chunks and store or transfer only one copy of them to

achieve the goal of saving storage space or network

bandwidth.

Traditionally, data reduction has been the result of

data compression approaches that use a dictionary model
to identify redundancy for short strings (e.g., 16 B), such

as the classic LZ77/LZ88 algorithms [16], [17]. Most of

these approaches first compute a weak hash of strings

and then compare the hash-matched strings byte by byte.

Because of their time and space complexity, dictionary-

model-based compression approaches, such as LZO [18],

LZW [19], DEFLATE [20], only compress data in a much

smaller region, e.g., data within a file or a group of small
files [21], which trades off processing speed against com-

pression effectiveness.

For large-scale storage systems, data deduplication is

shown to be more scalable and efficient than traditional

compression approaches (e.g., Huffman coding or LZ

compression). The main benefits of data deduplication

are twofold. First, deduplication identifies and eliminates

redundancy at the chunk- (e.g., 8KB) or file-level while
the traditional compression approaches work at the

string or byte level. Second, deduplication identifies the

duplicate content (files or chunks) by calculating its

cryptographically secure hash-based fingerprints (simply

“fingerprints” for short in the remainder of the paper),

which avoids the traditional method of byte-by-byte

comparisons. These two features enable deduplication to

be easily applicable for global data reduction in large-
scale storage systems by computing and indexing the

fingerprints of chunks or files. This is because the size

of fingerprints for deduplication is orders of magnitude

smaller than that of the original data.

Generally, the main workflow of most of the chunk-

level data deduplication approaches consists of five key

stages, namely, chunking, fingerprinting, indexing of fin-

gerprints, further compression, and storage management.
Further compression is optional, including traditional

compression of the nonduplicate chunks (e.g., LZ com-

pression) and delta compression of the nonduplicate but

similar chunks. The storage management in data dedupli-

cation systems can be specified into several categories,

such as data restore (fragment elimination), garbage

collection, reliability, security, etc.

Fig. 1 shows the general workflow of data deduplica-

tion. The files are first divided into equal or similarly

sized chunks and each chunk is uniquely represented

by its fingerprint. Deduplication only stores the unique

(i.e., nonduplicate) chunks on disk by quickly verifying

their uniqueness using (indexing) their fingerprints. It
also records the list of constituent chunks in metadata
that will be used to reconstruct the original file. When

the size of fingerprints overflows the RAM capacity in

large-scale storage systems, several optimizing ap-

proaches are proposed for accelerating the on-disk

index-lookup process. A typical example is the data do-

main file system (DDFS) [13] using Bloom filters [22]

and a locality-preserved cache to accelerate fingerprints
indexing for deduplication, as detailed in Section III-C.

Usually, the unique chunks will be stored into several

large fixed-size storage units called containers [13], and

thus the restore of each file will cause many random

I/Os to the containers due to chunk fragmentation [23]:

the chunks of a file become scattered all over different

containers after deduplication. The detailed storage man-

agement of chunks and metadata will be discussed in
Section III. In addition there are many publicly available

deduplication tutorials [24]–[27], which may also be

helpful for understanding the deduplication concepts.

In this paper, we focus our study of the state-of-the-art

research on each of the five stages of the data deduplica-

tion workflow to provide insight into the evolution of the

technology over the years and pros and cons of the state-

of-the-art approaches, and outline the open problems and
research challenges facing data-deduplication-based storage

systems. We recognize and appreciate the contributions

of several recent survey studies of data deduplication

[28]–[32], which introduce deduplication strategies and

use cases, focus on a particular aspect of deduplication

(e.g., indexing schemes [31]), or survey the application of

the deduplication technology in a particular area (e.g.,

cloud storage [32]). However, our study is different from
these prior surveys in that we study the evolution and

key features of the technologies for redundant data reduc-

tion. More importantly, we provide an in-depth study of

the state-of-the-art approaches to all stages of data dedu-

plication, including the new and emerging areas for dedu-

plication, such as delta compression, restore, garbage

collection, security, reliability, etc.

Fig. 1. Overview of deduplication processing.

1682 Proceedings of the IEEE | Vol. 104, No. 9, September 2016

Xia et al. : A Comprehensive Study of the Past, Present, and Future of Data Deduplication

The main contributions of this study are threefold.

• We study the background and methodologies of

data deduplication. By examining the major dif-

ferences between data deduplication and the

traditional compression approaches, we present
the key features and advantages of data

deduplication.

• We study and classify the state of the art of

each stage of the data deduplication workflow,

including the chunking approaches, computation

accelerations for chunking, indexing of finger-

prints, delta compression, data restore, garbage

collection, security, and reliability. Based on the
in-depth stage-based study of existing ap-

proaches, we present a detailed taxonomy of the

state-of-the-art data deduplication techniques,

which provide useful insights into important

design issues of deduplication-based storage

systems.

• We discuss the main applications and industry

trends of data deduplication; provide a collection
of publicly available open-source projects, data

sets, and traces for the data deduplication re-

search community; and outline open problems

and research challenges facing data deduplication

research.

It is noteworthy that the data deduplication discussed

in this study is different from the term “deduplication”

in the database, data mining, and knowledge engineering
fields. In these fields, duplicate detection is commonly

used to identify records that represent the same entity

[33], [34]. This study focuses on eliminating identical

data, thus saving storage space in storage systems. The

organization of the paper is illustrated in Fig. 2.

Section II presents the background and methodologies of

data deduplication. The state-of-the-art data deduplica-

tion approaches are described and classified into six cat-
egories in Section III following the key stages of the

data deduplication workflow. Section IV presents the

main applications, discusses industry trends and future

research directions of data deduplication, and introduces

a collection of publicly available resources for the re-

search community to study data deduplication technolo-

gies. Section V summarizes the paper. Finally, in the

Appendix, we list and explain some frequently discussed
acronyms and terminologies.

II . REDUNDANT DATA REDUCTION
AND DATA DEDUPLICATION

In this section, we first provide the necessary back-

ground for redundant data reduction by introducing a

taxonomy that shows both the traditional data compres-

sion approaches and the data deduplication approaches,

as well as their evolution over the decades. We then
study the key features of data deduplication to show how

and why it is different from the traditional compression

approaches. Finally, we review the key workflow of a

typical data deduplication system.

A. A Primer on Redundant Data Reduction
“The goal of data compression is to represent an in-

formation source (e.g., a data file) as accurately as possi-

ble using the fewest number of bits” [35], [36].

Generally speaking, data compression can be classified
into two broad categories, lossless and lossy. Lossless

compression reduces data by identifying and eliminating

statistical redundancy in a reversible fashion, as repre-

sented by algorithms such as GZIP [37] and LZW [19].

Lossy compression reduces data by identifying unneces-

sary information and irretrievably removing it, as typi-

fied by the JPEG image compression [38]. This paper

focuses on the lossless compression category, including
data deduplication, since lossless compression is re-

quired for general-purpose storage systems.

The theory of data compression was formulated by

Claude E. Shannon who introduced the theory of infor-

mation entropy (simply “entropy” for short henceforth)

to define the relationship between the occurrence proba-

bility of information (or the uncertainty) and data redun-

dancy in his seminal 1948 paper “A mathematical theory
of communication” [39]. This entropy theory established

the existence of a fundamental limit to lossless data com-

pression. Specifically, the entropy H of a discrete random

variable X with possible values fx1; . . . ; xng and probabil-

ity mass function PðXÞ was defined by Shannon as

HðXÞ ¼ EðIðXÞÞ ¼
Xn
i¼1

PðxiÞIðxiÞ

¼ �
Xn
i¼1

PðxiÞ logb PðxiÞ: (1)

Here E is the expected value operator, I is the infor-

mation content of X, IðXÞ is itself a random variable, and

b is the base of the logarithm used (e.g., b ¼ 2 refers to

binary representation). For example, given a string

“abaaacabba,” the occurrence counts of characters “a,”

Fig. 2. Organization of this survey paper.

Vol. 104, No. 9, September 2016 | Proceedings of the IEEE 1683

Xia et al. : A Comprehensive Study of the Past, Present, and Future of Data Deduplication

“b,” and “c” are 6, 3, and 1, respectively. So the entropies
of each character and the string are calculated as follows:

HðaÞ ¼ � log2ð0:6Þ ¼ 0:737 bits

HðbÞ ¼ � log2ð0:3Þ ¼ 1:737 bits

HðcÞ ¼ � log2ð0:1Þ ¼ 3:322 bits

Hðfa; b; cgÞ ¼ HðaÞ � 0:6þ HðbÞ � 0:3þ HðcÞ � 0:1

¼ 1:295 bits: (2)

ASCII would require 80 bits to represent these ten

characters. Equation (2) means that each character can

be maximally compressed into 1.295 bits and thus the

whole string into 12.95 bits in theory, though more are

needed since partial bits are not possible. For example, we
can encode “a,” “b,” and “c” with “0,” “10,” and “11,” re-

spectively; this would require 14 bits (“01000011010100”).

Therefore, Shannon’s entropy theory discloses that an in-

formation message can be expressed by fewer bits, which is

the essence of redundant data reduction.

The early data compression approaches use the

statistical-model-based coding, also called entropy coding,

that identifies redundancy at the byte level. The most
widely used entropy coding algorithm is Huffman coding

[40], which uses a frequency-sorted binary tree to gener-

ate the optimal prefix codes for entropy coding. In order

to achieve the fundamental limit of data compression ra-

tio (e.g., the aforementioned entropy value), arithmetic

coding [41], first proposed by Elias in the 1960s [42],

encodes the entire message into several decimals for a

higher compression ratio. Huffman coding separates the
input into component symbols and replaces each with a

shorter code.

With the growing size of digital data in the world, a

new approach called dictionary-model-based coding was

proposed by Lempel and Ziv in the 1970s, represented

by the LZ77 [16] and LZ78 [17] algorithms. These

simplify and speedup data compression by identifying

redundancy at the string level: it identifies the re-
peated strings using a sliding window and replaces

these repeated strings by the positions and lengths of the

matched ones. Later in the 1980s, variants of the LZ

compression approach were proposed to either improve

compression ratio (e.g., DEFLATE and LZMA [20], [43],

[44]) or speed up the compression process (e.g., LZO [18]

and LZW [19]).

In general, entropy-coding approaches need to count
all the information before coding the frequently occur-

ring bytes into shorter bits, which is not scalable.

Meanwhile, dictionary-coding approaches need to search

all the strings to support the matching and elimination

of duplicate strings. As a result, both entropy- and

dictionary-coding approaches often limit the compression

window to trade off between the compression ratio and

speed. For example, DEFLATE [43] (which combines
LZ77 and Huffman coding) uses the compression win-

dow size of 64 kB, while the maximum windows for

bzip2 [21], [45] and 7z [44] are 900 kB and 1 GB, re-

spectively. The wide range of compression window sizes

can result in large variations in overall compressibility,

though there are some techniques to increase compres-

sion by preprocessing data [21], [46].

Delta compression was proposed in the 1990s to
target the compression of very similar files (i.e., the dif-

ferent versions of a file) or similar chunks. It has been

widely used in many applications, such as source code

version control [47]–[49], remote synchronization [8],

[50]–[52], and backup storage systems [53]–[55]. Taking

Xdelta [49] as an example, for similar files (or chunks)

A and B, Xdelta uses the COPY/INSERT instructions to

record the matched/unmatched strings into a delta file
�A;B. Xdelta can quickly recover the file A by decoding

the delta file �A;B using file B. It is noteworthy that

delta compression predates deduplication by a decade or

more but adding delta compression to deduplication is

gaining attention recently, as discussed in Section III-D.

Data deduplication was proposed in the 2000s to sup-

port global compression in large-scale storage systems at

a much coarser granularity (e.g., a file [10] or a data
chunk of 8K kB [11]) than the traditional compression

approaches. It computes the cryptographically secure hash-
based fingerprints of the files or chunks and then iden-

tifies the duplicates by matching their fingerprints.

Fig. 3 introduces a taxonomy of these redundant data

reduction techniques and their evolution over the past

several decades. Dates for each approach are approximate

and indicate when research began. In many cases, re-
search for each approach continues currently. These re-

dundant data reduction techniques have been developed

to cope with the increasing size of users’ digital data,

evolving from the entropy coding to dictionary coding, to

delta compression, and now to data deduplication. These

approaches are increasingly scalable by identifying re-

dundancy at an increasingly coarse granularity, from the

byte level to the string level, to the chunk level, and to
the file level.

B. Key Features of Data Deduplication
In this section, we will study the key features of data

deduplication. At present, the most widely used data de-

duplication approach eliminates redundancy at the chunk

level in large scale storage systems by computing and

then matching fingerprints of data chunks [5], [7]. It is

worth noting that file-level deduplication was proposed

earlier [10], [56], but that technique was subsequently
overshadowed by chunk-level deduplication due to the

latter’s better compression performance [5], [12], [13],

[57]. In some contexts, file-level deduplication gains

most of the benefits of finer-grained comparisons [5].

1684 Proceedings of the IEEE | Vol. 104, No. 9, September 2016

Xia et al. : A Comprehensive Study of the Past, Present, and Future of Data Deduplication

The low-bandwidth network file system (LBFS) [14]

and Venti [11] are two pioneering studies of data dedupli-

cation. LBFS was proposed to detect and eliminate dupli-

cate chunks of about 8 kB size (using a variable-sized

chunking approach as detailed in Section III-A) and thus

avoid transmitting them over a low-bandwidth network en-
vironment, whereas Venti was proposed to remove dupli-

cate chunks and save storage space. Specifically, LBFS

employs content-defined chunking to identify redundancy

at the chunk level while Venti uses fixed-size chunking.

On the other hand, both Venti and LBFS adopt the SHA1

hash function for computing fingerprints of chunks and

consider the probability of two different chunks having the

same SHA1 value to be far lower than the probability of
hardware bit errors [11], [13], [14]. The schemes of chunk-

level duplicate elimination and SHA1-based fingerprinting

have been widely accepted and adopted by academia and

industry alike in the last ten years [13], [58]–[64]. Issues

with the possibility of collisions have been raised [65]

and refuted [66], as discussed further below.

Chunk-Level Duplicate Identification: While the size of
digital data is consistently growing in recent years, the

information entropy is not increasing proportionally. For

example, a large portion of high-volume data can be a re-

sult of some data being repeatedly copied and stored in

backup/archive storage systems [7]. In addition, tradi-

tional compression approaches use a byte-level sliding

window to find matching strings for duplicate identifica-

tion within a relatively small window; by comparison,
data deduplication divides the input into nonoverlapped

and independent chunks across a storage system.

Generally speaking, the chunking approaches for data

deduplication include fixed-size chunking and variable-

size chunking. Fixed-size chunking simply divides the

input into fixed-size chunks according to the offset

(i.e., position) of the content. This approach is simple

but may fail to identify substantial redundancy because

of the known boundary-shift problem, in which a minor

change (e.g., insertion/deletion of some bytes) in the data

stream can lead to the shift of boundaries for all chunks.

Since the chunks contain slightly different content, they

fail to deduplicate [14], [60], [67], [68]. Variable-size
chunking, also called content-defined chunking, divides

the input into variable-size chunks according to the con-

tent itself; this largely solves the boundary-shift problem

and is the most widely used chunking approach today.

Chunking will be studied in Section III-A.

Cryptographically Secure Hash-Based Fingerprinting (Also
Called Compare by Hash) [65], [66]: The fingerprinting
technique simplifies the process of duplicate identifica-

tion. In some early data reduction approaches (such as LZ

compression [16], [17] and Xdelta [49]), the duplicates

are first matched by their calculated weak hash digest

and then further confirmed by a byte-by-byte comparison.

In data deduplication systems, the duplicates are

completely represented by their cryptographic hash-based

fingerprints (e.g., SHA1, SHA256) and the matched fin-
gerprints mean that their represented contents are, with

high probability, identical to each other. Here the finger-

print refers to a family of cryptographic hash functions

[69] that has the key property of being practically infeasi-

ble to 1) find two different messages with the same hash

and 2) generate a message from a given hash.

According to the “birthday paradox” [11], [70], the

collision probability of a given SHA1 pair can be calcu-
lated as follows:

hash calculation: CA¼hash(content) ðCA length of m bitsÞ

hash collision: p�nðn�1Þ
2

� 1

2m
ðn is a number of chunksÞ

(3)

Fig. 3. Taxonomy of redundant data reduction techniques and approximate dates of initial research for each approach.

Vol. 104, No. 9, September 2016 | Proceedings of the IEEE 1685

Xia et al. : A Comprehensive Study of the Past, Present, and Future of Data Deduplication

where CA is the m-bit fingerprint of the content using

the “hash” function. Table 1 shows the hash collision

probability according to (3) with varying amounts of un-

ique data. The probability of a hash collision when data

deduplication is carried out in an EB-scale storage sys-

tem, based on the average chunk size of 8 kB and finger-
prints of SHA1, is smaller than 10�20 (about 2�67). In

contrast, in computer systems, the probability of a hard

disk drive error is about 10�12 � 10�15 [71], [72], which

is much higher than the aforementioned probability of

SHA1-fingerprint collisions in data deduplication. Conse-

quently, SHA1 has become the most wildly used finger-

printing algorithm for data deduplication because most

existing approaches, such as LBFS [14], Venti [11], and
DDFS [13], consider the hash collision probability to be

sufficiently small to be ignored when applying deduplica-

tion in a PB-scale storage system. Nevertheless, Henson

[65] points out, however, that the hash-based comparison

approach is not risk-free. Black et al. [66] offer several

arguments in support of compare-by-hash by addressing

concerns raised by Henson. More recently, stronger hash

algorithms, such as SHA256, have been considered for
fingerprinting in some data deduplication systems, such

as ZFS [73] and Dropbox [74], to further reduce the risk

of hash collision.

Content-defined chunking and secure-hash based fin-
gerprinting are widely used in commercial storage sys-

tems [7], [13], [58], [59], [62], [64] and known as the

key features of data deduplication. Table 2 shows a sum-

mary of analyses on data reduction ratio of large-scale

real-world workloads (i.e., TB-PB-scale data sets) con-

ducted by Microsoft [5], [6], EMC [7], [8], and Mainz

University [70]. Here chunk-level deduplication is based

on content-defined chunking [14] and delta compression
is based on Xdelta encoding [49]. Table 2 indicates that

data deduplication at the chunk level detects much more

redundancy than that at the file level and duplicate chunks

are abundant in computer systems, with data reduction ra-

tios of about 69%� 97%, 42%� 68%, and 20%� 30% in

secondary storage, primary storage, and HPC data centers,

respectively.

C. Basic Workflow of Data Deduplication
A typical data deduplication system follows the

workflow of chunking, fingerprinting, indexing, further
compression, and storage management, as illustrated in

Fig. 4. The storage management in data deduplication

systems can be further specified into several categories,

including data restore (fragment elimination), garbage

collection, reliability, security, etc. Since data dedupli-

cation is designed to implement global redundant data

reduction in large-scale storage systems, as discussed

in Section II-A, there are a host of interesting re-
search problems and solutions related to each stage of

the data deduplication workflow, which can be classi-

fied as follows and elaborated on in the remainder of

this paper.

• Chunking of data stream: The problem of how to

design an efficient chunking algorithm to maxi-

mally detect redundancy in the data stream for

data deduplication is an important research and
practical problem, which, along with its solutions,

will be studied in depth in Section III-A.

