
TSINGHÜA SCIENCE AND TECHNOLOGY
ISSN 1007-0214 03/10 pp24-32
Volume 19, Number 1, February 2014

Towards a Cost-Efficient MapReduce: Mitigating Power Peaks for
Hadoop Clusters

Nan Zhu, Xue Liu*, Jie Liu, and Yu Hua

Abstract: Distributed data processing system is becoming one of the most important components for data-intensive

computational tasks in the enterprise software infrastructure. Deploying and operating such systems require large

amount of costs, including hardware costs to build clusters and energy costs to run clusters. To make these

systems sustainable and scalable, power management has been an important research problem. In this paper, we

take Hadoop as an example to illustrate the power peak problem which causes power inefficiency and provides

in-depth analysis to explain issues with existing system designs. We propose a novel power capping module in

the Hadoop scheduler to mitigate power peaks. Extensive simulation studies show that our proposed solution can

effectively smooth the power consumption curve and mitigate temporary power peaks for Hadoop clusters.

Key words: power peaks; power management; MapReduce

1 Introduction
Distributed data processing system is becoming one of

the most important components in enterprise software
infrastructure. In order to improve system performance
and scalability, MapReduce[1], as well as its open-
source implementation, Hadoop, has been widely
used to support large-scale computation tasks over
big datasets. For example, America Online leverages
MapReduce to analyze users' behaviors[2]; Facebook
builds the system infrastructure on Hadoop to handle
large volume of requests from Internet131; By running
large-scale machine learning tasks on MapReduce,
WalMart exploits the context of users' online posts to
push proper product information[4]. These MapReduce

• Nan Zhu and Xue Liu are with the School of Computer
Science, McGill University, Montreal, H3A 0G4, Canada. E-
mail: nan.zhu@mail.mcgill.ca; xueliu@cs.mcgill.ca.

• Jie Liu is with Microsoft Research, Redmond, WA 98052-
6399, USA. E-mail: Jie.Liu@microsoft.com.

• Yu Hua is with WNLO, School of Computer, Huazhong
University of Science and Technology, Wuhan 430074, China.
E-mail: csyhua@hust.edu.cn.

• To whom correspondence should be addressed.
Manuscript received: 2013-12-02; revised: 2014-01-01;
accepted: 2014-01-02

systems consume substantial system resources, e.g.,
power, on large-scale physical or virtualized clusters
to fully exploit the parallelism of computation tasks on
MapReduce.

In order to deliver high performance, large-scale
data centers have to deal with power-related problems
due to large power consumption and electricity
bills. For example, Google's deep learning neural net[5]

consisting of 16000 CPUs incurs a $1 million cost
in hardware. Amazon's researcher pointed out that
companies have to pay much more on operational
costs comparing with hardware costs in servers. This
operational cost is dominated by Power Cosfi6\ High
power cost results in improving the scalability of
MapReduce systems ever more difficultly. Moreover, in
order to efficiently handle the peak load, we need to
subscribe Power Distribution Units (PDUs), as well as
related power provisioning infrastructure in higher-level
configurations. This solution can support significant
performance improvements when the peak loads occur.

Power capping technique can mitigate power peaks
caused by peak loads and alleviate overload cases
in data centers[7]. Power capping can obtain the
design goals in terms of power efficiency and system
performance improvements. Specifically, in order to

Nan Zhu et al. : Towards a Cost-Efficient MapReduce: Mitigating Power Peaks for Hadoop Clusters 25

guarantee the limited consumption of energy, we can
judiciously schedule the computation tasks in the
servers. The power capping can reduce the execution
costs and improve the scalability of MapReduce
systems. The conventional power capping scheme
unfortunately does not work well for MapReduce
workloads based on our observations in Microsoft
Production Cluster18·91.

In this paper, we comprehensively analyze the task
scheduling mechanism in Hadoop and gain insights
of the correlation between the server load and the
power consumption in each server. Based on our
observations, we implement a power capping module
in the Hadoop scheduler based on feedback control
theory to support power-aware task scheduling. In
our implementation, we construct a dynamic model
of the power consumption on each server and an
evaluation model for each control decision based
on the utilization of power budget. The evaluation
result from the control decisions is used to adaptively
adjust the parameters in the server power model and
support more accurate decision in the next control
phase. In this way, our model can not only capture the
dynamics of workloads in the MapReduce system[10],
but also obtain a suitable tradeoff between the system
performance and power efficiency. Moreover, the
improved systems based on Hadoop, like Spark[11],
have the similar scheduling method. We hence believe
that our observation is also applied to other distributed
data processing systems. System developers will benefit
from our proposed schemes.

