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Towards a Cost-Efficient MapReduce: Mitigating Power Peaks for 
Hadoop Clusters 
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Abstract: Distributed data processing system is becoming one of the most important components for data-intensive 

computational tasks in the enterprise software infrastructure. Deploying and operating such systems require large 

amount of costs, including hardware costs to build clusters and energy costs to run clusters. To make these 

systems sustainable and scalable, power management has been an important research problem. In this paper, we 

take Hadoop as an example to illustrate the power peak problem which causes power inefficiency and provides 

in-depth analysis to explain issues with existing system designs. We propose a novel power capping module in 

the Hadoop scheduler to mitigate power peaks. Extensive simulation studies show that our proposed solution can 

effectively smooth the power consumption curve and mitigate temporary power peaks for Hadoop clusters. 
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1 Introduction 
Distributed data processing system is becoming one of 

the most important components in enterprise software 
infrastructure. In order to improve system performance 
and scalability, MapReduce[1], as well as its open-
source implementation, Hadoop, has been widely 
used to support large-scale computation tasks over 
big datasets. For example, America Online leverages 
MapReduce to analyze users' behaviors[2]; Facebook 
builds the system infrastructure on Hadoop to handle 
large volume of requests from Internet131; By running 
large-scale machine learning tasks on MapReduce, 
WalMart exploits the context of users' online posts to 
push proper product information[4]. These MapReduce 
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systems consume substantial system resources, e.g., 
power, on large-scale physical or virtualized clusters 
to fully exploit the parallelism of computation tasks on 
MapReduce. 

In order to deliver high performance, large-scale 
data centers have to deal with power-related problems 
due to large power consumption and electricity 
bills. For example, Google's deep learning neural net[5] 

consisting of 16000 CPUs incurs a $1 million cost 
in hardware. Amazon's researcher pointed out that 
companies have to pay much more on operational 
costs comparing with hardware costs in servers. This 
operational cost is dominated by Power Cosfi6\ High 
power cost results in improving the scalability of 
MapReduce systems ever more difficultly. Moreover, in 
order to efficiently handle the peak load, we need to 
subscribe Power Distribution Units (PDUs), as well as 
related power provisioning infrastructure in higher-level 
configurations. This solution can support significant 
performance improvements when the peak loads occur. 

Power capping technique can mitigate power peaks 
caused by peak loads and alleviate overload cases 
in data centers[7]. Power capping can obtain the 
design goals in terms of power efficiency and system 
performance improvements. Specifically, in order to 
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guarantee the limited consumption of energy, we can 
judiciously schedule the computation tasks in the 
servers. The power capping can reduce the execution 
costs and improve the scalability of MapReduce 
systems. The conventional power capping scheme 
unfortunately does not work well for MapReduce 
workloads based on our observations in Microsoft 
Production Cluster18·91. 

In this paper, we comprehensively analyze the task 
scheduling mechanism in Hadoop and gain insights 
of the correlation between the server load and the 
power consumption in each server. Based on our 
observations, we implement a power capping module 
in the Hadoop scheduler based on feedback control 
theory to support power-aware task scheduling. In 
our implementation, we construct a dynamic model 
of the power consumption on each server and an 
evaluation model for each control decision based 
on the utilization of power budget. The evaluation 
result from the control decisions is used to adaptively 
adjust the parameters in the server power model and 
support more accurate decision in the next control 
phase. In this way, our model can not only capture the 
dynamics of workloads in the MapReduce system[10], 
but also obtain a suitable tradeoff between the system 
performance and power efficiency. Moreover, the 
improved systems based on Hadoop, like Spark[11], 
have the similar scheduling method. We hence believe 
that our observation is also applied to other distributed 
data processing systems. System developers will benefit 
from our proposed schemes. 

In this paper, we make the following contributions: 
• We make a detailed analysis on Hadoop scheduling 

mechanism. From the comprehensive analysis, we 
observe the correlation between the power peak and 
scheduling schemes. 

