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Abstract
In storage systems, cuckoo hash tables have been widely
used to support fast query services. For a read, the cuckoo
hashing delivers real-time access with O(1) lookup com-
plexity via open-addressing approach. For a write, most
concurrent cuckoo hash tables fail to efficiently address the
problem of endless loops during item insertion due to the
essential property of hash collisions. The asymmetric fea-
ture of cuckoo hashing exhibits fast-read-slow-write perfor-
mance, which often becomes the bottleneck from single-
thread writes. In order to address the problem of asymmetric
performance and significantly improve the write/insert effi-
ciency, we propose an optimized Concurrent Cuckoo hash-
ing scheme, called CoCuckoo. To predetermine the oc-
currence of endless loops, CoCuckoo leverages a directed
pseudoforest containing several subgraphs to leverage the
cuckoo paths that represent the relationship among items.
CoCuckoo exploits the observation that the insertion oper-
ations sharing a cuckoo path access the same subgraph, and
hence a lock is needed for ensuring the correctness of con-
currency control via allowing only one thread to access the
shared path at a time; Insertion operations accessing different
subgraphs are simultaneously executed without collisions.
CoCuckoo improves the throughput performance by a graph-
grained locking to support concurrent writes and reads. We
have implemented all components of CoCuckoo and exten-
sive experiments using the YCSB benchmark have demon-
strated the efficiency and efficacy of our proposed scheme.

1 Introduction
Efficient query services are demanding and important to
storage systems, which hold and process much more data
than ever and the trend continues at an accelerated pace.
The widespread use of mobile devices, such as phones and
tablets, accelerates the generation of large amounts of data.
There exist 1.49 billion mobile daily active users on Face-
book in September 2018, with an increase of 9% year-over-
year. In each minute, 300 new profiles are created and more
than 208 thousand photos are uploaded to Facebook [5].

The explosion of data volume leads to nontrivial challenge
on storage systems, especially on the support for query ser-
vices [8, 12, 49]. Moreover, write-heavy workloads further
exacerbate the storage performance. Much attention has
been paid to alleviate the pressure on storage systems, which
demands the support of low-latency and high-throughput
queries, such as top-k query processing [30, 33], optimizing
big data queries via automated program reasoning [42], of-
fering practical private queries on public data [47], and opti-
mizing search performance within memory hierarchy [9].

In order to improve the performance of query services for
storage systems, efficient hash structures have been widely
used. In general, each hash function maps each item to
a unique bucket in a hash table, which needs to support
constant-scale and real-time access. However, items may be
hashed into the same bucket by hash functions, called hash
collisions. Due to the use of efficient open-addressing de-
sign, cuckoo hashing [38] is able to mitigate hash collisions
with amortized constant-time insertion overhead and lookup
consumption to meet the throughput needs of real-world ap-
plications. Unlike conventional hashing schemes that offer
only one bucket for each item, the cuckoo hashing provides
multiple (usually two in practice [11, 19, 37, 40]) candidate
positions for each item to reduce the probability of hash col-
lisions. To perform a lookup operation, at most two posi-
tions are probed, and the worst-case time is constant-scale,
thus delivering high performance especially in terms of low-
latency read and lookup operations [10,16,18,20,25,31,44].
However, to insert an item, the cuckoo hashing has to probe
the two candidate buckets for finding an empty position. If an
empty slot does not exist, recursive replacement operations
are needed to kick items out of their current positions until a
vacant bucket is found, which forms a cuckoo path. There
exists a certain probability of producing an endless loop,
which occurs after a large number of step-by-step kick-out
operations and turn out to be an insertion failure, thus result-
ing in slow-write performance. The property of asymmetric
reads and writes in the cuckoo hashing becomes a potential
performance bottlenecks for storage systems.
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The endless loops not only lead to the slow-write opera-
tion, but also make storage systems unable to efficiently sup-
port concurrent operations on both reads and writes, which
results in poor performance.

As the number of cores is increasing in modern proces-
sors, concurrent data structures are promising approaches to
provide high performance for storage systems [13, 15, 21,
22, 43, 48, 50]. In general, locks are often utilized to en-
sure the consistency among multiple threads [4]. To miti-
gate the hash collisions for writes, most existing hash tables
store items in a linked list with coarse-grained locks for en-
tire tables [19], fine-grained locks for per bucket [2, 32] or
Read-Copy-Update (RCU) mechanisms [35, 36, 46] for con-
currency control. However, the coarse-grained locks for en-
tire tables lead to poor scalability on multi-core CPUs due to
the long lock time, and fine-grained per-bucket locks result
in substantial resource consumption due to frequent lock-
ing and unlocking operations in a cuckoo path. RCU [34]
works well for read-heavy workloads, but inefficiently for
the workloads with more writes than reads. Moreover, the
cuckoo hashing with per-bucket locks suffers from substan-
tial performance degradations due to the occurrence of end-
less loops. The read operation has to wait for the write opera-
tion on the same bucket to complete and then release the lock
before being executed. Hence, it is inefficient to frequently
lock and unlock buckets during the long cuckoo paths of end-
less loops.

In order to offer a high-throughput and concurrency-
friendly cuckoo hash table, we need to address two main
challenges.

Poor Insertion Performance. Cuckoo hashing executes
recursive replacing operations to kick items from their stor-
age positions to the candidate positions for finding an empty
bucket during an insertion procedure. Moreover, all efforts
become useless when encountering an endless loop. To en-
sure the correctness of concurrency control, two continuous
buckets in a path have to be locked for each kick-out opera-
tion. The frequent locking and unlocking on a cuckoo path
will lead to high time overhead, which decreases the inser-
tion performance.

Poor Scalability. The cuckoo path is possible to be very
long in real-world applications. For example, the kick-out
threshold is 500 in MemC3 [19], and thus the longest cuckoo
path contains 500 buckets. All kick-out operations have to
be completed in the buckets protected by the locks. Due to
frequent use of locks to ensure consistency among multiple
threads, the concurrent hash table results in poor scalability.

