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Abstract—The size of write unit in PCM, namely the number of bits allowed to be written concurrently at one time, is restricted due to

high write energy consumption. It typically needs several serially executed write units to finish a cache line service when using PCM as

the main memory, which results in long write latency and high energy consumption. To address the poor write performance problem,

we propose a novel PCM write scheme called Min-WU (Minimize the number of Write Units). We observe data access locality that

some frequent zero-extended values dominate the write data patterns in typical multi-threaded applications (more than 40 and 44.9

percent of all memory accesses in PARSEC workloads and SPEC 2006 benchmarks, respectively). By leveraging carefully designed

chip-level data redistribution method, the data amount is balanced and the data pattern is the same among all PCM chips. The key idea

behind Min-WU is to minimize the number of serially executed write units in a cache line service after data redistribution through sFPC

(simplified Frequent Pattern Compression), eRW (efficient Reordering Write operations method) and fWP (fine-tuned Write Parallelism

circuits). Using Min-WU, the zero parts of write units can be indicated with predefined prefixes and the residues can be reordered and

written simultaneously under power constraints. Our design can improve the performance, energy consumption and endurance of

PCM-based main memory with low space and time overhead. Experimental results of 12 multi-threaded PARSEC 2.0 workloads show

that Min-WU reduces 44 percent read latency, 28 percent write latency, 32.5 percent running time and 48 percent energy while

receiving 32 percent IPC improvement compared with the conventional write scheme with few memory cycles and less than 3 percent

storage space overhead. Evaluation results of 8 SPEC 2006 benchmarks demonstrate that Min-WU earns 57.8/46.0 percent read/write

latency reduction, 28.7 percent IPC improvement, 28 percent running time reduction and 62.1 percent energy reduction compared with

the baseline under realistic memory hierarchy configurations.

Index Terms—PCM, write unit, performance evaluation, write energy
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1 INTRODUCTION

THE data scale is growing rapidly. According to IDC’s
study, data we create and copy is about 4.4ZB in 2013

and will be 44ZB in 2020 [1]. Businesses are demanding
faster and easier to access information for reliable and smart
decisions. Wal-Mart handles more than 1 million transac-
tions per hour and feeds databases estimated to be in PB
scale. Facebook deals with 2.5 PB of user data and YouTube
streams 48 hours of videos per minute [2]. The official train
ticket site of China, 12306.cn, deals with 30 billion of PV
(page views) on the peak day during 2015 Spring Festival
travel rush [3]. Citigroup reported that in the financial busi-
ness, every millisecond lost results in millions of dollars
economic losses per annum [4]. Alibaba, the biggest online
retailer of China, processes hundreds of millions of orders
on “11.11” online shopping spree [5]. Data-intensive proc-
essing requires massive memory capacity. However, the

supply of capacity is far behind the striking demands.
DRAM scalability reaches its bottleneck and it is difficult to
maintain the stabilization and reliability under 1X nm node
[6]. On the other hand, DRAM-based memory contributes
more than 40 percent of the total system power consump-
tion, which has become the primary concern in current data
centers [7], [8], [9], [10]. Google’s data centers use around
260 million watts of power per year, which accounts to 0.01
percent of global energy and about a quarter of the output
of a nuclear power plant [11].

Nonvolatile Memories (NVMs) such as Phase Change
Memory (PCM), Magnetic Resistive RAM (MRAM) and
Resistive RandomAccess Memory (RRAM) have better scal-
ability with lower power consumption while DRAM scal-
ability reaches its bottleneck [6]. PCM has extremely low
leakage power and better scalable capacity, which allows
PCM to be an attractive alternative of DRAM based main
memory [12], [13], [14], [15], [16], [17]. However, there are
multiple technical problems in PCM. First, write perfor-
mance is not satisfying (almost 10x slower than DRAM)
[18]. Second, endurance is still a weakness, i.e., 109 for PCM
compared with 1015 for DRAM [19], [20], [21], [22]. In addi-
tion, although PCM does not need energy to do refresh
operations, it suffers from high bit-write energy [15], [23],
[24], [25]. Due to power delivering challenge and serious
power noise in PCM, the size of write unit in PCM is settled,
namely the number of bits allowed to be written

� The authors are with the Wuhan National Laboratory for Optoelectronics,
Key Laboratory of Information Storage System (School of Computer Science
and Technology, Huazhong University of Science and Technology), Minis-
try of Education of China, Hubei, Sheng 430074, China. E-mail: {lizheng,
wangfang, dfeng, csyhua, jnliu, Tongwei, chenyu0713, salah}@hust.edu.cn.

Manuscript received 22 July 2016; revised 20 Feb. 2017; accepted 26 Feb.
2017. Date of publication 2 Mar. 2017; date of current version 15 Aug. 2017.
Recommended for acceptance by G. Min.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2017.2677903

IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 9, SEPTEMBER 2017 1629

0018-9340� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



concurrently for one time is restricted [26]. As a result, all
write operations must be performed serially in write unit
[16], [17]. The common sizes of write unit are 4, 8 and 16 bits,
and it typically requires many serially executed write units
to finish a cache line service when using PCM as the main
memory, which results in long write latency and high
energy consumption [27], [28], [29]. As shown in Fig. 1,
assuming the cache line size is 64 bytes, the size of write
unit is 16, and four PCM chips compose a memory bank. It
takes ð64 � 8Þ=ð16 � 4Þ ¼ 8 write units for a memory cache
line service [16], [17], [23], [26], [30].

To address the poor write problem of PCM, we propose a
novel write scheme called Min-WU (Minimize the number
of Write Units). The key idea behind Min-WU is to mini-
mize the actual number of write units to accelerate the write
operation. Min-WU has two main approaches: First, it
reduces the total amount of data by leveraging typical pat-
terns of write data. Second, it tries to finish a cache line ser-
vice with less write units by encapsulating more data bits
into one write unit. The main contributions of this paper are:

1) A novel PCM write scheme Min-WU with three criti-
cal components: sFPC (simplified Frequent Pattern
Compression), eRW (efficient ReorderingWrite opera-
tions method) and fWP (fine-tuned Write Parallelism
circuits). We observe zero-extended values dominate the
data write patterns in typical applications (more than
40 and 44.9 percent of all memory accesses in PARSEC
workloads and SPEC 2006 benchmarks, respectively)
and Min-WU strikingly minimizes the number of
write units, which accelerates the write and reduces
the energy consumption with low overhead and small
hardware changes.

2) Carefully designed hardware architecture for effi-
ciently combining proposed methods (sFPC, eRW,
fWPs) and PCM chips. By leveraging data redistribu-
tion, the amount of written data of each chip is bal-
anced. Moreover, data-prefix-separation designs can
effectively improve chip parallelism without losing
the accuracy and reduce the overall space overhead
of Min-WU and Min-WU-PF.

The rest of this paper is organized as follows. Section 2
describes the brief background, our motivations and the
details of the proposed write schemes. Section 3 presents
the hardware implementation. Section 4 presents and ana-
lyzes the experimental results. Section 5 introduces the
related work. Finally, Section 6 offers conclusions.

