
FINEdex: A Fine-grained Learned Index

Scheme for Scalable and Concurrent

Memory Systems

Pengfei Li, Yu Hua, Jingnan Jia, Pengfei Zuo

Huazhong University of Science and Technology

VLDB 2022

Traditional B-Trees overlook data patterns

1

Efficient point/range query
Key

Sorted Data

CPU

Main Memory

Cache

Dynamic structure adjustment

Enable high concurrency

Low memory footprint

High penalty of multiple pointer jumpings

Dynamic tree balancing

Multiple-level inner nodes

Heavy dependency among nodes

Exact data distribution enables efficiency

1

Key

Sorted Data

0 1 2 3 ··· 1M

• memory jumpings > cost-efficient computations

𝑌 = 𝑥

0 1 2 3 ··· 1M

Latency & Memory footprint:

• multiple-level nodes > small number of parameters

Consider Indexes as ML models

Learned indexes

1

Key

Index Structures

(e.g., B+-trees or learned indexes)

Prediction leaf node

leaf node
pred-max_err pred+max_err

············

Indexes are regression models

Learned indexes

1

Key

Index Structures

(e.g., B+-trees or learned indexes)

Prediction leaf node

leaf node
pred-max_err pred+max_err

············

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Key

P
o
s
it
io

n

 normal lognormal ycsb

 weblogs documentid

Learn CDF for high accuracy

Learned indexes could be better

1

Efficient point/range query

Dynamic structure adjustment

Enable high concurrency

Low memory footprint

Cost-efficient computations for searching

High-overhead retraining

Small number of parameters

Heavy data dependency

Challenge 1: Limited Scalability

1

Schemes
Insertion without

data loss

Keep all data

sorted

Concurrency

Write retrain

Learned indexes

SIGMOD’ 18

FITing-tree

SIGMOD’ 19

Xindex

PPoPP’ 20

ALEX

SIGMOD’ 20

PGM-index

VLDB’ 20

FINEdex

Challenge 1: Limited Scalability

1

Position

Key

Model 1.1

Model 2.1 Model 2.2

Model 3.1 Model 3.2 Model 3.3

S
ta

g
e

1
S

ta
g

e
2

S
ta

g
e

3

Pos

Key

-max_err

f(x)

a

b

xa

xb

xa'

a'

actual
Data loss

Model & Data dependency hinders scalability

• Inflexible to update models • Fail to process inserts

Challenge 2: High Overheads

1

[FITing-tree & Xindex] delta buffer

• Construct a delta buffer (e.g., B-tree, Masstree) to process new inserts

• Periodically retrain the retrained data array and the delta buffer

• Data are not sorted

Inefficient range query

• Large buffer decreases the performance

Long latency to search the buffer

• Data dependency in the shared buffer

Poor concurrent performance

Challenge 2: High Overheads

1

[ALEX & PGM-index] preserve empty slots

• Preserve empty slots in the trained data array to process inserts

• Expand the trained data array and retrain the models to construct sufficient slots

• Data dependency poor concurrency

Different threads compete for empty slots

• Fail to support concurrent retraining

Block the system to move data and retrain models

 Incurs long latency

 Decrease the overall performance

FINEdex: Fine-grained Learned Index Scheme

1

Design overview

 Model part: training independent models

 Data part: flattened data structure with low data dependency

 Two-granularities concurrent retraining

Model part: Model accuracy

1

0 2x1012 4x1012 6x1012 8x1012 1x1013
0

50

100

150

200

250

P
re

d
ic

ti
o
n
 E

rr
o
rs

Key

 LPA RMI_1

 RMI_10 RMI_100

0 1x1014 2x1014 3x1014 4x1014 5x1014
1

10

100

1k

10k

100k

P
re

d
ic

ti
o
n
 E

rr
o
rs

 (
lo

g
1
0
)

