
FAST: Near Real-time Searchable Data Analytics for
the Cloud

Yu Hua Hong Jiang Dan Feng
Wuhan National Lab for Optoelectronics, School of Computer Depart. Computer Science and Engineering WNLO, School of Computer
Huazhong University of Science and Technology University of Nebraska-Lincoln Huazhong Univ. of Sci. and Tech.

Wuhan, China Lincoln, NE, USA Wuhan, China
csyhua@hust.edu.cn jiang@cse.unl.edu dfeng@hust.edu.cn

Abstract—With the explosive growth in data volume and
complexity and the increasing need for highly efficient searchable
data analytics, existing cloud storage systems have largely failed
to offer an adequate capability for real-time data analytics. Since
the true value or worth of data heavily depends on how efficiently
data analytics can be carried out on the data in (near-) real-time,
large fractions of data end up with their values being lost or
significantly reduced due to the data staleness. To address this
problem, we propose a near-real-time and cost-effective search-
able data analytics methodology, called FAST. The idea behind
FAST is to explore and exploit the semantic correlation within and
among datasets via correlation-aware hashing and manageable
flat-structured addressing to significantly reduce the processing
latency, while incurring acceptably small loss of data-search
accuracy. The near-real-time property of FAST enables rapid
identification of correlated files and the significant narrowing of
the scope of data to be processed. FAST supports several types of
data analytics, which can be implemented in existing searchable
storage systems. We conduct a real-world use case in which
children reported missing in an extremely crowded environment
(e.g., a highly popular scenic spot on a peak tourist day) are
identified in a timely fashion by analyzing 60 million images using
FAST. Extensive experimental results demonstrate the efficiency
and efficacy of FAST in the performance improvements and
energy savings.

Keywords—Cloud storage, data analytics, real-time perfor-
mance, semantic correlation.

I. INTRODUCTION

A cloud storage environment usually amasses huge vol-
umes of data that critically require fast and accurate data
retrieval to support intelligent and adaptive cloud services [1]–
[3]. We have entered the era of the cloud characterized in part
by the sheer volumes of data and the increasing reliance on
the cloud storage. 7% of consumers stored their contents in
the cloud in 2011, and the figure will grow to 36% in 2016,
according to the Gartner, Inc. [4] and Storage Newsletter [5]
reports. Average storage capacity per household will grow from
464 Gigabytes in 2011 to 3.3 Terabytes in 2016. So far, only a
tiny fraction of the data being produced has been explored for
their potential values through the use of data analytics tools.
IDC estimates that by 2020, as much as 33% of all data will
contain information that might be valuable if analyzed [6].

To parse and analyze a massive amount of files, conven-
tional approaches mainly use content-based analysis tools that
not only incur high complexity and costs but also fail to
effectively handle these files. The high complexity routinely
leads to very slow processing operations and very high and

often unacceptable latency. Due to the unacceptable latency,
the staleness of data severely diminishes the value of data. The
worth or value of data in the context of data analytics means
the valuable knowledge hidden in the data that can directly
translate into economic values/gains in business-intelligence
applications or new scientific discoveries in scientific appli-
cations. Since the value/worth of data typically diminishes
with time, large amounts of data are often rendered useless,
although costly resources, such as computation, storage and
network bandwidth, have already been consumed to generate,
collect and/or process these data. Therefore, we argue that
(near-) real-time schemes are critical to obtaining valuable
knowledge in searchable data analytics.

In the context of this paper, searchable data analytics are
interpreted as obtaining data value/worth via queried results,
such as finding a valuable record, a correlated process ID, an
important image, a rebuild system log, etc. In the remainder
of the paper, the term data analytics will be used to refer to
searchable data analytics for brevity. In order to efficiently and
effectively support (near-) real-time data analytics, we need to
carefully address the following three research problems:

Unacceptable Access Latency. Existing approaches to
unstructured data analytics rely on either system-based chunks
of data files or multimedia-based features of images. The
exact content-based methodology produces large amounts of
auxiliary data (e.g., high-dimensional vectors, complex meta-
data, etc), which can be even larger than the original files.
Even with the support of cloud platforms, it is non-trivial
for these schemes to obtain the desired analytics results in
a timely manner. For example, processing a typical image
of 1MB, using the state-of-the-art PCA-SIFT approach [7],
results in 200KB worth of features on average. This means
that analyzing 1 million such images will lead to approximately
200GB of storage space requirement just for the features. A
simple operation, such as finding a match for a given image
from a 2-million-image set, would require 12.6 minutes of
time on a commercial platform, due to frequent accesses to
hard disks [8], [9].

High Query Costs. Data analytics for the cloud typically
consume substantial system resources, such as memory space,
I/O bandwidth, high-performance multicore processors (or
GPUs). One of the main culprits for the high resource costs
is the severe performance bottleneck frequently caused by
query operations. In fact, many data-analytics related oper-
ations heavily rely on queries to identify the candidates for
various operations. For example, query is the key process
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for finding access patterns, correlated files, cost-effective data
replication. Thus, we argue that improving query performance
is of paramount importance to bridging the gap between data-
analytics performance requirements and cloud system support.
Moreover, massive images are generated by the smartphones of
users who routinely take, share and upload pictures with their
phone’s HD cameras. These images collectively form huge
data sets readily available for many data analytics applications.
It’s a known fact that users must charge their smartphones
after a single day of moderate usage. In a 2011 market
study conducted by ChangeWave [10] concerning smartphone
dislikes, 38% of the respondents listed that the battery life
was their biggest complaint, with other common criticisms
such as poor 4G capacity and inadequate screen size lagging
far behind. A substantial fraction of energy consumption in
mobile phones may be caused, arguably, by frequently taking
and sharing pictures via the cloud (uploading/downloading).
An intuitive idea is to significantly reduce the number of
images to be uploaded by sharing (and uploading) only the
most representative one rather than all, at least when the mobile
phone is energy-constrained. This idea is feasible since the
images to be uploaded are often identical or very similar to the
ones that have already been stored in the servers of the cloud.
The challenge thus lies in how to efficiently and accurately
identify such identical and similar images.