In fact, only insertion operations sharing the cuckoo path
require locks for ensuring the consistency. Insertion op-
erations through different cuckoo paths can be simultane-
ously executed. Based on this observation, we propose
a lock-efficient concurrent cuckoo hashing scheme, named
CoCuckoo. It leverages a directed pseudoforest containing
several subgraphs to represent items’ hashing relationship,

which is further used to indicate the cuckoo paths of inser-
tion operations. In the pseudoforest, each vertex corresponds
to a bucket in the hash table, and each edge corresponds to
an inserted item from its storage vertex to its backup vertex.
In our CoCuckoo, the vertices corresponding to candidate
positions of the path-overlapped items must be in the same
subgraph. The path-overlapping can be interpreted that two
or more cuckoo paths of items share the same nodes during
insertion. In our design, each node only exists in a subgraph
with a unique subgraph number. Hence, the operations on the
path-overlapped nodes access the same subgraph. We lever-
age a graph-grained, rather than per-bucket, locking scheme
to avoid potential contention. Once locking a subgraph num-
ber, all buckets with the same number cannot be accessed by
different threads at the same time. If one thread intends to
access a bucket, it first obtains the number of the subgraph to
which the bucket belongs, to check if the subgraph number
has been locked.

Specifically, we have the following contributions.
High Throughput. CoCuckoo not only retains cuckoo

hashing’s strength of supporting constant-scale lookups via
open addressing, but also delivers high throughput by a
graph-grained locking to support concurrent insertions.

Contention Mitigation. We optimize the graph-grained
locking mechanism to pursue low lock overheads for differ-
ent cases of insertions and release the locks as soon as possi-
ble to ease the contention. CoCuckoo is able to predetermine
the insertion failures without the need of carrying out contin-
uous kick-out operations, and thus avoids many unnecessary
locking operations.

System Implementation. We have implemented all the
components and algorithms of CoCuckoo. Moreover, we
compared CoCuckoo with state-of-the-art and open-source
scheme, libcuckoo [32], which offers multi-reader/multi-
writer service.

2 Backgrounds
2.1 The Cuckoo Hashing
Cuckoo hashing [38] is an open-addressing technique with
O(1) amortized insertion and lookup time. In order to miti-
gate hash collisions, items can be stored in one of two buck-
ets in a hash table. If one position is occupied, the item can
be kicked out to the other [17, 26]. The frequent kick-out
operations help items find empty positions for insertion with
the costs of possible extra latency. On the other hand, we
can definitely read the queried data in one of two hashed po-
sitions, thus obtaining constant-scale query time complexity.

Definition 1 Conventional Cuckoo Hashing. Suppose that
k is the number of hash functions, and S is a set of items. For
the case of k = 2, conventional cuckoo hashing table H uses
two independent and uniformly distributed hash functions h1,
h2: S→ {0, . . . ,n−1}, where n is the size of the hash table.
An item x can be stored in any of Buckets h1(x) and h2(x) in
H, if being inserted successfully.

330    2019 USENIX Annual Technical Conference USENIX Association



The operation for inserting Item x proceeds by computing
two hash values of Item x to find Buckets h1(x) and h2(x) that
could be used to store the item. If either of the two buckets is
empty, the item is then inserted into that bucket. Otherwise,
an item is randomly chosen from the two candidate buckets
and kicked out by Item x. The replaced item is then relo-
cated to its own backup position, possibly replacing another
item, until an empty bucket is found or a kick-out threshold is
reached. The sequence of replaced items in an insertion op-
eration is called a cuckoo path. For example, “b→ k→ φ”
is one cuckoo path to identify one bucket available to in-
sert Item x as illustrated in Figure 1, which shows a standard
cuckoo hash table with two hash functions. The start point of
an edge (arrow) represents the actual storage position of an
item, and the end point is the backup position. For instance,
the bucket storing Item c is the backup position of Items a
and n.

a n c m k f b

h1(x)h2(x)

Figure 1: The conventional cuckoo hashing table.

A cuckoo graph is formed by considering each bucket in
the hash table as a vertex and each item as an edge. The
cuckoo graph can be transformed into a pseudoforest based
on graph theory [29].

2.2 Pseudoforest Theory
A pseudoforest is an undirected graph where each vertex
only corresponds to at most an edge, and each of maximally
connected components, named subgraphs, has at most one
cycle [7, 23]. The cycle formation starts from a vertex and
returns to the vertex through connected edges. Namely, each
subgraph in a pseudoforest has no more edges than vertices.

In order to clearly illustrate the direction of a cuckoo path
in insertion operations, we extend the pseudoforest into a di-
rected graph by adding the directions from storage positions
of items to their backup positions. In the directed pseudo-
forest, each vertex corresponds to a bucket, and each edge
corresponds to an inserted item from the storage vertex to
its backup vertex. In the conventional cuckoo hash tables,
each bucket stores at most one item, and thus each vertex in
a directed pseudoforest has an outdegree of at most one. If
the outdegree of a vertex is zero, the vertex corresponds to a
vacant bucket, and the subgraph having the vertex contains
no cycles, which is called non-maximal subgraph. Other-
wise, if the outdegrees of all vertices are equal to one, the
number of edges of the subgraph is equal to that of vertices,
and thus the subgraph contains a cycle, which is a maximal
subgraph. Any insertion into the subgraph containing a cy-
cle leads to an endless loop [28]. Therefore, if the states of
corresponding subgraphs are known before the item is in-

serted, the insertion result can be predetermined. Based on
this property, we can accurately predetermine the occurrence
of endless loops without the need of brute-force checking in
a step-by-step way.

Figure 2a shows the corresponding pseudoforest of the
cuckoo hash table before inserting Item x in Figure 1, which
contains one maximal subgraph and one non-maximal sub-
graph. After inserting Item x, the two subgraphs are merged
into a maximal subgraph, as shown in Figure 2b. In particu-
lar, after executing the kick-out operations during the inser-
tion, the original vacant vertex becomes the storage position
of Item k, and the vertex currently storing Item b becomes the
backup position of Item k. The arrow between two vertices
needs to be reversed.

a

c

f

m

n
b

k

Maximal Non-maximal

Vacancy

(a) Before inserting x.

a

c

f

m

n

x

b

k

Maximal

(b) After inserting x.

Figure 2: The directed pseudoforest.

