
A Collision-Mitigation Cuckoo Hashing
Scheme for Large-Scale Storage Systems

Yuanyuan Sun, Yu Hua, Senior Member, IEEE, Dan Feng,Member, IEEE,

Ling Yang, Pengfei Zuo, Shunde Cao, and Yuncheng Guo

Abstract—With the rapid growth of the amount of information, cloud computing servers need to process and analyze large amounts of

high-dimensional and unstructured data timely and accurately. This usually requires many query operations. Due to simplicity and ease

of use, cuckoo hashing schemes have been widely used in real-world cloud-related applications. However, due to the potential hash

collisions, the cuckoo hashing suffers from endless loops and high insertion latency, even high risks of re-construction of entire hash

table. In order to address these problems, we propose a cost-efficient cuckoo hashing scheme, called MinCounter. The idea behind

MinCounter is to alleviate the occurrence of endless loops in the data insertion by selecting unbusy kicking-out routes. MinCounter

selects the “cold” (infrequently accessed), rather than random, buckets to handle hash collisions. We further improve the concurrency

of the MinCounter scheme to pursue higher performance and adapt to concurrent applications. MinCounter has the salient features of

offering efficient insertion and query services and delivering high performance of cloud servers, as well as enhancing the experiences

for cloud users. We have implemented MinCounter in a large-scale cloud testbed and examined the performance by using three real-

world traces. Extensive experimental results demonstrate the efficacy and efficiency of MinCounter.

Index Terms—Cuckoo hashing, cloud storage, data insertion and query

Ç

1 INTRODUCTION

IN the era of Big Data, cloud computing servers need to
process and analyze large amounts of data timely and

accurately. According to the report of International Data
Corporation (IDC) in 2014, the digital universe is doubling
in size every two years from now until 2020, and the data
we create and copy annually will reach 44 ZettaBytes in
2020. The digital bits in data universe will be as many
as stars in the physical universe [1]. Industrial companies
have already begun to deal with terabyte-scale and even
petabytes-scale data everyday [2], [3], [4]. Large fractions of
massive data come from the popular use of mobile devi-
ces [1]. Due to the constrained energy and limited storage
capacity, real-time processing and analysis are nontrivial in
the context of cloud-based applications.

Although cloud computing systems consume a large
amount of system resources, it is still challenging to obtain
accurate results for query requests in a real-time manner [5],
[6], [7]. In order to improve entire system performance and
storage efficiency, existing schemes have been proposed, such
as hierarchical Bloom filter index to speed up the searching
process [8], continuously monitoring query execution to opti-
mize the cloud-scale query [9], query optimization for parallel
data processing [4], approximate membership query over

cloud data [10], multi-keyword search over encrypted cloud
data [11], [12], similarity search in file systems [13], minimiz-
ing retrieval latency for content cloud information [14] and
retrieval for ranked queries over cloud data [7]. Due to space
inefficiency and high-complexity hierarchical addressing,
these schemes fail tomeet the needs of real-time queries.

In order to support real-time queries, hashing-based data
structures have been widely used in constructing the index
due to constant-scale address\ing complexity and fast
query response. Unfortunately, hashing-based data struc-
tures cause low space utilization, as well as high-latency
risk of handling hashing collisions. Traditional techniques
used in hash tables to deal with hashing collisions include
open addressing [15], [16], [17], [18], [19], chaining [20], [21],
[22] and coalesced hashing [23], [24], [25]. Unlike conven-
tional hash tables, cuckoo hashing [26] addresses hashing
collisions via simple “kicking-out” operations (i.e., flat
addressing), which moves items among hash tables during
insertions, rather than searching the linked lists (i.e., hierar-
chical addressing). Architecture-conscious hashing [27] has
demonstrated that cuckoo hashing is much faster than the
chaining hashing with the increase of load factors. The
cuckoo hashing makes use of d � 2 hash tables, and each
item has d buckets for storage. Cuckoo hashing selects a
suitable bucket for inserting a new item and alleviates hash
collisions by dynamically moving items among their d can-
didate positions respectively in hash tables. Such scheme
ensures a more even distribution of data items among hash
tables than uses only one hash function in conventional
hash tables. Due to the salient feature of flat addressing
with constant-scale complexity, cuckoo hashing needs to
probe all hashed buckets only once and obtains the query
results. Even probing at most d buckets in the worst case,
the cuckoo hashing guarantees constant-scale query time

� Y. Sun, Y. Hua, D. Feng, L. Yang, P. Zuo, S. Cao, and Y. Guo are with
WuhanNational Laboratory for Optoelectronics, School of Computer Science
and Technology, Huazhong University of Science and Technology, Wuhan
430074, China.
E-mail: {sunyuanyuan, csyhua, dfeng, yling, pfzuo, csd, ycguo}@hust.edu.cn.

Manuscript received 28 Feb. 2016; revised 20 July 2016; accepted 21 July
2016. Date of publication 27 July 2016; date of current version 15 Feb. 2017.
Recommended for acceptance by Z. Chen.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2016.2594763

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 3, MARCH 2017 619

1045-9219� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

complexity and constant amortized time for insertion and
deletion process, which is also considered by Rivest in [18].
Cuckoo hashing thus improves space utilization without
the increase of query latency.

In order to implement data structures of hash tables to
adapt to concurrent hardware, e.g., multiprocessor machines,
efficient synchronization of concurrent access to data stru-
tures is essential and significant. More and more studies
focus on proposing concurrent hash tables [28], [29], [30], [31],
[32], [33].

In practice, due to the essential property of hash functions,
the cuckoo hashing fails to fully avoid hash collisions. Existing
work to handle hash collisionsmainly leverages random-walk
approach [34], [35], which suffers from redundant migration
operations among servers on account of unpredictable ran-
dom selection. The random-walk schemes cause endless loops
and high latency for re-construction of hash tables eventually,
like ChunkStash [36]. ChunkStash uses an in-memory hash
table to index metedata, and the hash collisions are mitigated
by cuckoo hashing. The ChunkStash system addresses hash
collisions via a small number of key relocations to extra linked
list (or hash table). The approach alleviates hash collisions
with the extra spatial costs. In order to deliver high perfor-
mance and support real-time queries, we need to deal with
threemain challenges.

� Intensive Data Migration. When new data items are
inserted into storage servers via cuckoo hashing, a
kicking-out operation may incur intensive data migra-
tion among servers if hash collisions occur [32]. The
kicking-out operation needs to migrate the selected
item to its other candidate buckets and kick out another
existing item until an empty slot is found. Frequent
kicking-out operations cause intensive data migration
among multiple buckets of hash tables. Conventional
cuckoo hashing based schemes heavily depend on the
timeout status to identify an insertion failure. They
complete the insertion process only after experiencing
numerous random-walk based kicking-out operations,
thus resulting in endless loops and consuming sub-
stantial system resources. Hence, we need to avoid or
alleviate the occurrence of intensive datamigration.

� Space Inefficiency. In general, when data collisions
occur during the insertion process, we randomly
choose a position from d candidates to kick out the
existing item, but we cannot predict in advance
whether there exists an empty slot for the kicked-out
item. Due to the unpredictable random selection in
traditional cuckoo hashing, there is always some
small but practically significant probability that a
failure occurs during the insertion of an item. None
of the d buckets are or can easily be made empty to
hold the data [37]. In this case, conventional cuckoo
hashing has to rehash all items in the hash tables or
leverage extra space to store insertion-failure items,
leading to space inefficiency of hash tables.

� High Insertion Latency. The cuckoo hashing schemes
based on random-walk approach move items ran-
domly among their d candidate positions in hash
tables [35]. This exacerbates the uncertainty of hash
addressingwhen all candidate positions are occupied.

The random selection in kicking-out operations may
cause repetitions and infinite loops of kicking-out
paths [36], which results in high latency in insertion
operation.