Diminished Analytics Values. Due to the long latency
incurred in data processing and the resulting data staleness,
the value/worth of data becomes diminished and eventually
nullified. In some cases, the results of data analytics on
stale data can even be misleading, leading to potential fatal
faults. For instance, the prediction for earthquake, tsunami and
tornado relies heavily on analyzing large amounts of data from
earthquake sensors, ocean-mounted bottom sea-level sensors
and satellite cloud imagery. The analysis must be completed
within a very limited time interval to avoid or minimize
disastrous results.

Real-time data analytics are very important in dealing with
large-scale datasets. This is also non-trivial to cloud systems,
although they contain high processing capability (hundreds of
thousands of cores) and huge storage capacity (PB-level). The
fundamental reason is because the analytics must be subject to
hard time deadlines that usually cannot be met by brute force
with an abundance of resources alone. Existing approaches
often fail to meet the (near-) real-time requirements because
they need to handle high-dimensional features and rely on
high-complexity operations to capture the correlation.

To address the above problems facing real-time data analyt-
ics, we propose a novel near-real-time methodology for analyz-
ing massive data, called FAST, with a design goal of efficiently
processing such data in a real-time manner. The key idea
behind FAST is to explore and exploit the correlation property
within and among datasets via improved correlation-aware
hashing [11] and flat-structured addressing [12] to significantly
reduce the processing latency of parallel queries, while in-
curring acceptably small loss of accuracy. The approximate
scheme for real-time performance has been widely recognized
in system design [13]–[16] and high-end computing [17]–
[19]. In essence, FAST goes beyond the simple combination
of existing techniques to offer efficient data analytics via
significantly increased processing speed. Through the study

of the FAST methodology, we aim to make the following
contributions for near real-time data analytics.

First, in order to efficiently and effectively identify similar
files in a real-time manner, FAST makes use of a Bloom-filter
based summarization representation that is simple and easy
to use, by hashing the large-size vectors of files into space-
efficient Bloom filters. Two similar files generally contain
multiple identical vectors. Bloom filters can maintain the
memberships of vectors and succinctly represent the similar-
ity of files. Due to the space efficiency, substantially more
membership information can be placed in the main memory
to significantly improve the overall performance.

Second, FAST significantly improves the energy efficiency
in the smartphones that leverage a near-deduplication scheme
to substantially reduce the amount of similar images to be
transmitted. Our design alleviates the computation overheads
of existing schemes for similarity detection of files by using
Locality-Sensitive Hashing (LSH) [11] that has a complexity
of O(1) to identify and aggregate similar files into correlation-
aware groups. This allows the retrieval to be narrowed to
one or a limited number of groups by leveraging correlation
awareness. Unlike conventional hashing schemes that try to
avoid or alleviate hash collisions, LSH actually exploits the
collisions in its vertical addressing to identify the potential
correlation in a real-time manner.

Third, due to the variable lengths of linked lists, LSH hash
tables will likely lead to unbalanced loads and unpredictable
query performance of vertical addressing. To address this
problem, FAST optimizes its LSH-based hash functions by
means of a manageable flat-structured addressing scheme using
a novel cuckoo-hashing based storage structure to support
parallel queries. FAST exploits the semantic correlation to offer
an O(1) addressing performance.

Fourth, we implement all components and functionalities
of FAST in a prototype system. The prototype system is
used to evaluate a use case of near real-time data analytics
of digital images. We collect a big and real image set that
consists of more than 60 million images (over 200TB storage
capacity) taken of a top tourist spot during a holiday. In the
cloud, instantaneously uploading and widely sharing images
are growing as a habit and a culture, which helps form large
reservoirs of raw images on which accurate analytics results
may be obtained. Using this real-world image dataset as a
case study, we evaluate the performance of FAST of finding
missing children from the image dataset and compare it with
the state-of-the-art schemes. The case study evaluation demon-
strates the efficiency and efficacy of FAST in the performance
improvements and energy savings.

The rest of this paper is organized as follows. Section II
presents the results of a user survey, as well as the FAST
methodology. Section III describes the FAST architecture and
implementation details. We evaluate the FAST performance in
Section IV. Section V presents the related work. Section VI
concludes the paper.

II. FAST METHODOLOGY

The idea behind FAST is to explore and exploit the
semantic correlation property within and among datasets via
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correlation-aware hashing [11] and flat-structured address-
ing [12] to significantly reduce the processing latency, while
incurring acceptably small loss of accuracy.
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Fig. 1. The FAST methodology for multiple data types.

Semantic correlations measure the affinity among files. We
use correlations to estimate the likelihood that all files in a
given correlated group are of great interest to a user or to
be accessed together within a short period of time [20], [21].
Affinity in the context of this research refers to the semantic
correlation derived from multi-dimensional file attributes that
include but are not limited to temporal or spatial locality.
We derive this measure from multiple attributes of files, also
called multi-dimensional correlation. To put things in perspec-
tive, linear brute-force search approaches use no correlation,
which we call zero-dimensional correlation. Spatial-/temporal-
locality approaches, such as Spyglass [22], SANE [23] and
SmartStore [24], use limited-dimensional correlations either
in access time or reference space, which can be a special
case of our proposed approach. The main benefit of measuring
semantic correlations in multi-dimensional attribute space is
that the affinity among files can be more accurately identified.

A. Extension to Multiple Types of Data

The FAST methodology can be extended to and well
suited for multiple data types. The generality of FAST can
be explained as follows, along with Figure 1 and the two key
phases of the FAST process. First, most data types can be rep-
resented as vectors based on their multi-dimensional attributes,
including metadata (e.g., created time, size, filename/record-
name, etc.) and contents (e.g., chunk fingerprints, image in-
terest points, video frames, etc.). FAST extracts key property
information of a given type in the form of multi-dimensional
attributes and represents this information in multi-dimensional
vectors (i.e., multi-dimensional tuples). Each dimension is one
component of the vector. Second, the vector-based represen-
tation is fed as input to FAST for the subsequent operations

of hash-based summarization, semantic aggregation and flat-
structured addressing. In essence, the hash computation meets
the needs of handling heterogeneous types of data. Hence,
FAST as a methodology has the potential to efficiently support
the analytics for heterogeneous types of data.