• We leverage a power capping module into Hadoop 
scheduler, which offers much more efficient control on 
power consumption than traditional capping techniques. 

• We build a novel simulator, i.e., PowerMumak, to 
simulate the execution of the MapReduce cluster and 
evaluate the performance of our adaptive approach. 

2 Analysis on Hadoop Scheduling and 
Power Consumption 

In this section, we comprehensively study the Hadoop 
scheduling strategy, as well as identifying the problem 
of power peaks. 

2.1 Computation in Hadoop 
In order to deliver high performance, Hadoop needs 
to efficiently manage and schedule the computation 
jobs. Most of Hadoop jobs are divided into two 
phases, Map and Reduce (some jobs only contain Map 
phase). Each phase consists of one or more concurrent 
task(s). When both phases exist, the output of Map is 
the input of Reduce. Users describe their computation 
logics on Map and Reduce tasks by calling Hadoop 
APIs with high-level programming languages, like Java, 
Python[12] or more expressive language like HiveQL 
(SQL-Like)[13]. The user-specific computation logic 
locates in the Map() and Reduce() functions of Map and 
Reduce phase respectively. 

Each Map task is assigned via a split of input 
file, called Data Block or Data Chunk. Its size is 
usually 64MB or 128MB, which can be defined by 
a distributed file system. The Map task first reads the 
split file into the memory, and uses Map() function to 
Data Block, yielding the results in the form of key-
value pairs. When this operation is completed, the Map 
task notifies the Hadoop JobTracker, which then directs 
the Reduce tasks to fetch the Map tasks' outputs and 
process them. 

Each Reduce task is divided into 3 stages, Shuffle, 
Sort, and Reduce. 

• Shuffle: Each reduce task is associated with a 
partition of key range generated by the Map tasks. It 
uses the assigned keys to selectively pull the input data 
from the servers that maintain the outputs of the Map 
task. 

• Sorting: In this stage, tasks can be grouped into 
the key-value pairs based on the keys. 

• Reduce: The execution of user-specific 
computation logic, Reduce(), can produce the final 
output of the job. 

The analysis in this subsection shows two 
observations: (1) The fine-grained usage pattern 
of server resources, like CPU, memory, and NIC, 
is defined by Map() and Reduce() functions. They 
are unpredictable and uncontrollable since they are 
completely decided by users' requirement; (2) Based 
on (1), we can only have a coarser-grained control on 
the usage of server resources to mitigate the power 
peaks. We will leverage the analysis on the default 
job/task scheduling in Hadoop to show the rationale of 
our solution to achieve power efficiency. 
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2.2 Scheduling of MapReduce tasks 

The scheduling framework has been improved in the 
development of Hadoop. We first discuss the design 
used in Hadoop 1.x and earlier versions, and then reveal 
that our analysis is still valid under the new scheduling 
design (Hadoop 2.x version). 

There are two kinds of processes managing the jobs 
and tasks in Hadoop 1.x as follows. 

• JobTracker: JobTracker is a process to 
accept job requests from clients. It registers the 
job requests with the system, e.g., creating job 
objects, assigning JobID, allocating system resources 
to them, etc. It divides the new accepted job into 
tasks and pushes the tasks into the pending queue 
of the system. The JobTracker communicates with 
TaskTracker via periodic HeartBeat message, through 
which it tracks the existence of TaskTrackers and 
monitors the progress of running tasks. Moreover, the 
tasks are dispatched to TaskTrackers by JobTracker. The 
scheduling algorithm of tasks is implemented as 
TaskScheduler that is a module of JobTracker. 

• TaskTracker: In a typical Hadoop deployment, 
there are always multiple TaskTrackers that accept 
task assignments from JobTracker and execute the 
tasks. Each TaskTracker has a fixed number of MapSlots 
and ReduceSlots to accept Map and Reduce tasks 
respectively. Each slot can contain no more than 1 
task. TaskTracker reports the number of tasks it can 
afford to JobTracker through Heartbeat message. For 
Map task, the JobTracker assigns as many as possible 
upon receiving the report from a TaskTracker. For 
Reduce tasks, the TaskTracker can obtain at most 
one reduce task in a single HeartBeat even there are 
more than one available ReduceSlots. The conservative 
scheme is to avoid the network congestion on the server-
end caused by multiple Reduce tasks fetching the Map 
output simultaneously. 