2 THE SYSTEM DESIGN

2.1 Background

PCM exploits the unique behavior of chalcogenide glass,
such as Ge2Sb2Te5 (GST), in a memory cell to store digital
information. Resistance varies hugely between crystalline
and amorphous states and the current values are quite dif-
ferent at the same voltage level. Through a heating ele-
ment, we can make the PCM cell amorphous via quickly
heating and quenching the glass. Similarly, holding the
glass in its crystallization temperature for a while can
make the PCM cell crystalline. Compared with RESET and
SET operations, the READ operation only needs a small
current to identify the resistance level of the GST. More-
over, PCM write shows great power and time asymmetry
that the minimum current needs and duration of RESET
vary largely. The read and write processes of PCM are
shown in Fig. 2. Meanwhile, Due to power delivering chal-
lenge, serious power noise inside PCM chip, the size of
write unit in PCM is settled, namely the number of bits
allowed to be written concurrently for one time is
restricted [26]. As a result, all write operations must be
performed serially in write unit [16], [17]. The common
sizes of write unit are 4, 8 and 16 bits, and it needs many
serially executed write units to finish a cache line service
when using PCM as the main memory, which results in
long write latency and high energy consumption.

Conventional write scheme regardless of the write val-
ues considers the power demand of each write unit in the
worst case (all “0”). Therefore, it needs many serially exe-
cuted write units to finish a cache line service. As shown
in Fig. 1, the constant in each write unit refers to the
power requirement in the worst case. Write service of a
cache line completes at T10 under the conventional
scheme. Define Tset as the time to set a PCM cell, M refers
to the number of total bits and N refers to the size of
write unit. We can summarize the service time of a cache

Fig. 1. Timing diagram for different schemes (Each “0” or “X” refers to the value of one byte (8 bits) ). Assuming power budget is 16 and the value fol-
lowing eachWU presents the write unit power use in the worst case.

Fig. 2. Illustrations of PCM read and write operations.
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line service under the conventional write scheme as
Equation (1)

TConventional ¼ M

N
Tset; (1)

Tconventional ¼ 8Tset as M ¼ 64 and N ¼ 8 in our example. In
summary, serially executed write units are the primary
cause of the poor write performance and the key to address
the problem is minimizing the number of write units.

2.2 FNW, 2-Stage-Write and Three-Stage-Write

Flip-N-Write (FNW) [17] first reads original data and com-
pares original datawith newdata beforewriting. If more than
half of bits need to be changed, FNWflips the new data. FNW
uses one extra bit to mark whether the data have been flipped
or not. With the data compression and a revision of hardware
circuit, FNW doubles the size of write unit under power con-
straints and reduces the service time of writing a cache line. In
the simple example as shown in Fig. 1, all write units are fin-
ished at T6. The average service time of writing a cache line
can be concluded in Equation (2). TFNW ¼ 4:3Tset when M ¼
64, N¼ 8 and Tset is 3X longer than Tread

TFNW ¼ Tread þ M

2 �N Tset; (2)

2-Stage-Write [16] leverages the time and power asymme-
tries of writing “0” and “1” in PCM. 2-Stage-Write divides a
write into two stages: stage “0” and stage “1”. In stage “0”, all
“0” bits are written at a fixed speed. For writing “0” is much
faster than writing “1”, “0” stage can be finished quickly. In
“1” stage, all “1” can be written in parallel for the current
need of writing “1” is only half of writing “0”. To achieve
more parallelism, 2-Stage-Write flips new data if the number
of bits “1” is more than half of total bits in the new data. 2-
Stage-Write doubles the size of write unit in stage “1” again.
When writing “0” is 8X faster than “1”, the PCM-based main
memory system can benefit from the service time reduction of
a cache line but when the time ratio of “0” and “1” is shorter
than 4X, 2-Stage-Write may not gain more significant write
performance improvement than FNW.According to previous

art [31] and our experimental results on our real hardware
prototype [32] as shown in Fig. 3, the time ratio between writ-
ing “0” and “1” is about 3X (far below 8X). As shown in Fig. 1,
when the time ratio of writing “0” and “1” is 3, the “0” stage
needs almost 3 write units (b8=3c) to finish writing all “0” and
the cache line service is finished at T7. Assuming writing “0”
isK times faster thanwriting “1”withL power needs, we can
conclude the average service time as Equation (3).
T2-Stage-Write ¼ 4:6Tset when L = 2, K = 3, M = 64 and N = 8.
Another thing to note is that 2-Stage-Write brings no advan-
tages to bit-write reduction, which has potential benefits on
endurance and energy improvement

T2-Stage-Write ¼ M

K �N Tset þ M

2 �N � LTset: (3)

Recently Three-Stage-Write [33] tries to fix the long stage-
0 problem by adding another read stage before stage-0 and
stage-1. In general, it combines the merits of the Flip-N-
Write and 2-Stage-Write, and the write service time is con-
cluded in Equation (4). Under the same parameters, the
write service is finished at T5 and TThree-Stage-Write ¼ 3:6 Tset

TThree-Stage-Write ¼ M

2 �K �N Tset þ M

2 �N � LTset: (4)

2.3 Important Insights

Nowadays, more and more applications use multi-threaded
programming. It becomes increasingly more common that
highly parallel applications run with hundreds of threads
for taking full advantage of the abundant physical resources
in a data center and the scale is still on the rise with the devel-
oping of CMPS and CUDA [34], [35]. Multi-threaded appli-
cations that exhibit evident access locality and some typical
data patterns occupy a large fraction of memory data
accesses [36], [37], [38]. Multi-threaded PARSEC 2.0 experi-
ment results are shown in Figs. 4 and 5, in which “0” or “X”
refers to the value of one byte (8 bits). “0” presents that the
byte value is zero while “X” means any value type. Type1,

Fig. 3. The PCM hardware prototype.

Fig. 4. Data pattern distribution with the increasing number of threads.

Fig. 5. NormalizedPCMwrite timeswith the increasing number of threads.

LI ET AL.: TIME AND SPACE-EFFICIENT WRITE PARALLELISM IN PCM BY EXPLOITING DATA PATTERNS 1631



Type2, Type3 and Type4 compose all data of memory write
that each data belong to one of the defined data types. We
obtain two useful insights from the experimental results:

Key Insight 1. We observe that data patterns 00000000,
00XX00XX and 0000XXXX, with each letter representing one
byte,1 occupy 10 percent (vips) up to more than 80 percent
(facesim) of the memory accesses with different workloads
and number of threads, as shown in Fig. 4. We define these
typical data values as zero-extended values [36]. Zero-
extended values occupy more than 40 percent of all memory
accesses on average and up to more than 60 percent in some
benchmarks (blackscholes, fluidanimate and facesim). How-
ever, in some typical benchmarks, there are not many zero-
extended values (vips and streamcluster). Another finding
is that the value property becomes more obvious with the
increasing number of threads. For example, there may be
not that many zero-extended values in some workloads
when the number of thread is 1 but the values occupy a
dominant position with the increasing number of threads,
especially in blackscholes, fluidanimate and facesim.

Key Insight 2. The number of data write increases with the
increasing number of threads, which results in a negative
influence on PCM lifespan. As shown in Fig. 5, the number
of data write in streamcluter increases 3X, 56X and more
than 100X when the number of threads is 8, 64 and 128,
respectively. In comparison, the results of freqmine, vips
and facesim are not significant (within 10 percent increasing
when the number of threads is 128). On average, the num-
ber of data write increases 1.6X, 7.8X and 18X with 8-
threaded, 64-threaded and 128-threaded, respectively.