In order to address these challenges, we propose a Min-
Counter scheme for cloud storage systems to mitigate the
actual hash collisions and high latency in the insertion pro-
cess. MinCounter allows each item to have d candidate buck-
ets. An empty bucket can be chosen to store the item. In order
to record kicking-out times occurring at the bucket in real
time, we allocate a counter for each bucket. When hash colli-
sions occur during the insertion operation, and all candidate
buckets are not empty, the item selects the bucket with the
minimum counter to kick out the occupied item to reduce or
avoid endless loops. The rationale of MinCounter is to select
unbusy kicking-out routes independently rather than ran-
domly choose and seek the empty buckets as quickly as possi-
ble. Moreover, in order to reduce the frequency of rehashing,
we temporarily store insertion-failure items into in-memory
cache, rather than directly rehash the entire structure. Specifi-
cally, this paper hasmade the following contributions.

� Alleviating Hash Collisions and DataMigration. We
propose a novel cuckoo hashing based scheme, called
MinCounter, in the cloud storage servers. MinCounter
allocates a counter per bucket of hash tables, to record
the kicking-out times occurring in the buckets.When d
candidate positions of a new item to be inserted are all
occupied by other items, MinCounter selects the mini-
mum counter, rather than randomly choose, to execute
the replacement operation. This scheme can signifi-
cantly alleviate hash collisions and decrease data
migration by balancing items in hash tables.

� Improving Space Efficiency and Decreasing Inser-
tion Latency. MinCounter demonstrates salient per-
formance superiority in terms of insertion latency.
It achieves load balance by kicking items out to
“cold” (infrequently accessed) positions when hash
collisions occur. We can mitigate data collisions and
reduce total times of kicking-out operations. Min-
Counter hence improves space efficiency and
decreases insertion latency.

� Practical Implementation. We have implemented the
MinCounter prototype and compared it with the state-
of-the-art cuckoo hashing scheme, ChunkStash [36], in
a large-scale cloud computing testbed. We use two
real-world traces and a dataset of randomly generated
numbers to examine the practical performance of the
proposedMinCounter. The results demonstrate signif-
icant performance improvements in terms of utiliza-
tion of hash tables and insertion latency.

The rest of this paper is organized as follows. Section 2
shows the research background. Section 3 presents the Min-
Counter design and practical operations. Section 4 illus-
trates the performance evaluation and Section 5 shows the
related work. Finally, we conclude our paper in Section 6.

2 BACKGROUND

The cuckoo hashing was described in [26] as a dynamiza-
tion of a static dictionary. Cuckoo hashing leverages two or
more hash functions for handling hash collisions to mitigate

620 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 3, MARCH 2017

the computing complexity of using the linked lists of con-
ventional hash tables. An item x has two candidate posi-
tions to be placed, i.e., h1ðxÞ and h2ðxÞ, instead of only one
single position in cuckoo hashing scheme. A bucket stores
only one item and hash collisions can be decreased. For a
general lookup, we only probe whether the queried item is
in one of its candidate buckets.

A hash collision occurs when all candidate buckets of a
newly inserted item have been occupied. Cuckoo hashing
needs to execute “kicking-out” operations to dynamically
move existing items in the hashed buckets and select a suit-
able bucket for the new item. The kicking-out operation is
similar to the behavior of cuckoo birds in nature, which
kicks other eggs or young birds out of the nest. In the similar
manner, the cuckoo hashing recursively kicks items out of
their buckets and leverages multiple hash functions to offer
multiple choices and alleviates hash collisions.

However, cuckoo hashing fails to fully avoid hash colli-
sions. An insertion of a new item causes a failure and an end-
less loop when there are collisions in all probed positions
until reaching the timeout status. To break the endless loop,
an intuitiveway is to perform a full rehash if this rare incident
occurs. In practice, the expensive overhead of performing a
rehashing operation can be dramatically reduced by taking
advantage of a very small additional constant-size space [37].

2.1 Standard Cuckoo Hashing

The cuckoo hashing is a dynamization of a static dictionary
and supports fast queries with the worst-case constant-scale
lookup time due to flat addressing for an item among multi-
ple choices.

Definition 1. Standard Cuckoo Hashing. Conventional cuckoo
hashing uses two hash tables, T1 and T2, with the length m,
and two hash functions h1, h2: U ! f0; . . . ;m� 1g. Each
item x 2 S is kept in one of the two buckets: h1ðxÞ of T1, h2ðxÞ
of T2, but never in both. The hash functions hi, i ¼ 1; 2, meet
the conditions of independent and random distribution.

Fig. 1 shows an example of two hash tables to illustrate the
practical operations of standard cuckoo hashing. We use
arrows to show possible destinations for moving items as
shown in Fig. 1a. If item x is inserted into hash tables, we first
check whether there exists any empty bucket of two candi-
dates of item x. If not, we randomly choose one from candi-
dates and kick out the original item. The kicked-out item is
inserted into Table2 in the same way. The process is executed
in an iterative manner, until all items find their buckets.
Fig. 1b demonstrates the running process that the item x is
successfully inserted into the Table1 by moving items a and b
from one table to the other. While, as shown in Fig. 1c, endless
loops may occur and some items fail to find a suitable bucket
to be stored. Therefore, a threshold “MaxLoop” is necessary
to specify the number of iterations. If the iteration times are
equal to the pre-defined threshold, we can argue the occur-
rence of endless loops, which causes the re-construction of
entire structure. The theoretical analysis ofMaxLoop has been
shown in Section 4.1 in [38]. Moreover, due to essential prop-
erty of random choice in hash functions, hash collisions can
not be fully avoided, but significantly alleviated [35].

It is shown in [39] that if two hash tables are almost half
full, i.e., m � ð1þ "Þn for a constant parameter " > 0, and

h1 and h2 are chosen uniformly and randomly from an
ðOð1Þ; OðlognÞÞ-universal family, the probability of being
unable to arrange all items of dataset S is Oð1=nÞ, according
to h1 and h2.

2.2 Improved Cuckoo Hashing

There is an improvement in cuckoo hashing and allows each
item to own d > 2 candidate locations, which has been
widely used in real-world applications [32], [36], [37], [40],
[41], [42], [43], [44].

Definition 2. Improved Cuckoo Hashing. Improved cuckoo
hashing leverages d hash tables, T1; T2; . . . ; Td, and d hash
functions h1; h2; . . . ; hd : U ! f0; . . . ;m� 1g, where m is the
length of each hash table. Each item x 2 S is kept in one of the
d buckets: h1ðxÞ of T1, h2ðxÞ of T2, . . ., hdðxÞ of Td, but never
in d buckets. dð> 2Þ is a small constant.

2.3 Concurrency Control Using Locking

It’s important to efficiently support concurrent access to a
cuckoo hash table. Some previously proposed schemes are
used to improve concurrency [32], [33], [44]. In order to sup-
port arbitration for concurrent access in data structures,
locking is an efficient mechanism [31], [45], [46], [47].

Multi-thread applications achieve high performance
through taking advantage of more andmore cores. In order to
ensure thread correctness and safety, a critical section con-
trolled by a lock is used to allow the operations of multiple
threads to be serializedwhen accessing the sharedpart of data.

� Coarse-grained Lock [32], [33], [45]. A simple way of
locking is to attach a coarse-grained lock to the entire
shared data structure, and only one thread can pos-
sess the lock in the meanwhile. The thread with the
lock prevents other threads from accessing the
shared data, even through others only want to read
the shared data and have no updates, which has neg-
ative influence on concurrent performance.

� Fine-grained Lock [31], [46], [47]. Another locking is
to divide the coarse-grained lock into multiple fine-
grained locks. Each fine-grained lock protects only
one part of the shared data structures. Hence,

Fig. 1. The example of item insertion in the cuckoo hashing.