In order to maintain the relationship of subgraphs in the
pseudoforest, we assign a subgraph number to each bucket
and its corresponding vertex, and hence the buckets with the
same subgraph number belong to the same subgraph. How-
ever, as the subgraphs are merged during item insertion, the
vertices with different subgraph numbers are merged into the
same subgraph and need to be represented by the same sub-
graph number. Frequent updates to subgraph numbers of ver-
tices cause severe insertion latency. In order to address this
problem, we leverage the disjoint-set data structure [24] to
maintain the relationship of subgraphs without updating the
subgraph numbers.

2.3 The Disjoint-set Data Structure
In general, a disjoint-set data structure [24] is a tree-based
structure that handles merging and lookup operations upon
disjoint (non-overlapping) subsets, like our design goal. This
structure offers near-constant-time complexity in adding new
subsets, merging existing subsets, and determining if two or
more elements exist in the same subset. Each element in the
structure stores an id, and a parent pointer. If an element’s
parent pointer does not point to any other elements, this ele-
ment is called the root of the tree and becomes the represen-
tative member of its subset. A subset may contain only one
element. However, if the element has a parent, the element
is part of the subset that is identified by uptracking the par-
ents’ chain until a representative element (without a parent)
is found at the root of the tree.

Three operations can be performed efficiently on the
disjoint-set data structure:

MakeSet(x) creates a subset of a new element x, which
has a unique id, and a parent pointer to itself. The parent
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pointer to itself indicates that the element is the representa-
tive member of its own subset. The MakeSet operation has
O(1) time complexity.

Find(x) follows the chain of parent pointers from a leaf
element x up to the tree until it reaches the representative
member of the tree to which x belongs. In order to make
Find operations time-efficient, path compression operation
is used to flatten the tree-based structure by allowing each
element to point to the root whenever Find is performed.
This is valid because each element accessed on the way to
the root is part of the same subset. The resulting flatter tree
not only speeds up the future operations on these elements,
but also accelerates the operations that reference them.

Union(x,y) uses Find(x) and Find(y) to determine the
roots of x and y. If the roots are distinct, the two correspond-
ing trees are combined by attaching the root of one to that of
the other, e.g., the root of the tree with fewer elements to the
root of the tree having more elements.

The unique number of each subgraph in the directed
pseudoforest is viewed as an element in the disjoint-set data
structure. When a new subgraph with a unique number is
generated, the MakeSet operation is called to generate a
new corresponding subset. The Find operation is performed
when we want to know if the subgraphs of two vertices be-
long to the same subgraph. Moreover, the Union operation
is triggered when subgraphs are merged.

3 The CoCuckoo Design
The cost-efficient CoCuckoo improves throughput perfor-
mance via a graph-grained locking to support concurrent in-
sertions and lookups. CoCuckoo leverages a directed pseud-
oforest containing several subgraphs to represent items’
hashing relationship, which is used to indicate the cuckoo
paths in insertion operations. A subgraph consists of the ver-
tices corresponding to buckets, as well as the edges corre-
sponding to the inserted items from their storage positions to
their backup positions. The disjoint-set data structure is used
to maintain the relationship among subgraphs and stored in
memory. Meanwhile, the pseudoforest is just a variant of
the cuckoo hash table and is not stored. Figure 3 shows the
framework of CoCuckoo. A key and its corresponding meta-
data are stored in each bucket of the hash table (H Table).
The metadata per bucket include the position of the value
corresponding to the key (v pos), and the subgraph number
of the subgraph to which the bucket belongs (sub id). The
sub ids are initialized to -1. Moreover, the disjoint-set data
structure called UF Array is described in Section 3.3.2.

Each candidate bucket of an item to be inserted into the
hash table possibly corresponds to a vertex in the pseudo-
forest. If a bucket in the hash table does not correspond to
any vertices in the pseudoforest, it means that this bucket
has not been visited before and is not a candidate bucket for
any inserted items. In general, this bucket corresponds to
an EMPTY subgraph, and its sub id is -1. Hence, an item

f a kH_Table

v_pos

0  1                                                              n-1

Key Metadata

-1 1 -1 3 -1 -1 -1

1  2   3   4                k                    

UF_Array

...

...

...

...

sub_id

Figure 3: The CoCuckoo framework.

can be directly inserted into a bucket corresponding to an
EMPTY subgraph. There are at most two EMPTY sub-
graphs for each item insertion due to the existence of two
candidate positions. According to the number of correspond-
ing EMPTY subgraphs, we classify item insertions into three
cases, namely, TwoEmpty, OneEmpty, and ZeroEmpty, re-
spectively showing 2, 1, and 0 EMPTY subgraphs.

Moreover, only insertion operations sharing the same
cuckoo path require the locks for guaranteeing the correct-
ness of concurrent insertions. Insertion operations through
different cuckoo paths access different subgraphs, which
can be simultaneously executed and have no lock con-
tention. Based on this observation, CoCuckoo allows the
vertices, which correspond to candidate positions of the path-
overlapped items, to exist in the same subgraph. We leverage
graph-grained locking to avoid potential collisions. These
threads won’t conflict as long as they manipulate different
subgraphs. Most subgraphs are small enough as demon-
strated in Figure 6, and hence only a few vertices are con-
strained at a time.

3.1 Intra-thread Operation
Items inserted into cuckoo hashing form a cuckoo graph,
which is represented as a directed pseudoforest in our
CoCuckoo. Each vertex in the pseudoforest corresponds to a
bucket of the hash table and each edge corresponds to an
item. An inserted item generates an edge from its actual
storage position to its backup position. The pseudoforest re-
veals cuckoo paths of kick-out operations for item insertion.
Hence, the directed pseudoforest can be used to track and ex-
hibit path overlapping of items in advance to avoid potential
collisions by a graph-grained locking.

3.1.1 The Case of TwoEmpty
When two candidate positions of an item have not yet been
used and represented by any vertices in subgraphs of the
pseudoforest, i.e., two EMPTY subgraphs, the item can be
directly inserted into one bucket (the position hashed by the
first function by default). Hence, the insertion needs to cre-
ate a new subgraph, which is non-maximal and ends up with
an empty vertex, as shown in Figure 4a to insert Items a, f ,
and k, respectively. To clearly show these cases, we leverage
two hash tables in the following examples. Items hashed by
the second function is inserted into the second hash table.
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T2
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Figure 4: The cases of item insertions.