As shown in Table I, we elaborate on the corresponding
relationship between the modules of the FAST methodology
and typical searchable storage systems, such as Spyglass [22]
and SmartStore [24], as well as a use case illustrated in
Section II-B. The corresponding relationship includes the
vector extraction (VE) for metadata and content, and the data
analytics (DA) in a near real-time manner. The comparisons
and analysis can be considered in two aspects. First, FAST
is a generalizable methodology, of which some components
and aspects are derived from and have been partially used in
existing storage systems, such as Spyglass and SmartStore.
However, due to their specific and custom designs, these
systems, while achieving their original design goals, fail to
efficiently support near real-time data analytics. Second, by
incorporating the FAST methodology, existing systems can be
enhanced to achieve better performance. For example, the LSH
algorithm with O(1) complexity and the cuckoo-driven storage
of FAST can respectively accelerate semantic aggregation and
provide flat-structured addressing for queries. We believe that
FAST has the potential to be used in multiple storage systems
with several data types.

B. A Use Case and Its Problem Statement

To implement FAST and examine the efficiency and ef-
ficacy of the proposed methodology, we leverage “Finding
Missing Children” as a use case to elaborate the FAST
design and evaluate its performance. A missing child is not
only devastating to his/her family but also has negative soci-
etal consequences. Although existing surveillance systems are
helpful, they often suffer from the extremely slow identification
process and the heavy reliance on manual observations from
overwhelming volumes of data.

There exists a large amount of similar multimedia images
in the cloud (e.g., images of celebrities, popular sceneries, and
events), as a result of people’s habits, such as the tendency to
take the pictures of the same scene multiple times to guarantee
the quality of their images. Furthermore, many photo-sharing
sites, such as Facebook, Flickr, and Picasa, maintain similar
images from friends with common interests. Due to the wide
existence and explosive growth of such duplicate and similar
images, commercial sites, such as Imagery, Google, Yahoo!,
Bing Images search, Picsearch, Ask Images Search, etc., have
already begun to address this practical problem. It is of
paramount importance to address the data-volume challenge
facing data analytics in the cloud systems.

We propose to use a crowd-based aid, i.e., personal images
that can be openly accessed, to identify helpful clues. People
often take many similar pictures on a famous scenic spot,
which actually are the snapshots of those locations in a given
period of time. High-resolution cameras offer high image qual-
ity and multiple angles. Repeatedly taking pictures can further
guarantee the quality of snapshots. Given the convenient and
easy access to the cloud, these images are often uploaded and
shared on the web instantaneously (e.g., by smartphones). We
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TABLE I. THE RELATIONSHIP AND CORRESPONDENCE BETWEEN THE FAST METHODOLOGY AND EXAMPLE SYSTEM IMPLEMENTATIONS.
FAST Methodology Use-case (Images) Spyglass [22] SmartStore [24]

Data Analytics Flat-structured Addressing Cuckoo Hashing Storage Hierarchical Addressing Hierarchical Addressing
Semantic Aggregation LSH based Clustering Subtree Partitioning Latent Semantic Indexing
Hash Summarization Summary Vectors Membership Bloom Filters Membership Bloom Filters

Vector Extraction
Content Description PCA-SIFT Features Signature Files No

Metadata Representation Vectors K-D Tree R-Tree

can therefore leverage these publicly accessible images made
possible in part by the crowdsourcing activities to help find
the images that are correlated with a given missing child.
For example, if someone takes pictures in the Big Ben, the
images possibly contain not only the intended men/women, but
also occasionally other people, such as a missing child in the
background. If this image is uploaded and open to the public
(openly accessible), we have an opportunity to find the missing
child based on the input of his/her image. We can quickly
obtain the clues suggesting whether the missing child had
ever appeared around the Big Ben. This clue helps us locate
the missing child. The rationale comes from the observations
that instantaneously uploading and widely sharing images are
becoming a habit and culture in the cloud.

We must admit that the effectiveness of this approach
is probabilistic. For instance, if this valuable image is not
uploaded and not publicly accessible, FAST will fail to identify
the clues, while consuming some system resources. However,
based on our observations and real-world reports, users are
becoming increasingly willing to share their sightseeing im-
ages due to the shared interests and the easy access to the
Internet. In the meantime, our approach is orthogonal and
complementary to existing surveillance systems in fast locating
the missing children, by avoiding brute-force frame-by-frame
manual checking upon massive monitor videos. In this way,
only the correlated segments will be checked carefully to
obtain significant time savings. By considering the incompa-
rable value of finding missing children, the modest costs are
obviously acceptable.

III. DESIGN AND IMPLEMENTATIONS

In this Section, we present the architecture and implemen-
tation details of the FAST methodology via a use case.

A. Architecture of Use Case

FAST supports a fast and cost-effective scheme for near
real-time data analytics. It employs a simple and easy-
to-use index structure with three unique properties: space-
efficient summarized vectors, semantic-aware hashing and flat-
structured addressing for queries. The summarized vectors fit
the index into the main memory to improve indexing perfor-
mance. The semantic-aware hashing significantly reduces the
complexity of identifying similar images. The flat-structured
addressing offers O(1) complexity for real-time queries.

The proposed FAST methodology is implemented as a
system middleware that can run on existing systems, including
the Hadoop file system, by using the general file system
interface and exploiting correlation property of data. Figure 2
shows the architecture of FAST in the use case of “Finding
Missing Children”. The correlation-awareness feature of FAST
not only offers various services to users (e.g., queries), but also
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Fig. 2. The FAST implementation of the image-identification use case.

supports system optimization, such as caching and prefetching.
FAST consists of two main functional modules, i.e., big
data processing and semantic correlation analysis. Specifically,
the former provides the function of Feature Extraction (FE)
(i.e., lightweight feature extraction) based on the detection
of interest points, while the latter consists of Summariza-
tion (SM) (i.e., space-efficient summarized vectors), Semantic
Aggregation (SA) (i.e., semantic-aware grouping) and cuckoo
hashing-driven storage (CHS) (i.e., manageable flat-structured
addressing). The FE function makes use of the DoG [25] and
PCA-SIFT schemes [7] to respectively detect and represent
interest points of an image. In the computer vision field, an
interest point refers to the point that is stable under local and
global perturbations in the image domain. By capturing their
interest points, FAST can identify and extract the features of
similar images.

The identified features generally require a relatively large
space for representation, for example, 200KB per 1MB image
in the state-of-the-art PCA-SIFT scheme [7]. One billion such
images would thus require about 200TB storage space. The
storage and maintenance of these features consume substantial
space, usually too large to be fully held in the main memory.
The SM module, based on Bloom filter [26], is therefore
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designed to represent these features in a more space-efficient
manner. The Bloom filters in SM hash the input features into
constant-scale positions in a bit array. Since only the hashed
bits need to be maintained, these filters help significantly
reduce the space requirement of features.