Table 1 Hash Collision Probability Analysis of SHA-1, SHA-256, and SHA-512

in Storage Systems with Difference Sizes of Unique Data and with an

Average Chunk Size of 8 KB

Table 2 Summary of Recently Published Analyses on Redundant Data Reduction Ratios of Large-Scale Real-World Datasets by Industry and Academia

1686 Proceedings of the IEEE | Vol. 104, No. 9, September 2016

Xia et al. : A Comprehensive Study of the Past, Present, and Future of Data Deduplication

• Acceleration of computation tasks: Chunking and

fingerprinting in data deduplication systems con-
sumes significant computational resources. Re-

ducing this overhead is an emerging and

challenging problem, which will be examined in

Section III-B.

• Indexing of fingerprints: As the size of the user

data continues to grow from TB to PB and even

EB scale, the total size of the fingerprints repre-

senting the user data will quickly overwhelm the
main memory. This gives rise to the problem of

how to efficiently store and index these finger-

prints of the user data chunks stored on the disks,

an increasingly important and challenging re-

search and practical problem. We will compre-

hensively study the existing solutions to this

problem in Section III-C.

• Further compression: How to eliminate the re-
dundancy among the nonduplicate but very simi-

lar chunks in data deduplication systems,

namely, delta compression, is another interesting

and important research problem. As shown in

Fig. 4, the delta and traditional compression

(e.g., LZ compression) approaches belong to the

further compression category. LZ compression is

intuitive and easy to implement [7], [8], [13]
while delta compression is an optional approach

since it brings new challenges to data deduplica-

tion systems, which will be studied in depth in

Section III-D.

• Data restore: In data-deduplication-based storage

systems, the chunks of files or data streams may

be physically scattered and stored after deduplica-

tion, which can significantly decrease the perfor-
mance of restoration (read). The state of the art

works on improving reading performance of de-

duplication-based storage systems will be compre-

hensively studied in Section III-E.

• Garbage collection: Some data chunks will be

shared by many files in deduplicated systems,

thus it is a new challenge to determine which
chunks can be reclaimed when files are deleted.

The garbage collection issue and existing solu-

tions will be studied in Section III-F.

• Security: The deduplication among data of dif-

ferent users can result in potential security risk

in which one user’s private and sensitive infor-

mation is leaked to another and vice versa. The
secure deduplication issues and preliminary solu-
tions will be studied in depth in Section III-G.

• Reliability: Data deduplication reduces the reli-

ability of the storage system because the loss

of a few critical data chunks can lead to many ref-

erenced files/backups being lost. The reliability-

enhanced solutions for deduplication systems will

be comprehensively studied in Section III-H.

III . DATA DEDUPLICATION: AN
IN-DEPTH EXAMINATION OF KEY
TECHNOLOGIES

In this section, we examine the state-of-the-art works on

data deduplication in sufficient depth to understand their

key and distinguishing features. These features divide
the existing data deduplication technologies into eight

categories (Section III-A–H) based on the workflow of

the data deduplication process, as shown in Fig. 4.

Existing approaches in each category will be comprehen-

sively studied and discussed in each section.

A. Chunking of Data Stream
Chunking is the first step in the data deduplication

process, in which a file or data stream is divided into

small chunks of data so that each can be fingerprinted

(see Fig. 4). The simplest chunking approach is to cut

the file/data stream into equal, fixed-sized chunks, an ap-

proached referred to as fixed-size chunking (FSC). In

FSC, if a part of a file or data stream, no matter how

small, is modified by the operation of insertion or dele-

tion, not only is the data chunk containing the modified
part changed but also all subsequent data chunks will

change, because the boundaries of all these chunks are

shifted. This can cause otherwise identical chunks

(before modification) to be completely different, result-

ing in a significantly reduced duplicate identification

ratio of FSC-based data deduplication.

In order to address this boundary-shift problem [12],

[14], [75], [76], the content-defined chunking (CDC)
algorithm, also called content-based breakpoint chunk-

ing, was proposed in LBFS [14], to chunk files or data

streams for duplicate identification. Specifically, CDC

uses a sliding-window technique on the content of files

and computes a hash value (e.g., Rabin fingerprint [77])

of the window, as shown in Fig. 5. A chunk breakpoint

is determined if the hash value of this sliding window

Fig. 4. Basic workflow of data deduplication.

Vol. 104, No. 9, September 2016 | Proceedings of the IEEE 1687

Xia et al. : A Comprehensive Study of the Past, Present, and Future of Data Deduplication

satisfies some predefined condition. Therefore, to chunk

a file V2 that is modified on the chunk C2 of file V1,
the CDC algorithm can still identify the correct bound-

ary of chunks C3 and C4 whose content has not been

modified.

Currently, the Rabin algorithm [70], [77], [87] is the

most widely used algorithm for computing the hash value

of the sliding window in CDC for data deduplication.
Specifically, the Rabin signature (fingerprint) for a slid-

ing window (byte sequence fB1; B2; . . . ; B�g) of the data

stream, is defined as

RabinðB1; B2; . . . ; B�Þ ¼
X�
x¼1

Bxp
��x

()
mod D (4)

where D is the average chunk size and � is the number

of bytes in the sliding window. The Rabin signature is
obtained by a rolling hash algorithm since it is able to

compute the signature in an incremental fashion. For

the substring in the sliding window, the signature can
be incrementally computed from the previous value as

follows:

RabinðBiþ1; Biþ2; . . . ; Biþ�Þ

¼
Xiþ�

x¼iþ1

Bxp
��xþi

()
mod D

¼
Xiþ��1

x¼i

Bxp
��xþi�1�Bip

��1

" #
pþBiþ�

8<
:

9=
;mod D

¼ RabinðBi; Biþ1; . . . ; Biþ��1Þ � Bip
��1

� �
p

n
þ Biþ�

o
mod D: (5)

Therefore, building the new Rabin hash can be

quickly computed from the old one, only requiring oper-

ations of two XOR, one OR, two left shifts, and two array
lookups per byte [68]. In data deduplication systems, al-

though Rabin meets the needs of content-defined chunk-

ing in terms of the rolling hash property, its efficiency

can be improved. For example, a recent study, called

QuickSync [88], suggests that Rabin-based CDC is quite

computationally expensive for deduplication-based syn-

chronization in mobile cloud storage. Generally speaking,

Rabin-based CDC has the three main deficiencies of high
chunk size variance, computational overhead, and inac-

curacy of duplicate detection.

Table 3 summarizes the sate-of-the-art approaches to

CDC-based data deduplication that address these three

deficiencies of Rabin-based CDC, which are elaborated

on below.

Reducing Chunk Size Variance by Imposing Limits on
MAX/MIN Chunk Sizes for CDC: The cumulative distribu-

tion of chunk size X in a Rabin-based chunking approach

Fig. 5. Sliding window technique for the CDC algorithm. The hash

value of the sliding window f is computed via the Rabin algorithm.

If the lowest log2 D bits of the hash value match a predefined

value r, i.e., f mod D ¼ r, the offset is marked as a chunk breakpoint

(also called a cut point). Here the shaded region inside chunk C5

of file V2 indicates the newly inserted content in file V2

relative to file V1.

Table 3 State-of-the-Art Approaches to Content-Defined Chunking for Data Deduplication

1688 Proceedings of the IEEE | Vol. 104, No. 9, September 2016

Xia et al. : A Comprehensive Study of the Past, Present, and Future of Data Deduplication

with an average chunk size of 8 kB follows the following
exponential distribution [68]:

PðX � xÞ ¼ FðxÞ ¼ 1� e�
x

8192; x � 0: (6)

Equation (6) suggests that there will be many chunks

of extremely small or large size (e.g., G 1 kB or 9 64 kB).
Chunks of a smaller size cause higher metadata overhead

for deduplication because this overhead is proportional to

the number of chunks, whereas, chunks of a larger size

decrease deduplication ratio [75] as large chunks tend to

hide duplicates from being detected. Therefore, LBFS im-

poses the restrictions on the minimum and maximum

chunk sizes (e.g., 2 and 64 kB) for content-defined

chunking [14]. This solution, however, may result in
forced cut points during chunking that are no longer con-

tent defined.

Two-thresholds–two-divisors (TTTD) [78] introduces

an additional threshold for chunking, which has a higher

probability of finding cut points and decreases the chunk

size variance. Regression chunking [6] is similar to

TTTD, but it uses multiple thresholds to reduce forced

cut-point declarations at the maximum chunk size.
MAXP [80], [89], [90] treats the extreme values in a

fixed-size region as cut points, which also results in

smaller chunk size variance. FingerDiff [79], [91] uses a

smaller expected chunk size to detect more duplicates

and then merges the consecutively duplicate or unique

chunks to amortize the additional metadata overhead

stemming from the smaller expected chunk size.

Reducing Computation to Accelerate the Chunking Process:
Since the frequent computations of Rabin fingerprints on

the sliding window are time consuming, many alterna-

tives to Rabin have been proposed to accelerate the CDC

process for deduplication [68], [81], [82]. SampleByte

[81] is designed for providing fast chunking for fine-

grained network redundancy elimination. It uses one

byte to declare a fingerprint for chunking (while Rabin
uses a sliding window) and increases the minimum size

from one quarter of the expected average to one half,

and compared to LBFS [14] skips the minimum size be-

fore searching for a cut point for each chunk. Gear [68]

uses fewer operations to generate rolling hashes by using

a random integer table to map the ASCII values of the

content, so as to achieve higher chunking throughput

while obtaining comparable chunking accuracy to Rabin.
Asymmetric extremum (AE) [82] employs an asymmetric

sliding window, rather than a symmetric sliding window

as in MAXP [80], to identify extrema as cut points,

which further reduces the computational overhead for

chunking and thus achieves high chunking throughput

while maintaining low chunk-size variance. Yu et al. [83]
adjusted the function for selecting chunk boundaries

such that if weak conditions are not met, the sliding win-
dow can jump forward, saving unnecessary calculation

steps.

Improving Duplicate-Detection Accuracy by Rechunking
Nonduplicate Chunks: As shown in Fig. 5, the CDC ap-

proach simply determines the chunk boundary if the

hash (e.g., Rabin [77]) of the CDC sliding window

matches a predefined value, which helps identify the du-
plicate chunks C3 and C4 among files V1 and V2 but fails

to identify the redundancy between chunks C2 and C5.
More specifically, the CDC approach cannot accurately

find the boundary between the changed regions (e.g., the

shaded region in chunk C5 of file V2) and the duplicate

regions (e.g., the blank unshaded region in chunk C5) be-
tween two similar files (e.g., files V1 and V2). Thus, a
number of rechunking approaches have been proposed to
further divide the nonduplicate chunks (e.g., chunks C2
and C5 in Fig. 5) into smaller regions to detect more re-

dundancy [75], [84]–[86].

Bimodal chunking [75] first divides the data stream

into large chunks, and then rechunks the nonduplicate

but duplicate-adjacent chunks into smaller chunks to de-

tect more redundancy. Subchunk [84] is similar to bi-

modal chunking, but it rechunks all of the nonduplicate
chunks for higher deduplication ratio. Frequency-based

chunking (FBC) [85] uses a statistical chunk frequency

estimation algorithm to identify the frequent chunks and

then rechunks those chunks into smaller ones to detect

more duplicates. Metadata harnessing deduplication

(MHD) [86] is also similar to bimodal chunking, but it

further reduces metadata overhead of deduplication by

dynamically merging multiple nonduplicate chunks into
one big chunk and meanwhile dividing nonduplicate but

duplicate-adjacent chunks into smaller ones while bi-

modal only does the latter.

MAXP [80], [89], [90] and SampleByte [81] are two

nonrolling-hash-based chunking algorithms that are de-

signed for eliminating redundant network traffic at fine

granularity (e.g., 64 or 128 B). MAXP was proposed to

deal with the problem of the reduced deduplication ratio
in Rabin due to the forced minimum chunk size [80]. It

is used in network deduplication due to its smaller vari-

ance in chunk sizes [89]. SampleByte was proposed to

accelerate content-defined chunking for improved en-

ergy efficiency of redundancy elimination in resource-

constrained devices, such as mobile smartphones [81].

In summary, the CDC approaches imposing minimum

and maximum chunk sizes are widely accepted and thus
used in data-deduplication-based storage systems [5], [7],

[13], [92]. Imposing more restrictions on Max/Min

chunk sizes, while simple to implement, only marginally

improves the deduplication ratio. Rechunking schemes

significantly improve the deduplication ratio, but at the

cost of the time-consuming rechunking process and the

additional storage management of the nonduplicate

Vol. 104, No. 9, September 2016 | Proceedings of the IEEE 1689

Xia et al. : A Comprehensive Study of the Past, Present, and Future of Data Deduplication

chunks and their rechunked subchunks. Other fast

chunking approaches, such as Gear [68], AE [82], and

SampleByte [81], may be recommended if higher dedu-

plication throughput is required by users.

Impact of Interspersed Metadata: Chunking of un-
changed data can result in different chunks when meta-

data is interspersed with the data [98]. The metadata can

take different forms. One type occurs when there are

headers of fixed-sized blocks (e.g., for virtual tapes),

which cause the metadata to move relative to content-

defined chunks; these can be detected by the deduplica-

tion system and stripped prior to deduplication. Another

type is per-file metadata preceding a file contained in a tar
aggregate file or a backup file. When the per-file metadata

contains timestamps, sequence numbers, or other variable

content, the surrounding chunk will not deduplicate. Such

metadata can be addressed by preprocessing the input

(termed migratory tar by Lin, et al. [98]) or by creating de-
duplication-friendly file formats that segregate metadata

from data.

B. Acceleration of Computational Tasks
As shown in Fig. 5 and Section III-A, data deduplica-

tion is a compute-intensive process that contains two

time-consuming computational tasks, i.e., content-

defined chunking and secure-hash-based fingerprinting.

The former divides data streams into several chunks by

CDC and the latter computes a cryptographic digest (i.e.,

fingerprint) for each chunk to uniquely represent it for
duplicate detection. Thus, the chunking and fingerprint-

ing stages of the deduplication process need to compute

hashes (e.g., Rabin and SHA1), which may lengthen the

write latency in a deduplication-based storage system

[95], [96], [99], especially in a high-performance pri-

mary storage system using flash-based devices to the in-

crease in-memory processing capacity [97].

While hash calculations for deduplication are time
consuming and central processing unit (CPU) intensive,

modern computer systems based on multicore/manycore

processors or general-purpose computing on graphics

processing units (GPGPU) processors are providing in-

creasingly more computing resources [95]. Meanwhile,

the data deduplication process can be divided into sev-

eral independent subtasks as illustrated in Fig. 5.

Exploiting parallelism among these subtasks [96], [100]

can speed up deduplication by making full use of the

abundant computing resources in modern computer sys-

tems. Note that the approaches discussed in Section III-A

increase the CDC speed by improving the internal chunk-

ing process (e.g., using new hashing algorithms) while
this section mainly discusses approaches to accelerating

Rabin-based CDC externally by leveraging the multicore

processors or GPGPU devices to exploit the parallelism of

the CDC process.

Our studies show that the state-of-the-art approaches

to accelerating the compute-intensive deduplication tasks

are broadly based on either exploiting the parallelism of

data deduplication with multiple threads [62], [100] or
integrating the data deduplication process into the

GPGPU hardware architecture [95], [96], [101]. These

are summarized in Table 4 and elaborated on below.

• Multithread-based methods. THCAS [93] pro-

poses a storage pipeline of CPU bound (i.e.,

chunking and fingerprinting), I/O bound (i.e.,

writing), and network communication tasks in its

deduplication system. P-Dedupe [76] is similar to
THCAS, but it further parallelizes the subtasks of

chunking and fingerprinting and thus achieves

higher throughput. Guo et al. [62] propose an

event-driven, multithreaded client–server interac-

tion model, to pipeline FSC-based deduplication.

Ma et al. [94] propose an adaptive pipelining

model for the computational subtasks of finger-

printing, compressing, and encrypting in FSC-
based deduplication systems.

• GPGPU-based methods. GPGPU devices have been

shown to offer stronger computing power than

CPU for many compute-intensive applications, es-

pecially for the applications of hash and crypto-

graphic calculation in high performance storage

systems. StoreGPU [95], [101] and Shredder [96]

make full use of GPGPU’s computational power to
accelerate popular compute-intensive primitives

(i.e., chunking and fingerprinting) in data dedu-

plication. Similarly, GHOST [97] offloads the

deduplication tasks of chunking, fingerprint, and

indexing to GPGPU to remove computing bot-

tlenecks in high-performance primary storage

systems.

Table 4 State-of-the-Art Approaches to Accelerating Computational Tasks for Data Deduplication

1690 Proceedings of the IEEE | Vol. 104, No. 9, September 2016

Xia et al. : A Comprehensive Study of the Past, Present, and Future of Data Deduplication

In summary, multithread-based solutions can be eas-

ily implemented in computer systems with multicore/

manycore processors by pipelining deduplication tasks

and parallelizing chunking and fingerprinting [93],

[100]. GPGPU-based solutions can provide higher

throughput but require additional hardware costs [95],

[96], [101]. Another approach, which does not affect the
speed of the computational tasks but allows a backup sys-

tem to scale to additional clients, is to offload chunking

to the clients; this is discussed in the context of industry

trends in Section IV-B.

C. Indexing of Fingerprints
After chunking and fingerprinting the data streams,

chunk fingerprints are indexed to help determine the du-
plicate and nonduplicate data chunks, which is a critical

stage for the deduplication process. Early deduplication

systems store the entire chunk fingerprint index in mem-

ory for fast duplicate identification [14].

With the explosive growth of data volume, the total

number of fingerprints and thus the size of their index in-

crease exponentially, quickly overflowing the RAM capac-

ity of deduplication systems. This can result in frequent
accesses to the low-speed disks for fingerprint-index

lookups, thus severely limiting the throughput of dedupli-

cation systems. For example, to backup a unique data set

of 1 PB and assuming an average chunk size of 8 kB,

about 2.5 TB worth of SHA-1 fingerprints (160 bits

each chunk) will be generated. The 2.5-TB fingerprints

plus extra location and index messages for each chunk

(e.g., 8 B), will be too large to be fully stored in the
main memory of a typical deduplication system. Since

the random accesses to on-disk index are much slower

than that to RAM, frequent accesses to on-disk finger-

prints will cause the system throughput to become unac-

ceptably low. For example, some data deduplication

systems [11], [13], [58] report that the accessing through-

put to the on-disk fingerprint-index is about 1–6 MB/s,

which becomes a severe performance bottleneck in these

systems. Therefore, an efficient fingerprint-indexing

scheme is necessary for large-scale data deduplication

systems.

Depending on the specific approach used, a finger-

print-indexing scheme can lead to either exact deduplica-

tion or approximate deduplication [102], [103]. While
the former means that all duplicate chunks are elimi-

nated, the latter trades a slightly reduced accuracy of du-

plicate detection (i.e., a small number of duplicate

chunks are not detected) for a higher index-lookup per-

formance and lower memory footprint. Currently, there

are four general categories of approaches to accelerating

the index-lookup process of deduplication and alleviating

the disk bottleneck, namely, locality-based, similarity-
based, flash-assisted, and cluster deduplication ap-

proaches. Table 5 presents these four categories of the

state-of-the-art approaches to fingerprint indexing for

data deduplication systems, which are elaborated on

upon next.

Locality-Based Approaches: Locality in the context of

data deduplication refers to the observation that similar
or identical files, say, A, B, and C (thus their data

chunks), in a backup stream appear in approximately the

same order throughout multiple full backups with a very

high probability [13], [75]. Mining this locality for dedu-

plication indexing increases the RAM utilization and re-

duces the accesses to on-disk index, thus alleviating the

disk bottleneck.