From the above analysis, we can observe that the total 
server resource utilization in a cluster is determined by 
how many concurrent tasks are scheduled as running by 
JobTracker. In the meantime, the utilization distribution 
of all servers is determined by how JobTracker 
dispatches tasks to TaskTrackers. To implement a cost-
efficient MapReduce/Hadoop system, the JobTracker 
is designed to be power-aware to support accurate 
scheduling decision. 

In Hadoop 2.x[12], the JobTracker is split into 
multiple ApplicationMasters (one per Hadoop job) and 

a ResourceManager. The ApplicationMasters negotiate 
with ResourceManager to obtain resources—in terms 
of a number of Containers—to execute tasks. The 
changes on the architecture do not affect the validation 
of our analysis. We investigate the ResourceManager 
implementation in Hadoop 2.x, and identify that 
ResourceManager can still meet the needs of resources 
from ApplicationMasters. In this paper, our analysis 
and implementations are based on Hadoop 1.x version, 
which can be easy to extend to 2.x version by porting 
the algorithm from JobTracker to ResourceManager. 

2.3 Power peak problem in Hadoop clusters 

We observe the data from a 200-node simulated 
Hadoop[14] cluster. The power consumption of the 
cluster is shown in Fig. 1 (More details are in 
Section 2.4). The power consumption curve starts at 
around lOkW, which is close to the idle power of 
the whole cluster. It spends about 210 virtual minutes 
for the cluster to complete all workloads. During 
the simulation time, the curve surges at a few 
time intervals. According to the power consumption 
distribution, there are less than 8% time intervals where 
the cluster is close to produce its peak power. These 
peaks are not mitigated by the used capping facilities 
in the cluster. In this paper, we argue that the capping 
module can be embedded into the scheduling module, 
instead of only relying on the existing techniques 
like DVS[15]. Our evaluation result shows that this 
embedded module brings much more efficient control 
on the power consumption. 

2.4 Analysis on the power consumption using 
JobQueueTaskScheduler 

JobQueueTaskScheduler is the default task scheduler 
implemented in Hadoop 1.x version. It schedules tasks 
following First-Come-First-Serve (FCFS) principle, 
i.e., the later arrived jobs can only be served after 
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Fig. 1 Power consumption and its distribution in the 
Hadoop cluster. 
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all tasks of the earlier jobs are scheduled. In this 
subsection, we illustrate the power peak problem 
in Microsoft Production MapReduce cluster by 
simulations. Our goal is to reveal how the default 
scheduling setup in Hadoop results in power peaks, 
which incurs expensive costs on the scalability of the 
cluster. 

We elaborate the power peak problem in a 200-node 
Hadoop cluster, in which every computing server has 
8 processing cores with the frequency of 2.4 GHz. We 
use the workload trace specified in Table 1. Jobs are 
distinguished by Map and Reduce task numbers, and 
we also indicate the number of each kind of job. 

We first show that the scheduling of tasks is 
correlating with the power peaks of the Hadoop 
cluster. We track both the power consumption and the 
number of concurrent tasks in the system with the 
sampling frequency of lmin. We present the power 
consumption and tasks scheduling trace in Fig. 2. We 
can observe that the power consumption surges with the 
increase of the task number in most cases while there 
are some "outliers" (more analysis about these outliers 
can be found in our early work[9]). 

Number of 
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Table 1 Trace file. 
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Fig. 2 Power consumption vs. workload scheduling based 
on virtual time. 