In the SA module, FAST employs locality sensitive hashing
(LSH) [11], [27] to capture correlated features that identify
similar images. In the CHS module, we make use of the
cuckoo hashing structure to store the data items that incur hash
collisions. The cuckoo hashing is essentially a multi-choice
scheme to allow each item to have more than one available
hashing position. The items can “move” among multiple
positions to achieve load balance and guarantee constant-scale
complexity of queries. However, a simple and naive use of
cuckoo hashing in LSH will likely result in frequent operations
of item replacement and potentially incur high probability of
rehashing due to limited available buckets. This can lead to a
severe performance bottleneck. We address this problem via
adjacent neighboring storage as described in Section III-C3.

The above functional modules enable FAST to reduce the
need for on-disk index lookups and decrease the complexity of
identifying similar images. The workflow can be summarized
as follows. First, the FE module is used to detect the interest
points in the similar images with the DoG scheme and the
detected interest points are represented by the PCA-SIFT
scheme in a compact way to obtain substantial space savings.
In the second step, in order to obtain further space savings and
efficiently support semantic grouping, the SM module hashes
the features per image into a space-efficient Bloom-filter
based indexing structure. The rationale behind this strategy
comes from the observations that similar images contain some
identical features that project the same bits onto the Bloom
filters. Therefore, the bit-aware Bloom filters can conjecture
similar images. Finally, the Bloom filters are fed as inputs
to LSH in the SA module. SA uses semantic-aware multiple
hash functions to aggregate correlated images together. The
correlated images are then stored in a cuckoo-hashing manner.

B. Features of Images

The features of an image are invariant to the scale and
rotation of the image, thus providing robust matching across
a substantial range of affine distortion, changes in various
viewpoints, additions of noise, and changes in illumination.
Interest points are effective local descriptions of image fea-
tures and widely employed in real-world applications such as
object recognition and image retrieval because they are robust
to photometric changes and geometric variation and can be
computed efficiently. Therefore, we use interest points in FAST
to capture similarity properties of images.

To perform reliable and accurate matching between differ-
ent views of an object or scene that characterize similar images,
we extract distinctive invariant features from images. Feature-
based management can be used to detect and represent similar
images to support correlation-aware grouping and similarity
search. Potential interest points are identified by scanning the
image over location and scale. This is implemented efficiently
by constructing a Gaussian pyramid and searching for local
peaks in a series of difference-of-Gaussian (DoG) images.

We construct a local image descriptor for each interest
point, based on the image gradients in its local neighborhood.
The local image gradients are measured at the selected scale
in the region around each interest point, and are transformed
into a representation that allows for local shape distortion and
change in illumination. Moreover, we apply principal com-
ponents analysis to the normalized gradient patch. The patch
covers an area in the original image that is proportional to the
size of the interest point. The vector-based representation is
both more distinctive and more compact, leading to significant
improvements in matching accuracy and processing speed.

C. Semantic-aware Grouping

1) The Summary Vectors as Inputs: The feature-based
representation generally requires large-sized memory. In order
to reduce space overhead, we use Bloom-filter based bits as
the input of semantic grouping to obtain significant space
savings [26]. The space-efficient representation allows the
main memory to contain more features. In general, two similar
images imply that they contain many identical features. The
identical features are hashed into the same bit locations in
Bloom filters. Hence, two Bloom filters representing two
similar images will share a significant number of identical
bits. In the multi-dimensional space, each Bloom filter can
be considered as a bit vector. Two similar Bloom filters
can represent close-by items by virtue of their Hamming
distance. Two similar images can be represented as two near-
by points/items in the multi-dimensional space.

A Bloom filter is a bit array of m bits representing a dataset
S = {a1,a2, . . . ,an} of n items. All bits in the array are initially
set to 0. A Bloom filter uses k independent hash functions to
map items of the dataset to the bit vector [1, . . . ,m]. Each hash
function maps an item a to one of the m-array bit positions.
To determine whether an item a is an exact member of dataset
S, we need to check whether all k hash-mapped bit positions
of a are set to 1. Otherwise, a is not in the set S.

Bloom filters are used as the input to the locality sensitive
hashing (LSH) module to fast and efficiently identify similar
images. Since not all bits need be maintained, we only need to
store the non-zero bits to reduce space overhead. For example,
for a given image, the space required by its features can be
reduced from the original 200KB to 40B, a 5000-fold space
reduction, with only O(1) computational complexity.

2) Semantic Grouping Scheme: To identify and group
similar images, we leverage LSH to map similar images into
the same hash buckets with a high probability [11]. Owing to
its simplicity and ease of use, Bloom-filter based representation
is used as LSH’s input to reduce the complexity and accelerate
the processing. Moreover, LSH function families have the
locality-aware property, meaning that the images that are close
to one another collide with a higher probability than images
that are far apart. We define S to be the domain of images.

Definition 1: LSH function family, i.e., H = {h : S→U},
is called (R,cR,P1,P2)-sensitive for distance function || ∗ || if
for any p,q ∈ S

• If ||p,q|| ≤ R then PrH[h(p) = h(q)]≥ P1,

• If ||p,q||> cR then PrH[h(p) = h(q)]≤ P2.
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To allow similarity identification, we choose c > 1 and P1 >
P2. In practice, we need to widen the gap between P1 and
P2 by using multiple hash functions. Distance functions || ∗ ||
correspond to different LSH families of ls norms based on an s-
stable distribution to allow each hash function ha,b : Rd → Z to
map a d-dimensional vector v onto a set of integers. The hash
function in H can be defined as ha,b(v) = � a·v+b

ω
�, where a is a

d-dimensional random vector with chosen entries following an
s-stable distribution and b is a real number chosen uniformly
from the range [0,ω), where ω is a constant.

Each image representation consists of Bloom-filter based
vectors, which are the inputs to LSH grouping mechanism.
LSH computes their hashed values and locates them in the
buckets. Since LSH is locality-aware, similar vectors will
be placed into the same or adjacent buckets with a high
probability. We select them from the hashed buckets to form
the correlation-aware groups and support similarity retrieval.