Previous work points out that there exists frequent-value
locally in the workload execution. Within any period of
application execution, some typical data values, named fre-
quent data values, may occupy most of the memory data
accesses [39], [40]. All these data patterns may result from
data structure alignment or word-alignment [36]. On one
hand, many small values are 4, 8, 16, 32 bits, which are stored
in 64 bits for data structure alignment purpose to improve
the memory access efficiency and it is necessary to insert
somemeaningless zero values, which is called data structure
padding [37]. On the other hand, if we store two small num-
bers (XX) into two words, we will also get two leading zero
bytes in each word due to the word-alignment. Moreover,
zero-extended pattern goes up when the number of threads
is increased for some workloads. We are not sure about the
specific reasons and it may be due to the communication
between the threads. It is demonstrated that SPECint95 and
SPECint2000 benchmarks exhibit more than 40 percent zero

values inmemory accesses on average [38]. It also shows that
the integer benchmarks exhibit more zero-extended values
than floating point workloads, because of the differences of
storage format between integer and float.

Moreover, splitting a program into multiple threads
leads to write amplification. In general, the write amplifica-
tion is less than 3X when the number of threads grows to
128X compared with the baseline. This phenomenon may
be due to the interaction between threads, which needs to
store necessary information. However, some workloads
show large write amplification (100X for 128 threads). Part
of the reason for this situation is that some workloads are
not memory-intensive and the number of write requests is
small. The increase in the number of threads leads to an
increase in write requests and the write amplification is
very huge since the base is quite small.

In short, multi-threaded applications present a typical
trend that zero-extended values dominate the data patterns
in memory accesses. It is important to utilize these special
frequent values to gain more latency and energy reduction
since multi-threaded programming will be the common-
place in data-centered processing in the future.

2.4 Min-WU

Minimize the number of Write Units (Min-WU) is quite dif-
ferent from FNW or 2-Stage-Write. Finding that multiple
serially executed write units are the primary cause of the
poor write performance, the key idea behind Min-WU is to
utilize the frequent zero-extended values to minimize the
number of write units. First, Min-WU reduces the total
amount of data by leveraging sFPC. Second, Min-WU tries
to finish the cache line service with fewer write units by
encapsulating more data bits into a write unit. Min-WU has
three main components: 1) sFPC, a simplified FPC data
encoding and redistribution method, 2) eRW, efficient Reor-
dering Write according to their power demand and 3) fWP,
fine-tuned Write Parallelism circuits.

Min-WU first codes the write data based on its data pat-
terns with sFPC. As shown in Table 1, each “0” or “X” refers
to the value of one byte (8 bits), when data type is 00000000,
0000XXXX or 00XX00XX, the data amount is reduced after
sFPC with prefix bits indicating the zeroes in data values.
For example, if the data value is 0000XXXX, data are com-
pressed to XXXX after sFPC and the residual bytes 0000 can
be replaced with the prefix bits “01”. eRW is used for reor-
dering write operations execution sequence to minimize the
number of write units. After sFPC, as shown in Fig. 1, eRW
reorganizes the write execution sequence in the descending
order of the prefix bits. After that, write units that can be
performed concurrently under the power budget are sent to
fWP. fWP provides hardware circuits supports and finishes
all received write units in parallel under power constraints.

TABLE 1
sFPC Coding Scheme (Each “0” or “X” Refers to the Value of One Byte (8 Bits) )

Data type Prefix Bits Description Data Example After Compression Data Size after Compression

Type1 00 All zero bytes 00000000 0 0 bit
Type2 01 4 zero bytes (i) 0000XXXX XXXX 32 bits
Type3 10 4 zero bytes (ii) 00XX00XX XXXX 32 bits
Type4 11 Uncompressed XXXXXXXX - Original(64 bits)

1. To avoid duplication of data patterns, we examine pattern
00000000, 00XX00XX, 0000XXXX and XXXXXXXX in turn, i.e., one data
belongs to only one data pattern.
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In general, Min-WU can effectively reduce the number of
write execution and significantly improve the write
performance.

When the prefix bits of a write unit are “11”, such as
WU4 and WU6 in Fig. 1, these units will occupy the whole
power budgets in the worst case (all 16 in our example) and
these write units can only be written sequentially under
power constraints. So these units shall be serviced first.
Under the same power constraints, two units that prefix bits
are “01” or “10” can be serviced together because the power
requirement is halved after sFPC (8þ 8 <¼ 16). When the
prefix bits of a write unit are “00”, such as WU0, WU2, WU5
and WU7, there is no need to do the write since the data can
be indicated with the prefix bits. In our example, all write
units can be finished at T4. Ntype1, Ntype2, Ntype3 and Ntype4 are
the numbers of various data types shown in Table 1, respec-
tively. The average service time of a cache line is concluded
in Equation (5). TMin-WU ¼ 3Tset in our example. However,
the performance degrades strikingly if the write data are
Type4-dominant,

TMin-WU ¼ Ntype2 þNtype3

2
þNtype4

� �
Tset: (5)

We define the write improvement over conventional
write scheme as SpeedUp, which is shown in Equation (6).

TSpeedUp ¼ TConventional

T
; (6)

Fig. 6 shows the speedup of Min-WU compared with the
baseline without any write optimization. X-axle presents
the number of data units whose patterns are Type2 and
Type3 and Y-axle denotes the number of data units whose
types are Type4. When there are only Type1-data, only one
write unit is needed for writing the prefix bits of all data

units, i.e., the maximum speedup over conventional write
scheme is 8. In the worst case, all data units are Type4 and
there is no improvement over the conventional scheme.

2.5 Min-WU-PF

To solve the performance degradation of Min-WU when
write data are Type4-dominant, we propose a variation of
Min-WU called Min-WU-PF (data Partly Flip). Min-WU-PF
flips the data when data are not Type1 and more than half of
bits should be changed. Thus, we also double the write unit
size and can get more parallelism improvement even data
are Type4-dominant. As shown in Fig. 1, the power use of
WU4 and WU6 is halved after the simple data processing
and they can be written in parallel under power constraints
similar to FNW scheme (8þ 8 � 16). Likewise, WU1 and
WU3 can be processed in parallel (4þ 4 < 16). Min-WU-PF
further enhances the write parallelism and reduces the
number of write execution. As shown in Fig. 1, all write
units are finished at T3, i.e., 2Tset, which is shorter than all
above write schemes. The cache line service time of Min-
WU-PF, i.e., TMWP , is shown in Equation (7),

TMWP ¼ Tread þ Ntype2 þNtype3

4
þNtype4

2

� �
Tset: (7)

Fig. 7 shows the speedup of Min-WU-PF over the base-
line. In most cases, Min-WU-PF outperforms conventional
more than 3X and the worst case occupies only a small part
of all cases (purple indicates areas of none performance
improvement compared with the conventional).

In summary, although FNW and 2-Stage-Write can
reduce the write latency, they do not focus on reducing the
number of write units by leveraging the special data pat-
terns. As concluded in Table 2, FNW focuses on the differ-
ences of new data and stored data while 2-Stage-Write

Fig. 6. Speed Up of Min-WU compared with the baseline.