Fig. 6 shows an example of the locality-based ap-
proach, DDFS [13]. This well-known deduplication sys-

tem makes full use of this locality property by storing

the chunks in the order of the backup stream (e.g.,

chunks’ fingerprints {3b, a7, 2f, 5c} of file A) on the

disk. Upon the lookup of fingerprint “3b” of file C, DDFS
will prefetch the fingerprints {3b, a7, 2f, 5c} and pre-

serve this locality in the RAM, which helps reduce the

Table 5 State-of-the-Art Approaches to Fingerprints Indexing for Data Deduplication

Vol. 104, No. 9, September 2016 | Proceedings of the IEEE 1691

Xia et al. : A Comprehensive Study of the Past, Present, and Future of Data Deduplication

accesses to the on-disk index when looking up the finger-

prints of “a7” and “2f” at a later time. Usually, DDFS

stores the nonduplicate chunks in several large fixed-size

storage units called containers that preserve backup

stream locality. DDFS also uses Bloom filters [22] to

quickly identify new (i.e., nonduplicate) chunks, avoid-
ing an index lookup for chunks that are known not to al-

ready exist; this helps compensate for the cases where

there is no or little locality. A Bloom filter [22] is a

space-efficient data structure that uses a bit array with

several independent hash functions to represent mem-

bership of a set of items (e.g., fingerprints).

Sparse indexing [58] improves DDFS memory utiliza-

tion by sampling the index of chunk fingerprints in
memory, instead of using Bloom filters [22] as in DDFS,

which reduces the RAM usage to less than half of that in

DDFS. SAM [105] first combines the global file-level de-

duplication and local chunk-level deduplication, and

then exploits file semantics of size, type, locality, etc., to

optimize fingerprint indexing. MAD2 [104] employs a

Bloom filter array as a quick index for deduplication

while also preserving locality of fingerprints in cache.
HPDS [62] exploits the inherent locality of the backup

stream with a progressive sampled indexing approach to

further reduce memory overhead for fingerprint index-

ing. DDFS [13] captures locality by storing and prefetch-

ing in the order of the stored unique chunks in

containers. Unlike DDFS, block locality caching (BLC)

[106] improves indexing performance by exploiting the

locality of the most recent backup in a long-term backup
system.

Similarity-Based Approaches: The similarity in the dedu-

plication context refers to the similarity characteristics of

a file or a data stream to previous, similar files or data

streams. A common similarity detection technique is to

represent a file with the maximal or minimal value of

the sets of chunk fingerprints [60]. As a result, the se-
lected fingerprints can be used to build a primary index

and minimize RAM overhead for deduplication indexing,

especially for the data sets with little or no locality. Ex-

treme binning [60] is a similarity-based approach that

improves deduplication scalability by exploiting the file

similarity to achieve a single on-disk index access per file

for chunk lookup.

Extreme binning demonstrates that the probability of

files S1 and S2 sharing the same representative finger-

print is closely correlated to their similarity degree ac-

cording to Broder’s theorem [115]. That is, consider two

sets S1 and S2, with HðS1Þ and HðS2Þ being the corre-

sponding sets of the hashes of the elements of S1 and S2,
respectively, where H is chosen uniformly and randomly
from a min-wise independent family of permutations.

Let minðSÞ denote the smallest element of the set of

integers S. Then

Pr min HðS1Þð Þ ¼ min HðS2Þð Þ½ � ¼ jS1 \ S2j
jS1 [S2j : (7)

Fig. 7 shows an example of how extreme binning ex-

ploits file similarity by, where two sets of chunk finger-

prints, {3b, a7, 2f, 5c} and {3b, a7, 2f, 9d}, belong to

files A and C, respectively. Here the file similarity is rep-

resented by the minimal fingerprint in the hash set of a

file whose prefix bits represent the smallest value among

the same prefix bits of all the fingerprints there. Thus, in
the event of the minimal fingerprint “2f” of file C being

detected to be identical to that of file A, we can consider

the two files similar and then detect duplicate chunks

between files A and C, which avoids global indexing for

the chunk fingerprints of file C.
Aronovich et al. [107] exploit the similarity of backup

streams in large-scale deduplication systems. They divide

the data stream into multiple large 16-MB blocks, where
a signature is constructed for each of these blocks to de-

tect similar blocks. For each detected pair of similar

blocks, a byte-by-byte comparison is performed to iden-

tify and eliminate duplicate data. SiLo [102] jointly and

complementarily exploits similarity and locality by first

exploiting similarity of data segments (a group of

chunks) to reduce the space of primary index in RAM

and then mining locality to enhance duplicate detection
through probabilistic similarity detection [see (7)].

A recent paper [103] presents a general-purpose and

open-source framework, for comprehensively studying

and evaluating many of the above discussed locality- and

similarity-based approaches. It further clarifies the local-

ity concept by dividing it into two categories, logical and

physical locality, which means the chunk (fingerprint)

Fig. 7. Typical similarity-based fingerprints indexing approach:

Extreme Binning [60].
Fig. 6. Typical locality-based fingerprints indexing approach:

DDFS [13].

1692 Proceedings of the IEEE | Vol. 104, No. 9, September 2016

Xia et al. : A Comprehensive Study of the Past, Present, and Future of Data Deduplication

sequence of a backup stream before and after dedupli-
cation, respectively. DDFS [13], HPDS [62], and

ChunkStash [61] exploit physical-locality while sparse in-

dexing [58], SiLo [102], and BLC [106] exploit logical lo-

cality. DeFrame also discusses the design tradeoffs among

deduplication ratio, indexing memory footprint, and re-

store performance, which provides a detailed guide to

make design decisions for deduplication systems.

Flash-Assisted Approaches: Because the lookup through-

put of on-disk fingerprints is limited by the expensive disk

seek operations (only about 100 input/output operations

per second (IOPS)), the random-access flash memory has

been proposed as an alternative to disks to provide high-

throughput I/Os (about 100000 IOPS) for fingerprint in-

dexing [116]. The memory-efficient and high-performance

primary-index design for on-flash fingerprints, called key-
value store [109], [116], [117], is further exploited for these

flash-assisted deduplication indexing approaches.

DedupeV1 [108] and ChunkStash [61] store the

chunk fingerprints on flash memory instead of hard disk

to accelerate the index-lookup process. ChunkStash pre-

serves the backup-stream locality in the memory to in-

crease the RAM utilization and reduce the accesses to

on-flash index. In addition, Cuckoo hash [118] is used
by ChunkStash to organize the fingerprint index as key-

value store in RAM, which is shown to be more effi-

cient than Bloom filters in DDFS. More importantly,

ChunkStash uses an extra “stash” to avoid a possible loop

from indexing fingerprints in the cuckoo hash table,

hence the partial name “stash.” FlashStore [116] and

SkimpyStash [117] integrate data structures of Bloom fil-

ters [22] and hash tables for better key-value store perfor-
mance. BloomStore [109] further amortizes the memory

overhead and improves the lookup/insertion performance

by employing a Bloom-filter-based index structure for ef-

ficient key-value store of on-flash fingerprints.

Cluster Deduplication: Most of the aforementioned ap-

proaches eliminate duplicates on a single node, which

limits the throughput and scalability of data deduplica-
tion. This limitation has led to the development of clus-

ter deduplication systems consisting of multiple nodes

[59], [111], [112]. The basic idea of cluster deduplication

is to assign data streams from backup clients to multiple

deduplication nodes by a data routing scheme that sup-

ports internode load balance and enables independent in-

tranode duplicate elimination in individual nodes [112].

HYDRAstor [59] performs deduplication at a coarse
chunk granularity (64 kB) and distributes data at the

chunk level to storage nodes based on the prefixes of fin-

gerprints using distributed hash tables (DHT). DEBAR

[110] first deduplicates files partially as they are written

to server disks and then completes postprocessing dedu-

plication at the chunk level by a global fingerprint index

among nodes. Note that the extreme binning [60] and

MAD2 [104] approaches, mentioned above, also support
cluster deduplication by using a stateless routing ap-

proach based on distributed hash tables (DHT); this is

similar to HYDRAstor.

Dong et al. [111] propose two superchunk-based data

routing algorithms, where a superchunk is a group of

contiguous chunks. One is a “stateless” routing algo-

rithm, which uses the content within the superchunk

(such as the first 64 B of the first chunk in the super-
chunk) to select a “bin,” which is then mapped to a

node. For load balancing, the mapping of bins to nodes

can change over time. The other algorithm is a “stateful”

routing approach, which exploits data similarity to direct

a superchunk where it deduplicates the best. The benefit

of deduplication is offset by any load imbalance, such

that a node that currently stores more than the average

total content needs a corresponding improvement in its
deduplication to be selected as the target for the

superchunk.

Fu et al. [112] propose a similarity and locality-based

routing algorithm, called
P

-Dedupe, which further ex-

ploits the locality to alleviate the chunk index-lookup

bottleneck in each node after distributing superchunks

based on their similarity. Kaiser et al. [113] design a joint

distributed chunk index for exact cluster deduplication,
but it is partially limited by the internode communi-

cation, which has stringent bandwidth requirements.

Produck [114] is a stateful routing approach similar to the

superchunk approach [111], which further balances the

load among cluster nodes with less overhead by a proba-

bilistic similarity metric for data routing.

Summary: In general, locality-based approaches are
widely used to improve deduplication indexing perfor-

mance, whether fingerprints are stored on a hard disk

drive [13] or flash drive [61]. Similarity-based approaches

are shown to be effective in reducing the RAM overhead

for deduplication indexing [60], [102], [103]. Flash-

assisted approaches incur additional hardware costs for

deduplication systems but their key-value store schemes

can also be used for indexing on-disk fingerprints [108],
[109]. Cluster deduplication approaches are scalable for

massive storage systems but may decrease the deduplica-

tion ratio [111], [112], [114] or require more system re-

sources to maintain a high deduplication ratio [59], [113].

D. Post-Deduplication Compression
Data deduplication has been widely deployed in

storage systems for space savings. In practice, the
fingerprint-based deduplication approaches fail to iden-

tify a significant fraction of redundancy. Each chunk

typically has internal redundancy that can be removed

with a traditional compressor such as LZ. If unique

chunks that are added to the system together are com-

pressed together in a larger “compression region,” the

overall compression rate will be higher than compressing

Vol. 104, No. 9, September 2016 | Proceedings of the IEEE 1693

Xia et al. : A Comprehensive Study of the Past, Present, and Future of Data Deduplication

every chunk individually. DDFS, for instance, reports a

typical 2� compression [7].

Beyond the simple compressibility of post-deduplica-

tion chunks, there can be high overlap between similar

chunks that only contain a small number of different

bytes, e.g., chunks C2 and C5 in Fig. 5. Even if there ex-
ist only several different bytes, secure-hash-based finger-

prints of these chunks will be completely different [8],

[11], [68]. As discussed in Section III-A, rechunking ap-

proaches were proposed to increase deduplication ratio

by further dividing nonduplicate chunks into smaller

ones [75], [84]–[86], which helps identify more redun-

dancy. In contrast, post-deduplication delta compression

eliminates redundancy among the nonduplicate but sim-
ilar chunks without the need for rechunking operations

to achieve a higher redundancy elimination ratio [8],

[54], [55], [68]. As a result, it is considered an effective

post-deduplication process to further remove data redun-

dancy but adding extra computation, indexing, and I/O

overheads, and thus an optional post-deduplication storage

management stage (see Fig. 4).

The main challenges facing post-deduplication delta
compression stem from the three time-consuming stages

of resemblance detection, reading base chunks, and delta

encoding [54]. Table 6 summarizes the state-of-the-art

approaches to resemblance detection and delta encoding

in delta compression; the read-back issue will be dis-

cussed later.

Resemblance Detection: In delta compression, the key
research issue is how to accurately detect a fairly similar

candidate for delta compression with low overheads.

Manber [123] proposes a basic approach to find similar

files in a large collection of files by computing a set of

polynomial-based fingerprints (i.e., Rabin [77]); the simi-

larity between two files is proportional to the fraction of

fingerprints common between them. This approach has

been used in DERD [124] to detect similar files and
then delta encode them. The superfeature approach

[119] is based on Broder’s theorem [115] [see (7) in

Section III-C]: deterministically sampling several Rabin

fingerprints (e.g., using the minimum hash as in extreme

binning [60]) of files or chunks as features and coalescing

them into a superfeature, also referred to as superfinger-
print, and then indexing the superfeatures to detect

similar files or chunks. The superfeature approach is

widely used for delta-compression-based redundancy

elimination [8], [54], [120], [125].

TAPER [51] proposes an alternative to the superfea-

ture method by representing each file with a Bloom filter

that records chunk fingerprints, measuring file similarity
based on the number of matching bits between Bloom

filters, and then delta compressing the detected similar

files. Difference engine (DE) [121] and I-CASH [126]

make full use of the delta compression techniques to

eliminate redundancy in memory pages and SSD caches,

respectively, where they detect similar 4-kB pages using

a parameterized scheme based upon computing the

hashes of several 64-B subpages, which is similar to the
superfeatures approach.

Stream-informed delta compression (SIDC) [8] shows

that post-deduplication delta compression can further im-

prove the data reduction ratio by a factor of 3� 5 when

replicating between EMC’s deduplicated backup storage

systems (see Table 2 in Section II-B). Moreover, SIDC

shows that the superfeature index for delta compression

can also overflow the RAM capacity (similar to the prob-
lem of fingerprint indexing in Section III-C). SIDC lever-

ages the locality of similar chunks, which have repeated

patterns as discussed for duplicate chunks, so storing

superfeatures in a stream-informed manner and pre-

fetching into a cache captures most potential similarity

detection, while reducing RAM requirements. SIDC is

also applied to a storage system [54], which demonstrates

new complexities in managing delta-encoded storage.
Deduplication-aware resemblance detection (DARE)

[55], [127] extends this work by detecting potential sim-

ilar chunks for delta compression based on the existing

duplicate-adjacent information after deduplication, i.e.,

considering two chunks similar if their respective adja-

cent chunks are determined as duplicate in a deduplica-

tion system.

Delta Encoding the Similar Chunks: Another challenge

facing the delta compression is the time-consuming pro-

cess of calculating the differences among similar data

chunks. The efficiency of delta encoding becomes in-

creasingly more important with the rapid growth of stor-

age capacity and network bandwidth [54], [126]. Like

traditional lossless compression approaches, Xdelta [122]

Table 6 State-of-the-Art Approaches to Resemblance Detection and Delta Encoding for Post-Deduplication Delta Compression

1694 Proceedings of the IEEE | Vol. 104, No. 9, September 2016

Xia et al. : A Comprehensive Study of the Past, Present, and Future of Data Deduplication

uses a byte-wise sliding window to identify the matched
(i.e., duplicate) strings between the base and the input

chunks for the delta calculation. This is an open-source

project widely used in many redundancy elimination

systems [8], [55], [121]. Zdelta [68] incorporates the

Huffman coding [40] for delta compression to further

eliminate redundancy. Most recently, Ddelta [68] pro-

poses a deduplication-inspired delta-encoding approach

that divides similar chunks into several independent
and nonoverlapped strings by a fast Gear-based content-

defined chunking algorithm. This algorithm simplifies

and thus accelerates the delta encoding process, while

achieving a comparable data reduction ratio to Xdelta

and Zdelta.

Additional Delta Compression Challenges: In addition to

the above two challenges, other post-deduplication delta
compression and storage management stages, e.g., read-

ing base chunks, data restore, and garbage collection, are

also important aspects of post-deduplication delta com-

pression. Specifically, compressing relatively similar

chunks requires the reading of the already-stored nondu-

plicate but resemblance-matched chunks for delta encod-

ing with the input chunks. Shilane et al. [54] propose to

store the unique chunks on SSDs to address the through-
put bottleneck of delta compression caused by random

accesses to on-disk base chunks. Additionally, the post-

delta-compression data restore and garbage collection

are still open problems and will be further discussed in

Section IV-D.

E. Data Restore
After identifying duplicate data and storing the non-

duplicate data, it is desirable to efficiently restore data

and effectively manage the fragmented storage space

(after users’ deletion operations). The latter process is
known as garbage collection. Thus, data restore and gar-

bage collection have become two important problems in

the storage management stage of data deduplication sys-

tems. This section mainly reviews the state-of-the-art

schemes on data restore, and the garbage collection issue

will be detailed in Section III-F.

Fig. 8 shows an example of data fragmentation in a

deduplication-based backup storage systems. The logi-

cally contiguous chunks in each backup (e.g., the third

backup) are physically scattered in several data con-

tainers (a fixed-size storage unit) after deduplication,

also referred to as chunk fragmentation [23], [128],

[129], rather than being arranged in a compact continu-

ous sequence in the traditional way. Due to the poor ran-
dom I/O performance of HDDs, chunk fragmentation

(like disk fragmentation) significantly decreases restore

performance. In addition, the chunk fragmentation also

hurts the performance of garbage collection [62], [129].

For example, if users delete the first backup in Fig. 8, it

will be difficult to reclaim the storage space of the data

chunks in the first backup since some of them are refer-

enced by the second and third backups.
Several post-deduplication data restore schemes re-

write the duplicate, but fragmented, chunks to alleviate

the degradation of the read (restore) performance, thus

trading off the deduplication ratio (capacity savings) and

read (restore) performance. Table 7 comprehensively

studies the state of the art on improving restore perfor-

mance in deduplication systems, and classifies them into

three categories according to the storage environment in
which deduplication is deployed, i.e., primary storage,

backup storage, and cloud storage.

Primary storage systems are I/O-latency sensitive

[6], [64] which makes the deduplication-induced,

Fig. 8. Example of data fragmentation in deduplication-based

backup storage systems. Note that a container is a fixed-size

storage unit that stores sequential and nonduplicate chunks

for better backup and restore performance by using large I/Os

[13], [23], [103], [129].

Table 7 State-of-the-Art Approaches to Post-Deduplication Data Restore

Vol. 104, No. 9, September 2016 | Proceedings of the IEEE 1695

Xia et al. : A Comprehensive Study of the Past, Present, and Future of Data Deduplication

read-latency-lengthening fragmentation issue extremely
important. iDedup [64] exploits spatial locality of pri-

mary storage workloads to selectively deduplicate se-

quential duplicate disk blocks to reduce fragmentation

and amortizes the read latency caused by random I/O.

Performance-oriented I/O deduplication (POD) [130]

further improves the read performance of deduplication-

based primary storage systems by identifying capacity-

insensitive but performance-sensitive small duplicate
writes and files in the critical I/O path.

For deduplication-based backup storage, the restore

speed for the most recent backup can drop by orders of

magnitude over the lifetime of a backup system [23], [129]

due to the chunk fragmentation problem. Nam et al.
[128], [136] propose to selectively eliminate sequential

and duplicate chunks with a quantitative metric called

chunk fragmentation level (CFL), which is similar to
iDedup [64]. Context-based rewriting (CBR) [131] and

capping [23] algorithms determine the fragmented chunks

in the write buffer (e.g., 10� 20 MB) using their specific

fragmentation metrics, and then selectively write the frag-

mented chunks to improve restore speed. In addition,

capping uses a forward assembly technique to efficiently

cache chunks by exploiting the perfect knowledge of

future chunk accesses available when restoring the already
known backups.

Reverse deduplication (RevDedup) [132], [137] elimi-

nates duplicates from the previous backups while con-

ventional deduplication eliminates duplicates from the

new backups. Thus, RevDedup shifts fragmentation to

old backups, which keeps the layout of the latest backup

as sequential as possible but at the cost of postprocess

deduplication. History-aware rewriting (HAR) [129],
[138] tries to rewrite less data to achieve better restora-

tion performance by accurately classifying fragmentation

into two categories: sparse containers and out-of-order

containers, where a container is a 4-MB-size storage unit

that stores chunks after deduplication. Sparse containers

are identified from the last backup by exploiting histori-

cal information of backup versions. New chunks that are

duplicates of chunks in sparse containers may be rewrit-
ten to improve data locality. Because the recipe contain-

ing the list of chunks for the entire file is known in

advance, the out-of-order containers can be efficiently

cached during the restore according to Belady’s optimal

caching scheme [139].