SUN ETAL.: A COLLISION-MITIGATION CUCKOO HASHING SCHEME FOR LARGE-SCALE STORAGE SYSTEMS 621

multiple threads can work on different parts of the
structures without conflicts. Fine-grained locking
has positive influence on concurrent performance
compared with the coarse-grained locking. How-
ever, careful design and implementation are needed
to avoid deadlock, livelock, starvation, etc.

It is challenging to effectively support concurrent access
to cuckoo hash tables. In order to support the concurrent
execution of the single-thread cuckoo hashing algorithm,
while still maintaining the high space efficiency of cuckoo
hashing, we need to deal with two problems.

� Deadlock Risk(writer/writer). Multiple insertion
operations process in the concurrent cuckoo hashing.
An insertion operation may modify several buckets
when moving the items among hash tables until each
item has its available bucket. There is a situation in
which two or more insertion operations require locks
for buckets which are owned by each other. They
have to wait for the other to finish, but neither ever
does, which results in a deadlock. Basic techniques
support atomic insertion operation to avoid dead-
lock, e.g., acquiring all necessary locks previously,
which is not appropriate due to reducing the overall
performance of the concurrent system.

� False Misses(reader/writer). Query operations
lookup itemswhile kicking-out operations in insertion
occur in the concurrent cuckoo hashing. There is a case
that an query operation searches an item which is
kicked out from its original bucket and before being
inserted to its candidate position. The item is unreach-
able from both buckets and temporarily unavailable.
Thus if the insertion-operation is non-atomic, query
operation may complete and return a false miss when
an item is unreachable.

3 DESIGN AND IMPLEMENTATION DETAILS

3.1 The MinCounter Architecture

MinCounter supports a fast and cost-effective cuckoo hash-
ing scheme for data insertion. Due to the simplicity and
ease of use, MinCounter has the salient features of high uti-
lization, less data migration and less time overheads. The
summarized structure fits into the main memory to improve
overall performance. Fig. 2 shows the storage architecture of
MinCounter.

We implement the MinCounter component as well as
metadata structures in the DRAM. The metadata are in the

form of key-value pairs. A key is the hashed value of a file
ID and the value is the correlated metadata. The hard disk
at the bottom stores and maintains the correlated files. The
proposed MinCounter scheme is compatible to existing sys-
tems, such as the Hadoop Distributed File System (HDFS)
and General Parallel File System (GPFS).

3.1.1 In-Memory Data Structure

We observe that the frequency of kicking-out operations in
each bucket of hash tables is not uniform. Some buckets
receive frequent kicking-out operations and some perform
infrequently. We call the buckets where hash collisions
occur frequently as “hot” buckets, and the buckets where
hash collisions occur infrequently as “cold” buckets. The
frequency is interpreted as the times of hash collisions
occurring in the bucket during insertion operations of whole
dataset. Fig. 3 illustrates the existence of unbalanced “hot”
and “cold” buckets. During the insertion operation, we
examine the counter values of buckets in six datasets, which
are further classified into five intervals (there is no bucket
whose counter value is larger than 25). We record the num-
bers of buckets whose counter values are in each interval.
The counter value of each bucket indicates the frequency of
hash collisions occurring in the bucket. The buckets where
hash collisions frequently occur are “hot”, and otherwise
“cold”. We take advantage of the characteristic to propose
an effective scheme, called MinCounter, to alleviate hash
collisions and endless loops via a frequency-aware method.

MinCounter is to place items in the cuckoo hashing
based data structure. MinCounter selects the “cold”, rather
than random, buckets and avoids “hot” paths to alleviate
the occurrence of endless loops in the data insertion process
when hash collisions occur.

It is easy to understand the case of d ¼ 2 in the cuckoo
hashing. Each bucket contains only one item. When an item
is kicked out from its occupied bucket, it has to choose to
replace one of items in other candidate buckets due to
avoiding self-kicking-out [38], [48]. In real-world applica-
tions, the cases of d > 2 are more important and widely
exist, which is the focus in MinCounter.

The idea behind MinCounter is to judiciously alleviate
the hash collisions in the data insertion procedure. Conven-
tional cuckoo hashing can be carried out in only one large
hash table or d � 2 hash tables. Each item of the set S is
hashed to d candidate buckets of hash tables. When item x
is inserted into the hash tables, we look up all of its d

Fig. 2. The architecture of MinCounter storage system. Fig. 3. The unbalanced distribution of buckets.

622 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 3, MARCH 2017

candidate buckets in order to observe whether there is at
least one empty slot to insert. Otherwise, we have to replace
one in occupied buckets with the item x. Traditionally, we
choose to use random-walk cuckoo hashing [34], [35] to
address hash collisions. When there is no empty bucket for
item x, it randomly chooses the bucket from its candidates
to perform replacement operation. In general, we avoid
choosing the one that was occupied just now due to avoid-
ing self-kicking-out. Due to the randomness of the random-
walk cuckoo hashing, endless loops and repetitions cannot
be avoided actually, which affects the overall performance
of structures, such as load factor and insertion latency.

MinCounter is a multi-choice hashing scheme to place
items in hash tables as shown in Fig. 4. It leverages cuckoo
hashing to allow each item to have d candidate buckets.
Each item chooses only one bucket to locate. The used
hash functions are chosen independently from an appro-
priate universal hash family. We allocate a counter for
each bucket to record the kicking-out times occurring at
the bucket during insertion processes of whole dataset. If
no empty buckets are available, the item needs to select
one with the minimum counter and kick out the occupied
item to reduce or avoid the endless loop. But there are
always some opportunities that in the insertion of a new
item, none of the d candidate positions are empty, thus
causing an insertion failure. We temporarily store inser-
tion-failure items into a constant-sized cache [37] rather
than rehash the structure immediately to reduce the expen-
sive overhead of structure reconstruction with a slight cost
of extra queries.

Fig. 4 illustrates the data structure of MinCounter (e.g.,
d ¼ 3). The blue buckets are the hit positions by hash com-
putation of item x. If all positions hiðxÞ(i ¼ 1; 2; 3) are occu-
pied by other items, the item has to replace one through the
MinCounter scheme. Furthermore, one item has to be
inserted into the extra cache when insertion failure occurs.

3.1.2 The MinCounter Working Scheme

In order to alleviate the occurrence of endless loops in cuckoo
hashing, we improve the conventional cuckoo hashing by
allocating a counter for each bucket of hash tables. We utilize
the counters to record kicking-out times occurring at buckets
in history. When a hash collision occurs in a bucket, the cor-
responding counter increases by 1. If an item x is inserted
into the hash tables without the availability of empty candi-
date buckets, we choose the bucket with the minimum
counter to execute the replacement. Particularly, if more

than one counter has the minimum, we choose the bucket
with theminimumnumber of hash tables by default.

As shown in Fig. 5, we take d ¼ 3 to give an example.
When the item x is inserted into hash tables, we first check
the buckets of h1ðxÞ, h2ðxÞ and h3ðxÞ in each hash table
respectively to find an empty bucket. Each candidate bucket
of x is occupied by a, b, c respectively (as shown in Fig. 5a).
Moreover, we compare the counters of candidate buckets
and choose the minimum one (i.e., 18 in this example), and
further replace item c with x. In the meantime, the counter
of the bucket of h3ðxÞ increases by 1 up to 19 (Fig. 5b). The
kicked-out item c becomes the one needed to be inserted,
and the insertion procedure goes on, until an empty slot is
found in hash tables.