TABLE 2
Differences of Various Write Schemes

Scheme Key Idea Reduce Latency & Energy Overhead

FNW Difference between the written
data and stored data

YES & YES Extra read and inversion processes and
circuits for individual write support

2-Stage-Write Asymmetry of writing zero
and one

YES & NO Extra counter for bits inversion and
circuits for 2-Stage-Write support

Three-Stage-Write 2-Stage-Write with bit-flip YES & YES Extra read and inversion processes
and circuits for Three-Stage-Write support

Min-WU &Min-WU-PF Minimize the number of
write units

YES & YES Extra encode and decode processes
and circuits for parallel write support

Fig. 7. Speed Up of Min-WU-PF compared with the baseline.
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focuses on the time and power asymmetry of writing “1”
and “0”. Differently, Min-WU and Min-WU-PF care about
reducing the number of write units to accelerate write. All
write schemes can reduce latency while 2-Stage-Write has
no benefit on energy saving. When write data have many
zero-extended values, Min-WU has good write performance
improvement. Min-WU-PF performs better than both FNW
and 2-Stage-Write even the data are Type4-dominant. Min-
WU/Min-WU-PF can get more performance improvement
since more multi-threaded programming will be used in
data-centered processing and more zero-extended values
will be obtained in the future. Besides, we can make custom-
ized sFPC scheme according to the learning of workloads
rather than fixed data patterns.

3 HARDWARE IMPLEMENTATION

3.1 Hardware Architecture

To support the write parallelism proposed in Min-WU/
Min-WU-PF, we carry out carefully designed hardware
architecture. We adopt data redistribution methods and
add some critical components to support proposed designs.
To implement data and prefix data separation, a new chip,
i.e., prefix chip is adopted to exploit chip-level parallelism.
As only 2 prefix bits are needed for 64 data bits, only 16 pre-
fix bits are needed for 64B data. As the size of write unit per
chip in our design is 16b, prefix bits of WU0 to WU7 can be
written in one write unit. With chip-level parallelism
improvement, prefix bits are processed with data bits, as
shown in Fig. 1.

Our hardware architecture includes three new compo-
nents, i.e., Prefix Generate Logic, compression and decompres-
sion, compared with traditional memory architecture. Prefix
Generate Logic (PGL) is a low overhead prefix bits genera-
tion circuit. PGL can be released to a simple combinational
logic circuit and automatically creates the 2-bits prefix based
on the data value. The prefix can be generated quickly using
multiplexer and adder circuits. Data compression and
decompression logic are used for encoding and decoding
data with proposed sFPC scheme as shown in Table 1. After
the data compression, the total amount of data can be signif-
icantly reduced, which provides great supports for Min-WU
and Min-WU-PF write schemes. However, the compression
and decomposition processes will deliver extra overhead
when writing and reading the data. The overhead and
details of the compression/decompression’s designs will be
present in the following section. To reduce the overall write
latency and improve the space efficiency, we separate the
prefix bits and data bits into different chips, i.e., an individ-
ual chip named prefix chip is used to store the prefix bits of

the written data. As illustrated in Fig. 8, the data-prefix-
separation design can effectively improve chip parallelism
without losing the accuracy and reduce the overall space
overhead of sFPC’s implementation.

3.2 Data Redistribution

The bit-writes of each chip may vary much when using
Min-WU/Min-WU-PF under traditional system architec-
ture as shown in Fig. 8. The data amount of each chip is
quite different since Min-WU only writes “X” and “0” can
be indicated by the prefix bits. Chip 0, Chip 1 and Chip 2
have to wait for the completion of the heaviest bit-writes
Chip 3 (most Type4 values “XX”), which results in low
bandwidth utilization and long write service time. To
address this problem, we redistribute the data as shown in
Fig. 8. In conventional memory architecture, chip (i) write
Byte (7-2�i) and Byte (6-2�i). As we mentioned, the data
amount may vary much in each chip. In our design, while
the data display three main patterns, we change the data
distribution slightly. In details, Chip 0 is mapped with Byte
7 and Byte 0 and Chip 1 corresponds Byte 6 and Byte 1. The
data distribution of Chip 2 and Chip 3 is decided by the
data type. If data type is Type2, i.e., 0000XXXX, Chip 2 corre-
sponds to Byte 5 and Byte 2 while Chip 3 corresponds to
Byte 4 and Byte 3. If data type is Type3, i.e., 00XX00XX, Chip
2 corresponds to Byte 2 and Byte 5 while Chip 3 corre-
sponds to Byte 3 and Byte 4. This can be released easily by
adopting two individual shifters with enable signals. As
shown in Fig. 9, whatever the data type is 0000XXXX or
00XX00XX, all chips receive data 0X. There is no extra over-
head in the data redistribution and all chips have the same
amount of data no matter what the data are.

3.3 Circuits Designs

In this section, we will first introduce the circuits’ designs of
data compression/decomposition. Then, the design details
of data path, write control logic as well as write driver of
Min-WU and Min-WU-PF are also provided. Finally, we
also analyze the space and time overhead of proposed
designs.

3.3.1 Prefix Generation and Data (De)Compression

To meet the goals of proposed sFPC as illustrated in Table 1,
we need low-delay prefix generation, compression and
decompression circuits to reduce the impact on critical read
latency of the main memory. The RTL schematics of com-
pression and decompression are shown in Figs. 10 and 11,
respectively. The prefix generation is combined with the
data compression. Different data patterns have various
write (compression) and read (decompression) overhead.
The time overhead is concluded in Table 3.

Fig. 8. Hardware architecture.

Fig. 9. Data redistribution.
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In general, if the written data pattern is “00”, only 2
cycles are consumed to finish the data compression. As
shown in Fig. 10, only a comparator and a multiplexer are
needed. In the same way, if the data pattern is “01”, the
written data must pass a comparator and two multiplexers,
i.e., 3 cycles are needed to accomplish the data compression
process. In comparison, when written data present patterns
“10” and “11”, the data compression is more complicated
compared with the situation of “00” and “01”. In brief, one
comparator, one AND gate and three multiplexers are
needed. As a result, 5 cycles are consumed to encode the
data. Data decompression of sFPC is much more compli-
cated compared with compression as illustrated in Fig. 11.
If the written data pattern is “00”, 5 cycles are necessary for
data decoding. In short, one comparator, three multiplexers
and one data latch are implemented. When the data pattern
is “01”, four extra cycles are needed to decode the data. In
summary, one comparator, two multiplexers as well as one
data latch are combined when prefix bits are “01”. The situ-
ation when prefix bits are “10” is similar to the case of “00”,
i.e., extra 5 cycles are consumed when performing data
decompression. The case of “11” has the lowest overhead
compared with other cases. Only one comparator, one mul-
tiplexer as well as one data latch are required to perform
data processing and only 3 cycles are consumed.

3.3.2 Min-WU

To provide write parallelism supports, we carry out a fine-
tuned hardware circuit named fWP based on an industrial
prototype from Samsung [26]. In addition, we will intro-
duce the details of our circuit design including the data
path, write control logic as well as write driver of Min-WU
and Min-WU-PF, respectively.