In this paper, we make the following contributions:
• We make a detailed analysis on Hadoop scheduling

mechanism. From the comprehensive analysis, we
observe the correlation between the power peak and
scheduling schemes.

• We leverage a power capping module into Hadoop
scheduler, which offers much more efficient control on
power consumption than traditional capping techniques.

• We build a novel simulator, i.e., PowerMumak, to
simulate the execution of the MapReduce cluster and
evaluate the performance of our adaptive approach.

2 Analysis on Hadoop Scheduling and
Power Consumption

In this section, we comprehensively study the Hadoop
scheduling strategy, as well as identifying the problem
of power peaks.

2.1 Computation in Hadoop
In order to deliver high performance, Hadoop needs
to efficiently manage and schedule the computation
jobs. Most of Hadoop jobs are divided into two
phases, Map and Reduce (some jobs only contain Map
phase). Each phase consists of one or more concurrent
task(s). When both phases exist, the output of Map is
the input of Reduce. Users describe their computation
logics on Map and Reduce tasks by calling Hadoop
APIs with high-level programming languages, like Java,
Python[12] or more expressive language like HiveQL
(SQL-Like)[13]. The user-specific computation logic
locates in the Map() and Reduce() functions of Map and
Reduce phase respectively.

Each Map task is assigned via a split of input
file, called Data Block or Data Chunk. Its size is
usually 64MB or 128MB, which can be defined by
a distributed file system. The Map task first reads the
split file into the memory, and uses Map() function to
Data Block, yielding the results in the form of key-
value pairs. When this operation is completed, the Map
task notifies the Hadoop JobTracker, which then directs
the Reduce tasks to fetch the Map tasks' outputs and
process them.

Each Reduce task is divided into 3 stages, Shuffle,
Sort, and Reduce.

• Shuffle: Each reduce task is associated with a
partition of key range generated by the Map tasks. It
uses the assigned keys to selectively pull the input data
from the servers that maintain the outputs of the Map
task.

• Sorting: In this stage, tasks can be grouped into
the key-value pairs based on the keys.

• Reduce: The execution of user-specific
computation logic, Reduce(), can produce the final
output of the job.

The analysis in this subsection shows two
observations: (1) The fine-grained usage pattern
of server resources, like CPU, memory, and NIC,
is defined by Map() and Reduce() functions. They
are unpredictable and uncontrollable since they are
completely decided by users' requirement; (2) Based
on (1), we can only have a coarser-grained control on
the usage of server resources to mitigate the power
peaks. We will leverage the analysis on the default
job/task scheduling in Hadoop to show the rationale of
our solution to achieve power efficiency.

26 Tsinghua Science and Technology, February 2014,19(1): 24-32

2.2 Scheduling of MapReduce tasks

The scheduling framework has been improved in the
development of Hadoop. We first discuss the design
used in Hadoop 1.x and earlier versions, and then reveal
that our analysis is still valid under the new scheduling
design (Hadoop 2.x version).

There are two kinds of processes managing the jobs
and tasks in Hadoop 1.x as follows.

• JobTracker: JobTracker is a process to
accept job requests from clients. It registers the
job requests with the system, e.g., creating job
objects, assigning JobID, allocating system resources
to them, etc. It divides the new accepted job into
tasks and pushes the tasks into the pending queue
of the system. The JobTracker communicates with
TaskTracker via periodic HeartBeat message, through
which it tracks the existence of TaskTrackers and
monitors the progress of running tasks. Moreover, the
tasks are dispatched to TaskTrackers by JobTracker. The
scheduling algorithm of tasks is implemented as
TaskScheduler that is a module of JobTracker.