For deduplication-based cloud storage, the restore

speed may be severely limited by the relatively low

bandwidth of WAN or the frequent accesses to the frag-
mented chunks in the cloud servers. CAusality-Based

Deduplication (CABdedupe) [133] identifies unmodified

data among chronological versions of backup data sets

between the client and cloud, thus improving the restore

performance. SSD-assisted restore (SAR) [134], [140]

stores unique chunks with high reference counts on

SSDs in the cloud servers to improve restore

performance, which utilizes the good random-read per-
formance property of SSDs. Near-exact defragmentation

(NED) [135] groups chunks into segments for cloud

backup and identifies the fragmented segments before

uploading them to the cloud according to a metric called

segment reference ratio. This scheme achieves a com-

parable restore performance to that of a cloud backup

system without deduplication.

In summary, the chunk fragmentation problem in de-
duplication systems results in degraded performance in

data restore. State-of-the-art schemes strike appropriate

tradeoffs between the capacity savings and performance

penalty in deduplication. We believe that efficient and

accurate defragmentation can significantly alleviate the

orders-of-magnitude performance drop of restoration in

deduplication-based storage systems [129].

F. Garbage Collection
This section discusses the state-of-the-art approaches

to garbage collection (GC) in deduplication-based storage

systems. Since unique chunks may be shared by multiple

files, reference management is critical for tracking of

chunk usage and to reclaim freed space (i.e., GC). In

general, GC consists of two key steps, finding the invalid

chunks and then reclaiming their storage space. The GC
approaches can be generally divided into two categories

according to the first step, namely, reference count and

mark-and-sweep.

• Reference count approach and its variants. The

chunk reference count of a particular chunk in a

deduplication system refers to the number of

times this chunk is used/referenced. For example,

while a reference count of N means that the
chunk is referenced N times (in 1� N files), a

0 reference count value means that the chunk is

no longer shared due to users’ deletion operations

and can be reclaimed for garbage collection.

Wei et al. [104] employ this naive reference count

approach for GC. However, accurately building a

reference counter for each chunk is space ineffi-

cient [129]. In addition, Guo et al. [62] point out
that reference counting may suffer from low reli-

ability: When errors occur, some chunks may be

updated and some may not. Simha et al. [141]

propose a hybrid approach of maintaining both

a reference count and an expiration time for

each physical block for incremental backup.

Strzelczak et al. [142] also maintain a reference

counter and propose a concurrent deletion algo-
rithm based on an epoch mechanism and unde-

lete markers to separate old and newly written

data, which allows for deletion to proceed con-

currently with users’ ongoing reads and writes in

their commercial HYDRAstor system [59].

Dmdedup [143] also uses the reference count so-

lution for block device deduplication, but it does

1696 Proceedings of the IEEE | Vol. 104, No. 9, September 2016

Xia et al. : A Comprehensive Study of the Past, Present, and Future of Data Deduplication

not reclaim blocks immediately, nor does it re-

move the corresponding hashes from the index,

which decreases the latency of the critical write

path. Fu et al. [129] propose a container-marker

algorithm (CMA) to simplify the chunk reference
management by only recording the referenced

containers while reducing the fragmented chunk

in each container by their history-aware rewriting

(HAR) algorithm.

• Mark-and-sweep approach and its variants. Mark-

and-sweep is another GC solution that consists of

two stages. During the mark stage, all files are

traversed so as to mark the used chunks. In the
sweep stage all chunks are swept and unmarked

chunks are reclaimed. Grouped mark-and-sweep

(GMS) [62] generates a bitmap to mark the valid

chunks in each container (i.e., a group of chunks

as shown in Fig. 8) referenced by each backup,

and reclaims the storage space by merging the

bitmaps of all containers to locate and reclaim

the storage space occupied by all invalid chunks.
Botelho et al. [144] build a perfect hashing vector

[145] as a compact representation of all chunks

and then traverse all the file recipes to reclaim

the storage space of invalid chunks.

In summary, the GC problem in deduplication sys-

tems is caused by sharing chunks among files/backups af-

ter deduplication. Efficient chunk-reference management

are critical for GC to identify the invalid chunks and re-
claim their storage space in deduplication systems. The

reference count solutions [104] and some of its variants

[129] support GC inline while mark-and-sweep and its

variants [62], [144] are inherently offline. Note that in

deduplication-based backup systems, GC is usually per-

formed as a background process after one or more com-

plete backups have been deleted, but in primary storage

systems, GC is usually performed inline or partly inline.
Generally speaking, there is a tradeoff among the exist-

ing GC approaches. Specifically, the immediate GC in-

creases the latency of the critical I/O path while the

delayed GC decreases space utilization in deduplication-

based storage systems.

G. Security
Deduplication-based storage systems face the inher-

ently serious issues of security and reliability, especially

in cloud storage systems, such as Dropbox, Wuala, and

Mozy [146]. The security issue arises from users who
share data chunks or files after deduplication, which can

expose security vulnerabilities and privacy concerns in

cloud storage systems.

Currently, cross-user deduplication faces the follow-

ing three main security challenges. 1) Contradiction with

encryption: different users may encrypt their data with

their own keys. In these cases, identical data of different

users will result in different ciphertexts, making dedupli-
cation impossible across different users. 2) Side-channel

attacks: the occurrence of cross-user deduplication can

be used as a side channel to reveal a user’s private infor-

mation by three types of attacks: identifying files, learn-

ing the contents of files, and establishing a covert

channel [147]. 3) Proofs of ownership: there is an attack,

using a small hash value (i.e., a fingerprint) as a proxy for

the entire file, the client can prove to the server that it in-
deed has uploaded the file. Specifically, an attacker who

knows the proxy fingerprints of a file can convince the

storage server that it owns that file so that the server would

allow the attacker to download the entire file [148].

Table 8 examines and classifies state-of-the-art ap-

proaches to secure data deduplication according to the

three challenges above, which are elaborated upon next.

• Convergent encryption (CE) uses a hash obtained

from the data content as a key to encrypt data.

Hence, identical data from different users will

generate the same ciphertext, which allows de-

duplication to work across different users after

encryption. The method of combining content-

based keying and deduplication was first de-

scribed in a backup system patent in 1995 [149],
then was developed and called convergent en-

cryption in Microsoft’s Farsite distributed file

system [56], [150]. CE is widely used in many

deduplication systems [151]–[154]. Message-

locked encryption (MLE) [155] studies and

Table 8 State-of-the-Art Schemes to Secure Data Deduplication

Vol. 104, No. 9, September 2016 | Proceedings of the IEEE 1697

Xia et al. : A Comprehensive Study of the Past, Present, and Future of Data Deduplication

compares CE and its variants, hash-based CE
[151], randomized CE in practice and theory. To

further ensure CE security, DupLESS [156] adds

a message on the CE key from a key server via an

oblivious RSA-based oblivious pseudorandom

function (RSA-OPRF) protocol, which well resists

possible brute-force attacks from the traditional

deterministic CE. To ensure security and reliabil-

ity of CE keys, Dekey distributes the CE keys to
be shared across multiple servers for efficient CE

key management via the ramp secret sharing

scheme (RSSS) [154]. SecDep combines cross-

user file-level and inside-user chunk-level dedu-

plication, and employs difference CE variants

among and inside users to minimize the computa-

tion overheads. In addition, SecDep uses file-level

key to encrypt chunk-level keys so that the key
space will not increase with the number of

sharing users.

• Side channel attacks refer to the multiclient de-

duplication performed by a cloud storage server

where an adversary at one client site uses dedu-

plication as side channel attacks to reveal the pri-

vate information about the contents of files/

chunks of other clients (i.e., having identical and
sensitive contents). Harnik et al. [147] propose a

hybrid approach that sometimes artificially turns

off cross-user deduplication to reduce the risk of

data leakage. Heen et al. [157] propose a gateway-

based deduplication approach that allows dedupli-

cation from gateways to servers rather than from

clients, which resists side channel attacks from

an adversary at the client side.
• Proofs of ownership (POW) lets a client effi-

ciently prove to a server that he/she holds a file,

which is used to prevent an attacker from gaining

access to file contents of other users based on

files’ fingerprints. Halevi et al. [148] first intro-

duce the notion of POW to allow a client to effi-

ciently prove to a server that the client owns a

file, by constructing error correction codes and
Merkle trees (used for data authentication) [158]

of the file. The variants of POW have been pro-

posed subsequently to either reduce the overhead

for generating POW [159] or further ensure secu-

rity on POW [160], [161].

In addition, Li et al. build a multicloud storage system

called CDStore [163] recently, to ensure both data secu-
rity and reliability for deduplication. CDStore is different

from the traditional CE approach: it proposes an aug-

mented secret sharing scheme called convergent dis-

persal called CAONT-RS [164], which replaces original

random information with deterministic cryptographic

hash information and splits data into n secret shares.

Thus, the identical data will generate the same secret

shares, which enables deduplication on secret shares.
CDstore also ensure the reliability by distributing the

secret shares into multicloud and recovering the data

by getting k secret shares (k G n in CAONT-RS), but

there is a tradeoff between the saved storage space by

deduplication and increased storage costs by using

CAONT-RS.

Existing approaches to secure data deduplication

focus on addressing the three known security challenges
in cross-user deduplication, especially in cloud storage.

Shutting down cross-user deduplication would provide

the highest security level to avoid privacy leakage among

users [147], [161]. However, trading cross-user dedupli-

cation against data security remains a challenge facing

cloud storage, which will be discussed as one of the

future directions in Section IV-D.

H. Reliability
Data deduplication reduces the reliability of the stor-

age systems because the loss of a few critical data chunks

can lead to many referenced files being lost [165], [166].

In addition, reliability issues may further arise because

deduplication reduces the redundancy upon which all ex-

isting reliability and fault-tolerance mechanisms rely. For

example, data recovery in faulty storage devices is
achieved by exploiting data redundancy introduced by

adding copies (e.g., replication or parity in RAID), which

fail to work if redundant data are entirely eliminated by

deduplication.

In general, the state-of-the-art approaches can be

broadly classified into two categories, deduplication then

“RAID” and reference-count-based replication, as de-

tailed below.
• Deduplication then “RAID” refers to directly cod-

ing unique chunks after deduplication using cer-

tain erasure codes. DDFS [13] uses software

RAID-6 to store unique chunks to ensure a high-

level data integrity and reliability. Hydrastor [59]

places unique chunks into different resilience

classes, each of which has a different level of reli-

ability provided by users. In R-ADMAD [167], the
variable-size chunks are first packed into bigger

fixed-size objects (e.g., 8 MB), which are then

erasure coded and distributed on multiple storage

nodes in a redundancy group. In addition, repli-

cating the unique chunks to another server is also

a generally simple but efficient approach for en-

suring storage reliability because the data has

been deduplicated first [168].
• Reference-count-based replication provides differ-

ent levels of reliability according to the reference

counts of unique chunks. Bhagwat et al. [165] ob-
serve that deduplication alters the reliability of

stored data due to the sharing of common

chunks. They address this problem by choosing

each chunk from a replication level that should

1698 Proceedings of the IEEE | Vol. 104, No. 9, September 2016

Xia et al. : A Comprehensive Study of the Past, Present, and Future of Data Deduplication

be logarithmic to the popularity of that chunk.

Rozier et al. [169] design and implement a

modeling framework to evaluate the reliability of

a deduplication system with different hardware

and software configurations. The reference-count-

based replication approach is preferable for en-

suring reliability in data deduplication systems.

In designing reliable deduplication, leveraging differ-
ent levels of reliability according to the reference count

of unique chunks helps to improve the entire system reli-

ability in deduplication-based storage systems. However,

there are always tradeoffs between ensuring reliability

and space savings by deduplication. In addition, Li et al.
[166] also suggest deduplication may improve reliability

of storage systems if the traditional MTTDL metric is

used to evaluate reliability. This is because deduplication
reduces the number of required disk drives and hence

the probability of seeing disk errors.

I. Other Interesting Issues
There are other interesting issues in deduplication,

such as deduplication ratio estimation, file recipe com-

pression, and video/image deduplication, etc., that are

worthy of future research and development attention.

• The research on deduplication ratio estimation is

motivated by the observation that the deduplica-
tion ratio may vary significantly according to the

workload as well as the underlying deduplication

techniques [170]–[173]. The accurate estimation

of deduplication ratio in concrete data sets will

allow the users to decide how many disks to buy,

what techniques to use, etc. Harnik et al. [173]
use a general framework of sampling and scan-

ning for estimating deduplication ratio with low
time and RAM overheads. Xie et al. [172] propose
an adaptive technique to incrementally maintain

an up-to-date estimate of deduplication ratio that

takes into account any changes to the file system.

• File recipe compression is proposed by

Meister et al. [174] to further reduce the space

overhead for file recipes by recording the se-

quence of chunk fingerprints. They report that
deduplicating a 1-PB backup data set with average

chunk size of 8 kB, SHA-1 fingerprints, and dedu-

plication factor of 30, will generate file recipes of

about 2.4 TB, which can be efficiently reduced by

up to 90% using techniques such as zero-chunk

suppression and entropy coding.

• Video and image deduplication detects and elimi-

nates redundancy among the very similar videos/

images based on their visual contents, which is

very different from the traditional deduplication

approaches but is gaining increasing tractions re-

cently in academia and industry. ViDedup [175]
proposes a general framework for detecting very

similar videos at an application-level point of

view to eliminate redundancy. Perra et al. [176]
leverage state-of-the-art video compression tech-

niques to efficiently reuse image content among

several very similar images, a technique referred

to as image content deduplication, to support

large-scale compression of similar images. By
using semantic hashing and flat addressing,

FAST [177] explores and exploits the semantic

correlation of images to fast identify similar con-

tents and support near-real-time image retrieval.

Dewakar et al. [178] point out that the similar

video files can significantly benefit from their pro-

posed content-aware deduplication techniques,

which improve storage efficiency by up to 45% in
some use cases.

IV. RESOURCES AND PERSPECTIVES

In this section, we will first study the typical application

scenarios of data deduplication, and how they incorpo-

rate and benefit from deduplication. Then we provide in-

dustry insights into how deduplication works in
commercial storage systems. We also introduce the pub-

licly available resources for deduplication research, in-

cluding open-source projects, data sets, traces, etc.

Finally, we conclude this section by identifying the open

problems and research challenges facing the research

community as possible future directions for data

deduplication.

A. Application Scenarios of Data Deduplication
Data deduplication schemes have been widely applied

in many scenarios of computer systems. Table 9 intro-

duces some typical application scenarios of data dedupli-

cation and their beneficial features.

• Secondary storage. There is an abundance of du-

plicates in secondary storage systems, such as

Table 9 Typical Application Scenarios of Data Deduplication and Their Known Examples

Vol. 104, No. 9, September 2016 | Proceedings of the IEEE 1699

Xia et al. : A Comprehensive Study of the Past, Present, and Future of Data Deduplication

backup and archive storage [7], [11], [13], [58],
[59], [187]. Based on this observation, data do-

main [13], a storage company and now a part of

EMC, argues that “disk-based deduplication stor-

age has emerged as the new-generation storage

system for enterprise data protection to replace

tape libraries.” In fact, the use of data deduplica-

tion in such systems has been shown to achieve a

data reduction factor of about 5� 40 [7], [8],
leading to significant savings in storage space and

corresponding hardware costs. More recently,

post-deduplication delta compression has been

used to compress the nonduplicate but similar

data chunks as a complementary approach to data

deduplication. Such post-deduplication schemes

are shown to achieve an extra data reduction

factor of 2� 5 on top of data deduplication but
adding additional computation and I/O overheads

[54], [55], [68].

• Primary storage. Recent studies reveal that data

deduplication can achieve a data reduction factor

of up to 40%� 60% in primary storage [5], espe-

cially for server file systems [5], [6], [179] (refer

to Table 2). Primary storage data deduplication

not only reduces the storage space requirement
but also eliminates duplicate I/Os on the critical

I/O path [64], [130], [179], which helps improve

the disk I/O performance for primary storage.

More recently, several open-source file systems for

primary storage, such as ZFS [73], OpenDedupe

[188] and Lessfs [189], have incorporated dedupli-

cation for better storage performance. Since dedu-

plication incurs computing and indexing latency in
the write path and disk fragmentation in the read

path, ZFS and Lessfs provide deduplication as an

optional function to users. Note that in comparison

with secondary storage deduplication, primary stor-

age deduplication is much different for three main

reasons: I/O latency is much more sensitive to de-

duplication operations, read and delete operations

occur much more frequently, and fewer duplicates
exist in primary storage systems.

• Cloud storage. Cloud storage has emerged as an

important storage platform for computer systems

in recent years [74], [180]. Since the limited net-

work bandwidth in the underlying wide area net-

work (WAN) imposes the main performance

bottleneck of cloud storage, data deduplication

can help accelerate the data synchronization be-
tween client and cloud by identifying the unmod-

ified data. In the meantime, data deduplication

also helps reduce the storage overhead in the

cloud side. Currently, DropBox, SkyDrive (now

called OneDrive), Google Drive, etc., incorporate

data deduplication to provide better cloud storage

service [74], [190]. As discussed in Microsoft’s

study [5], while there exist a large number of du-
plicates across users, cross-user data deduplica-

tion can cause security problems [161] (see

Section III-G). This remains an open problem, to

be further discussed in Section IV-D.

• Virtual machines. A great deal of redundant data

exists in virtual machines, either in the main

memory [121], [191] or the external memory

[192]. This is because the operating systems and
application programs on homogeneous or hetero-

geneous virtual machines tend to generate dupli-

cate data. Moreover, deduplication meets the

design goal of virtualization in computer systems

by saving storage space of both memory [121],

[181], [191], [193] and disks [182], [192], [194],

thus relieving the burden on storage devices. In

addition, deduplication is employed to accelerate
live migration of virtual machines in many state-

of-the-art approaches by significantly reducing

the amount of data migrated [15], [195], [196].

• Network environments. One of the initial pur-

poses for using data deduplication is to save net-

work bandwidth by avoiding transmitting

redundant data, especially in wide area network

(WAN) environments [89], [197]–[199] and avi-
onics network environments [200]. Network de-

duplication, also called redundancy elimination,

is slightly different from data deduplication in

storage systems. Specifically, the granularity for

network deduplication, i.e., the size of a data

chunk, is often tens or hundreds of bytes, which

is much finer than the kilobyte-scale (or even

megabyte-scale) granularity in backup storage de-
duplication. Moreover, the objects for data dedu-

plication in network environments are data

streams or data packets, for which network dedu-

plication often uses a weaker but faster hash for

the fingerprinting algorithm to identify the data

redundancy in a byte-by-byte manner. A study

from Microsoft Research [89] shows that packet-

level redundancy elimination techniques could
achieve bandwidth savings of about 15%� 60%

on 12 large network nodes. Deduplication for net-

work transfer, unlike within a storage system,

does not have the overheads of fragmented local-

ity and garbage collection, since transferred data

are typically reconstructed at the destination.

• Endurance-limited nonvolatile storage. Recently,

deduplication has been used in emerging nonvol-
atile storage devices that have endurance con-

straints (i.e., write limit), such as SSD devices, to

reduce the amount of write traffic to the devices

and increase their effective logical capacity.

CAFTL [185] and CA-SSD [201] employ dedupli-

cation to eliminate duplicate I/Os to extend SSD

lifetime. I-CASH [126] uses delta compression to

1700 Proceedings of the IEEE | Vol. 104, No. 9, September 2016

Xia et al. : A Comprehensive Study of the Past, Present, and Future of Data Deduplication

eliminate both duplicate and similar data to en-
large the logical space of SSD caches. Nitro [186]

implements deduplication and LZ compression

for SSD-cache-based primary storage to decrease

the cost of SSD caches and increase logical

capacity.