The red part of Fig. 12 shows the overall data path of
Min-WU. Compared with the design of FNW, we add an
individual write logic layer named Min-WU write logic.

The data path consists of 1-word synchronous burst domain
and 8-word prefetch domain. To meet the design goals of
Min-WU write scheme, we expand the size of write buffer
but not the size of the array. The on-chip write buffer stores
128 bits data and 16 prefix bits of these 8write units (128/16 =
8). The prefix bits will be sent to the write logic and write
driver for write units reordering. The middle may deliver
extra overheadwhenwriting the data. But above all, the mid-
dle layer won’t deliver any overhead on the critical read
path, which is the key performance bottleneck of the system.

The red part of Fig. 13 shows how the write control logic
works. The primary goal of Min-WU is to improve the write
concurrent under the power constraints. Accordingly, the
primary purpose of the write control logic is to choose
which data units should be written at one time. Shared
Finite State Machine (FSM) continuously decides which
data units to be executed first (D0 to D7) according to the
prefix values. If prefix bits of a write unit are “00”, this write
unit won’t be sent since the prefix bits can imply the data
value. FSM first sends whose prefix bits are “11” because it
takes the whole power budget in the worst case. Then, the
FSM chooses two DX whose prefix bits are “01” or “10”
since no more than half of the total bits are changed after
sFPC. It’s worth noting that the units choosing of “01” or
“10” can be done when other data are written and the over-
head of units choosing can be hidden by the long write time.

The red part of Fig. 14 shows the write driver of Min-
WU. To achieve independent bit control, we introduce an
extra control signal named PROG similar to FNW. SET and
RESET together with PROG signal activate the cell with lit-
tle overhead (just an AND gate). PROG signals generation
can be done easily with a Multiplexer and an AND gate.
The input value of the AND gate is decided by the prefix

Fig. 10. Data compression RTL schematic (WRITE).

Fig. 11. Data decompression RTL schematic (READ).

Fig. 12. Datapath of Min-WU and Min-WU-PF.

Fig. 13. Write control logic of Min-WU and Min-WU-PF.
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bits. When the prefix bits are “01” or “10”, 0x00FF is selected
for only writing “X” of data “0X”. Otherwise, 0xFFFF is
selected for writing “XX” value. Thus, when data patterns
are “01” and “10”, only half of the total bits will be written,
i.e., the size of the write unit is doubled under this situation.

3.3.3 Min-WU-PF

The red and purple parts of Fig. 12 shows the overall data
path of Min-WU-PF. Compared with the design of Min-
WU, the overall length of data path is equal, i.e., no over-
head is added to the critical read path, which is the key per-
formance bottleneck of the system. Min-WU-PF write
scheme flips the residual data if more than half of bits need
to be changed after sFPC. Furthermore, we expand the size
of write buffer again and add 8 flip bits for 8 write units.
Therefore, the on-chip write buffer stores 128 bits data, 16
prefix bits and 8 flip bits. In addition, flip bits are stored in
the PCM array together with the data and word lines are
extended from 32 bits to 34 bits. The red and purple parts of
Fig. 13 shows the write control logic of Min-WU-PF. After
flip operations on partial data, the bits need to be written is
no more than half of the total bits. Thus, two data units that
the prefix bits are “11” can be written concurrently under
the power constraints, i.e., the size of write units is doubled
when the data are Type4. In the same way, four data units
that prefix bits are “01” or “10” can be finished in parallel
since sFPC and data partly flip quadruple the size of write
unit. Simply, Shared Finite State Machine (FSM) first choo-
ses two data units whose prefix bits are “11” because they
take the whole power budget in the worst case. Then the
FSM chooses four DX whose prefix bits are “01” or “10”
when previous data are in processing. As extra flip bits are
adopted to reduce the amount of written data, the offset of
units is also changed, as shown in Fig. 13. The red and pur-
ple parts Fig. 14 shows the write driver of Min-WU-PF.
Especially, a read buffer is added for data comparison. Min-
WU-PF first reads the new data and flips it if more than half
of bits need to be changed after data compression. Min-
WU-PF sends PROG enable only to the cells that need to be
changed, which can be easily realized with a low overhead

XOR gate. After that, the results are combined with 0x00FF
and 0xFFFFwith an AND gate similar to Min-WU.

3.3.4 Modification to PCM Chip

Min-WU and Min-WU-PF operate multiple write units one
time to improve the write parallelism under the power con-
straint. However, in the standard design, each cell block has
only one column decoder with the specific column address,
which makes it a great challenge to release our proposed
fWP scheme. In order to support concurrent writes in multi-
ple columns, we adopted previous art and modified the
PCM chip composition [41], [42], [43]. As shown in the
dashed portion of Fig. 15, our design adopts multiple col-
umn address latches and decoders to select different col-
umns and operate them in parallel. The number of column
address latches and decoders is equal to the number of
write units under conventional write scheme since we only
target the data within one cache line write service. In addi-
tion, we did not make any changes to the row address latch
and decoder.

3.4 Overhead

3.4.1 Time Overhead

The implementation of Min-WU and Min-WU-PF delivers
extra time overhead. The time overhead is mainly caused
by the prefix generation, data compression and decompres-
sion. According to our results performed in our real hard-
ware prototype DSAL-SSD [32], [44], only several cycles are
needed to generate the prefix. The low overhead prefix gen-
eration scheme won’t deliver any negative influence on the
service time of a cache line. As shown in Table 3, different
data patterns may deliver various extra compression or
decompression delays. Compared with hundreds of write
cycles (153 ns) and tens of read cycles (53 ns), the time over-
head is relatively slight and acceptable. Moreover, the selec-
tion of data units may also cause time overhead. In order to
reduce the time overhead, Min-WU and Min-WU-PF adopt
analyze-under-write scheme, i.e., we only choose the units
that need to be written at the beginning. The units need to
be executed next will be selected under the process of previ-
ous write units. Since it takes hundreds of cycles per write
unit, the selection time of units can be hidden.

3.4.2 Space Overhead

A simple schematic diagram of space overhead of FNW,
naive design (simple sFPC and FNW combination), Min-
WU andMin-WU-PF schemes is shown in Fig. 16. Consider-
ing an example of two 4-bits PCM chips, the old data are
“0111” and “1110” while the new data are “0000” and
“0000”. We will introduce and analyze the space overhead
of FNW, naive design, Min-WU and Min-WU-PF

TABLE 3
Time Overhead

Data type Prefix Bits Write (cycles) Read (cycles)

Type1 00 2 5
Type2 01 3 4
Type3 10 5 5
Type4 11 5 3

Fig. 14. Write driver of Min-WU and Min-WU-PF.

Fig. 15. Modification to PCM chip composition.
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individually between different chip’s word width. We
assume the data width is 64-bits and SpaceOverhead is
referred to the number of extra bits divided by the data
width (64-bits size in this study), as shown in Equation (8).