• TaskTracker: In a typical Hadoop deployment,
there are always multiple TaskTrackers that accept
task assignments from JobTracker and execute the
tasks. Each TaskTracker has a fixed number of MapSlots
and ReduceSlots to accept Map and Reduce tasks
respectively. Each slot can contain no more than 1
task. TaskTracker reports the number of tasks it can
afford to JobTracker through Heartbeat message. For
Map task, the JobTracker assigns as many as possible
upon receiving the report from a TaskTracker. For
Reduce tasks, the TaskTracker can obtain at most
one reduce task in a single HeartBeat even there are
more than one available ReduceSlots. The conservative
scheme is to avoid the network congestion on the server-
end caused by multiple Reduce tasks fetching the Map
output simultaneously.

From the above analysis, we can observe that the total
server resource utilization in a cluster is determined by
how many concurrent tasks are scheduled as running by
JobTracker. In the meantime, the utilization distribution
of all servers is determined by how JobTracker
dispatches tasks to TaskTrackers. To implement a cost-
efficient MapReduce/Hadoop system, the JobTracker
is designed to be power-aware to support accurate
scheduling decision.

In Hadoop 2.x[12], the JobTracker is split into
multiple ApplicationMasters (one per Hadoop job) and

a ResourceManager. The ApplicationMasters negotiate
with ResourceManager to obtain resources—in terms
of a number of Containers—to execute tasks. The
changes on the architecture do not affect the validation
of our analysis. We investigate the ResourceManager
implementation in Hadoop 2.x, and identify that
ResourceManager can still meet the needs of resources
from ApplicationMasters. In this paper, our analysis
and implementations are based on Hadoop 1.x version,
which can be easy to extend to 2.x version by porting
the algorithm from JobTracker to ResourceManager.

2.3 Power peak problem in Hadoop clusters

We observe the data from a 200-node simulated
Hadoop[14] cluster. The power consumption of the
cluster is shown in Fig. 1 (More details are in
Section 2.4). The power consumption curve starts at
around lOkW, which is close to the idle power of
the whole cluster. It spends about 210 virtual minutes
for the cluster to complete all workloads. During
the simulation time, the curve surges at a few
time intervals. According to the power consumption
distribution, there are less than 8% time intervals where
the cluster is close to produce its peak power. These
peaks are not mitigated by the used capping facilities
in the cluster. In this paper, we argue that the capping
module can be embedded into the scheduling module,
instead of only relying on the existing techniques
like DVS[15]. Our evaluation result shows that this
embedded module brings much more efficient control
on the power consumption.

2.4 Analysis on the power consumption using
JobQueueTaskScheduler

JobQueueTaskScheduler is the default task scheduler
implemented in Hadoop 1.x version. It schedules tasks
following First-Come-First-Serve (FCFS) principle,
i.e., the later arrived jobs can only be served after

20F

Π5
bo

Fio

100
Virtual time (min)

200 10
■ill ■ liln

20
■IlinJ

30
Power (kW)

40

Fig. 1 Power consumption and its distribution in the
Hadoop cluster.

Nan Zhu et al. : Towards a Cost-Efficient MapReduce: Mitigating Power Peaks for Hadoop Clusters 27

all tasks of the earlier jobs are scheduled. In this
subsection, we illustrate the power peak problem
in Microsoft Production MapReduce cluster by
simulations. Our goal is to reveal how the default
scheduling setup in Hadoop results in power peaks,
which incurs expensive costs on the scalability of the
cluster.

We elaborate the power peak problem in a 200-node
Hadoop cluster, in which every computing server has
8 processing cores with the frequency of 2.4 GHz. We
use the workload trace specified in Table 1. Jobs are
distinguished by Map and Reduce task numbers, and
we also indicate the number of each kind of job.

We first show that the scheduling of tasks is
correlating with the power peaks of the Hadoop
cluster. We track both the power consumption and the
number of concurrent tasks in the system with the
sampling frequency of lmin. We present the power
consumption and tasks scheduling trace in Fig. 2. We
can observe that the power consumption surges with the
increase of the task number in most cases while there
are some "outliers" (more analysis about these outliers
can be found in our early work[9]).

Number of
Map tasks

Ï
3

20
35

101
131
329
500

3204

Table 1 Trace file.

Number of
Reduce tasks

5ÖÖ
1
1

101
1

47
101

1
0

Number of Jobs

6
1
3
1
1
1
1
3
2

3000

■a
cd

2000

1000

50 100 150
Virtual time (min)

Fig. 2 Power consumption vs. workload scheduling based
on virtual time.