MinCounter allows items to be inserted into hash tables
to improve the storage space efficiency, but fails to fully
address endless loops. Like ChunkStash [36], we leverage
an extra space to temporarily store the insertion-failure
items rather than rehash the structure immediately. The via-
bility of this approach has also been established in [37],
where the authors show, through massive analysis and sim-
ulations, that a very small constant-size extra space yields
significant improvements, dramatically reducing the inser-
tion failure probabilities associated with cuckoo hashing
and enhancing cuckoo hashing’s practical viability in both
hardware and software. Some schemes also use the similar
mechanism with a stash [49], [50], [51].

Due to the negligible extra space, we construct a small
hash table, in memory. The insertion-failure items store in
the table through a random hash function for supporting
operations in expected constant time.

3.1.3 Concurrent Cuckoo Hashing

In order to address those challenges presented in Section 2.3
and support multiple writes and reads in a concurrent man-
ner, we improve conventional single-thread cuckoo hashing
scheme by fine-grained lock mechanism and an auxiliary
space.

We allocate a lock for each bucket of hash tables, and
each lock protects only one bucket of hash tables. Inser-
tion operations request locks for buckets when kicking-
out operations occur. Different buckets can be protected
by different locks, and the operations on different buck-
ets can proceed concurrently. We add extra space in
memory as an overflow buffer to temporarily store items
kicked out from their original buckets and before being
inserted to candidate positions. The size of extra space is
equal to the number of threads, so the space overhead is
negligible.

During insertion, each operation requests only one lock
for bucket where kicking-out operation occurs, and stores
the kicked-out item in buffer, which avoids writer/writer

Fig. 4. The data structure of MinCounter.

Fig. 5. The improved cuckoo hashing table structure.

SUN ETAL.: A COLLISION-MITIGATION CUCKOO HASHING SCHEME FOR LARGE-SCALE STORAGE SYSTEMS 623

deadlock effectively. To avoid misses in reader/writer, we
need to check both hash tables and the buffer during query
operations. The lock mechanism may have a negative effect
on time overhead for one insertion operation, but it improves
the overall time performance, compared with no concur-
rency. For a query, we need to check both the hash tables and
the extra space (stash and buffer) to guarantee the query
accuracy.

3.2 Practical Operations

We describe practical operations of MinCounter to support
item insertion, item query and item deletion.

3.2.1 Insertion

The insertion operation places items into their empty hash
buckets to achieve load balance. Fig. 6 illustrates the iterative
insertion algorithm for item x. We use the parameter
kickcount as the counter to record the cumulative kicking-out
times, and the parameter exclude to record the current kick-
ing-out position due to avoiding self-kicking-out. The two
parameters are initialized to 0. We first find an empty bucket
for the item x to be inserted from its candidates. If there exists
an empty bucket and no hash collisions occur, the item x can
be directly inserted as shown in Fig. 7. Moreover, if there is no
empty bucket among the candidate positions, MinCounter
needs to employ the kicking-out operations to find an empty
bucket for item x as shown in Fig. 8. If the recursive times
reach the threshold MaxLoop, we store the insertion-failure
item into the extra cache.

We denote D½�� to be the data in the bucket, C½�� to rep-
resent the counter of the bucket, and S½�� to represent the

data in the extra space. We need to decide how to choose
the replaced item if d candidate buckets for the item x to be
inserted are not empty. Our approach is to compare the d
counters and select the minimum one, and kick out the
occupied item y by x. We further need to locate y in one of
its other d� 1 candidate buckets (except the one that now
occupied by x, to avoid the obvious loop).

3.2.2 Query

The query operation needs to traverse all candidate buck-
ets of the item to be queried and the extra space.
MinCounter consumes the constant-scale query time of
cuckoo hashing in a simple way. Fig. 9 illustrates the
details of query operation. We first search all candidate
buckets of the item. If the item is found in hash tables, we
return the result and finish the query operation. If the
query failure occurs, we have to traverse the extra space
to search the queried item. We return the result when the
item is found in the space. Otherwise, the query operation
fails eventually.

3.2.3 Deletion

In the deletion operation, we need to lookup the item to be
deleted and remove it from the bucket of hash tables or
extra space directly as shown in Fig. 10. We first search the
item to be deleted in its all candidate positions of hash
tables, and delete it at once when the item is found. If we
fail to find the item in the hash tables, we traverse the extra
space to delete it. If the item can not be found, it means the
item doesn’t exist in the data structure.

Fig. 6. The algorithm of item insertion.

Fig. 7. The algorithm of direct item insertion.

Fig. 8. The algorithm of item insertion via MinCounter.

Fig. 9. The algorithm of item query.

624 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 3, MARCH 2017

4 PERFORMANCE EVALUATION

4.1 Experimental Setup

We implemented the MinCounter scheme in a 128-node par-
allel cluster system. Each node is equipped with an Intel 2.8
GHz 16-core CPU, a 16 GB DRAM and 500 GB hard disk.
The prototype is developed under the Linux kernel 2.6.18
environment and we implemented all functional components
of MinCounter in the user space. In order to demonstrate
the efficiency and effectiveness of the proposed MinCounter
scheme, we use three datasets and two initial rates, i.e., 1.1
and 2.04, in hash tables. The initial rate means themultiplewe
set based on the size of datasets to create hash tables. When
the rate is 1.1, hash collisions occur frequently, and hardly
when the rate is 2.04.

4.2 The Kicking-Out Threshold Settings

Existing cuckoo hashing schemes fail to fully avoid endless
loops due to the essential property of hash collisions. In
order to alleviate the endless loops and reduce temporal
and spatial overheads in the item insertion operations, a
conventional method is to pre-define an appropriate thres-
hold to represent the tolerable maximum times of kicking-

out per insertion operation. However, it is nontrivial to
obtain the suitable threshold value that depends on the
application requirements and system status. In order to
carry out meaningful experiments, we choose to use exper-
imental approaches to determine the appropriate threshold
value.

We use the utilization ratio as the performance metric to
identify a suitable threshold. Fig. 11 shows the utilization
ratio of cuckoo hash tables increases with the threshold of
kicking-out times when insertion failures occur. We observe
that the utilization ratio exhibits smoothness and achieves a
satisfactory level starting from 80. This means no matter
how to increase the threshold, the utilization ratio of hash
tables has no significant changes.

In the meantime, as shown in Fig. 12, total kicking-out
numbers increase significantly with the increasing threshold
of kicking-out times. Intuitively, the extra overhead of
kicking-out operations increases with the threshold, we
thus need to choose the smallest threshold reaching the sat-
isfactory utilization ratio of hash tables. Therefore, the fol-
lowing experiments are performed with the optimal

TABLE 1
The Dataset of Randomly Generated Numbers

Groups Range Size

group1 0-100,000,000 1,314,404
group2 0-80,000,000 2,017,180
group3 0-100,000,000 2,517,415
group4 0-200,000,000 4,960,610
group5 0-500,000,000 7,666,282
group6 0-500,000,000 11,184,784

TABLE 2
The MacOS Trace

Groups Date Size

group1 20121101 1,005,000
group2 20130101 1,020,673
group3 20130201 1,027,657
group4 20130401 1,037,681

TABLE 3
The Bag of Words Trace

Groups Text collections D W N

group1 KOS blog entries 3,430 6,906 353,160
group2 NIFS full papers 1,500 12,419 746,316
group3 Enron Emails 39,861 28,102 3,710,420
group4 NYTimes news articles 300,000 102,660 69,679,427

Fig. 11. The utilization ratio of cuckoo hash tables with different thresh-
olds of kicking-out times.

Fig. 12. The total kicking-out numbers of the whole dataset insertion
operations with different thresholds of kicking-out times.

Fig. 10. The algorithm of item deletion.

SUN ETAL.: A COLLISION-MITIGATION CUCKOO HASHING SCHEME FOR LARGE-SCALE STORAGE SYSTEMS 625

threshold of 80, compared with other values of 50, 100 and
120 when the initial rate is 1.1. When the rate is 2.04, almost
all items are inserted successfully and there is no significant
difference of the utilization ratio of hash tables, so we only
examine the optimal threshold of 80 in this situation.