SpaceOverhead ¼ Extra� bits

datawidth
(8)

FNW. In our example, the old data and the new all differ
3 bits both in chip 1 and chip 2. Because FNW flips the data
to be written if more than half of bits have to be changed,
both chips (chip 1 and chip 2) have to do the data inversion
(3 > 4=2 in chip 1 and 3 > 4=2 in chip 2). Thus, the flip bit
will be set to “1” and the data will be flipped to “1111” in
both chips. The space overhead, i.e., the extra array area
overhead of FNW can be concluded as Equation (9), where
N presents the word width of the memory chip. The over-
head is decreased with the word width increases as shown
in Fig. 17

SpaceOverheadFNW ¼ 1=N; (9)

Naive Design. As we use sFPC to reduce the total amount
of data, the design can also be combined with data inversion
to further reduce the data amount. The native process of
sFPC and data inversion combination is to compress the
data with sFPC first, and if the residual data still have more
than half bits diff, the data shall be flipped with an extra bit
indexing it. In our example, the new data of chip 1 and chip
2 will be compressed to 2-bits prefix “00”, i.e., we only need
to write “00” rather than all new data. The FPC index will
be set to “1” in both chips and the prefix bits are together
with the data bits. In chip 2, the written data “00”, i.e., the
prefix bits have 2 different bits compared with old data and
it will be flipped to “11” with “Flip” bit indexing it. The
space overhead is shown in Equation (10)

SpaceOverheadNaive ¼ 1=NðFlipÞ þ 1=NðsFPCÞ: (10)

Min-WU. Unlike FNW and naive designs, Min-WU uses
an extra chip, i.e., prefix chip to store the prefix bits, as
shown in Fig. 8. No matter what the new data are, the space
overhead is limited to 2 bits, i.e., the size of prefix bits. In
our example, the data are compressed by the prefix bits
“00” and there is no bit-write in chip 1 and chip 2. The space
overhead of Min-WU is concluded in Equation (11)

SpaceOverheadMin-WU ¼ 2: (11)

Min-WU-PF. Based on the designs of Min-WU and FNW,
Min-WU-PF also introduces an extra one bit to index
whether the data are flipped or not. In our example, the
data are compressed with 2 prefix bits indexing the data.
The overhead of sFPC is constant (the size of prefix bits)
while the overhead of data inversion is related to the word
width. Likewise, the extra array area overhead of Min-WU-
PF can be concluded as Equation (12)

SpaceOverheadMin-WU-PF ¼ 1=N þ 2: (12)

3.4.3 Area and Power Overhead

As Min-WU and Min-WU-PF change the chip-level circuits
design, such as introducing multiple column latches and
decoders, individual write logic layer and modifying write
driver logic, the area and power consumption may increase
due to the added circuits. In details, Min-WU uses the FSM
to release the units selection and Min-WU-PF introduces
extra data inversion process to reduce the amount of data
compared with Min-WU. However, write is not on the criti-
cal performance path while read latency is quite important
for the main memory system. Min-WU and Min-WU-PF
only extend the datapath of write and the critical read path
is the same compared with the design of baseline. In previ-
ous art [41], [42], [43], the area overhead caused by the
added column latches and decoders is less than 0.05 percent
and the power overhead is less than 0.5 percent. In addition,
the workload of added circuits is light and the overhead is
minimal. For example, FSM needs to deal with the selection
of only 8 units, which is not an area-hungered component.
The modification on write driver is slight, only some sample
XOR gates and AND gates. Moreover, the added logics,
such as FSM or data inversion, are much less complicated
compared with some critical cost-sensitive or area-hungry
components, such as the program-and-verification circuits
inside the PCM chip [16]. Similarly, the power consumption
of added circuits is hence small compared with the baseline.

4 EVALUATION

In this section, we evaluate the efficiency of our design using
multi-threaded PARSEC 2.0 benchmarks. We present the
results of read latency, write latency, IPC, applications run-
ning time, bit-write reduction aswell as energy consumption.

Specifically, we first present the parameters and the
experimental environment. We implemented our Min-WU
and Min-WU-PF on the event-driven GEM5 simulator [45],
[46] to evaluate our design and the simulation parameters
are shown in Table 4. The GEM5 simulator is an open

Fig. 16. Illustration of FNW, Naive Design, Min-WU and Min-WU-PF
methods.

Fig. 17. Space overhead.
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source modular platform for computer system architecture
research. In this paper, we use 4-core ALPHA-like CMP sys-
tem with 2GHz frequency. We also simulate the whole
memory hierarchy and three-level cache (L1, L2 and last
level L3 cache) is adopted. All caches have 64B cache line
size. In addition, a faithfully main memory controller and
4 GB PCMmemory are also implemented in our simulation.
The PCM main memory has 2 ranks and 8 banks. The main
memory controller has individual read and write queues
and it uses FRFCFS (first ready first come first served)
scheduling algorithm that schedules reads requests first
and only dealing write requests when the write queue is
full. The parameters of PCM are taken from past work [17],
[31], the prototype of Samsung published in [26] and the
results from our DSAL-SSD hardware prototype with actual
PCM chips provided by Micron [32]. Partly energy

parameters are taken from CACTI [47] and [26], [31]. The
details of benchmarks are concluded in Table 5. All bench-
marks are from different areas, including video processing,
financial analytics, physics simulation, picture processing
etc. We compare Min-WU/Min-WU-PF with state-of-the-
art FNW with all 12 benchmarks under PARSEC 2.0 [48]
without selectively choosing. In addition, all instructions
are simulated before the application exits for each PARSEC
workload. Our goal is to find the most suitable application
scenarios of Min-WU and Min-WU-PF. In general, we use
the conventional PCM write scheme without any optimiza-
tion as the baseline.

4.1 Data Pattern Distribution

We first measure all data pattern distribution of the PAR-
SEC 2.0 benchmarks to verify the motivations. We use 64
threads per program and the results are shown in Fig. 18.
We observe that zero-extended values dominate the write
values in all benchmarks and occupy more than 40 percent
of all memory accesses on average. Three programs (black-
scholes, fluidanmate and facesim) show more than 70 per-
cent zero-extended values while the least one has more than
20 percent (vips). It proves that it is important to utilize
these commonplace zero-extended values for write perfor-
mance improvement and energy reduction.

4.2 Performance

4.2.1 Read Latency

Read latency is crucial for the main memory system perfor-
mance and it is the bottleneck of the whole system perfor-
mance. Fig. 19 shows the read latency reduction of Min-
WU/Min-WU-PF, FNW, and Three-Stage-Write compared
with the baseline. Overall, Min-WU significantly outper-
forms FNW in some benchmarks while being equivalent in
the others except vips. The reason is the write data are
Type4-dominant in vips. Min-WU-PF outperforms FNW in
all benchmarks. FNW can get 29-43 percent read latency
reduction compared with the baseline while Min-WU can

TABLE 4
Parameters of Simulation

Parameter Value

CPU 4-Core 2 GHz ALPHA O3 proces-
sor

L1 Cache 32 KB I-cache, 32 KB D-cache, 2
cycles latency

L2 Cache 8-way, 2 MB, 64B cache line, 20
cycles latency

L3 Cache 16-way, 8 MB cache, 64B cache
line, 50 cycles latency

Memory Controller FRFCFS scheduling algorithm,
32-entry R/W queues

Memory Organization 4 GB SLC PCM, 64 bits data width,
2 ranks, 8 banks

PCM Organization 4 chips per bank, 8 bytes write unit
size

Read, Reset and Set time 50 ns, 53 ns and 153 ns

TABLE 5
PARSEC 2.0 Benchmarks

Benchmark Introduction RKPI WPKI

blackscholes Option pricing with Black-
Scholes Partial Differential
Equation (PDE)

0.04 0.02

fluidanimate Fluid dynamics for animation
purposes with Smoothed
Particle Hydrodynamics
(SPH) method

0.59 0.32

bodytrack Body tracking of a person 0.72 0.24
freqmine Frequent itemset mining 0.62 0.25
swaptions Pricing of a portfolio of

swaptions
0.04 0.02

canneal Simulated cache-aware
annealing to optimize routing
cost of a chip design

2.76 0.19

dedup Next-generation compression
with data deduplication

0.82 0.49

streamcluster Online clustering of an input
stream

10.42 6.53

facesim Simulates the motions of a
human face

0.43 0.37

vips Image processing 2.56 1.56
ferret Content similarity search

server
1.67 0.95

x264 H.264 video encoding 1.01 0.23

Fig. 18. Data patterns of 12 PARSEC 64-threaded workloads.