From Fig. 2, we observe that the default scheduling
method in the Hadoop system leads to poor system
performance. At a few time intervals the cluster
consumes the high power, and during most of the total
time intervals the cluster operates at the low power. As
described before, these rarely-achieved high peaks
introduce high costs on scaling Hadoop cluster. With the
analysis in the previous subsections, we argue that the
default scheduling policy of Hadoop is the main reason
to the unexpected peaks: The scheduler in JobTracker
assigns a new task to TaskTracker whenever it has
a free task slot, despite the fact that the server on
which TaskTracker run could have already been very
close to overload condition. When all or the most of
servers in the cluster are on the overloaded status,
the peaks in total power consumption appear. Other
schedulers^16'17] working in the multi-tenant Hadoop
environment cannot address this problem, since the task
is still scheduled upon a TaskSlot. Due to the space
limitation, we do not show our observations on those
schedulers here since they are similar with the results
shown in Fig. 2.

It is desirable that the system is utilized by
eliminating the high power consumption. To achieve
this goal, we propose an adaptive power-aware
scheduling approach.

3 Power-Aware Hadoop Scheduler
In this section, we present the design of our power-
aware Hadoop scheduler. We start with discussing
the design considerations and then we demonstrate
the architecture of our scheduler and discuss how
our schedule handle dynamic workload and trade-off
between power efficiency and performance respectively.

3.1 Design considerations

There are some other technologies besides power
capping for reducing the power consumption
in MapReduce cluster, e.g., sleeping the idle
servers[18]. The sleeping operation requires some
costs. Restarting the servers consumes time and for
most of MapReduce systems, the distributed file system
and MapReduce share the same group of physical
nodes. Shutting down the servers may reduce the
number of available copies of data chunks and cause
the re-balance operation in the distributed file system,
thus leading to the performance degradation. Meisner
et al. obtained the similar conclusion in Ref. [19].

Other ways, like BEEMR[20], leverage the

28

sophisticated data placement scheme of distributed
file systems. These scheme may not be available to
other cases. For example, in BEEMR, it assumes that
MIA jobs read data only from a limited number of
machines in the cluster, but in our environment and
Google’s datacenter[19], the MapReduce jobs can use
all machines in the data center.

Existing power capping technique does not meet
the needs of MapReduce system. The power models
are static for each server, which assumes that the
characteristics of the workloads used in the servers
exhibit few changes. For MapReduce, the usage pattern
of the clusters does change. Table 1 shows that the
number of Map tasks in a mixed workload ranges from
1 to 3204, and the Reduce tasks ranges from 0 to
500. Hence we need to dynamically update the model
of the whole system and leverage an adaptive way for
power management.

The power capping achieves power efficiency based
on the premise that the performance does not suffer too
much for power management. We hence need to design
a systematic approach in the scheduler to capture the
trade-off.

3.2 Design of power-aware Hadoop scheduler

In this section, we present the design of our power-
aware scheduler. The scheduler inherits most of
functionalities of JobQueueTaskScheduler but executes
an additional admission control logic when receiving
the Heartbeat from TaskTrackers.

The workflow of the admission controller is shown in
Fig. 3. The controller mitigates the power consumption
in the cluster by adjusting the available amount of new
running tasks in each control period. The controller
consists of two modules: the model estimator and the
controlling module. The model estimator dynamically
models the power consumption of each server to ensure
the accuracy under the dynamic workloads. In order

x(k-l),p;(k-l)

Fig. 3 The design of power controller.

Tsinghua Science and Technology, February 2014, 19(1): 24-32

to manage power peaks, the controller module makes
control decisions based on the model generated by
the model estimator. Power Tracking module is used
to measure the power consumption of the Hadoop
cluster, and its measure results wi l l be sent back to the
controller.

We model the power consumption of each server i as
follows:

Pi(k) = Aip'^k — 1) + BiXi(k) (1)
where Ai and Bi are the unknown system parameters
and these parameters may vary due to the dynamic
workloads; p is the estimated value of power
consumption; p' is the measured power consumption;
Xi represents the allowed number of concurrent tasks
for node i ; k is the timestamp for each control period. In
this design, we only capture the power consumption
in the last control period, and the input trajectory
consists of a single value. This decision simplifies our
implementation and can perform well in practice.