• Other applications. Recently, deduplication

among the very similar multimedia files is gaining

increasing attention as discussed in Section III-I.
Katiyar et al. [175] and Perra et al. [176] identify
and reduce redundancy among the very similar

videos/images based on their visual contents in-

stead of binary contents. Dewakar et al. [178] sug-
gest that deduplication of similar videos could

improve storage efficiency by up to 45% in some

use cases. Tang et al. [202] present UNIC, a sys-

tem that securely deduplicates general computa-
tions, which significantly speeds up some

applications by memorizing and reusing computa-

tion results.

In general, data deduplication has been most widely

used in backup/archive storage systems and is starting to

be adopted in primary storage. By means of eliminating

duplicate data, deduplication provides many benefits not
only for backup/archive storage systems but also other

application scenarios, such as reducing duplicate I/Os for

primary storage, avoiding transmitting duplicate data for

network environments, extending lifetime of emerging

nonvolatile storage devices, etc. With the explosive

growth in the volume of digital data in the big data era,

we believe that there will be more applications that

stand to benefit from data deduplication that effectively
and efficiently identifies and eliminates duplicate copies

of redundant data to improve system performance.

B. Industry Perspective of Deduplication
Deduplication has been commercially available since

2004 in a dedicated backup appliance [168], and multi-

ple vendors have created competing products [59],
[203]–[205]. Since that time, deduplication has become

a standard feature on numerous storage systems from

static archival to high performance, primary storage.

While deduplication has become widely implemented,

we focus our discussion on backup storage since it has

the longest history, and its evolution since 2004 provides

insights into how the industry adapts to technology

changes. Since the introduction of deduplicated
backup storage in 2004, that market sector has grown to

$3.1 billion in 2013 [206].

1) Shift From Tape to Disk: Early backups were written

to tape systems that had high sequential read/write per-

formance, but they also had other properties that compli-

cated restores. First, a tape would have to be explicitly

mounted before use; even though these mounts evolved
from human-operator actions to automatic “jukebox”

operations, each mount still suffered notable delays.

Second, magnetic tape has very low random IOPS, due

to its hardware characteristics. For these reasons,

backups to tape have traditionally followed a model in

which the entire contents of a system would be backed

up at once (a “full” backup), and then the changes to the

system since the last full backup would be saved on a
regular basis. The latter are called “incremental”

backups, and include each file that has been modified

anywhere in the file.

Switching from tapes to HDDs offered numerous ad-

vantages to customers because of their performance dif-

ferences, but hard drive storage alone was too expensive

to be cost-competitive on a byte-for-byte basis. However,

each time a full backup would be written to the system,
it would contain numerous files that were unmodified in

whole or in part. Deduplication, in combination with

compression, became a promising approach to increasing

effective capacity and lowering system cost. Also, the du-

plicate chunks tended to be written in consecutive order

largely unchanged from backup to backup. This combina-

tion of high rates of duplicate content and consistent pat-

terns were leveraged to create high performance,
deduplicated backup storage.

Once the data was deduplicated on HDD, it could be

processed in ways differently than when it is stored on

tape. Data could be quickly replicated locally or offsite

since deduplicated data are a small fraction of its original

size. The accuracy of the data can be verified quickly and

on a regular schedule as compared to tapes sent offsite,

and potentially more versions can be kept on site since
each new version requires little storage space relative to

its original size.

The I/O characteristics of HDD are different from

those of tape, so companies and customers started to use

the systems in new ways. Instead of sending full backups

that consist mostly of duplicate content, it became effi-

cient for primary storage to send the changed data, and

the deduplicated system could reconstruct a full backup.
This process transfers incremental backups (perhaps

daily, hourly, or more frequently) to the backup server

where a full backup is synthesized. Only modified files

or changed blocks need to be transferred, and then a full

backup is synthesized by creating a recipe referencing

the new data and previously written duplicate content.

The on-disk representation on the deduplicated system is

largely the same as writing full backups since only un-
ique chunks are stored in either backup style, along with

a recipe to represent the file. The I/O and CPU loads are

decreased on the primary storage systems since less data

are read, and since less data are transferred, network

traffic is also less.

There is an important side-effect of the shift from

1) writing and then deduplicating full backups to

Vol. 104, No. 9, September 2016 | Proceedings of the IEEE 1701

Xia et al. : A Comprehensive Study of the Past, Present, and Future of Data Deduplication

2) writing incremental backups forever and synthesiz-
ing a full backup simply by writing a new file recipe

referring to all the chunks contained in the backup.

When a new full backup is written, a deduplicating

system can choose to write duplicates from the new

backup to disk, then garbage-collect the older copy of

a duplicate chunk. By writing sequential chunks of the

new backup together on disk, a later restore of the

backup will experience fewer random I/Os and have
better read performance. As discussed in Section III-E,

there are various techniques to decide when to write

new duplicates. If the workload consists of only incre-

mental updates that result in more random I/Os during

restore, however, the system must be more proactive in

reorganizing the file system to provide acceptable read

performance.

2) Bridging the Primary Storage and Backup Storage
Divide: Primary storage and backup storage used to be en-

tirely distinct systems, with a media server running

backup software acting as middleware to coordinate

backup transfers. To effectively synthesize full backups

from incrementally changed data, a new interface is

needed that is deduplication aware. This has motivated

closer integration between backup and primary storage
systems. It is becoming more common for backup agents

to run directly on primary storage and direct backups

without transferring data through a separate media server

(such as DDBOOST [207], RMAN [208], NetBackup

[209], and Avamar [210]. In some cases, this has in-

creased CPU loads on the primary storage system, while

allowing a backup system to handle more concurrent

writes. In other models, backup storage may appear as a
mountable device or file system to primary storage. Dedu-

plicated backup storage, instead of being limited to tape

replacement, has become another tier in the storage hier-

archy. While deduplicated backup storage remains slower

than primary storage, demands for more performance

continue to grow.

Customers would like their backups to be more useful

than static content that is only read back in the rare case
of a data loss. While the backups should be write-

protected, there are several circumstances under which

customers might like to read the data. As an example, in

the case of data loss, a customer may like to browse their

files on backup storage and view several files to deter-

mine which version is most useful. As a second example,

data analytics could be performed on a database stored

on the backup server when it is impractical to perform
the same analysis on an active version that is concur-

rently serving client requests. In certain cases, a cus-

tomer’s primary storage system may be inoperable for an

extended period of time. While new primary storage

hardware is provisioned and configured, a customer may

want to run an application from backup storage. Cus-

tomers would typically copy a backup, mark it as

writeable, and then actively use that version. While the
backup system may not have the performance of primary

storage, it may be fast enough to serve limited work-

loads. As an example, a VM could use the backup storage

as a data store for the VM image. A second example is

that a customer may like to test a software upgrade for

incompatibilities on a system running from backup

storage before upgrading the primary version.

In a little over a decade, deduplicated backup storage
has evolved from tape replacement to a tier of storage

systems that may serve as limited primary storage. While

we have provided a brief summary of this history from a

use-case perspective, numerous technical improvements

were necessary to enable these changes, including per-

formance and management improvements discussed in

this survey.

C. Deduplication in the Open-Source Community
In this section, we will list some publicly available

open-source projects, data sets, and traces for data dedu-

plication, which are a useful and valuable resources for

the research community.

• Open-source projects. One of the most well-

known open-source projects is LBFS,1 which im-

plements CDC-based deduplication in a network

file system [14]. Opendedup2 is a deduplication-

based filesystem designed to provide inline dedu-
plication and flexibility for applications on the

block devices [188]. FS-C3 is a tool developed by

Mainz University [57], [70], [174] that allows re-

searchers to analyze the internal and temporal

redundancy of file system directories. Destor4 is

a platform for deduplication evaluation on fin-

gerprint indexing and restoring, which has been

used in several research papers [103], [129],
[211]. In addition, Dmdedup5 is a practical pri-

mary storage deduplication platform that runs

deduplication at the block layer [143] and Lessfs6

is an inline data deduplicating filesystem for

Linux [189].

• Data Sets, data traces, and benchmarks. The ar-

chives of large open-source projects (i.e., the

tarred source code), such as Linux,7 GCC,8 etc.,
have been evaluated for deduplication in many

research papers [55], [60], [75], [129]. Virtual

machine images,9 such as Ubuntu, Fedora, etc.,

1http://pdos.csail.mit.edu/lbfs/index.html
2https://code.google.com/p/opendedup/
3https://code.google.com/p/fs-c/
4https://github.com/fomy/destor
5http://git.fsl.cs.sunysb.edu/linux-dmdedup.git/
6http://www.lessfs.com/wordpress/
7ftp://ftp.kernel.org/
8http://ftp.gnu.org/gnu/
9http://www.thoughtpolice.co.uk/vmware

1702 Proceedings of the IEEE | Vol. 104, No. 9, September 2016

Xia et al. : A Comprehensive Study of the Past, Present, and Future of Data Deduplication

have also been evaluated [68], [132], [134], [192].
The SyLab of FIU [179] has published I/O

traces10 (including the hash value of the content

for each I/O) for a three-week interval. It has a

total size of about 1TB and has mainly been used

for evaluating several primary deduplication

schemes [130], [201], [212]. The File systems and

Storage Lab (FSL) at Stony Brook University has

published their traces collected from several grad-
uate students’ home directories and MacOS Snap-

shots with a total size of several terabytes,11 and

developed a tool to regenerate data sets according

to the deduplication traces [213]. Additionally,

there are several benchmarks for generating

workloads of users’ files [190], [214] and com-

pressible contents [215] that can be used for de-

duplication analysis.

D. Open Problems and Future Directions
Although data deduplication has been studied for

more than ten years, many open problems and chal-

lenges remain to be addressed, particularly as the size of

digital data continues to grow exponentially and the

need for long-term storage management becomes in-

creasingly urgent. Based on the studies discussed in

Sections III and IV, in what follows we outline the

open problems and possible future directions for
deduplication.

• To compare by hash, or not to compare? The

mainstream data deduplication systems, such as

LBFS [14], Venti [11], and DDFS [13], use SHA1-

based fingerprints to represent and identify data

chunks, which is justified by the argument that

the probability of a cryptographic hash collision

between any two randomly generated chunks is
many orders of magnitude smaller than that of

many hardware errors [11]. Henson [65] points

out that the hash-based comparison approach is

not risk-free and the errors and bugs caused by

hash collisions for deduplication are difficult to

discover and repair in a long-lived storage sys-

tems. Black et al. [66] argue that it would cost

about $80000000 and two years to find a colli-
sion of SHA1 in 2006, and thus suggest that com-

pare-by-hash is completely reasonable. Thus,

some systems resolve this problem by checking

the content [60], [187] after a compare-by-hash.

Some other systems choose to use stronger cryp-

tographic hash, such as SHA-256 [73], [74], for

fingerprinting.

• Standard for deduplicating transport. With the
proliferation of commercially available dedupli-

cated storage systems, a potential next stage to

improve the efficiency of storage is to create a

transport protocol that is deduplication aware.

We briefly summarize several currently available

APIs. Symantec OpenStorage [216] was intro-

duced circa 2007 to provide an API for integra-

tion of disk-based backup platforms with
Symantec NetBackup [209]. Data Domain’s

DDBOOST API, introduced in 2010, similarly in-

tegrates numerous backup software systems with

the Data Domain appliance [207]. By providing a

plug-in where the backup software can perform

chunking and fingerprinting and allowing the

backup appliance to determine which chunks are

duplicates, DDBOOST distributes the processing
and, when duplication is high, reduces network

load as well. Can this technique for transferring

only unique data achieve broader applicability?

We already see recipe-based content-distribution

systems such as Bittorrent [217]. It is possible

that with increasing infrastructure available in

the form of deduplicating, content-addressable

file systems, network transfers beyond niche ap-
plications like Bittorrent will adapt to provide

recipes for data rather than the data itself. With

such a protocol in place, it will become possible

to transfer data from one deduplicated product to

a different deduplicated product without inflating

the data during transfer.

• Restore and garbage collection after deduplica-

tion. Deduplication causes sequential or contigu-
ous data to be fragmented, a serious issue facing

the post-deduplication restore and garbage collec-

tion processes in both primary and secondary

storage due to the sharing of data chunks. Exist-

ing solutions try to eliminate fragmentation by

not deduplicating (i.e., rewriting) some of the du-

plicate but fragmented chunks [23], [129], which

sacrifices deduplication efficiency and does not
fully solve the data restore and garbage collection

problems for long-lived primary or secondary

storage systems. In addition, incorporating data

deduplication with (post-deduplication) delta com-

pression and traditional compression techniques

increases the complexity of these problems; this

is because recovering a delta compressed chunk

requires reading the base and delta chunks,
which is two disk I/Os instead of one.

• Secure deduplication is one of the most impor-

tant concerns for users, especially in the cloud

environment. Cross-user deduplication may leak

user’s confidential information [147] or lead to

some possible new attacks by obtaining finger-

prints that represent data contents [148]. To the

10http://sylab-srv.cs.fiu.edu/doku.php$?$id=projects:iodedup:start
11http://tracer.filesystems.org/

Vol. 104, No. 9, September 2016 | Proceedings of the IEEE 1703

Xia et al. : A Comprehensive Study of the Past, Present, and Future of Data Deduplication

http://tracer.filesystems.org/

best of our knowledge, while most existing stud-

ies focus on security of the data deduplication

technique, there are no published studies discuss-

ing the security concerns when data compression
and deduplication are jointly used. In fact, data

compression is implemented after data deduplica-

tion in current backup storage systems [7], [13],

while the classic convergent encryption ap-

proaches [150] first encrypt data and then com-

pute fingerprints on cipher text for deduplication.

This is contradictory since the encryption makes

the data randomized and thus incompressible. In
addition, assured deletion [144], [218] is also a

promising security topic in deduplication based

cloud environment.

• Reliability is another important problem for long-

lived deduplication-based storage systems. Exist-

ing approaches that replicate unique chunks with

a high reference count are a good solution to the

reliability problem for deduplication. It would be
interesting to see how such approaches may be

integrated with the data restore and garbage col-

lection processes for better storage performance

after deduplication. Additionally, the long-term

reliability analysis of deduplicated data, which is

still lacking, is very important in the long-term

primary or secondary storage systems.

• Primary storage deduplication. Deduplication is
increasingly popular in primary storage systems

with the rapid growth of application data. Em-

ploying deduplication to improve I/O perfor-

mance [130] will play a more important role in

high-performance storage systems than saving

storage space. Read and delete operations fre-

quently occur in primary storage systems. Ad-

dressing these problems with variable primary

storage workloads in systems with different stor-

age devices, such as, disks, DRAM memory, non-

volatile memory devices, will be an interesting

future research direction.
• Emerging applications. As introduced in Section IV,

deduplication can benefit applications besides disk

storage such as employing deduplication to extend

the lifetime of SSDs and PCMs [185], [201] and

eliminating visual redundancy for images and

videos [175], [176]. We believe that there will be

more applications for deduplication, such as stor-

age systems for tapes [219] or shingled disks, since
it will help reduce the growing redundant data in

large-scale storage systems.

V. SUMMARY

Data deduplication is a scalable and efficient redundant

data reduction technique for large-scale storage systems,

which addresses the challenges imposed by the explosive
growth in demand for data storage capacity. In this com-

prehensive survey study, we review the background of

data deduplication and the differences between data de-

duplication and traditional data compression. We also

comprehensively study the state-of-the-art work on data

deduplication, classifying them into six general catego-

ries based on data deduplication workflow, and then cre-

ate a taxonomy for each category, which provides
insights into the pros and cons of existing solutions. Ap-

plications that use data deduplication are also examined

in depth in this paper. Further, publicly available open-

source projects, data sets, and traces are summarized for

the convenience of the research community to further

research and development. Finally, the open problems

and research challenges are outlined according to our

Table 10 List of Acronyms and Terms

1704 Proceedings of the IEEE | Vol. 104, No. 9, September 2016

Xia et al. : A Comprehensive Study of the Past, Present, and Future of Data Deduplication

comprehensive studies on existing works and applica-
tions of deduplication techniques.

APPENDIX
Some frequently appearing acronyms and terminologies

appear in Table 10. h

Acknowledgment

The authors would like to thank the anonymous re-

viewers for their valuable comments and feedback. The
authors would also like to thank S. Mandal, G. Kuenning,

V. Tarasov, and E. Zadok for valuable discussions about

deduplicated storage literature.

REFERENCES

[1] “The data deluge,” The Economist, Feb. 25,
2010. [Online]. Available: http://www.
economist.com/node/15579717

[2] IDC, “The 2011 digital universe study,”
Tech. Rep., Jun. 2010. [Online]. Available:
http://www.emc.com/collateral/analyst-
reports/idc-extracting-value-from-
chaos-ar.pdf

[3] J. Gantz and D. Reinsel, “The digital
universe in 2020: Big data, bigger digital
shadows, biggest growth in the far east,”
IDC iView: IDC Analyze the Future, 2012.
[Online]. Available: http://www.emc.com/
collateral/analyst-reports/idc-digital-
universe-united-states.pdf

[4] “The Digital Universe of Opportunities:
Rich Data and the Increasing Value of the
Internet of Things,” EMC Digital Universe
with Research & Analysis by IDC,
Apr. 2014. [Online]. Available: http://www.
emc.com/leadership/digital-universe/
2014iview/executive-summary.htm

[5] D. Meyer and W. Bolosky, “A study of
practical deduplication,” in Proc. USENIX
Conf. File Storage Technol., San Jose, CA,
USA, Feb. 2011, pp. 229–241.

[6] A. El-Shimi, R. Kalach, and A. Kumar et al.,
“Primary data deduplication-large scale
study and system design,” in Proc. Conf.
USENIX Annu. Tech. Conf., Jun. 2012,
pp. 1–12.

[7] G. Wallace et al., “Characteristics of
backup workloads in production systems,”
in Proc. 10th USENIX Conf. File Storage
Technol., Feb. 2012, pp. 1–14.

[8] P. Shilane et al., “WAN optimized
replication of backup datasets using
stream-informed delta compression,” in
Proc. 10th USENIX Conf. File Storage
Technol., Feb. 2012, pp. 1–14.

[9] L. DuBois, M. Amaldas, and E. Sheppard,
“Key considerations as deduplication
evolves into primary storage,” White Paper
223310, Mar. 2011. [Online]. Available:
http://www.bedrock-tech.com/wp-content/
uploads/2010/05/wp_key-considerations.pdf

[10] W. J. Bolosky et al., “Single instance
storage in Windows 2000,” in Proc. 4th
USENIX Windows Syst. Symp., Aug. 2000,
pp. 13–24.

[11] S. Quinlan and S. Dorward, “Venti: A
new approach to archival storage,” in Proc.
USENIX Conf. File Storage Technol.,
Jan. 2002, pp. 1–13.

[12] C. Policroniades and I. Pratt, “Alternatives
for detecting redundancy in storage systems
data,” in Proc. USENIX Annu. Tech. Conf.
Gen. Track, Jun. 2004, pp. 73–86.

[13] B. Zhu, K. Li, and R. H. Patterson,
“Avoiding the disk bottleneck in the data
domain deduplication file system,” in Proc.
6th USENIX Conf. File Storage Technol.,
Feb. 2008, vol. 8, pp. 1–14.

[14] A. Muthitacharoen, B. Chen, and
D. Mazieres, “A low-bandwidth network
file system,” in Proc. ACM Symp. Oper. Syst.
Principles, Oct. 2001, pp. 1–14.