4.3 The Counter Size Settings

First, we need to consider the bits per counter of per bucket
in hash tables for space savings. Table 4 shows the distribu-
tion of counters’ values. We randomly choose two groups of
data from three datasets respectively for statistic analysis.
Most values are distributed in the interval of 0 to 32 (namely

25). The values of counters larger than 32 are 0, and it is suf-
ficient to allocate 5 bits per counter. The memory overflow
may hardly occur, which means MinCounter leads to the
equilibrium distribution. To demonstrate the efficiency of
our MinCounter scheme, Fig. 13 shows the bits per counter
and the average numbers of kicking-out times per bucket in
hash tables when using the MinCounter scheme. We
observe that at most 5 bits per bucket is sufficient for a large
proportion of dataset.

4.4 The Cache Size Settings

Second, we need to carefully consider the cache size for tem-
porarily storing insertion-failure items inMinCounter. Fig. 14
illustrates the success ratio of data insertion operations with
different thresholds of kicking-out times in rate ¼ 1.1. Based
on examining 6 groups of data randomly chosen from three
datasets, we observe that over 95 percent items in each dataset
are inserted successfully into hash tables, and the last two
real-world traces are evenmore than 99 percent. Sowe choose

the constant-sized cache,which is equal to 5 percent of dataset
size, for each set of data inMinCounter.

4.5 Experimental Results

4.5.1 Single-Thread Results

We show advantages of MinCounter over RandomWalk [35]
and ChunkStash [36] by comparing their experimental results
in terms of utilization ratio of hash tables when insertion fail-
ures occur, total kicking-out times and mean time overheads
of whole insertion operations. The thresholds of kicking-out
times are 50, 80, 100 and 120. In the following, MT is the
threshold of kicking-out times in theMinCounter scheme,RT
is the threshold in the RandomWalk scheme and CT is the
threshold in the ChunkStash scheme. Meanwhile, numbers
behind MT , RT and CT in following figures are thresholds
set in experiments, such as MT80 is the MinCounter scheme
with the threshold of 80.

� Utilization Ratio. Fig. 15 shows the utilization ratio
of cuckoo hash tables when insertion failure first
occurs by using the dataset of Randomly Generated
Numbers. We observe that the average utilization
ratio of MinCounter is 75 percent, which is higher
than the percentage of 70 percent in RandomWalk
and ChunkStash. Compared with RandomWalk
and ChunkStash schemes, MinCounter obtains on
average 5 percent utilization ratio promotion. Ran-
domWalk and ChunkStash schemes need to choose
kicking-out positions randomly when hash collisions
occur. There is no guide for avoiding endless loops,
and iterations may easily reach the threshold of

Fig. 13. The distribution of values of counters.
Fig. 14. The success ratio of data insertion operations with different
thresholds of kicking-out times.

TABLE 4
The Distribution of Counter Values

Dataset Scheme ½0; 2Þ ½2; 4Þ ½4; 8Þ ½8; 16Þ ½16; 32Þ ½32; 64Þ ½64; 128Þ ½128;þ1Þ Total

MacOS1 MinCounter 572,095 73,852 78,731 242,152 646,779 0 0 0 15,478,911
ChunkStash 607,602 35,603 158,600 286,433 313,276 129,008 6,583 6 17,091,350

MacOS2 MinCounter 638,199 83,278 88,425 274,065 719,329 0 0 0 17,214,994
ChunkStash 677,515 40,334 178,197 321,110 350,754 142,416 7,076 6 19,020,956

RandNum1 MinCounter 3,412,984 326,677 356,746 793,323 3,701,119 0 0 0 102,046,710
ChunkStash 3,569,932 168,758 643,825 1,171,156 1,508,509 1,018,735 19,1162 2,932 111,370,874

RandNum2 MinCounter 4,996,954 475,067 525,734 1,150,821 5,381,882 0 0 0 149,183,728
ChunkStash 5,224,727 247,873 933,485 1,702,033 2,196,590 1,482,143 283,787 5,432 162,740,748

BagofWords1 MinCounter 2,064,669 689,473 177,673 0 0 0 0 0 5,846,576
ChunkStash 2,158,737 1,839,122 790,557 399,215 43,269 213 0 0 11,174,442

BagofWords2 MinCounter 32,298,060 24,833,952 6,188,804 35,676,562 0 0 0 0 452,870,992
ChunkStash 34,678,813 5,324,479 10,258,177 13,922,742 10,141,169 2,274,767 47,232 5 538,695,011

626 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 3, MARCH 2017

kicking-out times. Less items can be inserted into
hash tables, which results in lower utilization ratio of
hash tables. Furthermore, an insertion failure shows
the occurrence of an endless loop. A rehash process is
needed. MinCounter improves the utilization ratio of
hash tables, which means the proposed scheme alle-
viates hash collisions and decreases the rehash proba-
bility. MinCounter optimizes the cloud computing
system performance by improving the utilization of
hash table and decreasing the rehash probability.

Fig. 16 shows the utilization ratio of cuckoo hash
tables when using the trace of fingerprints of MacOS.
We observe that compared with RandomWalk and
ChunkStash schemes, MinCounter obtains on aver-
age 6 percent utilization improvement, while the
average utilization ratio of MinCounter is 88 percent
in the MacOS trace, and 82 percent in RandomWalk
and ChunkStash schemes.

Fig. 17 illustrates the utilization ratio of cuckoo
hash tables when using the Bag of Words trace. We
observe that MinCounter obtains on average 5 per-
cent utilization improvement, compared with Ran-
domWalk and ChunkStash schemes, while the
average utilization ratio of MinCounter is 88 percent
in the Bag of Words trace, and 83 percent in Random-
Walk and ChunkStash schemes.

� Total Kicking-out Times. We examine the total kick-
ing-out numbers of MinCounter, RandomWalk and
ChunkStash by using the dataset of Randomly Gen-
erated Numbers as shown in Fig. 18. When insertion
failure occurs, we store the item into a temporary
small additional constant-size cache in MinCounter

like ChunkStash rather than rehash tables like Ran-
domWalk immediately. This may cause slight extra
space overhead, but obtains the benefit of reducing
the failure probability. Compared with Random-
Walk and ChunkStash, MinCouter significantly cuts
down over 20 percent and 10 percent total kicking-
out numbers in rate ¼ 1.1 (in Fig. 19), and on average
37 percent in rate ¼ 2.04 (in Fig. 18b). MinCounter
enhances the experiences of cloud users through
decreasing total kicking-out times.

We examine the total kicking-out numbers of Min-
Counter, RandomWalk and ChunkStash by using the
trace of MacOS as shown in Fig. 20. Compared with
RandomWalk and ChunkStash, MinCouter signifi-
cantly cuts down almost 55 and 50 percent total kick-
ing-out numbers in rate ¼ 1.1 (in Fig. 21), and on

Fig. 15. The utilization ratio of cuckoo hash tables using the dataset of
randomly generated numbers.

Fig. 16. The utilization ratio of cuckoo hash tables using the trace of
MacOS.

Fig. 17. The utilization ratio of cuckoo hash tables using the trace of Bag
of Words.

Fig. 18. The total kicking-out numbers of whole insertion operations
using the dataset of randomly generated numbers.

SUN ETAL.: A COLLISION-MITIGATION CUCKOO HASHING SCHEME FOR LARGE-SCALE STORAGE SYSTEMS 627

average 30 percent in rate¼ 2.04 (in Fig. 20b). Such sig-
nificant improvement comes from the kicking-out bal-
ance between hash tables in MinCounter to avoid
“hot” buckets and reduce kicking-out times. More-
over, we observe that the case of rate ¼ 1.1 receives
more decrease than the case of rate ¼ 2.04. Items have
lower probabilities of hash collisions due to having
more space capacity in rate¼ 2.04.