3.1.2 The Case of OneEmpty
One of two candidate buckets of an item corresponds to an
existing vertex in the pseudoforest, and the other corresponds
to an EMPTY subgraph, which will become a new vertex af-
ter inserting the item. As shown in Figure 4b, Items b and n
can be directly inserted into Buckets T2[5] and T1[4] respec-
tively due to available vacancy.

3.1.3 The Case of ZeroEmpty
Two candidate positions of an item correspond to two ex-
isting vertices in the pseudoforest, which exist either in the
same subgraph or both subgraphs. Moreover, each subgraph
is either maximal or non-maximal. According to the states
and number of subgraphs, we classify the case of ZeroEmpty
into four subcases.

Diff non non: If the vertices corresponding to two can-
didate positions of an item exist in two non-maximal sub-
graphs, the item can be successfully inserted into the hash ta-
ble due to the existence of vacancies. The two subgraphs will
be further merged, i.e., inserting Item c into Bucket T2[3], as
shown in Figure 4c.

Same non: When the two vertices are in the same non-
maximal subgraph, there exists a vacant bucket for the item.
It will be inserted into the hash table and the corresponding
subgraph becomes maximal. For example, Item m is inserted
into the hash table and we add an edge from Bucket T2[1] to
Bucket T1[2]. Hence the corresponding subgraph forms a
loop, as shown in Figure 4d.

Max: If the two vertices exist in one maximal directed
subgraph (named Same max, e.g., Item x in Figure 4e), or
two maximal subgraphs (named Diff max max, e.g., Item z
in Figure 4g), no vacancies are available for the new item.
The insertion fails even if executing many kick-out opera-
tions within a loop. Unlike it, CoCuckoo predetermines the
failure in advance and store the item in temporary space (e.g.,
a stash) [16, 26].

Diff non max: One vertex exists in a maximal subgraph
and the other is in a non-maximal subgraph in this case.
There exists a vacant bucket for the item. The insertion will

be successful after several kick-out operations. For example,
as shown in Figure 4f, the cuckoo path is “b→ k→ φ” when
inserting Item y. The two subgraphs are further merged into
a new maximal directed subgraph after the insertion.

3.2 Inter-thread Synchronization Optimiza-
tion

Each thread gets a request from its own task queue each
time. Only insertion operations sharing the same cuckoo
path require locks for guaranteeing the correctness of con-
current insertions. If two or more insertion requests are path-
overlapped, the corresponding threads access to the same
subgraph. Hence, the threads that visit the same subgraph
have to wait for locks due to guaranteeing the correctness,
and the threads that visit different subgraphs can be executed
concurrently. To further alleviate the lock contention and
overheads, we optimize the operations on different cases of
insertions to release locks as soon as possible.

Algorithm 1 shows the steps involved in the insertion of
Item x. First, we predetermine the insertion failure if the
case is MAX , and then lock the subgraphs as shown in Algo-
rithm 2. Second, we determine the case of item insertion and
execute corresponding insertion operations.

3.2.1 The Case of TwoEmpty

The corresponding thread allocates a new subgraph num-
ber, which is locked and assigned to the two EMPTY sub-
graphs. The subgraph number is used to identify a unique
subgraph. Since the buckets of EMPTY subgraphs can be
accessed without acquiring locks, other threads may occupy
these buckets before the thread assigns a subgraph number to
them. We utilize two atomic subgraph number assignment
operations (based on Compare-And-Swap instructions) for
consistency. If both atomic operations are successful, the two
EMPTY subgraphs are assigned the same subgraph number.
The item can be inserted directly into one of its candidate
buckets without kick-out operations. Finally, a non-maximal
subgraph is produced. Once the two EMPTY subgraphs are
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Algorithm 1 Insert(Item x, Hash a, Hash b)
1: /*a and b are two indexes of Item x’s candidate positions*/
2: if SGa is maximal && SGb is maximal then
3: Return; /*Failure predetermination*/
4: end if
5: LockGraphs(a,b);
6: Result← False;
7: if SGa and SGb are EMPTY then
8: Result← InsertTwoEmpty(x,a,b);
9: else if SGa is EMPTY ‖ SGb is EMPTY then

10: if SGa is EMPTY then
11: Result← InsertOneEmpty(x,a,b);
12: else
13: Result← InsertOneEmpty(x,b,a);
14: end if
15: else
16: if SGa is maximal && SGb is maximal then
17: Result← InsertMax(x,a,b);
18: else if SGa is non-maximal && SGb is non-maximal then
19: if SGa == SGb then
20: Result← InsertSameNon(x,a,b);
21: else
22: Result← InsertDi f f NonNon(x,a,b);
23: end if
24: else if SGa is non-maximal then
25: Result← InsertDi f f NonMax(x,a,b);
26: else
27: Result← InsertDi f f NonMax(x,b,a);
28: end if
29: end if
30: if Result == False then
31: Goto 2;
32: end if

Algorithm 2 LockGraphs(Int a, Int b)
1: while True do
2: if SGb < SGa then
3: SWAP(SGa,SGb);
4: end if
5: if SGa is EMPTY then
6: Return;
7: else
8: /*Lock subgraphs in order to avoid deadlocks*/
9: LOCK(SGa);

10: if SGa 6= SGb then
11: LOCK(SGb);
12: end if
13: end if
14: if SG′a == SGa&&SG′b == SGb then
15: /*SG′a and SG′b are subgraph numbers after locking*/
16: break;/*Double check*/
17: else
18: UNLOCK(SGa);
19: if SGa 6= SGb then
20: UNLOCK(SGb);
21: end if
22: end if
23: end while

found with different subgraph numbers, the atomic opera-
tions fail, and the Insert operation has to be re-executed as
shown in Algorithm 3.

