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Traditional B-Trees overlook data patterns
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Efficient point/range query
Key

Sorted Data

CPU

Main Memory

Cache

Dynamic structure adjustment

Enable high concurrency

Low memory footprint

High penalty of multiple pointer jumpings

Dynamic tree balancing

Multiple-level inner nodes

Heavy dependency among nodes



Exact data distribution enables efficiency
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Key

Sorted Data

0 1 2 3 ··· 1M

• memory jumpings > cost-efficient computations

𝑌 = 𝑥

0 1 2 3 ··· 1M

Latency & Memory footprint:

• multiple-level nodes > small number of parameters

Consider Indexes as ML models



Learned indexes
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Key

Index Structures

(e.g., B+-trees or learned indexes)

Prediction leaf node

leaf node
pred-max_err pred+max_err

············

Indexes are regression models



Learned indexes
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Learn CDF for high accuracy



Learned indexes could be better
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Efficient point/range query

Dynamic structure adjustment

Enable high concurrency

Low memory footprint

Cost-efficient computations for searching

High-overhead retraining

Small number of parameters

Heavy data dependency



Challenge 1: Limited Scalability
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Schemes
Insertion without 

data loss

Keep all data 

sorted

Concurrency

Write retrain

Learned indexes

SIGMOD’ 18

FITing-tree

SIGMOD’ 19

Xindex

PPoPP’ 20

ALEX

SIGMOD’ 20

PGM-index

VLDB’ 20

FINEdex



Challenge 1: Limited Scalability
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Model & Data dependency hinders scalability

• Inflexible to update models • Fail to process inserts



Challenge 2: High Overheads
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[FITing-tree & Xindex] delta buffer

• Construct a delta buffer (e.g., B-tree, Masstree) to process new inserts

• Periodically retrain the retrained data array and the delta buffer

• Data are not sorted 

Inefficient range query

• Large buffer decreases the performance

Long latency to search the buffer

• Data dependency in the shared buffer

Poor concurrent performance



Challenge 2: High Overheads
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[ALEX & PGM-index] preserve empty slots

• Preserve empty slots in the trained data array to process inserts

• Expand the trained data array and retrain the models to construct sufficient slots

• Data dependency  poor concurrency

Different threads compete for empty slots

• Fail to support concurrent retraining

Block the system to move data and retrain models

 Incurs long latency

 Decrease the overall performance



FINEdex: Fine-grained Learned Index Scheme
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Design overview

 Model part: training independent models

 Data part: flattened data structure with low data dependency

 Two-granularities concurrent retraining



Model part: Model accuracy
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(a) normal distribution (b) lognormal distribution

1.2x1012 1.3x1012 1.4x1012 1.5x1012
0

20

40

60

80

100

P
re

d
ic

ti
o
n
 E

rr
o
rs

Key

 LPA  RMI_1

 RMI_10  RMI_100

1x1018 2x1018 3x1018 4x1018
0

50

100

150

200

250

P
re

d
ic

ti
o

n
 E

rr
o

rs

Key

 LPA

 RMI_1

 RMI_10

 RMI_100

(c) weblogs

(e) YCSB zipfian

 RMI requires a large number of models for high accuracy

 The model accuracies become diverse in the same data distribution

(d) docId
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Model part: Model accuracy
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(a) using a single model (b) RMI learning (c) Uniform learning
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 Various schemes show different learning effects on the same data distribution

 Existing schemes fail to learn the data distribution well

Fail to train models according to the data distributions

poor in dense part

poor in sparse part



Model part: Learning Probe Algorithm (LPA)
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Parameters of LPA:

• threshold determine the max error

• learning_step & learning_rate determine 

the learning speed

LPA learns the data distribution well



Data part: Level bins
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Flattened data structure: 

• Append small sized level bins behind each trained data

• Insert data into previous bins for high space utilization

• No data loss

• Keep all data sorted

• low data dependency



Concurrent Retraining: Challenges
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a. Merge data

b. Resort data

c. Retrain new model

block the system

lose the data



Concurrent Retraining: Retrain in two granularities
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• Level-bin retraining retrains the full level bins

• Model retraining merges the small models for high performance

Other trained data and LBs are not blocked

Perform in background



Practical Operations 
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Search the data:

 Update the corresponding value pointer

 Insert into the level bins

 Remove the data from the level bins or 

unset the tags in the trained data array



Experimental Setup
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 Testbed

− 12-core Intel(R) Xeon(R) CPU @2.50GHz

− Run codes with 24 threads

 Workloads

− YCSB with 6 workloads; Weblogs; DocID; Lognormal & Normal distributions

− 8-byte keys and value-pointers (point to variable-length values)

 Comparisons

− Masstree (a variant of concurrent B+tree) [EuroSys’12]

− Learned Indexes + delta-buffer (not support concurrent retraining) [SIGMOD’18]

− XIndex (support concurrent retraining) [PPoPP’20]

Open-source address: https://github.com/iotlpf/FINEdex 

https://github.com/iotlpf/FINEdex


Throughputs on YCSB: Work well on dynamic workloads
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Throughputs with heavy writes
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• FINEdex improves the insert performance by 1.3x~2.0x

• FINEdex delivers high performance on write-intensive workloads
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Throughputs on different workloads
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• FINEdex improves the insertion performance

• FINEdex has high search performance after a large number of inserts
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Overheads analysis
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• FINEdex incurs lower latency than other schemes by 1.3x~8.9x

• FINEdex obtains a large amount of memory savings
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(a) Training latency (b) Memory overheads of models/inner nodes
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Conclusion
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• Existing learned index schemes show limited scalability and incurs 

high overheads to process dynamic workloads

− Requirements: No data lose, keep all data sorted, high concurrency

• We propose FINEdex for scalable and concurrent memory systems 

− Adaptive training algorithm generates independent models

− Flattened data structure with low data dependency

− Cost-efficient concurrent retraining scheme

• FINEdex outperforms state-of-the-art learned index schemes by up 

to 2.0x in write-intensive workloads
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