From Fig. 2, we observe that the default scheduling 
method in the Hadoop system leads to poor system 
performance. At a few time intervals the cluster 
consumes the high power, and during most of the total 
time intervals the cluster operates at the low power. As 
described before, these rarely-achieved high peaks 
introduce high costs on scaling Hadoop cluster. With the 
analysis in the previous subsections, we argue that the 
default scheduling policy of Hadoop is the main reason 
to the unexpected peaks: The scheduler in JobTracker 
assigns a new task to TaskTracker whenever it has 
a free task slot, despite the fact that the server on 
which TaskTracker run could have already been very 
close to overload condition. When all or the most of 
servers in the cluster are on the overloaded status, 
the peaks in total power consumption appear. Other 
schedulers^16'17] working in the multi-tenant Hadoop 
environment cannot address this problem, since the task 
is still scheduled upon a TaskSlot. Due to the space 
limitation, we do not show our observations on those 
schedulers here since they are similar with the results 
shown in Fig. 2. 

It is desirable that the system is utilized by 
eliminating the high power consumption. To achieve 
this goal, we propose an adaptive power-aware 
scheduling approach. 

3 Power-Aware Hadoop Scheduler 
In this section, we present the design of our power-
aware Hadoop scheduler. We start with discussing 
the design considerations and then we demonstrate 
the architecture of our scheduler and discuss how 
our schedule handle dynamic workload and trade-off 
between power efficiency and performance respectively. 

3.1 Design considerations 

There are some other technologies besides power 
capping for reducing the power consumption 
in MapReduce cluster, e.g., sleeping the idle 
servers[18]. The sleeping operation requires some 
costs. Restarting the servers consumes time and for 
most of MapReduce systems, the distributed file system 
and MapReduce share the same group of physical 
nodes. Shutting down the servers may reduce the 
number of available copies of data chunks and cause 
the re-balance operation in the distributed file system, 
thus leading to the performance degradation. Meisner 
et al. obtained the similar conclusion in Ref. [19]. 

Other ways, like BEEMR[20], leverage the 
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sophisticated data placement scheme of distributed 
file systems. These scheme may not be available to 
other cases. For example, in BEEMR, it assumes that 
MIA jobs read data only from a limited number of 
machines in the cluster, but in our environment and 
Google’s datacenter[19], the MapReduce jobs can use 
all machines in the data center. 

Existing power capping technique does not meet 
the needs of MapReduce system. The power models 
are static for each server, which assumes that the 
characteristics of the workloads used in the servers 
exhibit few changes. For MapReduce, the usage pattern 
of the clusters does change. Table 1 shows that the 
number of Map tasks in a mixed workload ranges from 
1 to 3204, and the Reduce tasks ranges from 0 to 
500. Hence we need to dynamically update the model 
of the whole system and leverage an adaptive way for 
power management. 

The power capping achieves power efficiency based 
on the premise that the performance does not suffer too 
much for power management. We hence need to design 
a systematic approach in the scheduler to capture the 
trade-off. 

3.2 Design of power-aware Hadoop scheduler 

In this section, we present the design of our power-
aware scheduler. The scheduler inherits most of 
functionalities of JobQueueTaskScheduler but executes 
an additional admission control logic when receiving 
the Heartbeat from TaskTrackers. 

The workflow of the admission controller is shown in 
Fig. 3. The controller mitigates the power consumption 
in the cluster by adjusting the available amount of new 
running tasks in each control period. The controller 
consists of two modules: the model estimator and the 
controlling module. The model estimator dynamically 
models the power consumption of each server to ensure 
the accuracy under the dynamic workloads. In order 

x(k-l),p;(k-l) 

Fig. 3 The design of power controller. 
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to manage power peaks, the controller module makes 
control decisions based on the model generated by 
the model estimator. Power Tracking module is used 
to measure the power consumption of the Hadoop 
cluster, and its measure results wi l l be sent back to the 
controller. 