Due to the property of hash collisions, which is exploited to
identify similar images, LSH may introduce false positives and
false negatives. A false positive means that dissimilar images
are placed into the same bucket. A false negative means that
similar images are placed into different buckets. In general,
false negatives may decrease query accuracy and false positives
may increase system computation and space overheads. Since
reducing false negatives increases query accuracy and thus is
more important than reducing false positives, we leverage extra
probes by grouping not only the same, but also the adjacent
buckets into a group. This is based on the locality-ware
property of LSH, meaning that close-by buckets have stronger
semantic correlation than far-apart ones. This methodology has
been well verified by multi-probe LSH [28].

3) Flat-structured Addressing: Conventional LSH is able
to group locality-aware data via exploring and exploiting the
correlation in multi-dimensional attributes. In practice, this
LSH scheme needs to alleviate high time and space overheads
from vertical addressing. The vertical addressing is interpreted
as the linear retrieval in a linked list that is generally used
to avoid or mitigate hash collisions. However, due to no strict
latency bounds of carrying out the vertical addressing, existing
systems fail to obtain real-time query performance. In order
to offer real-time performance in the cloud, we leverage flat
addressing that executes cuckoo-hashing based operations and
only incurs O(1) complexity [12]. The cuckoo hashing based
approach, in essence, exhibits query parallelism that can in
turn be easily exploited by modern multi-core processors for
performance improvements.

The flat-structured addressing probes a constant-scale num-
ber of buckets in parallel, each of which maintains one
data item to offer O(1) complexity, rather than checking
the nondeterministic-length linked lists in conventional hash
tables. The name of cuckoo-hashing method was inspired by
how cuckoo birds construct their nests. The cuckoo birds
recursively kick other eggs or birds out of their nests [12], [29].
This behavior is akin to hashing schemes that recursively kick
items out of their positions as needed. The cuckoo hashing
uses two or more hash functions to alleviate hash collisions
and in the meantime decrease the complexity of querying the
linked lists in the conventional hash tables. A conventional
hash table generally provides a single position for placing an
item a. The cuckoo hashing can offer two possible positions,

i.e., h1(a) and h2(a), thus significantly alleviating the potential
hash collisions and supporting flat addressing.

IV. PERFORMANCE EVALUATION

In order to evaluate the performance of the proposed FAST
methodology for near real-time data analytics, we use a case-
in-point scenario. This application aims to identify images
similar to a given set of portraits from large image datasets
in the cloud. A potential use case of this application could
be to find a child reported missing in a crowded park by
identifying images containing features similar to the given
portraits of this child (e.g., by his/her parents) from images
taken and uploaded by tourists of that park in the past few
hours. The rationale for this is threefold. First, this application
has the strong requirements for near real-time processing, for
which long query latency will severely weaken the value/worth
of the results. Second, to offer fast query performance, an
efficient data structure, rather than a simple index structure
is required for the large image store to facilitate semantic
grouping and narrow the query scope. Third, due to the
post-verification property, e.g., results will be verified by the
missing child’s parents or guardians, this use case is tolerant
to small false results, which trades for significantly increased
query efficiency.

A. Experiment Setup

We implemented a FAST prototype of the use case on a
256-node cluster. Each node has a 32-core CPU, with a 64GB
RAM, a 1,000GB 7200RPM hard disk and a Gigabit network
interface card. The implementation required approximately
1200 lines of C code in the Linux environment. To drive the
FAST prototype evaluation, we use a real and large image
dataset collected from the cloud. Initially, the image dataset is
randomly distributed among the nodes. FAST then uses space-
efficient and correlation-aware techniques for fast and efficient
image indexing.

1) Evaluation Workload: Real Image Dataset: We collect
real and openly assessable images from the popular campus
networks of multiple universities, in the Cities of Wuhan
and Shanghai in China, and well-known social networks. In
order to faithfully demonstrate the real-time property of real-
world image datasets, we set certain temporal and spatial
constraints on the collection. First, the temporal constraint
defines the uploading interval to be between a week-long
holiday. This temporal constraint may potentially introduce
some false positives and false negatives. For example, some
images uploaded within this interval may actually record the
contents (e.g., events/scenes/tourists) of a time or times prior to
the interval, which leads to the false positives. We observe the
percentage of false-positive images to be around 9.7% by using
post-processing image tools and studying users’ comments.
These false-positive images are then filtered out. In fact, the
false-positive images are tolerable in that they can be easily
identified by users in the final query results. Furthermore, given
the fact that more and more users are willing to share the
images in a real-time manner, we believe that the percentage
of false-positive images will gradually shrink in the future.

On the other hand, some images do record the contents
of the defined time interval, but were either never uploaded
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or uploaded after the defined interval, which results in the
false negatives. Although it is non-trivial, if not impossible,
to accurately calculate the percentage of such false-negative
images, we attempt to approximately estimate this percentage
by extending the upload interval by 3 days. About 16.8% false-
negative images were uploaded in this 3-day interval. For hard
real-time tasks (like finding missing children within 1 hour),
these images are actually not accessible right away and only
become helpful for post-analysis. Given the increasingly easier
access to the Internet and the increasing tendency for users
to share their pictures of the scenes almost on the spot and
thus real-time, we argue that the percentage of false-negative
images will also decrease.

The spatial constraint confines the locations to Wuhan
and Shanghai in China, with each having its own unique
and popular landmarks and sceneries. While Wuhan has 16
such landmarks, Shanghai has 22. We only collect images
that contain these representative landmarks, which facilitates a
meaningful evaluation. The collected image dataset ultimately
contains 60 million images that amount to more than 200TB
in storage size. The key characteristics of the image dataset
are summarized in Table II. Moreover, the query requests,
which are simultaneously issued from 500 clients, consist of
the queried portraits in the real datasets.

TABLE II. THE PROPERTIES OF COLLECTED IMAGE SETS.