[15] S. Al-Kiswany, D. Subhraveti, P. Sarkar,
and M. Ripeanu, “VMFlock: Virtual
machine co-migration for the cloud,” in
Proc. 20th Int. Symp. High Performance
Distrib. Comput., Jun. 2011, pp. 159–170.

[16] J. Ziv and A. Lempel, “A universal
algorithm for sequential data compression,”
IEEE Trans. Inf. Theory, vol. IT-23, no. 3,
pp. 337–343, 1977.

[17] J. Ziv and A. Lempel, “Compression of
individual sequences via variable-rate
coding,” IEEE Trans. Inf. Theory, vol. 24,
no. 5, pp. 530–536, 1978.

[18] M. Oberhumer, “LZO real-time data
compression library,” User manual for LZO
version 0.28, Feb. 1997. [Online].
Available: http://www.infosys.tuwien.ac.at/
Staff/lux/marco/lzo.html

[19] M. R. Nelson, “LZW data compression,”
Dr. Dobb’s J., vol. 14, no. 10, pp. 29–36,
1989.

[20] L. P. Deutsch, “DEFLATE compressed data
format specification version 1.3,”
RFC Editor, 1996. [Online]. Available:
http://tools.ietf.org/html/rfc1951

[21] X. Lin, G. Lu, F. Douglis, P. Shilane,
and G. Wallace, “Migratory compression:
Coarse-grained data reordering to improve
compressibility,” in Proc. 12th USENIX
Conf. File Storage Technol., Feb. 2014,
pp. 257–271.

[22] B. H. Bloom, “Space/time trade-offs in
hash coding with allowable errors,”
Commun. ACM, vol. 13, no. 7,
pp. 422–426, 1970.

[23] M. Lillibridge, K. Eshghi, and D. Bhagwat,
“Improving restore speed for backup
systems that use inline chunk-based
deduplication,” in Proc. 11th USENIX Conf.
File Storage Technol., Feb. 2013,
pp. 183–197.

[24] D. Hamilton, “Deduplication-methods for
achieving data efficiency,” 2008. [Online].
Available: http://www.snia.org/sites/
default/education/tutorials/2008/spring/
data-management/Hamilton-D_
Deduplication_Methods_Data_
Efficiency.pdf

[25] T. Riveria, “Understanding data
deduplication,” 2009. [Online]. Available:
http://www.snia.org/sites/default/education/
tutorials/2009/fall/data/ThomasRivera_
UnderstandingDeduplication_A_Tutorial_
Understanding_Dedupe_9-15-09.pdf

[26] A. Brinkmann, “Data deduplication—
Tutorial,” 2011. [Online]. Available:
https://pc2.uni-paderborn.de/fileadmin/pc2/
media/staffweb/Andre_Brinkmann/Courses/
Speichersysteme_SS_2011/Deduplication_-_
Eurosys_Tutorial.pdf

[27] T. Riveria and G. Nagle, “Advanced
dedupe concepts,” 2011. [Online].
Available: http://www.snia.org/sites/default/
education/tutorials/2011/fall/
DataProtectionManagement/
ThomasRiveria_Advanced_Dedupe_
Concepts_FINAL.pdf

[28] N. Mandagere, P. Zhou, M. A. Smith,
and S. Uttamchandani, “Demystifying data

deduplication,” in Proc. ACM/IFIP/USENIX
Middleware Conf. Companion, Dec. 2008,
pp. 12–17.

[29] A. F. Banu and C. Chandrasekar, “A survey
on deduplication methods,” Int. J. Comput.
Trends Technol., vol. 3, no. 3, pp. 364–368,
2012.

[30] Q. He, Z. Li, and X. Zhang, “Data
deduplication techniques,” in Proc. Int.
Conf. Future Inf. Technol. Manage. Eng.,
Aug. 2010, vol. 1, pp. 430–433.

[31] J. Paulo and J. Pereira, “A survey and
classification of storage deduplication
systems,” ACM Comput. Surv., vol. 47,
no. 1, pp. 11, 2014.

[32] P. Neelaveni and M. Vijayalakshmi,
“A survey on deduplication in cloud
storage,” Asian J. Inf. Technol., vol. 13,
no. 6, pp. 320–330, 2014.

[33] P. Christen, Data Matching: Concepts and
Techniques for Record Linkage, Entity
Resolution, Duplicate Detection. New York,
NY, USA: Springer-Verlag, 2012.

[34] F. Naumann and M. Herschel, “An
introduction to duplicate detection,”
Synthesis Lectures Data Manage., vol. 2,
no. 1, pp. 1–87, 2010.

[35] J. A. Storer, Data Compression: Methods and
Theory. New York, NY, USA: Computer
Science Press, 1988.

[36] Theory of Data Compression. [Online].
Available: http://www.data-compression.
com/

[37] J. Gailly and M. Adler, “The gzip
compressor,” 1991. [Online]. Available:
http://www.gzip.org/

[38] M. W. Marcellin, JPEG2000 Image
Compression Fundamentals, Standards and
Practice: Image Compression Fundamentals,
Standards, Practice. New York, NY, USA:
Springer-Verlag, 2002, vol. 1.

[39] C. E. Shannon, “A mathematical theory of
communication,” ACM SIGMOBILE Mobile
Comput. Commun. Rev., vol. 5, no. 1,
pp. 3–55, 2001.

[40] D. A. Huffman, “A method for the
construction of minimum redundancy
codes,” Proc. IRE, vol. 40, no. 9,
pp. 1098–1101, 1952.

[41] G. G. Langdon, Jr., “An introduction to
arithmetic coding,” IBM J. Res. Develop.,
vol. 28, no. 2, pp. 135–149, 1984.

[42] I. H. Witten, R. M. Neal, and J. G. Cleary,
“Arithmetic coding for data compression,”
Commun. ACM, vol. 30, no. 6, pp. 520–540,
1987.

[43] Deflate compression. [Online]. Available:
http://zh.wikipedia.org/zh-cn/DEFLATE,
1991.

[44] 7zip. [Online]. Available: http://www.7-zip.
org/

[45] J. Gilchrist, “Parallel data compression with
bzip2,” in Proc. 16th Int. Conf. Parallel
Distrib. Comput. Syst., Jul. 2004, vol. 16,
pp. 559–564.

[46] M. Burrows and D. Wheeler, “A
block-sorting lossless data compression
algorithm,” Digital SRC Res. Rep., 1994.

Vol. 104, No. 9, September 2016 | Proceedings of the IEEE 1705

Xia et al. : A Comprehensive Study of the Past, Present, and Future of Data Deduplication

http://www.economist.com/node/15579717
http://www.economist.com/node/15579717
http://www.emc.com/collateral/analyst-reports/idcxtractingueromhaosr.pdf
http://www.emc.com/collateral/analyst-reports/idcxtractingueromhaosr.pdf
http://www.emc.com/collateral/analyst-reports/idcxtractingueromhaosr.pdf
http://www.emc.com/collateral/analyst-reports/idcigital-niverse-nited-tates.pdf
http://www.emc.com/collateral/analyst-reports/idcigital-niverse-nited-tates.pdf
http://www.emc.com/collateral/analyst-reports/idcigital-niverse-nited-tates.pdf
http://www.emc.com/leadership/digital-universe/2014iview/executive-ummary.htm
http://www.emc.com/leadership/digital-universe/2014iview/executive-ummary.htm
http://www.emc.com/leadership/digital-universe/2014iview/executive-ummary.htm
http://www.bedrock-tech.com/wpontent/uploads/2010/05/wp_keyonsiderations.pdf
http://www.bedrock-tech.com/wpontent/uploads/2010/05/wp_keyonsiderations.pdf
http://www.infosys.tuwien.ac.at/Staff/lux/marco/lzo.html
http://www.infosys.tuwien.ac.at/Staff/lux/marco/lzo.html
http://tools.ietf.org/html/rfc1951
http://www.snia.org/sites/default/education/tutorials/2008/spring/data-management/Hamilton-_Deduplication_Methods_Data_Efficiency.pdf
http://www.snia.org/sites/default/education/tutorials/2008/spring/data-management/Hamilton-_Deduplication_Methods_Data_Efficiency.pdf
http://www.snia.org/sites/default/education/tutorials/2008/spring/data-management/Hamilton-_Deduplication_Methods_Data_Efficiency.pdf
http://www.snia.org/sites/default/education/tutorials/2008/spring/data-management/Hamilton-_Deduplication_Methods_Data_Efficiency.pdf
http://www.snia.org/sites/default/education/tutorials/2008/spring/data-management/Hamilton-_Deduplication_Methods_Data_Efficiency.pdf
http://www.snia.org/sites/default/education/tutorials/2009/fall/data/ThomasRivera_UnderstandingDeduplication_A_Tutorial_Understanding_Dedupe_9-15pdf
http://www.snia.org/sites/default/education/tutorials/2009/fall/data/ThomasRivera_UnderstandingDeduplication_A_Tutorial_Understanding_Dedupe_9-15pdf
http://www.snia.org/sites/default/education/tutorials/2009/fall/data/ThomasRivera_UnderstandingDeduplication_A_Tutorial_Understanding_Dedupe_9-15pdf
http://www.snia.org/sites/default/education/tutorials/2009/fall/data/ThomasRivera_UnderstandingDeduplication_A_Tutorial_Understanding_Dedupe_9-15pdf
https://pc2.uni-paderborn.de/fileadmin/pc2/media/staffweb/Andre_Brinkmann/Courses/Speichersysteme_SS_2011/Deduplication_-Eurosys_Tutorial.pdf
https://pc2.uni-paderborn.de/fileadmin/pc2/media/staffweb/Andre_Brinkmann/Courses/Speichersysteme_SS_2011/Deduplication_-Eurosys_Tutorial.pdf
https://pc2.uni-paderborn.de/fileadmin/pc2/media/staffweb/Andre_Brinkmann/Courses/Speichersysteme_SS_2011/Deduplication_-Eurosys_Tutorial.pdf
https://pc2.uni-paderborn.de/fileadmin/pc2/media/staffweb/Andre_Brinkmann/Courses/Speichersysteme_SS_2011/Deduplication_-Eurosys_Tutorial.pdf
http://www.snia.org/sites/default/education/tutorials/2011/fall/DataProtectionManagement/ThomasRiveria_Advanced_Dedupe_Concepts_FINAL.pdf
http://www.snia.org/sites/default/education/tutorials/2011/fall/DataProtectionManagement/ThomasRiveria_Advanced_Dedupe_Concepts_FINAL.pdf
http://www.snia.org/sites/default/education/tutorials/2011/fall/DataProtectionManagement/ThomasRiveria_Advanced_Dedupe_Concepts_FINAL.pdf
http://www.snia.org/sites/default/education/tutorials/2011/fall/DataProtectionManagement/ThomasRiveria_Advanced_Dedupe_Concepts_FINAL.pdf
http://www.snia.org/sites/default/education/tutorials/2011/fall/DataProtectionManagement/ThomasRiveria_Advanced_Dedupe_Concepts_FINAL.pdf
http://www.data-compression.com/
http://www.data-compression.com/
http://www.gzip.org/
http://zh.wikipedia.org/zh-cn/DEFLATE
http://zh.wikipedia.org/zh-cn/DEFLATE
http://www.7-zip.org/
http://www.7-zip.org/

[47] W. F. Tichy, “RCSła system for version
control,” Softw., Practice Exp., vol. 15,
no. 7, pp. 637–654, 1985.

[48] J. J. Hunt, K.-P. Vo, and W. F. Tichy,
“Delta algorithms: An empirical analysis,”
ACM Trans. Softw. Eng. Methodol., vol. 7,
no. 2, pp. 192–214, 1998.

[49] J. MacDonald, “File system support for delta
compression,” M.S. thesis, Dept. Electr.
Eng. Comput. Sci., Univ. California at
Berkeley, Berkeley, CA, USA, 2000.

[50] A. Tridgell and P. Mackerras, “The rsync
algorithm,” 1996.

[51] N. Jain, M. Dahlin, and R. Tewari,
“TAPER: Tiered approach for eliminating
redundancy in replica synchronization,” in
Proc. USENIX Conf. File Storage Technol.,
Mar. 2005, pp. 281–294.

[52] T. Suel and N. Memon, “Algorithms for
delta compression and remote file
synchronization,” Lossless Compression
Handbook, 2002.

[53] R. C. Burns and D. D. Long, “Efficient
distributed backup with delta
compression,” in Proc. 5th Workshop I/O
Parallel Distrib. Syst., Nov. 1997, pp. 27–36.

[54] P. Shilane, G. Wallace, M. Huang, and
W. Hsu, “Delta compressed and deduplicated
storage using stream-informed locality,” in
Proc. 4th USENIX Conf. Hot Topics Storage
File Syst., Jun. 2012, pp. 201–214.

[55] W. Xia, H. Jiang, D. Feng, and L. Tian,
“Combining deduplication and delta
compression to achieve low-overhead data
reduction on backup datasets,” in Proc.
IEEE Data Compression Conf., Mar. 2014,
pp. 203–212.

[56] W. J. Bolosky, J. R. Douceur, and D. Ely et al.,
“Feasibility of a serverless distributed file
system deployed on an existing set of
desktop PCs,” ACM SIGMETRICS
Performance Eval. Rev., vol. 28, no. 1,
pp. 34–43, 2000.

[57] D. Meister and A. Brinkmann, “Multi-level
comparison of data deduplication in a
backup scenario,” in Proc. SYSTOR, Israeli
Exp. Syst. Conf., May 2009, pp. 1–12.

[58] M. Lillibridge et al., “Sparse indexing: Large
scale, inline deduplication using sampling
and locality,” in Proc. 7th USENIX Conf.
File Storage Technol., Feb. 2009, vol. 9,
pp. 111–123.

[59] C. Dubnicki et al., “HYDRAstor: A scalable
secondary storage,” in Proc. USENIX Conf.
File Storage Technol., Feb. 2009, vol. 9,
pp. 197–210.

[60] D. Bhagwat et al., “Extreme binning:
Scalable, parallel deduplication for
chunk-based file backup,” in Proc. IEEE Int.
Symp. Model. Anal. Simul. Comput.
Telecommun. Syst., Sep. 2009, pp. 1–9.

[61] B. Debnath, S. Sengupta, and J. Li,
“ChunkStash: Speeding up inline storage
deduplication using flash memory,” in Proc.
USENIX Conf. USENIX Annu. Tech. Conf.,
Jun. 2010, pp. 1–14.

[62] F. Guo and P. Efstathopoulos, “Building a
high-performance deduplication system,” in
Proc. USENIX Conf. USENIX Annu. Tech.
Conf., Jun. 2011, pp. 1–14.

[63] W. Xia, H. Jiang, D. Feng, and Y. Hua,
“Silo: A similarity-locality based near-exact
deduplication scheme with low ram
overhead and high throughput,” in Proc.
USENIX Conf. USENIX Annu. Tech. Conf.,
Jun. 2011, pp. 285–298.

[64] K. Srinivasan, T. Bisson, G. Goodson, and
K. Voruganti, “iDedup: Latency-aware,
inline data deduplication for primary

storage,” in Proc. 10th USENIX Conf. File
Storage Technol., Feb. 2012, pp. 24–37.

[65] V. Henson, “An analysis of compare-by-hash,”
in Proc. 9th Workshop Hot Topics Oper. Syst.,
May 2003, pp. 13–18.

[66] J. Black, “Compare-by-hash: A reasoned
analysis,” in Proc. USENIX Annu. Tech.
Conf. Gen. Track, May 2006, pp. 85–90.

[67] Y. Xing, Z. Li, and Y. Dai, “PeerDedupe:
Insights into the peer-assisted sampling
deduplication,” in Proc. IEEE 10th Int. Conf.
Peer-to-Peer Comput., Aug. 2010, pp. 1–10.

[68] W. Xia et al., “Ddelta: A deduplication-
inspired fast delta compression approach,”
Performance Eval., vol. 79, pp. 258–272,
2014.

[69] D. Eastlake and P. Jones, “US secure hash
algorithm 1 (SHA1),” 2001.

[70] D. Meister et al., “A study on data
deduplication in HPC storage systems,” in
Proc. Int. Conf. High Performance Comput.
Netw. Storage Anal., Jun. 2012, pp. 1–11.

[71] C. Riggle and S. G. McCarthy, “Design of
error correction systems for disk drives,”
IEEE Trans. Magn., vol. 34, no. 4,
pp. 2362–2371, 1998.

[72] B. Schroeder and G. A. Gibson, “Disk
failures in the real world: What does an
MTTF of 1,000,000 hours mean to you?”
in Proc. 5th USENIX Conf. File Storage
Technol., Feb. 2007, vol. 7, pp. 1–16.

[73] Zfs. [Online]. Available: http://en.wikipedia.
org/wiki/ZFS

[74] I. Drago et al., “Inside Dropbox:
Understanding personal cloud storage
services,” in Proc. ACM Conf. Internet Meas.
Conf., Nov. 2012, pp. 481–494.

[75] E. Kruus, C. Ungureanu, and C. Dubnicki,
“Bimodal content defined chunking for
backup streams,” in Proc. 7th USENIX Conf.
File Storage Technol., Feb. 2010, pp. 1–14.

[76] W. Xia et al., “P-dedupe: Exploiting
parallelism in data deduplication system,”
in Proc. 7th Int. Conf. Netw. Architect.
Storage, Jun. 2012, pp. 338–347.

[77] M. O. Rabin, “Fingerprinting by random
polynomials,” Cntr. Res. Comput. Tech.,
Aiken Comput. Lab., 1981.

[78] K. Eshghi and H. K. Tang, “A framework
for analyzing and improving content-based
chunking algorithms,” Hewlett Packard
Lab., Palo Alto, CA, USA, Tech. Rep.
HPL-2005-30(R.1), 2005.

[79] D. Bobbarjung, C. Dubnicki, and
S. Jagannathan, “Fingerdiff: Improved
duplicate elimination in storage systems,”
in Proc. Mass Storage Syst. Technol.,
May 2006, pp. 1–5.

[80] D. Teodosiu, N. Bjorner, Y. Gurevich,
M. Manasse, and J. Porkka, “Optimizing
file replication over limited bandwidth
networks using remote differential
compression,” Microsoft Research
TR-2006-157, 2006.

[81] B. Aggarwal et al., “EndRE: An end-system
redundancy elimination service for
enterprises,” in Proc. 7th USENIX Conf.
Netw. Syst. Design Implement., Apr. 2010,
pp. 14–28.

[82] Y. Zhang et al., “AE: An asymmetric
extremum content defined chunking
algorithm for fast and bandwidth-efficient
data deduplication,” in Proc. IEEE
INFOCOM, Apr. 2015, pp. 1–9.

[83] C. Yu, C. Zhang, Y. Mao, and F. Li,
“Leap-based content defined
chunking—Theory and implementation,” in
Proc. 31th Symp. Mass Storage Syst. Technol.,
Jun. 2015, pp. 1–12.

[84] B. Romański, Ł. Heldt, W. Kilian,
K. Lichota, and C. Dubnicki,
“Anchor-driven subchunk deduplication,”
in Proc. 4th Annu. Int. Syst. Storage Conf.,
May 2011, pp. 1–13.

[85] G. Lu, Y. Jin, and D. H. Du, “Frequency
based chunking for data de-duplication,” in
Proc. IEEE Int. Symp. Model. Anal. Simul.
Comput. Telecommun. Syst., Aug. 2010,
pp. 287–296.

[86] B. Zhou and J. Wen, “Hysteresis
re-chunking based metadata harnessing
deduplication of disk images,” in Proc.
42nd Int. Conf. Parallel Process., Oct. 2013,
pp. 389–398.

[87] A. Broder, “Some applications of Rabin’s
fingerprinting method,” Sequences II:
Methods Commun. Security Comput. Sci.,
pp. 1–10, 1993.