Fig. 19. Read latency reduction.
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get 32-79 percent read latency improvement. Min-WU
shows 6 percent more latency reduction considering the
low performance of vips. Min-WU-PF shows 61 percent
read performance improvement compared with baseline
and outperforms state-of-the-art FNW and Three-Stage-
Write by 21 and 11 percent on average, respectively. We use
64 threads in the experiment and we can get more read
latency improvement with the number of thread increases.

4.2.2 Write Latency

Min-WU and Min-WU-PF can significantly reduce the total
time of a cache line service, so the write requests can be fin-
ished more quickly compared with the conventional write
scheme. Experimental results of write latency are shown in
Fig. 20. We notice that Min-WU outperforms FNW greatly
in some benchmarks but fall behind in some workloads sim-
ilar to the results of read latency. We also observe that Min-
WU and Min-WU-PF show performance degradation com-
pared with FNW (typically in blackscholes). Many reasons
may cause this problem. First, FRFCFS (first ready first
come first served) scheduling algorithm schedules read
requests first and processes write requests when the write
queue is full. On the other hand, Min-WU and Min-WU-PF
introduce extra overhead when reading and writing data.
Besides, the blackscholes is a read-dominant workload and
write requests are very few in number, the write latency is
sensitive and particularly vulnerable to impacts. In sum-
mary, Min-WU shows 28 percent write latency improve-
ment considering all workloads on average compared with
the baseline. Moreover, Min-WU-PF outperforms the state-
of-the-art FNW and Three-Stage-Write, and decreases 15
and 7 percent overall write latency, respectively.

4.2.3 IPC

IPC (Instructions per cycle, i.e., the average number of
instructions executed for each clock cycle) is one of the most
important indicators of the processor and system’s

performance. Highly efficient main memory system can
improve the computer speed of the application benchmarks.
The results of IPC improvement are illustrated in Fig. 21. In
summary, Min-WU can gain 32 percent IPC improvement
compared with the baseline while Min-WU-PF shows 44
percent IPC increment. Moreover, Min-WU-PF respectively
get 12 and 8 percent more IPC improvement compared with
the FNW and Three-Stage-Write, respectively.

4.2.4 Running Time

Workloads completion time is one of the most important
metrics of the whole system performance. The workloads
running time results are shown in Fig. 22. Min-WU/Min-
WU-PF can significantly reduce the service time of a cache
line service with writing more units currently under power
constraints. The experimental results show that Min-WU/
Min-WU-PF can gain 31/45 percent running time reduction
against the baseline on average, respectively. Moreover,
Min-WU-PF outperforms FNW and Three-Stage-Write by
14 and 12 percent on average, respectively.

4.3 Endurance and Energy

4.3.1 Write-Bits Reduction

Min-WU and Min-WU-PF decrease the data amount by
leveraging sFPC as illustrated in Table 1, i.e., the write-bits
can be significantly reduced after compression. The write-
bits reduction benefits both the lifespan of PCM and overall
system power consumption. Experimental results of 12
PARSEC benchmarks are shown in Fig. 23. On average, the
number of bits needs to be written with FNW is only 60 per-
cent compared with the baseline and it is the same with
Three-Stage-Write because they use the same data dealing
process. In comparison, Min-WU outperforms 13 percent
compared with FNW while Min-WU-PF reduces 16 percent
data amount with data partly flip. Min-WU-PF introduces
extra bits, i.e., flip bits, compared with Min-WU, so in some
workloads, Min-WU may show better write-bits reduction
(e.g., vips and streamcluster).

Fig. 20. Write latency reduction.

Fig. 21. IPC improvement.

Fig. 22. Running time reduction.

Fig. 23. The amount of write-bits.
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4.3.2 Energy Improvement

Energy consumption is an important problem in current
data centers. High-energy consumption leads to serious
heat problems and numerous refrigerating devices are
deployed to cool down the data center. Energy improve-
ment can bring significant benefits to both the environment
and economy. As shown in Fig. 24, although many work-
loads have small read latency improvement, they show a
good energy consumption improvement. On one hand,
Min-WU and Min-WU-PF decrease the bits need to be writ-
ten to PCM cells with implementing sFPC. On the other
hand, our designs significantly shorten the service time of
requests and hence reduce the system’s stand-by energy
consumption. It is remarkable that Min-WU outperforms
state-of-the-art FNW by more than 20 percent in five work-
loads. Min-WU gains 46 percent less energy compared with
the baseline and outperforms FNW by 11 percent on aver-
age. Min-WU-PF reduces 62 percent energy consumption
compared with the baseline and respectively outperforms
FNW and Three-Stage-Write by more than 22 and 18 per-
cent on average.

4.4 Design Space Exploration

In order to prove the efficiency and effectiveness of our pro-
posed Min-WU and Min-WU-PF schemes under different

memory configurations and workloads, we had redone the
experiment with more memory intensive benchmarks (8
SPEC 2006 workloads [49]) and larger L3 cache capacity
(8 MB per core, 32 MB in total). Detailed benchmarks infor-
mation is concluded in Table 6. In addition, one billion
instructions are simulated for each SPEC 2006 workload
after fast-forwarding one billion instructions.

Data pattern distribution of 8 SPEC 2006 benchmarks is
shown in Fig. 25. The experimental results are similar to our
prior observations that zero-extended values dominate the
write values. In detail, zero-extended occupy more than
44.9 percent of all memory accesses on average and five
workloads show more than 60 percent occupancy of zero-
extended values (sjeng, gobmk, zeusmp, astar and libquan-
tum). Even the worst test result still shows almost 23 per-
cent zero-extended values (bzip2). The results of read
latency are illustrated in Fig. 26. On average, FNW gets 38.8
percent read latency reduction compared with the baseline.
In comparison, Three-Stage-Write gets 45.7 percent read
latency reduction and Min-WU earns 40.0 percent improve-
ment compared with the baseline. Min-WU-PF shows 19.0
and 11.9 percent more latency reduction compared with
FNW and Three-stage-write, respectively. Fig. 27 illustrates
the experimental results of write latency reduction of com-
pared write schemes. In summary, Min-WU and Min-WU-
PF respectively shows 29.9 and 46.0 percent write latency
reduction compared with the baseline. Moreover, Min-WU-
PF outperforms FNW and Three-Stage-Write, and shows
16.4 and 9.6 percent more write latency improvement. The
experimental results of IPC improvement are illustrated in
Fig. 28. Overall, Min-WU can get 28.7 percent IPC improve-
ment and Min-WU-PF can get 43.0 percent IPC boost com-
pared with the baseline. As a comparison, FNW and Three-
Stage-Write can get 29.1 and 34.4 percent IPC improvement
compared with the baseline, respectively. The experimental
results of running time reduction are similar to IPC
improvement. As shown in Fig. 29, Min-WU outperforms
FNW and Three-Stage-Write in some benchmarks that are

Fig. 24. Energy improvement.