Datasets No. Images Total Size File Type Landmarks

Wuhan 21 million 62.7 TB bmp(11%), jpeg(74%), gif(15%) 16
Shanghai 39 million 152.5 TB bmp(9%), jpeg(79%), gif(12%) 22

2) Evaluation Baselines, Metrics and Parameters: We
compare FAST with the state-of-the-art schemes, SIFT [30],
PCA-SIFT [7] and real-time near-duplicate photo elimination
(RNPE) [9]. Since there are no complete open-source codes,
we choose to re-implement them. PCA-SIFT is a popular and
well-recognized feature extraction approach that uses principal
components analysis (PCA) for dimensionality reduction to
obtain compact feature vectors. We implement scale-invariant
feature transform (SIFT) [30], principal components analysis,
point matching, query interface and storage tools. Moreover,
RNPE studies the features of different location views to carry
out real-time photo elimination. We implement its location
visualization framework to retrieve and present diverse views
captured within a local proximity.

The performance of FAST is associated with its parameter
settings. One of the key parameters is the metric R that
regulates the measure of approximate membership. The LSH-
based structures can work well if R is roughly equal to the
distance between the queried point q and its nearest neighbors.
Unfortunately, identifying an optimal R value is a non-trivial
task due to the uncertainties and probabilistic properties of
LSH [11], [31]. In order to obtain appropriate R values for our
experiments, we use the popular and well-recognized sampling
method that was proposed in the original LSH study [32] and
has been used in practical applications [27], [33]. We define
“proximity measure χ = ||p�

1− q||/||p1− q||” to evaluate the
top-1 query quality for queried point q, where p�

1 and p1 re-
spectively represent the actual and searched nearest neighbors
of point q by computing their distances. We determine the suit-
able R values to be 600 and 900 respectively for the Wuhan and
Shanghai image datasets to appropriately and quantitatively

represent the correlation. In addition, to construct the indexing
structures, we use L = 7, ω = 0.85, M = 10 in the LSH-based
computation and k = 8 for the hash functions in the Bloom
filters based on the above sampling mechanism.

The accuracy of approximate queries is in essence quali-
tative and often subjective, and thus cannot be determined by
computers alone. FAST hence leverages the verification and
responses from users to help determine the query accuracy. In
the performance evaluation, FAST provides the query results
to the relevant 1,000 users who will give their feedbacks.

B. Results and Analysis

1) Index Construction: Figure 3 shows the index construc-
tion latency that consists of two parts, i.e., feature represen-
tation and index storage. The feature representation part in
turn includes the time spent on detection, representation and
matching of interest points, as described in Section III-B.
The index storage part is composed of the time spent by the
identification and the storage operations of correlated images.
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Fig. 3. Index construction latency.

For the feature representation latency, we observe that SIFT
performs the worst, i.e., with 240.2s and 520.6s respectively in
the Wuhan and Shanghai image datasets, due to its exhaustive
feature extraction and point-by-point comparisons. Quite dif-
ferent from it, both PCA-SIFT and FAST leverage light-weight
principal components analysis to triage and filter out outliers
and loosely correlated points. This results in a significantly
reduced number of points required for representation and
matching computation, leading to the shortest latency, i.e.,
101.8s and 230.5s respectively in the Wuhan and Shanghai
image datasets. On the other hand, since RNPE needs to
retrieve geographic tags and identify the proximity in an R-
tree with O(logn) complexity, it requires more processing time
than PCA-SIFT and FAST, i.e., 152.7s and 328.6s respectively
in the two image datasets.

For the index storage latency, SIFT also performs the worst,
with up to 825.3s and 1782.6s respectively in the Wuhan and
Shanghai image datasets, because it must conduct brute-force-
like feature comparisons to identify correlated images. In the
meantime, it uses an SQL-based database to store the physical
addresses and other metadata information of correlated images,
which causes frequent I/O accesses to the low-speed disks.
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Dealing with a much smaller number of interest points, PCA-
SIFT decreases the latency to 327.9s and 661.8s respectively
in the Wuhan and Shanghai image datasets. RNPE requires
284.3s and 601.9s respectively in the Wuhan and Shanghai
image datasets to complete the storage operations, by storing
data in the multi-dimensional R-tree structure.

Overall, FAST performs far better than any of the other
schemes. Combining feature representation and index storage
latencies, FAST outperforms PCA-SIFT by 75.8% (Wuhan)
and 71.3% (Shanghai), and RNPE by 74.2% (Wuhan) and
72.3% (Shanghai). The main reason behind FAST’s superior
performance lies in its use of space-efficient Bloom filters
to represent the feature summarization and correlation-aware
LSH computation to improve the performance of correlation
identification and index storage.

2) Query Latency: Figure 4 shows the average query
latency. The query latency includes the computation time of
descriptors, e.g., image gradients and SIFT, as described in
Section III-B. We examine query performance as a function of
the number of simultaneous requests from 1000 to 5000 with
an increment of 1000. The latency of PCA-SIFT, at 2min, is
one order of magnitude better than SIFT’s 35.8min, due to its
PCA property. However, SIFT and PCA-SIFT rely on brute-
force-like matching to identify similar features that are then
stored into an SQL-based database. Their space inefficiency
causes frequent disk I/Os, leading to long query latency. We
also observe that RNPE performs better when the number
of query requests is smaller (e.g., smaller than 1000) but
its performance degrades noticeably, as the number of query
requests increases, to as long as 55s. This is because the
high-complexity MNPG identification algorithm and the R-
tree based O(logn) query complexity of RNPE [34]. The query
latency of FAST is much shorter than any of the other schemes
and remains roughly at 102.6ms for all datasets and numbers
of queries, making FAST more than 3 orders of magnitude
faster than PCA-SIFT and 2 orders of magnitude faster than
RNPE.

The reasons for FAST’s advantage are threefold. First,
FAST leverages principal components analysis for dimen-
sionality reduction and obtains compact feature vectors. The
number of dimensions to be processed is considerably reduced,
which in turn lowers the space overhead. Second, the Bloom
filter-based summarization further simplifies the representation
of feature vectors, which allows us to put more vectors into the
main memory. Third, FAST uses cuckoo hashing flat-structured
addressing to obtain O(1) real-time query performance.

3) Query Accuracy: Table III shows the query accuracy
of all evaluated schemes normalized to that of SIFT, which
is one of the state-of-the-art exact-matching approaches and
thus serves as the baseline, i.e., 100% accuracy in this metric.
Since RNPE leverages simple but error-prone tags to identify
similar images, it has the lowest accuracy. PCA-SIFT, on
the other hand, uses compact feature vectors and carries out
dimensionality reduction, which helps it reduce the number
of dimensions to be processed but at a negligible cost of
accuracy and results in an accuracy of 99.9983% on average.
The accuracy of FAST is around 99.995%, slightly lower than
PCA-SIFT. The reason is the possible hash collisions in Bloom
filters and LSH. The accuracy of FAST is around 0.005%
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(a) Wuhan Dataset.