[88] Y. Cui, Z. Lai, X. Wang, N. Dai, and
C. Miao, “QuickSync: Improving
synchronization efficiency for mobile cloud
storage services,” in Proc. 21st Annu. Int.
Conf. Mobile Comput. Netw., Sep. 2015,
pp. 592–603.

[89] A. Anand, C. Muthukrishnan, A. Akella,
and R. Ramjee, “Redundancy in network
traffic: Findings and implications,” in Proc.
11th Int. Joint Conf. Meas. Model. Comput.
Syst., Jun. 2009, pp. 37–48.

[90] N. Bjørner, A. Blass, and Y. Gurevich,
“Content-dependent chunking for
differential compression, the local
maximum approach,” J. Comput. Syst. Sci.,
vol. 76, no. 3, pp. 154–203, 2010.

[91] D. R. Bobbarjung, S. Jagannathan, and
C. Dubnicki, “Improving duplicate
elimination in storage systems,” ACM
Trans. Storage, vol. 2, no. 4, pp. 424–448,
2006.

[92] J. Min, D. Yoon, and Y. Won, “Efficient
deduplication techniques for modern
backup operation,” IEEE Trans. Comput.,
vol. 60, no. 6, pp. 824–840, 2011.

[93] C. Liu et al., “A novel optimization method
to improve de-duplication storage system
performance,” in Proc. 15th Int. Conf.
Parallel Distrib. Syst., Dec. 2009,
pp. 228–235.

[94] J. Ma, B. Zhao, G. Wang, and J. Liu,
“Adaptive pipeline for deduplication,” in
Proc. 28th IEEE Symp. Mass Storage Syst.
Technol., Apr. 2012, pp. 1–6.

[95] S. Al-Kiswany et al., “Storegpu: Exploiting
graphics processing units to accelerate
distributed storage systems,” in Proc. 17th
Int. Symp. High Performance Distrib.
Comput., Jun. 2008, pp. 165–174.

[96] P. Bhatotia, R. Rodrigues, and A. Verma,
“Shredder: GPU-accelerated incremental
storage and computation,” in Proc. 10th
USENIX Conf. File Storage Technol.,
Feb. 2012, pp. 1–15.

[97] C. Kim, K.-W. Park, and K. H. Park,
“GHOST: GPGPU-offloaded high
performance storage I/O deduplication for
primary storage system,” in Proc. Int.
Workshop Programm. Models Appl.
Multicores Manycores, 2012, pp. 17–26.

[98] X. Lin et al., “Metadata considered
harmful…to deduplication,” in Proc. 7th
USENIX Workshop Hot Topics Storage File
Syst., Jul. 2015.

[99] J. Bowling, “Opendedup: Open-source
deduplication put to the test,” Linux J.,
vol. 2013, no. 228, p. 2, 2013.

[100] W. Xia, H. Jiang, D. Feng, and L. Tian,
“Accelerating data deduplication by
exploiting pipelining and parallelism with

1706 Proceedings of the IEEE | Vol. 104, No. 9, September 2016

Xia et al. : A Comprehensive Study of the Past, Present, and Future of Data Deduplication

http://en.wikipedia.org/wiki/ZFS
http://en.wikipedia.org/wiki/ZFS

multicore or manycore processors,” in Proc.
10th USENIX Conf. File Storage Technol.,
Feb. 2012, pp. 1–2.

[101] A. Gharaibeh, S. Al-Kiswany, and
S. Gopalakrishnan et al., “A GPU
accelerated storage system,” in Proc. 19th
ACM Int. Symp. High Performance Distrib.
Comput., Jun. 2010, pp. 167–178.

[102] W. Xia, H. Jiang, D. Feng, and Y. Hua,
“Similarity and locality based indexing for
high performance data deduplication,”
IEEE Trans. Comput., vol. 64, no. 4,
pp. 1162–1176, 2015.

[103] M. Fu et al., “Design tradeoffs for data
deduplication performance in backup
workloads,” in Proc. 13th USENIX Conf. File
Storage Technol., Feb. 2015, pp. 331–344.

[104] J. Wei et al., “MAD2: A scalable
high-throughput exact deduplication
approach for network backup services,” in
Proc. IEEE 26th Symp. Mass Storage Syst.
Technol., May 2010, pp. 1–14.

[105] Y. Tan et al., “SAM: A semantic-aware
multi-tiered source de-duplication
framework for cloud backup,” in Proc. 39th
Int. Conf. Parallel Process., Sep. 2010,
pp. 614–623.

[106] D. Meister, J. Kaiser, and A. Brinkmann,
“Block locality caching for data
deduplication,” in Proc. 6th Int. Syst.
Storage Conf., Jun. 2013, pp. 1–12.

[107] L. Aronovich et al., “The design of a
similarity based deduplication system,” in
Proc. SYSTOR, Israeli Exp. Syst. Conf.,
May 2009, pp. 1–12.

[108] D. Meister and A. Brinkmann, “dedupv1:
Improving deduplication throughput using
solid state drives (SSD),” in Proc. IEEE
26th Symp. Mass Storage Syst. Technol.,
May 2010, pp. 1–6.

[109] G. Lu, Y. J. Nam, and D. H. Du,
“BloomStore: Bloom-filter based
memory-efficient key-value store for
indexing of data deduplication on flash,” in
Proc. IEEE 28th Symp. Mass Storage Syst.
Technol., Apr. 2012, pp. 1–11.

[110] T. Yang et al., “DEBAR: A scalable
high-performance de-duplication storage
system for backup and archiving,” in Proc.
IEEE Int. Symp. Parallel Distrib. Process.,
Apr. 2010, pp. 1–12.

[111] W. Dong et al., “Tradeoffs in scalable data
routing for deduplication clusters,” in Proc.
9th USENIX Conf. File Storage Technol.,
Feb. 2011, pp. 15–29.

[112] Y. Fu, H. Jiang, and N. Xiao, “A scalable
inline cluster deduplication framework for
big data protection,” in Proc. ACM/IFIP/
USENIX Middleware Conf., Dec. 2012,
pp. 354–373.

[113] J. Kaiser, D. Meister, A. Brinkmann, and
S. Effert, “Design of an exact data
deduplication cluster,” in Proc. IEEE 28th
Symp. Mass Storage Syst. Technol.,
Apr. 2012, pp. 1–12.

[114] D. Frey, A.-M. Kermarrec, and K. Kloudas,
“Probabilistic deduplication for
cluster-based storage systems,” in Proc. 3rd
ACM Symp. Cloud Comput., Oct. 2012,
pp. 1–12.

[115] A. Z. Broder, “On the resemblance and
containment of documents,” in Proc.
Compress. Complexity Sequences, Jun. 1997,
pp. 21–29.

[116] B. Debnath, S. Sengupta, and J. Li,
“FlashStore: High throughput persistent
key-value store,” VLDB Endowment,
vol. 3, no. 1/2, pp. 1414–1425, 2010.

[117] B. Debnath, S. Sengupta, and J. Li,
“SkimpyStash: RAM space skimpy
key-value store on flash-based storage,” in
Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2011, pp. 25–36.

[118] R. Pagh and F. F. Rodler, “Cuckoo
hashing,” J. Algorithms, vol. 51, no. 2,
pp. 122–144, 2004.

[119] A. Broder, “Identifying and filtering
near-duplicate documents,” in Proc.
Combinatorial Pattern Matching, Jun. 2000,
pp. 1–10.

[120] P. Kulkarni, F. Douglis, J. D. LaVoie, and
J. M. Tracey, “Redundancy elimination
within large collections of files,” in Proc.
USENIX Annu. Tech. Conf., Jun. 2012,
pp. 1–14.

[121] D. Gupta et al., “Difference Engine:
Harnessing memory redundancy in virtual
machines,” in Proc. 8th Symp. Oper. Syst.
Design Implement., Dec. 2008, pp. 309–322.

[122] D. Trendafilov, N. Memon, and T. Suel,
“Zdelta: An efficient delta compression
tool,” Dept. Comput. Inf. Sci., Polytechnic
Univ., Tech. Rep., 2002.

[123] U. Manber, “Finding similar files in a large
file system,” in Proc. USENIX Winter,
Jan. 1994, vol. 94, pp. 1–10.

[124] F. Douglis and A. Iyengar,
“Application-specific delta-encoding via
resemblance detection,” in Proc. USENIX
Annu. Tech. Conf. Gen. Track, Jun. 2003,
pp. 113–126.

[125] L. L. You, K. T. Pollack, and D. D. Long,
“Deep Store: An archival storage system
architecture,” in Proc. 21st Int. Conf.
Data Eng., Apr. 2005, pp. 804–815.

[126] Q. Yang and J. Ren, “I-CASH: Intelligently
coupled array of SSD and HDD,” in Proc.
17th IEEE Int. Symp. High Performance
Comput. Architect., Feb. 2011, pp. 278–289.

[127] W. Xia, H. Jiang, D. Feng, and L. Tian,
“DARE: A deduplication-aware
resemblance detection and elimination
scheme for data reduction with low
overheads,” IEEE Trans. Comput., vol. 65,
no. 6, pp. 1–14, 2016.

[128] Y. J. Nam, D. Park, and D. H. Du,
“Assuring demanded read performance of
data deduplication storage with backup
datasets,” in Proc. IEEE 20th Int. Symp.
Model. Anal. Simul. Comput. Telecommun.
Syst., Aug. 2012, pp. 201–208.

[129] M. Fu et al., “Accelerating restore and
garbage collection in deduplication-based
backup systems via exploiting historical
information,” in Proc. USENIX Annu. Tech.
Conf., Jun. 2014, pp. 181–192.

[130] B. Mao, H. Jiang, S. Wu, and L. Tian,
“POD: Performance oriented I/O
deduplication for primary storage systems
in the cloud,” in Proc. IEEE 28th Int.
Parallel Distrib. Process. Symp., May 2014,
pp. 767–776, Phoenix, AZ, USA: IEEE.

[131] M. Kaczmarczyk, M. Barczynski, W. Kilian,
and C. Dubnicki, “Reducing impact of data
fragmentation caused by in-line
deduplication,” in Proc. 5th Annu. Int. Syst.
Storage Conf., Jun. 2012, pp. 1–12.

[132] C.-H. Ng and P. P. Lee, “RevDedup: A
reverse deduplication storage system
optimized for reads to latest backups,” in
Proc. 4th Asia-Pacific Workshop Syst., 2013,
p. 15.

[133] Y. Tan et al., “CABdedupe: A causality-based
deduplication performance booster for cloud
backup services,” in Proc. IEEE Int. Parallel
Distrib. Process. Symp., May 2011,
pp. 1266–1277.

[134] B. Mao et al., “SAR: SSD assisted restore
optimization for deduplication-based
storage systems in the cloud,” in Proc. IEEE
7th Int. Conf. Netw. Architect. Storage,
Jun. 2012, pp. 328–337.

[135] R. Lai et al., “A near-exact defragmentation
scheme to improve restore performance for
cloud backup systems,” in Proc. 14th Int.
Conf. Algorithms Architect. Parallel Process.,
2014, pp. 457–471.

[136] Y. Nam, G. Lu, N. Park, W. Xiao, and
D. H. Du, “Chunk fragmentation level: An
effective indicator for read performance
degradation in deduplication storage,” in
Proc. IEEE 13th Int. Conf. High Performance
Comput. Commun., Sep. 2011, pp. 581–586.

[137] Y. Li, M. Xu, C.-H. Ng, and P. P. Lee,
“Efficient hybrid inline and out-of-line
deduplication for backup storage,” ACM
Trans. Storage, vol. 10, no. 2, pp. 2–21,
2014.

[138] M. Fu et al., “Reducing fragmentation for
in-line deduplication backup storage via
exploiting backup history and cache
knowledge,” IEEE Trans. Parallel Distrib.
Syst., vol. 27, no. 3, pp. 855–868, 2016.

[139] L. Belady, “A study of replacement
algorithms for a virtual-storage computer,”
IBM Syst. J., vol. 5, no. 2, pp. 78–101,
1966.

[140] B. Mao, H. Jiang, S. Wu, Y. Fu, and
L. Tian, “Read-performance optimization
for deduplication-based storage systems in
the cloud,” ACM Trans. Storage, vol. 10,
no. 2, p. 6, 2014.

[141] D. N. Simha, M. Lu, and T. Chiueh,
“A scalable deduplication and garbage
collection engine for incremental backup,”
in Proc. 6th Int. Syst. Storage Conf.,
Jun. 2013, pp. 1–12.

[142] P. Strzelczak et al., “Concurrent deletion in
a distributed content-addressable storage
system with global deduplication,” in Proc.
11th USENIX Conf. File Storage Technol.,
Feb. 2013, pp. 161–174.

[143] V. Tarasov et al., “Dmdedup: Device
mapper target for data deduplication,” in
Proc. Ottawa Linux Symp., Ottawa,
ON Canada., Jul. 2014, pp. 83–87.

[144] F. C. Botelho, P. Shilane, N. Garg, and
W. Hsu, “Memory efficient sanitization of
a deduplicated storage system,” in Proc.
11th USENIX Conf. File Storage Technol.,
Feb. 2013, pp. 81–94.

[145] F. C. Botelho, A. Lacerda, G. V. Menezes,
and N. Ziviani, “Minimal perfect hashing:
A competitive method for indexing internal
memory,” Inf. Sci., vol. 181, no. 13,
pp. 2608–2625, 2011.

[146] M. Mulazzani, S. Schrittwieser,
M. Leithner, M. Huber, and E. Weippl,
“Dark clouds on the horizon: Using cloud
storage as attack vector and online slack
space,” in Proc. 20th USENIX Security
Symp., Aug. 2011, pp. 1–11.

[147] D. Harnik, B. Pinkas, and A. Shulman-Peleg,
“Side channels in cloud services:
Deduplication in cloud storage,” IEEE
Security Privacy, vol. 8, no. 6, pp. 40–47,
2010.

[148] S. Halevi, D. Harnik, B. Pinkas, and
A. Shulman-Peleg, “Proofs of ownership in
remote storage systems,” in Proc. 18th ACM
Conf. Comput. Commun. Security, Oct. 2011,
pp. 491–500.

[149] T. Dilatush and D. L. Whiting, “System
for backing up files from disk volumes on
multiple nodes of a computer network,”
U.S. Patent 5 778 395, Jul. 7, 1998.

Vol. 104, No. 9, September 2016 | Proceedings of the IEEE 1707

Xia et al. : A Comprehensive Study of the Past, Present, and Future of Data Deduplication

[150] J. R. Douceur et al., “Reclaiming space
from duplicate files in a serverless
distributed file system,” in Proc. 22nd Int.
Conf. Distrib. Comput. Syst., Jul. 2002,
pp. 617–624.

[151] L. P. Cox, C. D. Murray, and B. D. Noble,
“Pastiche: Making backup cheap and easy,”
ACM SIGOPS Oper. Syst. Rev., vol. 36,
no. SI, pp. 285–298, 2002.

[152] M. W. Storer, K. Greenan, D. D. Long,
and E. L. Miller, “Secure data
deduplication,” in Proc. 4th ACM Int.
Workshop Storage Security Survivability,
Oct. 2008, pp. 1–10.

[153] P. Anderson and L. Zhang, “Fast and
secure laptop backups with encrypted
de-duplication,” in Proc. 23th Int.
Conf. Large Installation Syst. Admin.,
Strategies Tools Tech., Dec. 2010,
pp. 195–206.

[154] J. Li et al., “Secure deduplication with
efficient and reliable convergent key
management,” IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 6, pp. 1–11, 2013.

[155] M. Bellare, S. Keelveedhi, and
T. Ristenpart, “Message-locked encryption
and secure deduplication,” in Proc. Adv.
Cryptology—EUROCRYPT 2013, May 2013,
pp. 296–312.

[156] M. Bellare, S. Keelveedhi, and
T. Ristenpart, “DupLESS: Server-aided
encryption for deduplicated storage,” in
Proc. 22nd USENIX Security Symp.,
Aug. 2013, pp. 1–16.

[157] O. Heen, C. Neumann, L. Montalvo, and
S. Defrance, “Improving the resistance to
side-channel attacks on cloud storage
services,” in Proc. 5th Int. Conf. New
Technol. Mobility Security, May 2012,
pp. 1–5.

[158] R. C. Merkle, “A certified digital
signature,” in Proc. Adv. Cryptol., 1989,
pp. 218–238.

[159] R. Di Pietro and A. Sorniotti, “Boosting
efficiency and security in proof of
ownership for deduplication,” in Proc. 7th
ACM Symp. Inf. Comput. Commun. Security,
May 2012, pp. 81–82.

[160] Q. Zheng and S. Xu, “Secure and efficient
proof of storage with deduplication,” in
Proc. 2nd ACM Conf. Data Appl. Security
Privacy, Feb. 2012, pp. 1–12.

[161] J. Xu, E.-C. Chang, and J. Zhou, “Weak
leakage-resilient client-side deduplication
of encrypted data in cloud storage,” in
Proc. 8th ACM SIGSAC Symp. Inf. Comput.
Commun. Security, May 2013, pp. 195–206.

[162] Y. Zhou et al., “SecDep: A user-aware
efficient fine-grained secure deduplication
scheme with multi-level key management,”
in Proc. IEEE 31st Symp. Mass Storage Syst.
Technol., Jun. 2015, pp. 1–12.

[163] M. Li, C. Qin, and P. P. Lee, “CDStore:
Toward reliable, secure, cost-efficient cloud
storage via convergent dispersal,” in Proc.
USENIX Conf. Annu. Tech. Conf., Jul. 2015,
pp. 111–124.

[164] M. Li, C. Qin, P. P. Lee, and J. Li,
“Convergent dispersal: Toward
storage-efficient security in a
cloud-of-clouds,” in Proc. 6th USENIX
Workshop Hot Topics Storage File Syst.,
Jun. 2014, pp. 1–5.

[165] D. Bhagwat et al., “Providing high
reliability in a minimum redundancy
archival storage system,” in Proc. 14th
IEEE Int. Symp. Model. Anal. Simul.
Comput. Telecommun. Syst., Sep. 2006,
pp. 413–421.

[166] X. Li, M. Lillibridge, and M. Uysal,
“Reliability analysis of deduplicated and
erasure-coded storage,” ACM SIGMETRICS
Performance Eval. Rev., vol. 38, no. 3,
pp. 4–9, 2011.

[167] C. Liu, Y. Gu, L. Sun, B. Yan, and
D. Wang, “R-ADMAD: High reliability
provision for large-scale de-duplication
archival storage systems,” in Proc. 23rd
Int. Conf. Supercomput., Jun. 2009,
pp. 370–379.

[168] K. Li, “Emerging Technology: DD200 Restorer,”
Apr. 2004. [Online]. Available: http://
storageconference.us/2004/Presentations/
Panel/KaiLi.pdf

[169] E. W. Rozier et al., “Modeling the fault
tolerance consequences of deduplication,”
in Proc. 30th IEEE Symp. Reliable
Distrib. Syst., Oct. 2011, pp. 75–84.

[170] C. Constantinescu and M. Lu, “Quick
estimation of data compression and
de-duplication for large storage systems,”
in Proc. 1st Int. Conf. Data Compression
Commun. Process., Jun. 2011, pp. 98–102.

[171] K. Tangwongsan, H. Pucha, D. G. Andersen,
and M. Kaminsky, “Efficient similarity
estimation for systems exploiting data
redundancy,” in Proc. IEEE INFOCOM,
Mar. 2010, pp. 1–9.

[172] F. Xie, M. Condict, and S. Shete,
“Estimating duplication by content-based
sampling,” in Proc. USENIX Conf. Annu.
Tech. Conf., Jun. 2013, pp. 181–186.