3.3 Control power peaking

To achieve the control goal with power capping, we
define the following cost function for each server
i. We transfer the goal of limiting power drawing to
minimizing the value of cost function:

Ji(k) = (pi(k + 1) — pcap{k + 1)) (2)

Minimizing the cost function indicates that the gap
between the consumed power and the power cap value
should be as small as possible. This cost function
can capture the trade-off between the performance and
the power consumption at the same time. Minimizing
the function means that we do not want the power
consumption over the threshold or at least keep the
gap falling into an acceptable range. Furthermore, the
minimized gap indicates that we need to fully utilize
the given power budget.

3.4 Capture dynamic workload

As the dynamic workload produces different usage
patterns in the server resources, the relationship
between x; and pi may change. To ensure the accuracy
of the model, the model estimator obtains the generated
value Xi from the controller and the actual consumed
power value from the power tracking module at
each control period, and computes the new system
parameters Ai and Bi. We use the Recursive Least
Square (RLS) estimator with exponential forgetting
to identify the system parameters Ai and Bi for all
servers. The model estimator sends the updated system

Nan Zhu et al. : Towards a Cost-Efficient MapReduce: Mitigating Power Peaks for Hadoop Clusters 29

(3)

(4)
(5)

parameters to the controller, which will be used in the
next control decision.

We rewrite the system model in the following RLS-
friendly form for each node /, which we use in the
remainder of the paper.

pi(k) = ei{k)9i{k)
where

ei(k) = [Ai,Bi]
<pi{k) = [pi(k-\),xi(k-\)Y

RLS estimator can be used to identify the time
varying parameter matrix 0Z online. This estimator has
been applied extensively in adaptive control system
design as it can converge and reject disturbance in
an efficient manner. The estimator is described by the
following equations:

si(k) = Pi(k)-ei{k-\)<pi(k),
ej(k)q>](k)Xi(k-l)

X+9](k)Xi(k-l}i>i(ky

Xi(k) = j[Xt(k-l)-

ΧΜ-1)φΜ)φ]&)ΧΜ-1)ι
X+i>](k)Xi(k-l)in(k) J

where Q\ (k) is the estimation of the true value of model
parameter 0/(fc) at the k-th control point, λ is the
forgetting factor. In practice, λ typically has a positive
value between 0.97 and 0.995.

4 Performance Evaluation

We evaluate our proposed approach with a new Hadoop
simulator. Extensive evaluation results demonstrate
that our proposed method can efficiently address the
problem of power peak.

ei(k) = 0i(k-i) +

(6)

4.1 Hadoop simulator

To support our study on addressing the problem
of temporary power peaks and evaluating the
proposed solution, we develop a new simulator
called PowerMumak to replay the workload trace
file. The design of PowerMumak augments Mumak[21]

and implements the functionalities of power module
in JobTracker and TaskTracker. The architecture of
PowerMumak is shown in Fig. 4. Rumen[22] is a tool
to generate JSON formatted Hadoop cluster trace from
the job running log files.

This simulator can exactly simulate the working
mechanism of Hadoop scheduling framework. The
simulated scheduler class extends the JobTracker
implementation in Hadoop by adding interaction
module with the discrete event simulation engine. It
uses the same strategy to implement the simulated
TaskTracker. In this way, when a simulated task is to
be scheduled, the simulator calls the same function in
the real JobTracker implementation. Our simulator is
effective to reproduce the behaviors of the real Hadoop
scheduler.

Without the loss of generality, we illustrate our
proposed method with a power model for computation-
intensive workloads[23] and use a power function in
terms of the processor's frequency and utilization. The
power model can be extended to exploit more types of
workloads into considerations and we can extend it in
our design. Our model is described as

Pi = aufm + ai2fi + anui + ai0 (7)
where the system parameters a\j (j = 0,1,2,3) can
be determined by system identification of physical
servers; pi, fi, and w/ respectively represent the power
consumption, processor's frequency, and utilization of

JobClient

Job story trace

~ T ^

Simulated JobTracker

Client

protocol
Job story

cache Sched Power
module

/ilnterTrackerl
protocol

Simulated TaskTracker

Resource
simulation

Power
module

JobCompletionEvent J° b fmalization HeartbeatEvent
JobSubmissionEvent Task assignment & completionEvent

Simulation engine

Cluster story

Event queue

Rumen

Fig. 4 The architecture of PowerMumak.