Fig. 22 shows the total kicking-out numbers in
the Bag of Words trace. Compared with Random-
Walk and ChunkStash, MinCouter reduces about
50 percent total kicking-out numbers in rate ¼ 1.1
(in Fig. 23), and on average 30 percent in rate ¼
2.04 (in Fig. 22b).

4.5.2 Multi-Thread Reasult

� Insertion Time Overhead. MMT represents the
threshold of kicking-out times in the multi-threads
MinCounter scheme, and SMT is the threshold in
the single-thread scheme. Fig. 24 shows mean time
overheads of entire insertion operations by using the
dataset of randomly generated numbers. We observe
that compared with ChunkStash, single-thread
MinCouter significantly reduces about 20 percent
time overheads in rate ¼ 1.1 rate ¼ 2.04. Multi-
threads MinCounter makes further improvment
through cutting down more than 27 percent time
overheads in rate ¼ 1.1 (in Fig. 25) and more than 20

Fig. 20. The total kicking-out numbers of whole insertion operations
using the trace of MacOS.

Fig. 21. The decreasing ratio of total kicking-out times of MinCounter
using the trace of MacOS in rate = 1.1.Fig. 19. The decreasing ratio of total kicking-out times of MinCounter

using the dataset of randomly generated numbers in rate = 1.1.

Fig. 22. The total kicking-out numbers of whole insertion operations
using the trace of Bag of Words.

628 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 3, MARCH 2017

percent in rate ¼ 2.04 (in Fig. 24b). MinCounter opti-
mizes the cloud computing systems performance by
decreasing the time overheads.

We examine the time overheads of MinCounter
and ChunkStash by using the metric of mean time
overheads of whole insertion operations in the trace
of MacOS as shown in Fig. 26. In contrast with
ChunkStash, single-thread MinCouter significantly
decreases about 36 percent time overheads in rate ¼
1.1 and more than 25 percent in rate ¼ 2.04. In addi-
tion, multi-threads MinCounter cuts down more than
32 percent time overheads in rate¼ 1.1 (in Fig. 27) and
about 10 percent in tate¼ 2.04 (in Fig. 26b).

Fig. 24. The mean time overheads of whole insertion operations using
the dataset of randomly generated numbers.

Fig. 23. The decreasing ratio of total kicking-out times of MinCounter
using the trace of Bag of Words in rate = 1.1.

Fig. 25. The decreasing ratio of mean time overheads of whole insertion
operations using the trace of randomly generated numbers in rate = 1.1.

Fig. 26. The mean time overheads of whole insertion operations using
the trace of MacOS.

Fig. 27. The decreasing ratio of mean time overheads of whole insertion
operations using the trace of MacOS in rate = 1.1.

SUN ETAL.: A COLLISION-MITIGATION CUCKOO HASHING SCHEME FOR LARGE-SCALE STORAGE SYSTEMS 629

Fig. 28 shows the mean time overheads of whole
insertion operations of MinCounter and ChunkStash
by using the trace of Bag of Words. Compared with
ChunkStash, single-thread MinCounter significantly
reduces more than 35 percent time overheads in rate
¼ 1.1 and about 25 percent in rate ¼ 2.04. Multi-
threads MinCounter further decreases more than 15
percent time overheads in tate ¼ 1.1 (in Fig. 29) and
about 10 percent in rate¼ 2.04 (in Fig. 28b).

5 RELATED WORK

Cuckoo hashing [38] is an efficient variation of the multi-
choice hashing scheme. In the cuckoo hashing scheme, an
item can be placed in one of multi-candidate buckets of
hash tables. When there is no empty bucket for an item at
any of its candidates, the item can kick out the item existing
in one of the buckets, instead of causing insertion failure
and overflow (e.g., using the linked lists). The kicked-out
item operates in the same way, and so forth iteratively, until
all items occupy one of buckets during insertion operations.
Some researches discuss the case of multiple selectable
choices of d > 2 as hypergraphs [54], [55].

Existing work about cuckoo hashing [56], [57] presents
the theoretical analysis results. Simple properties of branch-
ing processes are analyzed in bipartite graph [56]. A study
by M. Mitzenmacher judiciously answers the open ques-
tions to cuckoo hashing [57].

Further variations of cuckoo hashing are considered in
[35], [37]. For handling hash collisions without breadth-first

search analysis, the study [35] by A. Frieze et al. presents a
more efficient method called random-walk. This method
randomly selects one of candidate buckets for the inserted
item, if there is no vacancy among its possible locations. In
order to dramatically reduce the probability that a failure
occurs during the insertion of an item, they propose a more
robust hashing, that is cuckoo hashing with a small
constant-sized stash, and demonstrate that the size of stash
is equivalent to only three or four items and it has tremen-
dous improvements through analysis and simulations [37].
Necklace [58] is an efficient variation of cuckoo hashing
scheme to mitigate hash collisions in insertion operations.

In practice, a variant of cuckoo hashing [59] takes
advantage of the similar technology with MinCounter.
However, it is a wear-leveling technique for cuckoo hash-
ing, and only focuses on the memory wear performance.
MinCounter records the current kicking-out position and
avoids self-kicking-out.

Cuckoo hashing has beenwidely used in real-world appli-
cations [36], [40], [60]. Cuckoo hashing is amenable to a hard-
ware implementation, such as in a router. To avoid a large
number of items to be moved during insertion operations
causing expensive overhead in a hardware implementation,
at most one item to be moved is acceptable [60]. ChunkStash
improves advantages of a variant of cuckoo hashing to
resolve hash collisions, which indexes chunk metadata using
an in-memory hash table [36]. NEST [40] leverages cuckoo-
driven hashing to achieve load balance.

Compared with the conference version [61], this paper
presents the architecture of the storage system to elaborate
the platform of MinCounter scheme. We show practical
operations of MinCounter to support item insertion, item
query, item deletion, and corresponding pseudocodes. We
significantly extend the evaluation and discussion of the
system implementation by adding a new trace, i.e., MacOS,
and a new evaluation metric, i.e., the mean time overheads.
Moreover, in order to support multiple writes and reads in a
concurrent manner, we improve conventional single-thread
cuckoo hashing scheme by fine-grained lock mechanism, as
well as discribe two challenges for concurrent access.

6 CONCLUSION

In order to alleviate the occurrence of endless loops, this paper
proposed a novel concurrent cuckoo hashing scheme, named
MinCounter, for large-scale cloud computing systems. The

Fig. 28. The mean time overheads of whole insertion operations using
the trace of Bag of Words.

Fig. 29. The decreasing ratio of mean time overheads of whole insertion
operations using the trace of Bag of Words in rate = 1.1.

630 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 3, MARCH 2017

MinCounter has the contributions to three main challenges
in hash-based data structures, i.e., intensive data migration,
low space utilization and high insertion latency. MinCounter
takes advantage of “cold” buckets to alleviate hash collisions
and decrease insertion latency. MinCounter optimizes the
performance for cloud servers, and enhances the quality of
experience for cloud users. Compared with state-of-the-art
work, we leverage extensive experiments and real-world
traces to demonstrate the benefits of MinCounter. We have
released the source code of MinCounter for public use in
Github at https://github.com/syy804123097/MinCounter.

ACKNOWLEDGMENTS

This work is supported by National Key Research and
Development Project under Grant 2016YFB1000202. This is
an extended version of our manuscript published in the
Proceedings of the International Conference on Massive
Storage Systems and Technology (MSST), 2015. Yu Hua is
the corresponding author.

REFERENCES

[1] V. Turner, J. Gantz, D. Reinsel, and S. Minton, “The digital uni-
verse of opportunities: Rich data and the increasing value of the
Internet of Things,” International Data Corporation, White Paper,
IDC_1672, 2014.