Algorithm 3 InsertTwoEmpty(Item x, Hash a, Hash b)

1: LOCK(SG); /*The corresponding subgraph number*/
2: if AtomicAssign(&SGa,SG)&&AtomicAssign(&SGb,SG)

then
3: DirectInsert(x,Bucket[a]);/*Insert directly into B[a]*/
4: Tag[SG]← NON MAX MARK;
5: UNLOCK(SG);
6: Return True;
7: else
8: UNLOCK(SG);
9: Return False;

10: end if

3.2.2 The Case of OneEmpty

One candidate bucket of the item to be inserted corresponds
to an EMPTY subgraph, which is vacant. The other can-
didate bucket of the item corresponds to an existing vertex
of a subgraph. The item can be directly inserted into the
EMPTY subgraph, no matter what the state of another sub-
graph is. Hence, we utilize two atomic operations without
locks to execute the insertion operation. The Insert opera-
tion atomically assigns the number of the existing subgraph
to the new vertex, and inserts the item into the new ver-
tex by an atomic write operation as shown in Algorithm 4.
Moreover, the state of the final merged subgraph depends
on the pre-merged subgraph without changes. If the vertex
has been already occupied by another item, the subsequent
atomic write operation of insertion fails, which means that
the original EMPTY subgraph has been merged with another
subgraph and becomes not empty. The Insert operation has
to be restarted, and the insertion case becomes ZeroEmpty.
Hence, the insertion protocol ensures forward progress and
doesn’t produce repeated atomic operation failures.

Algorithm 4 InsertOneEmpty(Item x, Hash a, Hash b)

1: if AtomicAssign(&SGa,SGb) then
2: if AtomicInsert(x,Bucket[a]) then
3: Return True;
4: else
5: Return False;
6: end if
7: else
8: Return False;
9: end if

3.2.3 The Case of ZeroEmpty

Diff non non: The Insert operation locks the two corre-
sponding non-maximal subgraphs, inserts the item after sev-
eral kick-out operations, and then releases the lock after the
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two subgraphs have been merged as shown in Figure 5. The
merged subgraph is non-maximal, which has a vacant bucket
for another item to be inserted.

Algorithm 5 InsertDiffNonNon(Item x, Hash a, Hash b)
1: Kick-out(x,Bucket[a]); /*Enter from B[a]*/
2: Union(SGa,SGb);
3: UNLOCK(SGa);
4: UNLOCK(SGb);
5: Return True;

Same non: The merged subgraph is maximal after the
item is inserted, and no vacancies are available for other
items to be inserted. Hence, to ease the lock contention, our
optimization is to lock the corresponding subgraph and mark
it to be maximal, and unlock the subgraph before execut-
ing kick-out operations of the insertion, as shown in Algo-
rithm 6.

Algorithm 6 InsertSameNon(Item x, Hash a, Hash b)
1: Tag[SG]←MAX MARK;
2: UNLOCK(SG);
3: Kick-out(x,Bucket[a]);/*Enter from B[a]*/
4: Return True;

Max: No vacancies are available in the corresponding
subgraphs for items in this case, and the Insert operation
will always walk into a loop and be predetermined to a fail-
ure. We just unlock the corresponding subgraph(s) without
any other operations, as shown in Algorithm 7.

Algorithm 7 InsertMax(Item x, Hash a, Hash b)
1: UNLOCK(SGa);
2: if SGa 6= SGb then
3: UNLOCK(SGb);
4: end if
5: Return True;

Diff non max: There exists only one vacancy for an item,
and the state of the merged subgraph is predetermined to be
maximal after the item is inserted in the case. Other threads
accessing the subgraph first obtain the subgraph state and
will not insert items when the subgraph is maximal. For
the Insert operation, the corresponding thread obtains the
lock of the non-maximal subgraph and marks it to be max-
imal, and then releases the lock immediately. The insertion
with several kick-out operations and the merging operation
of two subgraphs complete outside the lock, as shown in Al-
gorithm 8.

3.3 Subgraph Management
3.3.1 Subgraph Number Allocation
We allocate each newly created subgraph a new number for
identification. Each subgraph number represents a unique

Algorithm 8 InsertDiffNonMax(Item x, Hash a, Hash b)
1: Tag[SGa]←MAX MARK;
2: UNLOCK(SGa);
3: UNLOCK(SGb);
4: Kick-out(x,Bucket[a]);/*Enter from B[a]*/
5: Union(SGa,SGb);
6: Return True;

subgraph, and each vertex of the subgraph records the num-
ber of its corresponding bucket. All threads allocate sub-
graph numbers concurrently. When a thread requests a sub-
graph number, we lock the number generator. Other threads
have to wait for unlocking, thus increasing the response time
of requests and possibly becoming performance bottleneck.
Moreover, we only need to confirm that the subgraph num-
bers are unique without the need of continuity. In order to
decrease the response time without locks and ensure consis-
tency of subgraph number allocation, we leverage a simple
modular function to compute the subgraph numbers for all
threads. In the modular function, the modulus is the total
number of threads p, and the remainder is the number of
each thread r. Hence, the subgraph number allocated by each
thread is n = kp+ r, while the parameter k is an accumula-
tor. A subgraph number generator serves for a thread. For
example, in the 8-thread CoCuckoo, the subgraph numbers
allocated by T hread 2 is 2, 10, 18, and so on. Hence, we
allocate subgraph numbers for each thread in order, and then
add one to the accumulator k after creating a new subgraph.

3.3.2 Subgraph Merging
When vertices corresponding to two candidate positions of
an inserted item exist in two subgraphs, they are merged after
item insertion. To avoid exhaustively searching for all ver-
tex members of corresponding subgraphs and updating their
subgraph numbers (sub ids in metadata) when subgraphs are
merged, a tree-based data structure called disjoint-set data
structure is utilized to maintain the relationship between
subgraphs. Each node in the tree stores a subgraph num-
ber and a parent pointer. In order to avoid deadlocks, we
always merge the subgraphs with bigger numbers into that
with smaller numbers. After subgraphs are merged, the par-
ent pointer of the node with bigger number points to the
node with smaller number, which becomes the representa-
tive of the tree. The newly merged subgraph is possible to be
merged again with others. Finally, the subgraph number of
the tree’s root represents the number of the subgraph merged
from all prior subgraphs.

The Union operation is called when merging subgraphs
is needed. Union(sub id1,sub id2) uses Find(sub id1) and
Find(sub id2) to determine the roots of the nodes with
sub id1 and sub id2. If the roots are distinct, the trees are
combined by attaching the tree whose root has the bigger
subgraph number to the root of the smaller one. Furthermore,
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Find(sub id) follows the chain of parent pointers from a leaf
node with sub id1 up to the tree until it reaches a root node,
whose parent is itself. The subgraph number stored in the
root node is the actual subgraph number of all nodes in the
chain.