[173] D. Harnik, O. Margalit, D. Naor,
D. Sotnikov, and G. Vernik, “Estimation of
deduplication ratios in large data sets,” in
Proc. IEEE 28th Symp. Mass Storage Syst.
Technol., May 2012, pp. 1–11.

[174] D. Meister, A. Brinkmann, and T. Süß,
“File recipe compression in data
deduplication systems,” in Proc. 11th
USENIX Conf. File Storage Technol.,
Feb. 2013, pp. 175–182.

[175] A. Katiyar and J. Weissman, “ViDeDup: An
application-aware framework for video
de-duplication,” in Proc. 3rd USENIX Conf.
Hot Topics Storage file Syst., Jun. 2011,
pp. 1–5.

[176] D. Perra and J.-M. Frahm, “Cloud-scale
image compression through content
deduplication,” in Proc. British Mach.
Vis. Conf., Sep. 2014, pp. 1–12.

[177] Y. Hua, H. Jiang, and D. Feng, “FAST:
Near real-time searchable data analytics for
the cloud,” in Proc. Int. Conf. High
Performance Comput. Netw. Storage Anal.,
2014, pp. 754–765.

[178] S. Dewakar et al., “Storage efficiency
opportunities and analysis for video
repositories,” in Proc. 7th USENIX
Workshop Hot Topics Storage File Syst.,
Jul. 2015.

[179] R. Koller and R. Rangaswami, “I/O
deduplication: Utilizing content similarity
to improve I/O performance,” ACM Trans.
Storage, vol. 6, no. 3, pp. 13, 2010.

[180] M. Vrable, S. Savage, and G. M. Voelker,
“Cumulus: Filesystem backup to the
cloud,” ACM Trans. Storage, vol. 5, no. 4,
pp. 14, 2009.

[181] C. A. Waldspurger, “Memory resource
management in VMware ESX server,” ACM
SIGOPS Oper. Syst. Rev., vol. 36, no. SI,
pp. 181–194, 2002.

[182] A. T. Clements et al., “Decentralized
deduplication in SAN cluster file systems,”
in Proc. USENIX Annu. Tech. Conf.,
Jun. 2009, pp. 1–14.

[183] N. T. Spring and D. Wetherall,
“A protocol-independent technique for
eliminating redundant network traffic,”
ACM SIGCOMM Comput. Commun. Rev.,
vol. 30, no. 4, pp. 87–95, 2000.

[184] A. Anand, V. Sekar, and A. Akella,
“SmartRE: An architecture for coordinated
network-wide redundancy elimination,”
ACM SIGCOMM Comput. Commun. Rev.,
vol. 39, no. 4, pp. 87–98, 2009.

[185] F. Chen, T. Luo, and X. Zhang, “CAFTL: A
content-aware flash translation layer
enhancing the lifespan of flash memory
based solid state drives,” in Proc. 9th
USENIX Conf. File Storage Technol.,
Feb. 2011, pp. 1–14.

[186] C. Li et al., “Nitro: A capacity-optimized
SSD cache for primary storage,” in Proc.
USENIX Conf. USENIX Annu. Tech. Conf.,
Jun. 2014, pp. 501–512.

[187] S. Rhea, R. Cox, and A. Pesterev, “Fast,
inexpensive content-addressed storage in
foundation,” in Proc. USENIX Annu. Tech.
Conf., Jun. 2008, pp. 143–156.

[188] Opendedup. [Online]. Available: http://
www.opendedup.org/

[189] P. Koutoupis, “Data deduplication with
linux,” Linux J., vol. 2011, no. 207,
pp. 7, 2011.

[190] I. Drago, E. Bocchi, M. Mellia, H. Slatman,
and A. Pras, “Benchmarking personal
cloud storage,” in Proc. Conf. Internet Meas.
Conf., Oct. 2013, pp. 205–212.

[191] K. Miller, F. Franz, M. Rittinghaus,
M. Hillenbrand, and F. Bellosa, “XLH:
More effective memory deduplication
scanners through cross-layer hints,” in
Proc. USENIX Annu. Tech. Conf., Jun. 2013,
pp. 279–290.

[192] K. Jin and E. L. Miller, “The effectiveness
of deduplication on virtual machine disk
images,” in Proc. SYSTOR’09, Israeli Exp.
Syst. Conf., May 2009, pp. 1–14.

[193] J. Ren and Q. Yang, “A new buffer cache
design exploiting both temporal and
content localities,” in Proc. IEEE 30th Int.
Conf. Distrib. Comput. Syst., Jun. 2010,
pp. 273–282.

[194] C.-H. Ng, M. Ma, T.-Y. Wong, P. P. Lee,
and J. Lui, “Live deduplication storage
of virtual machine images in an
open-source cloud,” in Proc. 12th Int.
Middleware Conf., Dec. 2011, pp. 80–99.

[195] X. Zhang et al., “Exploiting data
deduplication to accelerate live virtual
machine migration,” in Proc. IEEE Int.
Conf. Cluster Comput., Sep. 2010,
pp. 88–96.

[196] U. Deshpande, X. Wang, and K. Gopalan,
“Live gang migration of virtual machines,”
in Proc. 20th Int. Symp. High Performance
Distrib. Comput., Jun. 2011, pp. 135–146.

[197] H. Pucha, D. G. Andersen, and
M. Kaminsky, “Exploiting similarity for
multi-source downloads using file
handprints,” in Proc. 4th USENIX Conf.
Netw. Syst. Design Implement., Apr. 2007,
pp. 1–14.

[198] S. Sanadhya et al., “Asymmetric caching:
Improved network deduplication for mobile
devices,” in Proc. 18th Annu. Int. Conf.
Mobile Comput. Netw., Aug. 2012,
pp. 161–172.

[199] Y. Hua, X. Liu, and D. Feng, “Smart
in-network deduplication for storage-aware
SDN,” in Proc. ACM SIGCOMM Conf.
SIGCOMM, Aug. 2013, pp. 509–510.

[200] Y. Hua and X. Liu, “Scheduling
heterogeneous flows with delay-aware

1708 Proceedings of the IEEE | Vol. 104, No. 9, September 2016

Xia et al. : A Comprehensive Study of the Past, Present, and Future of Data Deduplication

http://storageconference.us/2004/Presentations/Panel/KaiLi.pdf
http://storageconference.us/2004/Presentations/Panel/KaiLi.pdf
http://storageconference.us/2004/Presentations/Panel/KaiLi.pdf
http://www.opendedup.org/
http://www.opendedup.org/

deduplication for avionics applications,”
IEEE Trans. Parallel Distrib. Syst., vol. 23,
no. 9, pp. 1790–1802, 2012.

[201] A. Gupta, R. Pisolkar, B. Urgaonkar, and
A. Sivasubramaniam, “Leveraging value
locality in optimizing NAND flash-based
SSDs,” in Proc. 9th USENIX Conf. File
Storage Technol., Feb. 2011, pp. 91–103.

[202] Y. Tang and J. Yang, “Secure deduplication
of general computations,” in Proc. USENIX
Annu. Tech. Conf., Jul. 2015, pp. 319–331.

[203] HP, “Eliminate the boundaries of
traditional backup and archive,” Apr. 2014.
[Online]. Available: http://www8.hp.com/
us/en/products/data-storage/
storage-backup-archive.html

[204] “HYDRAstor—Scale-out Grid Storage
Platform,” Apr. 2014. [Online]. Available:
http://www.necam.com/hydrastor/

[205] Commvault Simpana software. [Online].
Available: http://www.commvault.com/
simpana-software

[206] IDC, “Worldwide Purpose-Built Backup
Appliance (PBBA) Market Posts 9.7%
Year-Over-Year Revenue Growth in Fourth
Quarter of 2013,” Mar. 2014. [Online].
Available: http://www.idc.com/getdoc.jsp?
containerId=prUS24762914

[207] “Is DDBoost a ‘standard’,” Apr. 2014.
[Online]. Available: http://www.emc.com/
data-protection/data-domain/data-domain-
boost.htm

[208] Oracle Database Backup and Recovery User’s
Guide. [Online]. Available: http://docs.
oracle.com/cd/E11882_01/backup.112/
e10642/rcmquick.htm#BRADV89346

[209] “Symantec looks beyond vrtual tape,”
Nov. 2006. [Online]. Available: http://
www.enterprisestorageforum.com/
technology/news/article.php/3643846/
Symantec-Looks-Beyond-Virtual-Tape.htm

[210] “Avamar deduplication backup software
and system.” [Online]. Available: http://
www.emc.com/domains/avamar/index.htm

[211] J. Liu, Y. Chai, X. Qin, and Y. Xiao,
“PLC-Cache: Endurable SSD cache for
deduplication-based primary storage,” in
Proc. 30th IEEE Symp. Mass Storage Syst.
Technol., Jun. 2014, pp. 1–6.

[212] A. Wildani, E. L. Miller, and O. Rodeh,
“Hands: A heuristically arranged
non-backup in-line deduplication system,”
in Proc. IEEE 29th Int. Conf. Data Eng.,
Apr. 2013, pp. 446–457.

[213] V. Tarasov et al., “Generating realistic
datasets for deduplication analysis,” in

Proc. USENIX Conf. Annu. Tech. Conf.,
Jun. 2012, pp. 24–34.

[214] J. Paulo, P. Reis, J. Pereira, and A. Sousa,
“Dedisbench: A benchmark for
deduplicated storage systems,” in Proc.
Move Meaningful Internet Syst. (OTM),
2012, pp. 584–601.

[215] R. Gracia-Tinedo et al., “SDGen: Mimicking
datasets for content generation in storage
benchmarks,” in Proc. 13th USENIX Conf.
File Storage Technol., 2015, pp. 317–330.

[216] Symantec OpenStorage. [Online].
Available: http://www.symantec.com/
page.jsp?id=openstorage, Nov. 2006.

[217] B. Cohen, “The BitTorrent protocol
specification,” 2008.

[218] Y. Tang, P. P. Lee, J. Lui, and R. Perlman,
“Secure overlay cloud storage with access
control and assured deletion,” IEEE Trans.
Depend. Secure Comput., vol. 9, no. 6,
pp. 903–916, 2012.

[219] A. Gharaibeh et al., “DedupT: Deduplication
for tape systems,” in Proc. IEEE 30th Symp.
Mass Storage Syst. Technol., Jun. 2014,
pp. 1–11.

ABOUT THE AUTHORS

Wen Xia (Member, IEEE) received the Ph.D. de-

gree in computer science from Huazhong Univer-

sity of Science and Technology (HUST), Wuhan,

China, in 2014.

He is currently an Assistant Professor in the

School of Computer Science and Technology,

HUST. His research interests include deduplica-

tion, data compression, storage systems, cloud

storage, etc. He has published more than 20 pa-

pers in major journals and international confer-

ences including IEEE TRANSACTIONS ON COMPUTERS, IEEE TRANSACTIONS ON

PARALLEL AND DISTRIBUTED SYSTEMS, USENIX ATC, USENIX FAST, INFOCOM,

IFIP Performance, IEEE DCC, MSST, IPDPS, HotStorage, etc.

Dr. Xia is a member of the Association for Computing Machinery

(ACM), the China Computer Federation (CCF), and USENIX.

Hong Jiang (Fellow, IEEE) received the B.Sc. de-

gree in computer engineering from Huazhong

University of Science and Technology, Wuhan,

China, in 1982, the M.A.Sc. degree in computer

engineering from the University of Toronto,

Toronto, ON, Canada, in 1987, and the Ph.D. de-

gree in computer science from the Texas A&M

University, College Station, TX, USA, in 1991.

He is currently Chair and Wendell H. Nedderman

Endowed Professor of Computer Science and

Engineering Department at the University of Texas at Arlington

(UTA), Arlington, TX, USA. Prior to joining UTA, he served as a Pro-

gram Director at the National Science Foundation (2013–2015), and

he was at the University of Nebraska—Lincoln, Lincoln, NE, USA

(since 1991), where he was Willa Cather Professor of Computer Sci-

ence and Engineering. He has graduated 13 Ph.D. students who

upon their graduations either landed academic tenure-track

positions in Ph.D.-granting U.S. institutions or were employed by

major U.S. IT corporations. He has over 200 publications in major

journals and international conferences in these areas, including

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, IEEE TRANS-

ACTIONS ON COMPUTERS, Proceedings of the IEEE, ACM-TACO, JPDC,

ISCA, MICRO, USENIX ATC, FAST, EUROSYS, LISA, SIGMETRICS, ICDCS,

IPDPS, MIDDLEWARE, OOPLAS, ECOOP, SC, ICS, HPDC, INFOCOM,

ICPP, etc., and his research has been supported by the National Sci-

ence Foundation (NSF), the Department of Defense (DOD), the State

of Texas, and the State of Nebraska. His present research interests

include computer architecture, computer storage systems and

parallel I/O, high-performance computing, big data computing,

cloud computing, performance evaluation.

Dr. Jiang recently served as an Associate Editor of the IEEE TRANSAC-

TIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. He is a Member of the Asso-

ciation for Computing Machinery (ACM).

Dan Feng (Member, IEEE) received the B.E., M.E.,

and Ph.D. degrees in computer science and tech-

nology from Huazhong University of Science and

Technology (HUST), Wuhan, China, in 1991, 1994,

and 1997, respectively.

She is a Professor and the Dean of the School

of Computer Science and Technology, HUST. Her

research interests include computer architecture,

massive storage systems, and parallel file sys-

tems. She has more than 100 publications in ma-

jor journals and international conferences, including IEEE TRANSACTIONS

ON COMPUTERS, IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,

ACM-TOS, JCST, FAST, USENIX ATC, ICDCS, HPDC, SC, ICS, IPDPS, and ICPP.

Dr. Feng has served as the program committees of multiple interna-

tional conferences, including SC 2011, 2013 and MSST 2012, 2015. She is

a member of the Association for Computing Machinery (ACM).

Vol. 104, No. 9, September 2016 | Proceedings of the IEEE 1709

Xia et al. : A Comprehensive Study of the Past, Present, and Future of Data Deduplication

http://www8.hp.com/us/en/products/data-storage/storageackuprchive.html
http://www8.hp.com/us/en/products/data-storage/storageackuprchive.html
http://www8.hp.com/us/en/products/data-storage/storageackuprchive.html
http://www.necam.com/hydrastor/
http://www.commvault.com/simpana-software
http://www.commvault.com/simpana-software
http://www.idc.com/getdoc.jsp?containerId=prUS24762914
http://www.idc.com/getdoc.jsp?containerId=prUS24762914
http://www.emc.com/data-protection/dataomain/dataomainoost.htm
http://www.emc.com/data-protection/dataomain/dataomainoost.htm
http://www.emc.com/data-protection/dataomain/dataomainoost.htm
http://docs.oracle.com/cd/E11882_01/backup.112/e10642/rcmquick.htm#BRADV89346
http://docs.oracle.com/cd/E11882_01/backup.112/e10642/rcmquick.htm#BRADV89346
http://docs.oracle.com/cd/E11882_01/backup.112/e10642/rcmquick.htm#BRADV89346
http://www.enterprisestorageforum.com/technology/news/article.php/3643846/Symantec-Looks-eyond-irtual-ape.htm
http://www.enterprisestorageforum.com/technology/news/article.php/3643846/Symantec-Looks-eyond-irtual-ape.htm
http://www.enterprisestorageforum.com/technology/news/article.php/3643846/Symantec-Looks-eyond-irtual-ape.htm
http://www.enterprisestorageforum.com/technology/news/article.php/3643846/Symantec-Looks-eyond-irtual-ape.htm
http://www.emc.com/domains/avamar/index.htm
http://www.emc.com/domains/avamar/index.htm
http://www.symantec.com/page.jsp?id=openstorage
http://www.symantec.com/page.jsp?id=openstorage

Fred Douglis (Senior Member, IEEE) received

the B.S. degree in computer science from Yale

University, New Haven, CT, USA, in 1984 and the

M.S. and Ph.D. degrees in computer science from

the University of California Berkeley, Berkeley,

CA, USA, in 1987 and 1990, respectively.

He has worked for EMC Corporation, Princeton,

NJ, USA, since 2009, focusing on systems and stor-

age technologies such as flash memory, deduplica-

tion, compression, load balancing, and others. He

previously worked in other industrial applied research organizations, in-

cluding Matsushita, AT&T (Bell) Labs, and IBM Research, and he has been

a visiting professor at VU Amsterdam and Princeton University. He has

authored more than 50 papers in major journals and conferences such as

ACM ToS, FAST, USENIX ATC, ACM Middleware, World Wide Web, and

others, and he is an inventor of approximately 60 issued U.S. patents.

Dr. Douglis served as the Editor-in-Chief of IEEE INTERNET COMPUTING

from 2007 to 2010 and has been on its editorial board since 1999. He

is a member of the IEEE Computer Society Board of Governors from

2016 to 2018, an Associate Editor of the IEEE TRANSACTIONS ON COM-

PUTERS, and a member of the Association for Computing Machinery

(ACM) and USENIX.

Philip Shilane received the B.S. and M.S.

degrees in computer science from Stanford

University, Stanford, CA, USA, in 2000 and 2001,

respectively, and the M.A. and Ph.D. degrees in

computer science from Princeton University,

Princeton, NJ, USA, in 2004 and 2008,

respectively.

Since 2007, he has worked for Data Domain

and then EMC Corporation, Princeton, NJ, USA,

in research and advanced development within a

CTO organization in the areas of computer storage systems, dedupli-

cation, compression, data characterization, flash caching, and nonvola-

tile memory. He has more than 25 publications in journals and

conferences including ACM ToS, ACM ToG, SIGGRAPH, USENIX ATC,

FAST, Middleware, SMI, MSST, LISA, HotStorage, etc. He is an inventor

of over 30 patents.

Yu Hua (Senior Member, IEEE) received the B.E.

and Ph.D. degrees in computer science from the

Wuhan University, Wuhan, China, in 2001 and

2005, respectively.

He is a Professor at the Huazhong University

of Science and Technology, Wuhan, China. His re-

search interests include computer architecture,

cloud computing, and network storage. He has

more than 60 papers to his credit in major jour-

nals and international conferences including the

IEEE TRANSACTIONS ON COMPUTERS, the IEEE TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS, USENIX ATC, FAST, INFOCOM, SC, ICDCS, and MSST.

Dr. Hua has served on the program committee for multiple interna-

tional conferences, such as INFOCOM, RTSS, ICDCS, MSST, ICNP, ICPP,

IWQoS. He is a senior member of CCF.

Min Fu is currently working toward the Ph.D. de-

gree in computer architecture at Huazhong Uni-

versity of Science and Technology, Wuhan, China.

His current research interests include data

deduplication, storage systems, and reliability.

He has several papers in major journals and

conferences including IEEE TRANSACTIONS ON PAR-

ALLEL AND DISTRIBUTED SYSTEMS, USENIX ATC,

FAST, etc.

Yucheng Zhang is currently working toward the

Ph.D. degree in computer architecture at Huazhong

University of Science and Technology (HUST),

Wuhan, China.

His research interests include data deduplica-

tion, storage systems, etc. He has several papers

in refereed journals and conferences including

the IEEE TRANSACTIONS ON COMPUTERS and IEEE

INFOCOM.

Yukun Zhou is currently working toward the

Ph.D. degree in computer architecture at Huazhong

University of Science and Technology (HUST),

Wuhan, China.

His research interests include data deduplica-

tion, storage security, etc. He has several papers

in refereed journals and conferences including

PEVA, MSST, etc.

1710 Proceedings of the IEEE | Vol. 104, No. 9, September 2016

Xia et al. : A Comprehensive Study of the Past, Present, and Future of Data Deduplication

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