30 Tsinghua Science and Technology, February 2014,19(1): 24-32

node i. We use the steady-state result of the M/M/n
queueing model to model each core in the server. The

x
node utilization can be described as u — —, where x is

sn
the number of concurrent tasks in the current sampling
cycle, s is the number of the served tasks, and n is the
server's core number. In this paper, we assume that all
servers are homogeneous with parameters: α,·3 = 68.4,
ai2 = 14.6, an = -14.2, ai0 = 15.0.
4.2 Power consumption and workload scheduling

We replayed the workload trace specified in
Table 1. This workload trace contains the typical
workload in a data center, where the jobs containing
small number of Map tasks and Reduce tasks usually
handle the interactive query requests, and the jobs with
high parallelism are usually seen when the backup
data service is running. We illustrate the simulation
results with a 400-node Hadoop cluster, in which each
node has 8 processing cores and the frequency of
2.4 GHz. We set the power capping reference for the
entire cluster as 64 kW and assume that each server
in the Hadoop cluster has the same power reference
of 160 W In the real implementations, the power
capping reference for the cluster can be determined by
experienced domain experts.

The results are shown in Fig. 5. According to Fig. 5a,
the power peaks have been mitigated and the power
consumption curve is smoothed with the proposed
adaptive control method. To better analyze Fig. 5a, we
calculate the power consumption distributions as shown
in Fig. 5b. We can observe that the power distributions
are high around 20 kW By the comparison with power
consumption distributions, we observe that the power
peaks have been effectively mitigated. At the same time,
the cluster mainly works at the power level between
40 and 60 kW. By comparing the workload scheduling
traces in Fig. 5c, we can observe that the workload
execution time (140 virtual minutes) under the adaptive
control is slightly longer than that (128 virtual minutes)
without control. Under a mixed workload, our solution
can reduce the power budget for building data center
with 20%, i.e., 16 kW, bringing less than 10% latency
on execution. Under the given power budget, we can
use another 100 machines (25% of the current size) in
the data center.

80 r

60

40

20

20

g 15

ίιο
SS 5

(Vi

Without control
With adaptive control

50 100
Virtual time (min)

(a) Comparison of power consumptions

20

150

■ Without control

°2
I l m
40 60
Power (kW)

80

15

10

5

°20

I With adaptive control

40 60
Power (kW)

(b) Comparison in power consumption distributions

5000, .,

80

50 100
Virtual time (min)

(c) Comparison of task scheduling

Fig. 5 Power consumptions, distributions and workload
scheduling based on virtual time.

power usage characteristics of large scale computing
cluster under different workload patterns and presented
the possibility of reducing peak consumption by power
capping technique. Dynamic voltage scaling[15] is used
in multi-tier server architecture. The analysis on the
Online Data-Intensive (OLDI) services workload[19]

can help evaluate the possible solutions to the power
management. The work in Ref. [24] characterizes the
energy efficiency of various workloads in Hadoop. The
sleepy strategy[18] is used to save power for Hadoop
cluster. Unlike them, we analyzed that restarting the
server introduces time cost and the performance in
the underlying file system service. In addition, the
MapReduce jobs are only related with some parts of the
cluster[20], which is not the case in Microsoft Production
Cluster.

5 Related Work 6 Conclusions
Energy efficiency in the cloud computing has attracted
much attention. Fan et al.[7] analyzed the aggregate

Motivated by the power peak problem observed from
Microsoft Production Servers, we investigate this

Nan Zhu et al. : Towards a Cost-Efficient MapReduce: Mitigating Power Peaks for Hadoop Clusters 31

problem in this paper. We propose the design of an
adaptive scheme to efficiently manage the power peaks
for MapReduce clusters. By using the simulation, we
evaluate the performance of addressing the power peak
problem. Extensive simulation results show that our
proposed methods can effectively smooth the power
consumption curve and mitigate temporary power peaks
for MapReduce clusters. We hence can offer scalability
for our MapReduce cluster with small costs. Our design
can be used in distributed data processing systems.

Acknowledgements

Xue Liu would like to thank the support of the National
Science Foundation of USA (No. 1116606). Yu Hua would
like to thank the support of the National Nature Science
Foundation of China (No. 61173043).