An array UF Array is used to implement the disjoint-set
data structure. The length of the array is the number of sub-
graphs, and the indexes of the array indicate the subgraph
numbers. The values of elements are initialized to -1, and
updated to the indexes of their parents after merging. Specif-
ically, there are two cases for the value of an element in the
array: (1) If the value of an element is equal to -1, the sub-
graph number represented by the index is a root node; (2) If
the value of an element is larger than 0, the subgraph number
corresponding to the value is the parent node of the subgraph
number represented by the index. As shown in Figure 3,
UF Array[1] =−1 means that the subgraph number 1 is the
root node; UF Array[2] = 1 means that the subgraph num-
ber 1 is the parent node of the subgraph number 2. Therefore,
all buckets with subgraph number 2 have the actual subgraph
number of 1.
3.3.3 Item Deletion and Subgraph Splitting
For an item, when the vertex of the storage position is not
on a cycle, the corresponding subgraph is split into two
subgraphs when deleting the item [6]. To avoid recon-
structing the hash table and updating sub ids of all buck-
ets, the re edge information in metadata per bucket is added
to record the related edges of the bucket in the correspond-
ing subgraph. When deleting Item x, we first compute the
two corresponding buckets of Item x, i.e., determine the stor-
age and backup positions. Item x is deleted from the stor-
age bucket in the hash table, and the corresponding edge is
deleted from the re edge in two buckets. All related edges
and buckets are then recursively searched from the re edge
in the candidate buckets. Finally, all searched buckets are
updated with a new sub id. In order to optimize the delete
operation after splitting subgraphs, all buckets in the sub-
graph containing the storage position of Item x do not need
to update their sub ids. Their actual sub ids can be searched
by UF Array. The thread that performed the delete oper-
ation acquires the lock of the corresponding subgraph until
the operation completes. Figure 5 shows an example of split-
ting subgraph when deleting Item x. The backup position
of Item x (namely, the storage position of Item c) is found
by hash computation, and all related nodes in the left sub-
graph are iteratively searched by the re edge information in
the metadata of related buckets. We then update all sub ids
of searched related buckets in hash tables.

4 Performance Evaluation
4.1 Experimental Setup
The server used in our experiments is equipped with an Intel
2.4GHz 16-core CPU, 24GB DDR3 RAM, and 2TB hard
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Figure 5: An example of splitting subgraph.

disk. The L1 and L2 caches of the CPU are 32KB and
256KB, respectively. The programming language of all func-
tional components of CoCuckoo scheme is C/C++. More-
over, multi-threading is implemented by the pthread via a
pthread.h header and a thread library.

Workloads: The widely-used industry standard in eval-
uating the performance of key-value stores is the Yahoo!
Cloud Serving Benchmark (YCSB) [14]. We use this bench-
mark to generate five workloads, each with different propor-
tions of Insert and Lookup queries to represent real-world
scenarios, as shown in Table 1. Especially, the INS workload
is the worst case for cuckoo hashing (resulting in a nearly full
table), and the remaining four workloads are common cases
with Lookup operations. Moreover, each workload has two
million key-value pairs. Each key in workloads is 16 bytes
and each value is 32 bytes for most experiments (except in
Section 4.2.4 that uses various sizes for evaluating the effect
of size on throughput). The default cuckoo hash table has
221 = 2,097,152 slots, which consumes about 96MB mem-
ory in total.

Table 1: Distributions of different queries in each workload.
Workload Insert Lookup

Insert-only (INS) 100% 0%
Insert-heavy (IH) 75% 25%

Insert-lookup balance (ILB) 50% 50%
Lookup-heavy (LH) 25% 75%
Lookup-only (LO) 0% 100%

Threads: In our experiments, there are five settings for
the number of threads, including a single thread, 4, 8, 12,
and 16 threads, to evaluate the concurrency performance.

Comparisons: We compare our proposed CoCuckoo
with open-source libcuckoo [3, 32], which is optimized to
offer multi-reader/multi-writer service through spin locks
based on concurrent multi-reader/single-writer cuckoo hash-
ing used in MemC3 [19]. Since libcuckoo has multiple slots
per bucket to mitigate collisions [19,39,41,51], we also eval-
uate the performance of 2-, 4-, 8- and 16-way libcuckoo. We
follow the default configuration of libcuckoo in the original
paper [32] and only adjust the numbers of threads and slots
to facilitate fair comparisons in concurrency. The results of
CoCuckoo and libcuckoo come from in the same experimen-
tal environment.

We focus on the performance improvements from our de-
sign in the context of workloads with concurrent insertions
and lookups by measuring the throughput and latency of
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multiple threads accessing the same hash table. In general,
the request response on the cuckoo hashing table becomes
slower as the load factor increases, since more items have to
be moved [32]. Hence, we measure the throughput and la-
tency for certain load factor intervals (from 0 to 80%), and
average throughput and latency.

4.2 Results and Analysis
4.2.1 Lock Granularity
A graph-grained lock is used for concurrency control in our
CoCuckoo. Since most subgraphs are small, the granular-
ity of graph-grained locks is acceptable, which only con-
strain a very small number of buckets. We have measured
the number of subgraphs in each size interval with Insert-
only workload. Figure 6 demonstrates that most subgraphs
are small. For example, 44.25% subgraphs contain only 3
vertices, and about 99% subgraphs contain no more than 10
vertices. Very few buckets are constrained once for ensuring
the correctness of concurrency control of the multi-thread
hash tables. We obtained identical experimental results un-
der single-threaded and multi-thread conditions. The reason
is that for given hash functions, the hash location of each
item is determined. Based on hashed locations, the cuckoo
subgraphs are also determined, except the difference of the
order in which the vertices are added into subgraphs due to
the concurrency of threads.
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Figure 6: The number of subgraphs in each size interval.

4.2.2 Throughput
This subsection evaluates the average throughput under
an increasing number of threads with five workloads and
throughput at different table occupancies with Insert-only
workload. The throughput is the average number of requests
completed per second.