[2] M. Armbrust, et al., “A view of cloud computing,” Commun. ACM,
vol. 53, no. 4, pp. 50–58, 2010.

[3] S. Bykov, A. Geller, G. Kliot, J. R. Larus, R. Pandya, and J. Thelin,
“Orleans: Cloud computing for everyone,” in Proc. 2nd ACM
Symp. Cloud Comput., 2011, pp. 16:1–16:14.

[4] S. Wu, F. Li, S. Mehrotra, and B. C. Ooi, “Query optimization for
massively parallel data processing,” in Proc. 2nd ACM Symp. Cloud
Comput., 2011, pp. 12:1–12:13.

[5] Y. Hua, B. Xiao, and J. Wang, “Br-tree: A scalable prototype for
supporting multiple queries of multidimensional data,” IEEE
Trans. Comput., vol. 58, no. 12, pp. 1585–1598, Dec. 2009.

[6] C. Wang, K. Ren, S. Yu, and K. M. R. Urs, “Achieving usable and
privacy-assured similarity search over outsourced cloud data,” in
Proc. IEEE Conf. Comput. Commun., 2012, pp. 451–459.

[7] Q. Liu, C. C. Tan, J. Wu, and G. Wang, “Efficient information
retrieval for ranked queries in cost-effective cloud environments,”
in Proc. IEEE Conf. Comput. Commun., 2012, pp. 2581–2585.

[8] A. Crainiceanu, “Bloofi: A hierarchical bloom filter index with
applications to distributed data provenance,” in Proc. Int. Work-
shop Cloud Intell., 2013, pp. 4:1–4:8.

[9] N. Bruno, S. Jain, and J. Zhou, “Continuous cloud-scale query
optimization and processing,” Proc. VLDB Endowment, vol. 6,
no. 11, pp. 961–972, 2013

[10] Y. Hua, B. Xiao, B. Veeravalli, and D. Feng, “Locality-sensitive
bloom filter for approximate membership query,” IEEE Trans.
Comput., vol. 61, no. 6, pp. 817–830, Jun. 2012.

[11] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving
multi-keyword ranked search over encrypted cloud data,” IEEE
Trans. Parallel Distrib. Syst., vol. 25, no. 1, pp. 222–233, Jan. 2014.

[12] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, “Fuzzy key-
word search over encrypted data in cloud computing,” in Proc.
IEEE Conf. Comput. Commun., 2010, pp. 1–5.

[13] Y. Hua, B. Xiao, D. Feng, and B. Yu, “Bounded LSH for similarity
search in peer-to-peer file systems,” in Proc. 37th Int. Conf. Parallel
Process., 2008, pp. 644–651.

[14] M. Bj€orkqvist, L. Y. Chen, M. Vukoli�c, and X. Zhang, “Minimizing
retrieval latency for content cloud,” in Proc. IEEE Conf. Comput.
Commun., 2011, pp. 1080–1088.

[15] W. W. Peterson, “Addressing for random-access storage,” IBM J.
Res. Develop., vol. RD-1, no. 2, pp. 130–146, 1957.

[16] J. I. Munro and P. Celis, “Techniques for collision resolution in
hash tables with open addressing,” in Proc. ACM Fall Joint Comput.
Conf., 1986, pp. 601–610.

[17] J. Maddison, “Fast lookup in hash tables with direct rehashing,”
Comput. J., vol. C-23, no. 2, pp. 188–190, 1980.

[18] R. L. Rivest, “Optimal arrangement of keys in a hash table,” J.
ACM, vol. ACM-25, no. 2, pp. 200–209, 1978.

[19] R. P. Brent, “Reducing the retrieval time of scatter storage
techniques,”Commun. ACM, vol. ACM-16, no. 2, pp. 105–109, 1973.

[20] J. Kelsey and B. Schneier, “Second preimages on n-bit hash func-
tions for much less than 2n work,” in Proc. 24th Annu. Int. Conf.
Theory Appl. Cryptographic Techn., 2005, pp. 474–490.

[21] X. Wang, H. Yu, and Y. L. Yin, “Efficient collision search attacks
on SHA-0,” in Proc. 25th Annu. Int. Conf. Advances Cryptology,
2005, pp. 1–16.

[22] I. Koltsidas and S. D. Viglas, “Flashing up the storage layer,” Proc.
VLDB Endowment, vol. 1, no. 1, pp. 514–525, 2008.

[23] J. S. Vitter, “Analysis of the search performance of coalesced
hashing,” J. ACM, vol. 30, no. 2, pp. 231–258, 1983.

[24] W.-C. Chen and J. S. Vitter, “Analysis of new variants of coalesced
hashing,” Trans. Database Syst., vol. 9, no. 4, pp. 616–645, 1984.

[25] J. S. Vitter and W.-C. Chen, The Design and Analysis of Coalesced
Hashing. Oxford, U.K.: Oxford Univ. Press, Inc., 1987.

[26] R. Pagh and F. F. Rodler, Cuckoo Hashing. Berlin, Germany:
Springer, 2001.

[27] M. Zukowski, S. H�eman, and P. Boncz, “Architecture-conscious
hashing,” in Proc. Workshop Data Manage. New Hardware, 2006,
Art. no. 6.

[28] M. M. Michael, “High performance dynamic lock-free hash tables
and list-based sets,” in Proc. 14th Annu. ACM Symp. Parallel Algo-
rithms Architectures, 2002, pp. 73–82.

[29] O. Shalev and N. Shavit, “Split-ordered lists: Lock-free extensible
hash tables,” J. ACM, vol. 53, no. 3, pp. 379–405, 2006.

[30] J. Triplett, P. E. McKenney, and J. Walpole, “Scalable concurrent
hash tables via relativistic programming,” ACM SIGOPS Operat-
ing Syst. Rev., vol. 44, no. 3, pp. 102–109, 2010.

[31] J. Triplett, P. E. McKenney, and J. Walpole, “Resizable, scalable,
concurrent hash tables via relativistic programming,” in Proc.
USENIX Annu. Tech. Conf., 2011 p. 11.

[32] B. Fan, D. G. Andersen, and M. Kaminsky, “MemC3: Compact
and concurrent MemCache with dumber caching and smarter
hashing,” in Proc. 10th USENIX Networked Syst. Des. Implementa-
tion, 2013, pp. 385–398.

[33] X. Li, D. G. Andersen, M. Kaminsky, and M. J. Freedman,
“Algorithmic improvements for fast concurrent Cuckoo hashing,”
in Proc. 9th Eur. Conf. Comput. Syst., 2014, pp. 27:1–27:14.

[34] D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis, “Space efficient
hash tables with worst case constant access time,” in Proc. 20th
Annu. Symp. Theoretical Aspects Comput. Sci., 2003, pp. 271–282.

[35] A. Frieze, P. Melsted, and M. Mitzenmacher, “An analysis of ran-
dom-walk cuckoo hashing,” Approximation, Randomization, and
Combinatorial Optimization: Algorithms and Techniques. Berlin, Ger-
many: Springer, 2009, pp. 490–503.

[36] B. K. Debnath, S. Sengupta, and J. Li, “ChunkStash: Speeding up
inline storage deduplication using flash memory,” in Proc. USE-
NIX Annu. Tech. Conf., 2010, p. 16.

[37] A. Kirsch, M. Mitzenmacher, and U. Wieder, “More robust hash-
ing: Cuckoo hashing with a stash,” SIAM J. Comput., vol. 39, no. 4,
pp. 1543–1561, 2009.

[38] R. Pagh and F. F. Rodler, “Cuckoo hashing,” J. Algorithms, vol. 51,
no. 2, pp. 122–144, 2004.