We model the power consumption of each server i as 
follows: 

Pi(k) = Aip'^k — 1) + BiXi(k) (1) 
where Ai and Bi are the unknown system parameters 
and these parameters may vary due to the dynamic 
workloads; p is the estimated value of power 
consumption; p' is the measured power consumption; 
Xi represents the allowed number of concurrent tasks 
for node i ; k is the timestamp for each control period. In 
this design, we only capture the power consumption 
in the last control period, and the input trajectory 
consists of a single value. This decision simplifies our 
implementation and can perform well in practice. 

3.3 Control power peaking 

To achieve the control goal with power capping, we 
define the following cost function for each server 
i. We transfer the goal of limiting power drawing to 
minimizing the value of cost function: 

Ji(k) = (pi(k + 1) — pcap{k + 1)) (2) 

Minimizing the cost function indicates that the gap 
between the consumed power and the power cap value 
should be as small as possible. This cost function 
can capture the trade-off between the performance and 
the power consumption at the same time. Minimizing 
the function means that we do not want the power 
consumption over the threshold or at least keep the 
gap falling into an acceptable range. Furthermore, the 
minimized gap indicates that we need to fully utilize 
the given power budget. 

3.4 Capture dynamic workload 

As the dynamic workload produces different usage 
patterns in the server resources, the relationship 
between x; and pi may change. To ensure the accuracy 
of the model, the model estimator obtains the generated 
value Xi from the controller and the actual consumed 
power value from the power tracking module at 
each control period, and computes the new system 
parameters Ai and Bi. We use the Recursive Least 
Square (RLS) estimator with exponential forgetting 
to identify the system parameters Ai and Bi for all 
servers. The model estimator sends the updated system 
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(3) 

(4) 
(5) 

parameters to the controller, which will be used in the 
next control decision. 

We rewrite the system model in the following RLS-
friendly form for each node /, which we use in the 
remainder of the paper. 

pi(k) = ei{k)9i{k) 
where 

ei(k) = [Ai,Bi] 
<pi{k) = [pi(k-\),xi(k-\)Y 

RLS estimator can be used to identify the time 
varying parameter matrix 0Z online. This estimator has 
been applied extensively in adaptive control system 
design as it can converge and reject disturbance in 
an efficient manner. The estimator is described by the 
following equations: 

si(k) = Pi(k)-ei{k-\)<pi(k), 
ej(k)q>](k)Xi(k-l) 

X+9](k)Xi(k-l}i>i(ky 

Xi(k) = j[Xt(k-l)-

ΧΜ-1)φΜ)φ]&)ΧΜ-1)ι 
X+i>](k)Xi(k-l)in(k) J 

where Q\ (k) is the estimation of the true value of model 
parameter 0/(fc) at the k-th control point, λ is the 
forgetting factor. In practice, λ typically has a positive 
value between 0.97 and 0.995. 

4 Performance Evaluation 

We evaluate our proposed approach with a new Hadoop 
simulator. Extensive evaluation results demonstrate 
that our proposed method can efficiently address the 
problem of power peak. 

ei(k) = 0i(k-i) + 

(6) 

4.1 Hadoop simulator 

To support our study on addressing the problem 
of temporary power peaks and evaluating the 
proposed solution, we develop a new simulator 
called PowerMumak to replay the workload trace 
file. The design of PowerMumak augments Mumak[21] 

and implements the functionalities of power module 
in JobTracker and TaskTracker. The architecture of 
PowerMumak is shown in Fig. 4. Rumen[22] is a tool 
to generate JSON formatted Hadoop cluster trace from 
the job running log files. 

This simulator can exactly simulate the working 
mechanism of Hadoop scheduling framework. The 
simulated scheduler class extends the JobTracker 
implementation in Hadoop by adding interaction 
module with the discrete event simulation engine. It 
uses the same strategy to implement the simulated 
TaskTracker. In this way, when a simulated task is to 
be scheduled, the simulator calls the same function in 
the real JobTracker implementation. Our simulator is 
effective to reproduce the behaviors of the real Hadoop 
scheduler. 