#�'(����)�*�����"�+�����

 ,
��
�
��
*
��
��
��
�
��
	�
��'

��

���� ���� -��� ���� .���
�/��$0��

�/��$0��

�/��$0�-

�/��$0��

�/��$0�.

�/��$0��

�/��$0�1
���� �� !���� "#�$ � ��

(b) Shanghai Dataset.

Fig. 4. The average query latency.

lower than PCA-SIFT in the Wuhan image dataset. Con-
sidering FAST’s significant superiority in the search-latency
performance (by up to 3 orders of magnitude), we argue that
such insignificant loss in accuracy is acceptable, especially for
near real-time applications.

TABLE III. QUERY ACCURACY NORMALIZED TO SIFT.

Dataset Number of Queries SIFT PCA-SIFT RNPE FAST

Wuhan

1000 100% 99.9995% 97.3% 99.999%
2000 100% 99.9992% 96.5% 99.997%
3000 100% 99.9984% 95.9% 99.995%
4000 100% 99.9977% 94.1% 99.994%
5000 100% 99.9965% 93.5% 99.990%

Shanghai

1000 100% 99.9992% 96.3% 99.998%
2000 100% 99.9988% 95.3% 99.994%
3000 100% 99.9982% 94.2% 99.991%
4000 100% 99.9969% 93.5% 99.988%
5000 100% 99.9957% 92.5% 99.986%

4) Space Overhead: Table IV summarizes space overheads
of SIFT, PCA-SIFT, RNPE and FAST, normalized to that of
SIFT. By reducing the number of dimensions to be processed,
PCA-SIFT consumes about 80% of SIFT’s space overhead.
Since RNPE uses tags, rather than features, to label, represent
and identify similar images, it consumes only 50% of storage
space of SIFT. Finally, since FAST only needs to maintain the
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feature summarization, its space efficiency allows it to con-
sume only about 10% of the space overhead required by SIFT.
Thus, FAST is able to store more index information into the
main memory and significantly improve query performance.

TABLE IV. SPACE OVERHEAD NORMALIZED TO THAT OF SIFT.

Image Datasets SIFT PCA-SIFT RNPE FAST
Wuhan 1 0.82 0.58 0.14

Shanghai 1 0.73 0.45 0.11

Our proposed scheme is space-efficient via summarization
and compression as described in Section III-A. Hence, we
can place the entire index structure of images into the main
memory. This space-efficient structure meets the needs of in-
memory computing and achieves better query performance
than conventional in-memory caching that still needs to access
the low-speed disks with some probability. Although a flash
disk can alleviate the performance gap, the capacities of flash
disks are insufficient to contain the index structures, if FAST
is not used, thus still resulting in slow accesses to disks.

5) Insertion Latency: We examine the latency of inserting
new images in Figure 5. For the Wuhan dataset, inserting
10,000 new images consumes 25.8s in SIFT, 12.7s in PCA-
SIFT, 3.5s in RNPE and 0.5s in FAST. FAST efficiently locates
the new image by exploiting its feature summarization and
executing rapid semantic aggregation. Moreover, as the number
of inserted images increases, while the insertion latency for
SIFT and PCA-SIFT increases almost linearly, FAST’s inser-
tion latency remains relatively flat. This is because, although
FAST incurs feature-extraction costs that are similar to SIFT
and PCA-SIFT, it experiences very little extra latency in storing
and indexing these features by virtue of its O(1) complexity
LSH. This is a salient feature of FAST in managing the current
big data store. For the Shanghai image dataset, we obtain the
similar conclusions based on similar experimental results.

6) Rehash Probability: Since hash collisions are unavoid-
able for any hash functions, rehashing is thus possible in FAST
when hash collisions occur. More specifically, rehashing is
required in FAST when an endless loop forms in the recursive
cuckoo hashing process during the item-insertion operation,
which in turn renders the insertion operation a failure. In other
words, rehash probability is equal to the failure probability of
the insertion operation in FAST. Owing to the flat-structured
cuckoo hashing scheme employed, however, FAST is able to
significantly reduce the rehashing probability from that of the
standard cuckoo hashing. To evaluate FAST for its rehash
probability and compare it with the standard cuckoo hashing,
we present the experimental results by plotting the insertion-
failure probability as a function of the number of items inserted
in Figure 6. The average failure probability of FAST is 3 orders
of magnitude smaller than that of the standard cuckoo hashing,
1.61×10−6 for FAST vs. 3.6×10−3 for the standard cuckoo
hashing in the Wuhan dataset, and 1.77×10−6 for FAST and
4.8× 10−3 for the standard cuckoo hashing in the Shanghai
dataset. In other words, on average, one insertion failure will
occur in FAST for several millions of successful insertions, in
contrast to one such a failure in only thousands of successful
insertions with the standard cuckoo hashing.

7) Multicore-enabled Parallel Queries: The FAST design
has the salient feature of supporting parallel query operations
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(a) Wuhan Dataset.
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Fig. 5. The latency of inserting images.
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Fig. 6. Insertion failure (rehash) probability.

via its flat-structured addressing of cuckoo hashing that helps
expose sufficient amount of query parallelism. Figure 7 shows
the latency of queries carried out on a multicore-CPU based
system as a function of the number of cores. We observe that
the query latency decreases almost linearly with the increase in
the number of cores. This linear speedup is mainly attributed
to FAST’s property of flat-structured addressing. We believe
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that the query performance can be further improved if more
cores are used.
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Fig. 7. Multi-core based query latency.

8) User Experiences from Smartphones: In FAST’s
Android-based clients, we designed a friendly and easy-to-
use interface for users to upload images and submit queries.
To support local image processing, we ported an open-source
implementation of PCA-SIFT feature extraction algorithm to
Android. Moreover, in order to comprehensively evaluate the
performance, we divide 1,000 users who use this client in
their smartphones into 3 groups based on their crowdsourcing
interests (i.e., approximately equal number of the landmarks of
disaster zones in the image sets). Users download and install
FAST’s client application software that offers the functions of
image identification and energy-efficient network transmission
as shown in Figure 8. We compare FAST with the Chunk-
based scheme due to its energy efficiency, which has been
examined and recommended by the evaluation of battery power
consumption with 11 Internet applications [35].