References

[1] J. Dean and S. Ghemawat, MapReduce: Simplified data
processing on large clusters, in Operating Systems Design
and Implementation (OSDI) 04', 2004, pp. 137-150.

[2] Hadoop, Hadoop poweredby, http://wiki.apache.org/
hadoop/PoweredBy, June 2013.

[3] D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan,
N. Spiegelberg, H. Kuang, K. Ranganathan, D. Molkov,
A. Menon, S. Rash, R. Schmidt, and A. Aiyer, Apache
Hadoop goes realtime at facebook, in Proceedings of
the 2011 ACM SIGMOD International Conference on
Management of Data, New York, NY, USA, 2011,
pp. 1071-1080.

[4] M. van Rijmenam, Walmart makes big data part of its dna,
http://smartdatacollective.eom/bigdatastartups/l 11681/wal-
mart-makes-big-data-part-its-social-media, March 2013.

[5] G. Anthes, Deep learning comes of age, Commun. ACM,
vol. 56, no. 6, pp. 13-15, 2013.

[6] J. Hamilton, Cost of power in large-scale data
centers, http://perspectives.mvdirona.eom/2008/l 1/28/
CostOfPowerlnLargeScaleDataCenters.aspx, November
2008.

[7] X. Fan, W. D. Weber, and L. A. Barroso, Power
provisioning for a warehouse-sized computer, in
Proceedings of the ACM IEEE International Symposium
on Computer Architecture (ISCA), 2007.

[8] N. Zhu, L. Rao, X. Liu, and J. Liu, Handling more
data with less cost: Taming power peaks in MapReduce
clusters, in Proceedings of the Asia-Pacific Workshop on
Systems, APSYS '12, New York, NY, USA, 2012.

[9] N. Zhu, L. Rao, X. Liu, J. Liu, and H. Guan, Taming power
peaks in MapReduce clusters, in Proceedings of the ACM
SIGCOMM 2011 Conference, SIGCOMM'll, New York,
NY, USA, 2011, pp. 416-417.

[10] Y Chen, S. Alspaugh, and R. H. Katz, Design insights for
MapReduce from diverse production workloads, Technical
Report UCB/EECS-2012-17, EECS Department,
University of California, Berkeley, USA, 2012.

[11] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, Spark: Cluster computing with working sets, in
Proceedings of the 2nd USENIX Conference on Hot Topics
in Cloud Computing, HotCloud'10, Berkeley, CA, USA,
2010, p. 10.

[12] T. White, Hadoop: The Definitive Guide, 3rd Edition.
O'Reilly Media, Inc., 2012.

[13] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain,
J. Sen Sarma, R. Murthy, and H. Liu, Data warehousing
and analytics infrastructure at facebook, in Proceedings
of the 2010 ACM SIGMOD International Conference on
Management of Data, SIGMOD'10, New York, NY, USA,
2010, pp. 1013-1020.

[14] Hadoop, http://hadoop.apache.org/, 2013.
[15] T. Horvath, T. Abdelzaher, K. Skadron, and X. Liu,

Dynamic voltage scaling in multitier web servers with
endto-end delay control, IEEE Trans. Comput., vol. 56, no.
4, pp. 444-458, 2007.

[16] Hadoop, Capacityscheduler, http://hadoop.apache.org/
docs/stable/capacity/scheduler.html, June 2013.

[17] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,
5. Shenker, and I. Stoica, Job scheduling for multi-user
mapreduce clusters, Technical Report UCB/EECS-2009-
55, EECS Department, University of California, Berkeley,
USA, April 2009.

[18] J. Leverich and C. Kozyrakis, On the energy (inefficiency
of hadoop clusters, presented at Workshop on Power-
Aware Computing and Systems (HotPower), 2009.

[19] D. Meisner, C. M. Sadler, L. A. Barroso, W. D.Weber, and
T. F.Wenisch, Power management of online data-intensive
services, in Proceedings of the ACM IEEE International
Symposium on Computer Architecture (ISCA), 2011.

[20] Y Chen, S. Alspaugh, D. Borthakur, and R. H. Katz,
Energy efficiency for large-scale mapreduce workloads
with significant interactive analysis, in Proceedings of the
7th ACM European Conference on Computer Systems,
New York, NY, USA, 2012.