[39] R. Pagh, “On the cell probe complexity of membership and perfect
hashing,” in Proc. 33rd Annu. ACM Symp. Theory Comput., 2001,
pp. 425–432.

[40] Y. Hua, B. Xiao, and X. Liu, “NEST: Locality-aware approximate
query service for cloud computing,” in Proc. IEEE INFOCOM, 2013,
pp. 1303–1311.

[41] Y. Hua, B. Xiao, X. Liu, and D. Feng, “The design and implemen-
tations of locality-aware approximate queries in hybrid storage
systems,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 11,
pp. 3194–3207, Nov. 2015.

[42] Y. Hua, H. Jiang, and D. Feng, “Fast: Near real-time searchable
data analytics for the cloud,” in Proc. Int. Conf. High Performance
Comput. Netw. Storage Anal., 2014, pp. 754–765.

[43] B. Debnath, S. Sengupta, and J. Li, “Flashstore: High throughput
persistent key-value store,” Proc. VLDB Endowment, vol. 3,
no. 1/2, pp. 1414–1425, 2010.

[44] M. Herlihy and N. Shavit, “The art of multiprocessor pro-
gramming,” in Proc. 25th Annu. ACM Symp. Principles Distrib.
Comput., vol. 6, pp. 1–2, 2006.

[45] B. Fitzpatrick and A. Vorobey, “Memcached: A distributed memory
object caching system,” 2011, Available at: http://memcached.org

SUN ETAL.: A COLLISION-MITIGATION CUCKOO HASHING SCHEME FOR LARGE-SCALE STORAGE SYSTEMS 631

[46] C. Pheatt, “Intel threading building blocks,” J. Comput. Sci.
Colleges, vol. 23, no. 4, pp. 298–298, 2008.

[47] P. E. McKenney, et al., “Read-copy update,” in Proc. AUUG Conf.,
2001, p. 175.

[48] R. Kutzelnigg, “Bipartite random graphs and cuckoo hashing,” in
Proc. 4th ColloquiumMathematics Comput. Sci., 2006, pp. 403–406.

[49] E. Kushilevitz, S. Lu, and R. Ostrovsky, “On the (in) security of
hash-based oblivious RAM and a new balancing scheme,” in
Proc. 23rd Annu. ACM-SIAM Symp. Discrete Algorithms, 2012,
pp. 143–156.

[50] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia,
“Privacy-preserving group data access via stateless oblivious RAM
simulation,” in Proc. 23rd Annu. ACM-SIAM Symp. Discrete Algo-
rithms, 2012, pp. 157–167.

[51] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi, “Cuckoo
directory: A scalable directory for many-core systems,” in Proc.
IEEE 17th Int. Symp. High Performance Comput. Architecture, 2011,
pp. 169–180.

[52] R. Baeza-Yates and G. H. Gonnet, Handbook of Algorithms and Data
Structures, 2nd ed. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., 1991.

[53] V. Tarasov, A. Mudrankit, W. Buik, P. Shilane, G. Kuenning, and
E. Zadok, “Generating realistic datasets for deduplication analy-
sis,” in Proc. USENIX Annu. Tech. Conf., 2012, pp. 261–272.

[54] N. Fountoulakis, K. Panagiotou, and A. Steger, “On the insertion
time of cuckoo hashing,” SIAM J. Comput., vol. 42, no. 6, pp. 2156–
2181, 2013.

[55] N. Fountoulakis, M. Khosla, and K. Panagiotou, “The multiple-
orientability thresholds for random hypergraphs,” in Proc. 23rd
Annu. ACM-SIAM Symp. Discrete Algorithms, 2011, pp. 1222–1236.

[56] L. Devroye and P. Morin, “Cuckoo hashing: Further analysis,” Inf.
Process. Lett., vol. 86, no. 4, pp. 215–219, 2003.

[57] M. Mitzenmacher, “Some open questions related to cuckoo
hashing,” in Proc. 17th Annu. Eur. Symp., 2009, pp. 1–10.

[58] Q. Li, Y. Hua, W. He, D. Feng, Z. Nie, and Y. Sun, “Necklace: An
efficient cuckoo hashing scheme for cloud storage services,” in
Proc. 22nd Int. Symp. Quality Service, 2014, pp. 153–158.

[59] D. Eppstein, M. T. Goodrich, M. Mitzenmacher, and P. Pszona,
“Wear minimization for cuckoo hashing: How not to throw a lot
of eggs into one basket,” in Proc. 13th Int. Symp. Exp. Algorithms,
2014, pp. 162–173.

[60] A. Kirsch and M. Mitzenmacher, “The power of one move: Hash-
ing schemes for hardware,” IEEE/ACM Trans. Netw., vol. 18, no. 6,
pp. 1752–1765, Dec. 2010.

[61] Y. Sun, Y. Hua, D. Feng, L. Yang, P. Zuo, and S. Cao,
“MinCounter: An efficient cuckoo hashing scheme for cloud stor-
age systems,” in Proc. 31st Symp. Mass Storage Syst. Technologies,
2015, pp. 1–7.

Yuanyuan Sun received the BE degree in com-
puter science and technology from Huazhong
University of Science and Technology (HUST),
China, in 2014. She is working toward the PhD
degree majoring in computer science and tech-
nology at HUST. Her current research interests
include algorithms of hashing, data analytics,
gene data analysis, and energy efficiency in data
center networks.

Yu Hua received the BE and PhD degrees in com-
puter science from Wuhan University, China, in
2001 and 2005, respectively. He is currently a pro-
fessor at Huazhong University of Science and
Technology, China. His research interests include
computer architecture, cloud computing, and net-
work storage. He has more than 80 papers to his
credit in major journals and international confer-
ences including the IEEE Transactions on Com-
puters, the IEEE Transactions on Parallel and
Distributed Systems, Proceedings of the IEEE,

USENIX ATC, USENIX FAST, INFOCOM, SC, ICDCS, ICPP, MSST, and
MASCOTS. He has been on the organizing and program committees of
multiple international conferences, including INFOCOM, ICDCS, ICPP,
ICNP, MSST, RTSS, and IWQoS. He is a senior member of the IEEE and
CCF, amember of ACM, andUSENIX.

Dan Feng received the BE, ME, and PhD
degrees in computer science and technology
from Huazhong University of Science and Tech-
nology (HUST), China, in 1991, 1994, and 1997,
respectively. She is a professor and vice dean of
the School of Computer Science and Technology,
HUST. Her research interests include computer
architecture, massive storage systems, and par-
allel file systems. She is a member of the IEEE
and the ACM.

Ling Yang received the BE degree in software
engineering from China University of Geoscien-
ces, Wuhan, China, in 2014. She is working
toward the master’s degree majoring in computer
science and technology at Huazhong University
of Science and Technology, China. Her current
interests include power management in datacen-
ters, data analytics, and algorithms of hashing.

Pengfei Zuo received the BE degree in computer
science and technology from Huazhong Univer-
sity of Science and Technology (HUST), China, in
2014. He is currently working toward the PhD
degree majoring in computer science and tech-
nology at HUST. His current research interests
include data deduplication, security and privacy
issues in cloud storage, key-value store, and con-
tent based similarity detection.

Shunde Cao received the BE degree in com-
puter science and technology from Wuhan Uni-
versity of Science and Technology (WUST),
China, in 2014. He is working toward the master’s
degree majoring in computer science and
technology at Huazhong University of Science
and Technology, China. His research interests
include data deduplication, content-based simi-
larity detection, and key-value store.

Yuncheng Guo received the BE degree in infor-
mation security from Huazhong University of Sci-
ence and Technology (HUST), China, in 2015.
He is working toward the master’s degree major-
ing in computer science and technology at HUST.
His current research interests include algorithms
of hashing, data analytics, and gene data analy-
sis.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

632 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 3, MARCH 2017

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