Figure 7 shows the average throughput under an increas-
ing number of threads with five different workloads. The
average throughput increases with the increasing number of
threads in all cuckoo hashing tables, due to the multi-thread
acceleration. In libcuckoo, the lower associativity improves
the throughput, because each lookup checks fewer slots in
order to find the key, and each insertion needs to probe fewer
slots in a bucket for an empty slot. In 4-way libcuckoo, each
Lookup requires at most two cache-line reads to find the key
and one more cache-line read to obtain the value. Further-
more, in 16-way libcuckoo, each Lookup requires at most

eight cache-line reads to find the key and one more cache-
line read to obtain the value. With the increasing number of
threads, we observe that CoCuckoo significantly increases
the average throughput over libcuckoo by 50% to 130% as
shown in Figure 7f. In particular, the growth rate is defined
as the throughput growth ratio of CoCuckoo relative to 2-
way libcuckoo.

Figure 8a illustrates that the impact of load factors on 16-
thread cuckoo hashing throughput for Insert-only workload.
With the increase of load factors, the throughput decreases,
since each Insert operation has to probe more buckets for
finding an empty slot, and requires more item replacements
to insert the new item. The libcuckoo utilizes Breadth-First
Search (BFS) to find an empty slot for item insertion, and
the path threshold is 5 in open-source implementation [3]. In
1-way libcuckoo, the threshold is reached at lower load fac-
tor, and expensive rehashing operations are executed, which
results in poor performance. However, a higher load factor
(more than 0.65) results in performance decrease in terms of
throughputs of CoCuckoo. We argue that as the load factor
increases, the subgraph merge operations become more fre-
quent, thus leading to the decreasing number of subgraphs
and the increasing number of vertices included in a sin-
gle subgraph. Hence, more vertices are constrained by one
thread that handles the Insert operation due to the graph-
grained locking. Compared with libcuckoo, the proposed
CoCuckoo obtains significant performance improvements in
terms of throughputs.

4.2.3 Predetermination for Insertion
Table 2 shows the fractions of all cases with different work-
loads of containing Insert operations in 16 threads. In each
workload, the two cases of TwoEmpty and OneEmpty ac-
count for a large proportion, which means that most inser-
tion operations probe new and empty buckets, and add new
vertices into corresponding subgraphs in the pseudoforest.
Hence, with executing these insertion operations, the threads
leverage short-term (TwoEmpty) or no (OneEmpty) locks
the shared buckets, which alleviates the lock contention and
further improves the throughput of CoCuckoo. The Max
case occurs in INS and IH workloads, which means the
proposed CoCuckoo predetermines insertion failures and re-
leases locks without any kick-out operations to ease the con-
tention.

4.2.4 Different Key Sizes
All prior experiments used the workloads with 16-byte keys
and 32-byte values. We further evaluate the average through-
put of cuckoo hash tables with different key sizes at the load
factor of 0.8, as shown in Figure 8b- 8f.

In each figure, we show the average throughput, as the
key size increases from 8 bytes to 64 bytes with Insert-only
workload. The throughput decreases, as the key size in-
creases due to the increased String copy and String comp
overheads, as well as memory bandwidth overhead. More-
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Figure 7: The average throughput and growth rate compared with 2-way libcuckoo.

Table 2: The fractions of all cases in 16 threads.
Workloads TwoEmpty OneEmpty Same non Max Diff non non Diff non max
Insert-only 25.673% 37.9628% 0.0003% 13.9802% 13.1447% 9.239%

Insert-heavy 32.9343% 40.4907% 0.0004% 3.5921% 16.7513% 6.2312%
Insert-lookup balance 44.675% 39.6011% 0.0002% 0% 15.7235% 0.0002%

Lookup-heavy 64.4448% 30.1658% 0% 0% 5.3894% 0%
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Figure 8: The throughput in different table occupancies and sizes of keys with Insert-only workload.

over, our concurrent cuckoo hashing becomes much less ef-
fective with large keys. For example, in the case of 16
threads, the throughput of CoCuckoo is 6.43 million requests
per second with 8-byte keys, which is 135% higher than 4-
way libcuckoo. The throughput of CoCuckoo is only 95%
higher than 4-way libcuckoo with 64-byte keys. Similarly,
hyperthreading also becomes much less effective with larger
keys. For example, with 64-byte keys, the 4-thread through-

put of CoCuckoo is 2.09 million requests per second, 8-
thread throughput is more than 57% higher than 4-thread
throughput, but 16-thread throughput is only 50% higher
than 8-thread throughput. In order to support large-size keys,
the full keys and values can be stored outside the table and
referenced by a pointer, which possibly damages lookup per-
formance. A null pointer indicates that the bucket is unoccu-
pied.
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4.2.5 Extra Space Overhead and Impact
Extra space overhead comes from the auxiliary structure of
CoCuckoo, which includes two parts. One is the UF Array
to maintain the relationship among subgraphs. The other is
the sub id (subgraph number) stored in each bucket of the
cuckoo hash table. Specifically, the UF Array length is the
number of subgraphs, and the indexes of the array indicate
the subgraph numbers. The maximum number of subgraphs
is equal to that of buckets in hash tables. The subgraph num-
ber is an Int type data in our implementation, which is usu-
ally 4 bytes in currently compilers (e.g., GCC). For subgraph
numbers, the sub id is stored in each bucket as metadata.

The default cuckoo hash table has 221 slots. Therefore,
the extra space overhead is totally 221 ∗ (4+ 4)B = 16MB,
which is deterministic and very small, compared with current
memory capacity. Moreover, the pseudoforest is the theoret-
ical transformation form of the cuckoo hash table, which is
not stored in memory. In essence, we leverage acceptable
space overhead to obtain significant performance improve-
ments, which is a suitable trade-off. Moreover, in order to
examine its impact upon system performance, we evaluate
the throughput with the extra space through the Insert-only
workload. To facilitate fair comparisons, we define the iden-
tical space available for both libcuckoo and CoCuckoo. As
shown in Figure 9, we observe that CoCuckoo increases the
throughput over 2-way libcuckoo by 73% to 159%, which is
comparable to 75%-150% in Figure 7a in Section 4.2.2, thus
exhibiting little impact.

We also evaluate the average execution time per request.
As shown in Figure 10, the average time per request in 16-
thread CoCuckoo is 1.66µs, which is much shorter than
16.37µs in libcuckoo. Frequent rehash operations occur dur-
ing the item insertion of 1-way libcuckoo, resulting in longer
insertion time.
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Figure 9: The average throughput with the same space over-
head at the load factor of 0.8.