Key

 LPA RMI_1

 RMI_10 RMI_100

(a) normal distribution (b) lognormal distribution

1.2x1012 1.3x1012 1.4x1012 1.5x1012
0

20

40

60

80

100

P
re

d
ic

ti
o
n
 E

rr
o
rs

Key

 LPA RMI_1

 RMI_10 RMI_100

1x1018 2x1018 3x1018 4x1018
0

50

100

150

200

250

P
re

d
ic

ti
o

n
 E

rr
o

rs

Key

 LPA

 RMI_1

 RMI_10

 RMI_100

(c) weblogs

(e) YCSB zipfian

 RMI requires a large number of models for high accuracy

 The model accuracies become diverse in the same data distribution

(d) docId

2x1013 4x1013 6x1013 8x1013 1x1014
0

20

40

60

80

100

P
re

d
ic

ti
o

n
 E

rr
o

rs

Key

 LPA RMI_1

 RMI_10 RMI_100

Model part: Model accuracy

1

(a) using a single model (b) RMI learning (c) Uniform learning

-2
.0

x1
0
7

0.
0

2.
0x

10
7

4.
0x

10
7

6.
0x

10
7

8.
0x

10
7

1.
0x

10
8

1.
2x

10
8

1.
4x

10
8

1.
6x

10
8

1.
8x

10
8

0

10k

20k

30k

40k

Key

P
o

s
it
io

n

 truth

 single

-2
.0

x1
0
7

0.
0

2.
0x

10
7

4.
0x

10
7

6.
0x

10
7

8.
0x

10
7

1.
0x

10
8

1.
2x

10
8

1.
4x

10
8

1.
6x

10
8

1.
8x

10
8

0

5k

10k

15k

20k

25k

Key

P
o
s
it
io

n

 truth

 RMI

-2
.0

x1
0
7

0.
0

2.
0x

10
7

4.
0x

10
7

6.
0x

10
7

8.
0x

10
7

1.
0x

10
8

1.
2x

10
8

1.
4x

10
8

1.
6x

10
8

1.
8x

10
8

0

3k

6k

9k

12k

Key

P
o

s
it
io

n

 truth

 Uniform

 Various schemes show different learning effects on the same data distribution

 Existing schemes fail to learn the data distribution well

Fail to train models according to the data distributions

poor in dense part

poor in sparse part

Model part: Learning Probe Algorithm (LPA)

1

-2
.0

x1
0
7

0.
0

2.
0x

10
7

4.
0x

10
7

6.
0x

10
7

8.
0x

10
7

1.
0x

10
8

1.
2x

10
8

1.
4x

10
8

1.
6x

10
8

1.
8x

10
8

0

3k

6k

9k

12k

Key

P
o

s
it
io

n

 truth

 LPA

Parameters of LPA:

• threshold determine the max error

• learning_step & learning_rate determine

the learning speed

LPA learns the data distribution well

Data part: Level bins

1

Flattened data structure:

• Append small sized level bins behind each trained data

• Insert data into previous bins for high space utilization

• No data loss

• Keep all data sorted

• low data dependency

Concurrent Retraining: Challenges

1

a. Merge data

b. Resort data

c. Retrain new model

block the system

lose the data

Concurrent Retraining: Retrain in two granularities

1

• Level-bin retraining retrains the full level bins

• Model retraining merges the small models for high performance

Other trained data and LBs are not blocked

Perform in background

Practical Operations

1

Search the data:

 Update the corresponding value pointer

 Insert into the level bins

 Remove the data from the level bins or

unset the tags in the trained data array

Experimental Setup

1

 Testbed

− 12-core Intel(R) Xeon(R) CPU @2.50GHz

− Run codes with 24 threads

 Workloads

− YCSB with 6 workloads; Weblogs; DocID; Lognormal & Normal distributions

− 8-byte keys and value-pointers (point to variable-length values)

 Comparisons

− Masstree (a variant of concurrent B+tree) [EuroSys’12]

− Learned Indexes + delta-buffer (not support concurrent retraining) [SIGMOD’18]

− XIndex (support concurrent retraining) [PPoPP’20]

Open-source address: https://github.com/iotlpf/FINEdex

https://github.com/iotlpf/FINEdex

Throughputs on YCSB: Work well on dynamic workloads

1

A B C D E F
0

10

20

30

40

3
.4

3
2
.1

2

1
.1

0

 Masstree LI+Δ

 Xindex FINEdex
Uniform

1
.7

2

A B C D E F
0

10

20

30

40

50

3
.5

8

2
.3

2

1
.1

2

 Masstree LI+Δ

 Xindex FINEdex
Zipfian

1
.7

3

T
h
ro

u
g
h
p
u
t
(1

0
6

o
p
s
/s

)

YCSB workloads

Throughputs with heavy writes

1

• FINEdex improves the insert performance by 1.3x~2.0x

• FINEdex delivers high performance on write-intensive workloads

T
h
ro

u
g
h
p
u
t
(1

0
6

o
p
s
/s

)

T
h
ro

u
g
h
p
u
t
(1

0
6

o
p
s
/s

)

1 4 8 12 16 20 24
0

2

4

6

8

Number of threads

 Masstree

 LI+Δ

 Xindex

 FINEdex

90/10 70/30 50/50 30/70 10/90
0

5

10

15

20

25

30

35

Read/Write Ratio(%)

 Masstree

 LI+Δ

 Xindex

 FINEdex

(a) Insert with multiple threads (b) performance with different R/W ratios

Throughputs on different workloads

1

• FINEdex improves the insertion performance

• FINEdex has high search performance after a large number of inserts

T
h

ro
u

g
h

p
u

t
(1

0
6

o
p

s
/s

)

Overheads analysis

1

• FINEdex incurs lower latency than other schemes by 1.3x~8.9x

• FINEdex obtains a large amount of memory savings

L
a
te

n
c
y
 (

s
)

S
iz

e
 (

M
B

)

(a) Training latency (b) Memory overheads of models/inner nodes

Normal Lognormal Weblogs DocID
0

3

6

9

12

15

Workloads

 Masstree

 LI+Δ

 Xindex

 FINEdex

Normal Lognormal Weblogs DocID
0

50

100

150

200

250

Workloads

1
6
.1

1
.5

1
.5

 Masstree

 LI+Δ

 Xindex

 FINEdex

4
.3

Conclusion

1

• Existing learned index schemes show limited scalability and incurs

high overheads to process dynamic workloads

− Requirements: No data lose, keep all data sorted, high concurrency

• We propose FINEdex for scalable and concurrent memory systems

− Adaptive training algorithm generates independent models

− Flattened data structure with low data dependency

− Cost-efficient concurrent retraining scheme

• FINEdex outperforms state-of-the-art learned index schemes by up

to 2.0x in write-intensive workloads

Thanks!

Q & A