[21] Apache software foundation, Mumak: MapReduce
simulator, https://issues.apache.org/jira/browse/
MAPREDUCE-728, 2013.

[22] Hadoop, Rumen, http://hadoop.apache.org/docs/stable/
rumen.html, August 2013.

[23] T. Horvath and K. Skadron, Multi-mode energy
management for multi-tier server clusters, presented
at the Seventeenth International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2008.

[24] Y Chen, L. Keys, and R. H. Katz, Towards energy efficient
MapReduce, Berkeley Technical Report EECS-2009-109,
2009.

32 Tsinghua Science and Technology, February 2014, 19(1): 24-32

Nan Zhu is a PhD candidate in
School of Computer Science, McGill
University, Canada. He received his
BS and MS degrees from Nanjing
Institute of Technology and Shanghai
Jiaotong University in 2005 and 2012,
respectively. His research interests include
distributed system, large-scale data

processing system, and computer networks (especially software-
defined networking). His work has been presented in SIGCOMM
2011, ApSys 2012, ICAC 2013, etc. He currently focuses on
improving resource management strategy in interactive data
analytic system.

Xue Liu is an associate professor in
the School of Computer Science at
McGill University, Canada. He received
his PhD degree in computer science
from the University of Illinois at Urbana-
Champaign in 2006. He has also worked
as the Samuel R. Thompson Associate
Professor in the University of Nebraska

Lincoln and HP Labs in Palo Alto, California. His research
interests are in computer and communication networks, real
time and embedded systems, distributed systems, cyber-
physical systems, green computing, and smart grid. He has
published more than 150 research papers in major peer-reviewed
international journals and conference proceedings in these
areas. His research received the Year 2008 Best Paper Award
from the IEEE Transactions on Industrial Informatics, and
the First Place Best Paper Award from the ACM Conference
on Wireless Network Security 2011 (WiSec 2011). Dr. Liu’s
research has been reported by news media including the New
York Times, Computer World, The Register, Huffington Post,
CBC, NewScientist, MIT Technology Review’s Blog, and
McGill Daily, etc. He has been granted 2 US patents and
filed 2 other US patents. He is a recipient of the Tomlinson
Scientist Award from McGill University. He serves on the
editorial board of IEEE Transactions of Parallel and Distributed
Systems, IEEE Transactions on Vehicular Technology, and IEEE
Communications Surveys and Tutorials.

Jie Liu is a Principal Researcher at
Microsoft Research, Redmond, WA, and
the manager of its Sensing and Energy
Research Group. He received his PhD
degree in electrical engineering and
computer sciences from UC Berkeley in
2001, and his MEng and BEng degrees
from Tsinghua University, China. From

2001 to 2004, he was a research scientist in Palo Alto Research
Center (formerly Xerox PARC). From 2008, he has been an
adjunct professor at Harbin Institute of Technology, China. His
research interests root in understanding and managing the
physical properties of computing. He has published broadly
in areas like sensor networks, embedded systems, ubiquitous
computing, and data center energy management. He also holds
more than 40 patents in these fields. He is an associate editor
of ACM Trans. on Sensor Networks, was an associate editor of
IEEE Trans. on Mobile Computing, and has chaired a number
of top-tier conferences. Among other recognitions, he received
Best Paper Awards in SenSys 2011 and RTAS 2010, the Leon
Chua Award from UC Berkeley in 2001, Technology Advance
Award from (Xerox) PARC in 2003, and a Gold Star Award from
Microsoft in 2008. He is an ACM Distinguished Scientist.

f- -I
Yu Hua received his BEng and PhD
degrees in computer science from Wuhan
University, China, in 2001 and 2005,
respectively. He is an associate professor
at the Huazhong University of Science
and Technology, China. His research
interests include computer architecture,
cloud computing, and network storage. He

has more than 50 papers to his credit in major journals
and international conferences including IEEE Transactions on
Computers, IEEE Transactions on Parallel and Distributed
Systems, USENIX ATC, INFOCOM, SC, ICDCS, ICPP, and
MASCOTS. He has been on the program committees of multiple
international conferences, including INFOCOM and ICPP. He
is a senior member of the IEEE, and a member of ACM and
USENIX.