In a common case, a smartphone needs to upload all images
to the destination server via wireless data transmission and
requires continuous bandwidth guarantee, a stringent require-
ment that is difficult to meet in a crowdsourcing environment.
FAST leverages its near-duplicate identification technique to
significantly reduce the amount of images to be transmitted.
Figure 8(a) shows the network transmission overhead by
examining the practical use of bandwidth in transmitting a
batch of images.

We have two observations from the results. First, compared
with chunk-based transmission scheme, FAST can achieve
more than 55.2% bandwidth savings due to the significantly
decreased amount of images to be transmitted. Second, we
observe that the percentage of bandwidth savings will increase
with the increasing number of images. This is because with
more images there is a higher probability of images being
similar. These results also demonstrate the scalability of FAST.

To measure energy consumption, we use the Monsoon
Power Monitor [36] and run the experiments of uploading and
sharing the interested images. The Monsoon Power Monitor
is configured by blocking the positive terminal on the phone’s
battery with electrical tape. The voltage normally supplied by
the battery is supplied by the monitor. It records voltage and
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(a) Network transmission overhead.
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(b) Energy consumption.

Fig. 8. User Experiences from Smartphones.

current with a sample rate of 6 kHz. During our experiments,
the screen is set to stay in the awake mode with constant
brightness and auto-rotate screen off. All radio communication
is disabled except for WiFi.

Figure 8(b) shows the energy consumption with the in-
crease in the number of the transmitted images. We observe
that, compared with the chunk-based transmission scheme,
the FAST scheme can achieve from 46.9% to 62.2% energy
savings in the three user groups due to the significantly
decreased numbers of the images to be transmitted. Moreover,
the percentage of energy savings is consistent with that of
bandwidth savings since fewer transmitted images consume
less energy. These results show that FAST offers an energy-
saving benefit to some smartphone applications.

V. RELATED WORK

In this section, we present a brief survey of recent studies
in the literature most relevant to the FAST research from
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the aspects of data analytics, searchable file systems and
deduplication-based redundancy detection.

Data Analytics. Data analytics has received increasing
attention from both industrial and academic communities.
In order to bridge the semantic gap between the low-level
data contents and the high-level user understanding of the
system, a behavior-based semantic analysis framework [37]
is proposed, which includes an analysis engine for extract-
ing instances of user-specified behavior models. ISABELA-
QA [38] is a parallel query processing engine that is designed
and optimized for analyzing and processing spatiotemporal,
multivariate scientific data. MixApart [39] uses an integrated
data caching and scheduling solution to allow MapReduce
computations to analyze data stored on enterprise storage
systems. The frontend caching layer enables the local storage
performance required by data analytics. The shared storage
back-end simplifies data management. Three common analysis
techniques [40], including topological analysis, descriptive
statistics, and visualization, are explored to support efficient
data movement between in-situ and in-transit computations.
In this context, FAST is a useful tool that complements and
improves the existing schemes to obtain correlated affinity
from near duplicate images and execute semantic grouping to
support fast query service.

Searchable File Systems. Spyglass [22] exploits the lo-
cality of file namespace and skewed distribution of metadata
to map the namespace hierarchy into a multi-dimensional
K-D tree and uses multilevel versioning and partitioning to
maintain consistency.Glance [41], a just-in-time sampling-
based system, can provide accurate answers for aggregate and
top-k queries without prior knowledge. SmartStore [24] uses
Latent Semantic Indexing (LSI) tool [42], [43] to aggregate
semantically correlated files into groups and support complex
queries. Ceph [44] and its demonstration system [45] use
dynamic subtree partition to avoid metadata-access hot spots
and support filename-based query. FastQuery [46] is a software
framework that utilizes a FastBit based index and query tech-
nology to process massive datasets on modern supercomputing
platforms. Locality-Sensitive Bloom Filter [47] proposes a
locality-aware and space-efficient data structure that can ef-
ficiently support the in-memory computing. SciHadoop [48]
executes queries as map/reduce programs defined over the
logical data model to reduce total data transfers, remote reads,
and unnecessary reads. Unlike these approaches, FAST offers
the salient features of querying near duplicate images in a near
real-time manner.

Deduplication based Redundancy Detection. DDFS [49]
proposes the idea of exploiting the backup-stream locality to
reduce network bandwidth and accesses to on-disk index. Ex-
treme Binning [50] exploits the file similarity for deduplication
and can be applied to non-traditional backup workloads with
low-locality (e.g., incremental backup). ChunkStash [29] main-
tains the chunk fingerprints in an SSD instead of a hard disk to
accelerate the lookups. SiLo [51] is a near-exact deduplication
system that exploits both similarity and locality to achieve
high duplicate elimination and throughput with low RAM
overheads. The cluster-based deduplication [52] examines the
tradeoffs between stateless data routing approaches with low
overhead and stateful approaches with high overhead but being
able to avoid imbalances. Sparse Indexing [53] exploits the

inherent backup-stream locality to solve the index-lookup bot-
tleneck problem. Moreover, by exploiting similarities between
files or versions of the same file, LBFS [54] is shown to
be a low-bandwidth network file system. The potential of
data deduplication in HPC centers is presented in [55] via
quantitative analysis on the potential for capacity reduction for
4 data centers. In order to opportunistically leverage resources
on end hosts, EndRE [56] uses a fingerprinting scheme called
SampleByte that is much faster than Rabin fingerprinting
while delivering similar compression gains. In contrast to
these existing system-level approaches, FAST provides both
application-level and system-level detection for both identical
and near duplicate data. FAST can meet the needs of handling
the rapid growth of big data in an efficient manner.

VI. CONCLUSION

This paper proposes a near real-time scheme, called FAST,
to support efficient and cost-effective searchable data analytics
in the cloud. FAST is designed to exploit the correlation
property of data by using correlation-aware hashing and man-
ageable flat-structured addressing. This enables FAST to sig-
nificantly reduce processing latency of correlated file detection
with acceptably small loss of accuracy. We discuss how the
FAST methodology can be related to and used to enhance
some storage systems, including Spyglass and SmartStore, as
well as a use case. FAST is demonstrated to be a useful
tool in supporting near real-time processing of real-world data
analytics applications.
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