4.2.6 Deletion Latency
The re edge information in metadata per bucket is included
for supporting deletion. We evaluate the impact of deletion
on performance by measuring request latency. The latency
is defined as the time required to be executed in the concur-
rent program operation per request except the time in a serial
program operation. Specifically, for a request, the latency is

2.62 

7.92 

13.68 

25.58 

37.11 

1.16 1.30 1.36 1.64 2.03 

0

10

20

30

40

1 4 8 12 16

A
v

er
a
g

e 
ti

m
e
 p

e
r 

re
q

 

(u
s)

Number of threads

1-way libcuckoo 2-way libcuckoo
4-way libcuckoo 8-way libcuckoo
16-way libcuckoo CoCuckoo

Figure 10: The average time per request with the same space
overhead.

equal to the execution time of a thread in a concurrent pro-
gram minus the time it consumes in a serial program. We
use the YCSB benchmark to generate two workloads: (1)
5% Delete: 95% Insert and 5% Delete requests; (2) 10%
Delete: 90% Insert and 10% Delete requests, each with one
million key-value pairs with deletion.

Figure 11 shows the average request latency of CoCuckoo
with six workloads containing Insert and Delete operations.
With the increasing number of threads, the average latency
increases due to more intense lock contentions. The time
waiting for locks increases with the increasing number of
threads. For example, with Insert-only workload, the single-
thread latency is 1.16µs per request, 8-thread latency is 2.6%
longer than single-thread latency, and 16-thread latency is
50.0% longer than 8-thread latency. However, with the same
number of threads, the average latency of different work-
loads incurs slight changes. Deletions are generally executed
within locks, which exacerbates lock contentions. The la-
tency of Delete is similar to that of Insert and larger than
that of Lookup.
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Figure 11: Average latency in different workloads.

Figure 12 illustrates the impact of load factors on latency
performance of CoCuckoo with 5% Delete. As the load fac-
tor increases, there is a slight decrease in latency. Due to our
optimization in Section 3.2.2, the average latency of Case
OneEmpty is smaller than that of Case TwoEmpty. The pro-
portion of Case OneEmpty increases while the proportion
of Case TwoEmpty significantly decreases as the load factor
increases. Hence, the overall latency decreases. In the mean-
time, due to appropriate load factors, the decrease of request
latency is slow. For example, 16-thread latency is 1.73µs at
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a load factor of 0.10 for the hash table, and 1.68µs at a load
factor of nearly 0.50, which is only 2.9% smaller than that at
a load factor of 0.10.
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Figure 12: The latency at different table occupancies with
5% Delete.

5 Related Work
Performance-constrained single-thread hash tables. The
Google’s dense hash map, which is available in the Google
SparseHash [1] library, supports fast lookup services. The
dense hash uses open addressing with internal quadratic
probing and achieves space efficiency for extremely high
speeds. Moreover, this table stores items in a single large
array and maintains a maximum 0.5 load factor by default.

Horton table [11] is an enhanced bucketized cuckoo hash
table for reducing the number of CPU cache lines that are
accessed in each lookup, thus achieving higher throughput.
Most items are hashed by only a single function and there-
fore are retrieved by accessing a single bucket, namely, a
single cache line. For negative lookups, item remapping en-
ables low access costs to access one cache line.

SmartCuckoo [45] is a cost-efficient cuckoo hash table for
accurately predetermining the status of cuckoo operations
and the occurrence of endless loops. A directed pseudoforest
representing the hashing relationship is utilized to track item
placements in the hash table, and further avoid walking into
an endless loop.

However, the performance of these hash tables does not
scale with the number of cores in the processor, due to only
a single thread permitted in execution, which suffer from the
performance bottleneck of slow writes in storage systems.
Unlike them, the design goal of our CoCuckoo is to effi-
ciently support concurrent operations and deliver high per-
formance in storage systems via concurrency-friendly hash
tables.

High-performance concurrent hash tables. Relativistic
hash table [46] is the data structure that supports shrinking
and expanding while allowing concurrent, wait-free and lin-
early scalable lookups. The proposed resize algorithms re-
claim memory as the number of items decreases, and enable
Read-Copy Update (RCU) [34–36, 46] hash tables to main-
tain constant-scale performance as the number of item in-
creases, without delaying or disrupting readers.

MemC3 [19] is designed to provide caching for read-
mostly workloads and leverages the optimistic cuckoo hash-
ing, which supports multiple readers without locks and a
single writer. Instead of moving “items” forward along the
cuckoo path, the cuckoo hashing used in MemC3 moves “va-
cancies” backwards along the cuckoo path. The backward
method ensures that an item can always be found by a reader.

The libcuckoo [32] redesigns MemC3 to minimize the
size of the hash table’s critical sections and allow for sig-
nificantly increased parallelism, which supports two con-
currency control mechanisms, i.e., fine-grained locking and
hardware transactional memory.

These schemes are dedicated to improve lookup perfor-
mance and however fail to work well for tables with more
insertion than lookup operations due to the occurrence of
hash collisions and endless loops. Our proposed CoCuckoo
focuses on write-heavy workloads for supporting concurrent
insertions and lookups.

Moreover, CoCuckoo currently addresses the performance
bottleneck for cuckoo hashing with two hash functions. The
setting of more than two hash functions would significantly
increase operation complexity [16,52], which can be reduced
to two using techniques such as double hashing [27].

6 Conclusion
Most existing concurrent cuckoo hash tables are used for
read-intensive workloads and fail to address the potential
problem of endless loops during item insertion. We pro-
posed CoCuckoo, an optimized concurrent cuckoo hashing
scheme, which represents cuckoo paths as a directed pseudo-
forest containing multiple subgraphs to indicate items’ hash-
ing relationship. Insertion operations sharing the same
cuckoo path need to access the same subgraph, and hence
a lock is needed for ensuring the correctness of concur-
rent operations. Insertion operations accessing different sub-
graphs enable simultaneous execution. CoCuckoo classi-
fies item insertions into three cases and leverages a graph-
grained locking mechanism to support concurrent insertions
and lookups. We further optimize the mechanism and release
locks as soon as possible to mitigate the contention for pur-
suing low lock overheads. Extensive experiments using the
YCSB benchmark demonstrate that the proposed CoCuckoo
achieves higher throughput performance than state-of-the-
work scheme, i.e., libcuckoo.
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