Without the loss of generality, we illustrate our 
proposed method with a power model for computation-
intensive workloads[23] and use a power function in 
terms of the processor's frequency and utilization. The 
power model can be extended to exploit more types of 
workloads into considerations and we can extend it in 
our design. Our model is described as 

Pi = aufm + ai2fi + anui + ai0 (7) 
where the system parameters a\j (j = 0,1,2,3) can 
be determined by system identification of physical 
servers; pi, fi, and w/ respectively represent the power 
consumption, processor's frequency, and utilization of 
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node i. We use the steady-state result of the M/M/n 
queueing model to model each core in the server. The 

x 
node utilization can be described as u — —, where x is 

sn 
the number of concurrent tasks in the current sampling 
cycle, s is the number of the served tasks, and n is the 
server's core number. In this paper, we assume that all 
servers are homogeneous with parameters: α,·3 = 68.4, 
ai2 = 14.6, an = -14.2, ai0 = 15.0. 
4.2 Power consumption and workload scheduling 

We replayed the workload trace specified in 
Table 1. This workload trace contains the typical 
workload in a data center, where the jobs containing 
small number of Map tasks and Reduce tasks usually 
handle the interactive query requests, and the jobs with 
high parallelism are usually seen when the backup 
data service is running. We illustrate the simulation 
results with a 400-node Hadoop cluster, in which each 
node has 8 processing cores and the frequency of 
2.4 GHz. We set the power capping reference for the 
entire cluster as 64 kW and assume that each server 
in the Hadoop cluster has the same power reference 
of 160 W In the real implementations, the power 
capping reference for the cluster can be determined by 
experienced domain experts. 

The results are shown in Fig. 5. According to Fig. 5a, 
the power peaks have been mitigated and the power 
consumption curve is smoothed with the proposed 
adaptive control method. To better analyze Fig. 5a, we 
calculate the power consumption distributions as shown 
in Fig. 5b. We can observe that the power distributions 
are high around 20 kW By the comparison with power 
consumption distributions, we observe that the power 
peaks have been effectively mitigated. At the same time, 
the cluster mainly works at the power level between 
40 and 60 kW. By comparing the workload scheduling 
traces in Fig. 5c, we can observe that the workload 
execution time (140 virtual minutes) under the adaptive 
control is slightly longer than that (128 virtual minutes) 
without control. Under a mixed workload, our solution 
can reduce the power budget for building data center 
with 20%, i.e., 16 kW, bringing less than 10% latency 
on execution. Under the given power budget, we can 
use another 100 machines (25% of the current size) in 
the data center. 
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Fig. 5 Power consumptions, distributions and workload 
scheduling based on virtual time. 

power usage characteristics of large scale computing 
cluster under different workload patterns and presented 
the possibility of reducing peak consumption by power 
capping technique. Dynamic voltage scaling[15] is used 
in multi-tier server architecture. The analysis on the 
Online Data-Intensive (OLDI) services workload[19] 

can help evaluate the possible solutions to the power 
management. The work in Ref. [24] characterizes the 
energy efficiency of various workloads in Hadoop. The 
sleepy strategy[18] is used to save power for Hadoop 
cluster. Unlike them, we analyzed that restarting the 
server introduces time cost and the performance in 
the underlying file system service. In addition, the 
MapReduce jobs are only related with some parts of the 
cluster[20], which is not the case in Microsoft Production 
Cluster. 

5 Related Work 6 Conclusions 
Energy efficiency in the cloud computing has attracted 
much attention. Fan et al.[7] analyzed the aggregate 

Motivated by the power peak problem observed from 
Microsoft Production Servers, we investigate this 
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problem in this paper. We propose the design of an 
adaptive scheme to efficiently manage the power peaks 
for MapReduce clusters. By using the simulation, we 
evaluate the performance of addressing the power peak 
problem. Extensive simulation results show that our 
proposed methods can effectively smooth the power 
consumption curve and mitigate temporary power peaks 
for MapReduce clusters. We hence can offer scalability 
for our MapReduce cluster with small costs. Our design 
can be used in distributed data processing systems. 
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