TABLE 6
SPEC 2006 Benchmarks

Benchmark Introduction RKPI WPKI

bwaves 4 copies of bwaves 11.19 5.67
sjeng 4 copies of sjeng 0.21 0.18
gobmk 4 copies of gobmk 0.14 0.13
zeusmp 4 copies of zeusmp 13.56 3.18
bzip2 4 copies of bzip2 8.81 4.64
astar 4 copies of astar 0.53 0.38
libquantum 4 copies of libquantum 10.95 6.93
leslie3d 4 copies of leslie3d 7.11 2.59

Fig. 25. Data patterns of 8 SPEC 2006 workloads.

Fig. 26. Read latency reduction.

Fig. 27. Write latency reduction.
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zero-extended values dominant, such as sjeng, zeusmp and
libquantum. In addition, Min-WU-PF outperforms FNW
and Three-Stage-Write in all benchmarks and shows 14.0
and 8.7 percent more running time reduction. Results of the
amount of write-bits are shown in Fig. 30. On average, the
amount of write-bits of FNW and Three-Stage-Write is 13.3
percent compared with the baseline. As comparisons, Min-
WU and Min-WU-PF reduces 87.2 and 88.2 percent data
amount on average, respectively. As for the reduction of
energy consumption illustrated in Fig. 31, Min-WU scheme
can reduce the average energy consumption by 43.4 percent
and Min-WU-PF can reduce 62.1 percent energy consump-
tion compared with the baseline. In addition, FNW and
Three-Stage-Write respectively show 39.7 and 47.0 percent
energy consumption reduction compared with the baseline.

In summary, it proved that our proposed schemes,
including Min-WU and Min-WU-PF, are efficient and effec-
tive with the capacity of LLC cache grows. Our designs also
show significant performance improvement and energy con-
sumption reduction undermemory intensive workloads.

5 RELATED WORK

DCW [50] is a quite sample and effective write PCM scheme
for reducing the energy and improving endurance. By
leveraging data-comparison write method, only different
bits are written down to the PCM array. FNW [17] tries to
extend the size of power budget to improve write parallel-
ism. If the different bits are more than half of the total bits,
new data will be flipped. FNW doubles the write unit size
under the power constraints and reduces the service time of
write. FNW introduces an extra bit to store the status
whether associated data have been flipped or not. 2-
Stage-Write [16] leverages the time and power asymmetry
of writing “0” and “1”. Unlike FNW, 2-Stage-Write
focuses on the values of new data and there is no extra
read operation overhead. 2-Stage-Write divides a write

process into 2 stages: stage 0 and stage 1. In stage 0, all
“0” in every write unit can be finished in a settled speed.
In stage 1, the write unit size is doubled for the write
power need of “1” is only half of “0”. Furthermore, if the
number of “1” is more than half of the total bits, 2-Stage-
Write flips the data and the write unit size of stage 1 is
doubled again. Recently Three-Stage-Write is proposed in
[33], the authors try to unite the work of FNW and 2-
Stage-Write. By combining the data inversion of FNW
with the 2-stage-write, the write process is divided into 3
stages, i.e., comparison, write “0” and write “1”.

Compression is widely used in the capacity constrained
cache and disk backup systems [51]. Compression reduces
the size of data and thus improves the valid capacity and
reduces the high-cost paging from storage devices (such as
disks) to main memory. Frequent Pattern Compression
(FPC) divides a cache line into many words (typically 32
bits a word) and compresses each word according to data
pattern [37]. There are some works utilizing FPC to reduce
the bit-writes in NVM. Dgien et al. propose a compression-
based memory architecture in Nonvolatile Memories
(NVMs) combining FPC with FNW [52]. With the finding
that FNW cannot work efficiently if the data have been com-
pressed, the author carries out a fine-gained FNW to get fur-
ther bit-write reduction. Recently in [53], data compression
agriculture of PCM is proposed to combine the FPC with
memory controller to reduce the number of bit-writes, write
energy and improve the endurance.

6 CONCLUSION

To address the poor write performance, we propose a novel
write scheme called Min-WU. Finding that multiple serially
executed write units are the primary cause of the poor write
performance, the key idea behind Min-WU is to minimize
the number of write units to accelerate the write operation.
We observe some frequent zero-extended values dominate

Fig. 28. IPC improvement.

Fig. 29. Runnming time reduction.

Fig. 30. The amount of write-bits.

Fig. 31. Energy improvement.

LI ET AL.: TIME AND SPACE-EFFICIENT WRITE PARALLELISM IN PCM BY EXPLOITING DATA PATTERNS 1641



the write data patterns in typical multi-threaded applica-
tions (more than 40 and 44.9 percent of all memory accesses
in PARSEC workloads and SPEC 2006 benchmarks, respec-
tively). By leveraging carefully designed data redistribution
method, the data amount of each chip is balanced and the
data pattern of each chip is the same. Min-WU has two
main approaches: First, Min-WU reduces the total amount
of data by leveraging simple data coding. Second, Min-WU
tries to finish the cache line service with less write units by
encapsulating more data bits into a write unit. Min-WU
strikingly minimizes the number of write units, which accel-
erates the write while reducing the energy consumption of
PCM. Min-WU is highly effective and efficient in improving
the write performance and reducing the write energy con-
sumption compared with state-of-the-art FNW. Extensive
experimental results under 12 PARSEC 2.0 benchmarks
demonstrate the efficiency of Min-WU and Min-WU-PF.
Based on the results of 12 multi-threaded workloads, Min-
WU reduces 44 percent read latency, 28 percent write
latency, 32.5 percent running time and 48 percent energy
while receiving 32 percent IPC improvement compared
with the conventional write scheme. When combined with
partly data flip, the variation of Min-WU (Min-WU-PF)
yields 22 percent read latency reduction, 15 percent write
latency decrease, 12 percent running time reduction, 23 per-
cent energy saving and 12 percent IPC improvement, com-
pared with Flip-N-Write. Min-WU and Min-WU-PF
respectively reduce 53 and 56 percent data amount and can
improve the endurance of PCM-based main memory. To
explore the design space of our proposed schemes, we eval-
uate our design with memory-intensive SPEC 2006 bench-
marks with a larger L3 cache. Experimental results show
that Min-WU-PF yields 11.9 percent read latency reduction,
9.6 percent write latency decrease, 8.6 percent running time
reduction, 15.1 percent energy saving and 8 percent IPC
improvement, compared with state-of-the-art Three-Stage-
Write. In addition, our design has the great potential in
multi-threaded applications. We can get much more encour-
aging results in future with the wide use of multi-threaded
programming.
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