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Traditional B-Trees overlook data patterns
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Efficient point/range query
Key

Sorted Data

CPU

Main Memory

Cache

Dynamic structure adjustment

Enable high concurrency

Low memory footprint

High penalty of multiple pointer jumpings

Dynamic tree balancing

Multiple-level inner nodes

Heavy dependency among nodes



Exact data distribution enables efficiency
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Key

Sorted Data

0 1 2 3 ··· 1M

• memory jumpings > cost-efficient computations

𝑌 = 𝑥

0 1 2 3 ··· 1M

Latency & Memory footprint:

• multiple-level nodes > small number of parameters

Consider Indexes as ML models



Learned indexes
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Key

Index Structures

(e.g., B+-trees or learned indexes)

Prediction leaf node

leaf node
pred-max_err pred+max_err

············

Indexes are regression models



Learned indexes
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Learned indexes could be better
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Efficient point/range query

Dynamic structure adjustment

Enable high concurrency

Low memory footprint

Cost-efficient computations for searching

High-overhead retraining

Small number of parameters

Heavy data dependency



Challenge 1: Limited Scalability
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Schemes
Insertion without 

data loss

Keep all data 

sorted

Concurrency

Write retrain

Learned indexes
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SIGMOD’ 19

Xindex
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ALEX

SIGMOD’ 20

PGM-index

VLDB’ 20

FINEdex



Challenge 1: Limited Scalability
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Model & Data dependency hinders scalability

• Inflexible to update models • Fail to process inserts



Challenge 2: High Overheads
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[FITing-tree & Xindex] delta buffer

• Construct a delta buffer (e.g., B-tree, Masstree) to process new inserts

• Periodically retrain the retrained data array and the delta buffer

• Data are not sorted 

Inefficient range query

• Large buffer decreases the performance

Long latency to search the buffer

• Data dependency in the shared buffer

Poor concurrent performance



Challenge 2: High Overheads
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[ALEX & PGM-index] preserve empty slots

• Preserve empty slots in the trained data array to process inserts

• Expand the trained data array and retrain the models to construct sufficient slots

• Data dependency  poor concurrency

Different threads compete for empty slots

• Fail to support concurrent retraining

Block the system to move data and retrain models

 Incurs long latency

 Decrease the overall performance



FINEdex: Fine-grained Learned Index Scheme
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Design overview

 Model part: training independent models

 Data part: flattened data structure with low data dependency

 Two-granularities concurrent retraining



Model part: Model accuracy
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(a) normal distribution (b) lognormal distribution
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(c) weblogs

(e) YCSB zipfian

 RMI requires a large number of models for high accuracy

 The model accuracies become diverse in the same data distribution

(d) docId
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Model part: Model accuracy
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(a) using a single model (b) RMI learning (c) Uniform learning
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 Various schemes show different learning effects on the same data distribution

 Existing schemes fail to learn the data distribution well

Fail to train models according to the data distributions

poor in dense part

poor in sparse part



Model part: Learning Probe Algorithm (LPA)
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Parameters of LPA:

• threshold determine the max error

• learning_step & learning_rate determine 

the learning speed

LPA learns the data distribution well



Data part: Level bins
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Flattened data structure: 

• Append small sized level bins behind each trained data

• Insert data into previous bins for high space utilization

• No data loss

• Keep all data sorted

• low data dependency



Concurrent Retraining: Challenges
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a. Merge data

b. Resort data

c. Retrain new model

block the system

lose the data



Concurrent Retraining: Retrain in two granularities
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• Level-bin retraining retrains the full level bins

• Model retraining merges the small models for high performance

Other trained data and LBs are not blocked

Perform in background



Practical Operations 

1

Search the data:

 Update the corresponding value pointer

 Insert into the level bins

 Remove the data from the level bins or 

unset the tags in the trained data array



Experimental Setup
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 Testbed

− 12-core Intel(R) Xeon(R) CPU @2.50GHz

− Run codes with 24 threads

 Workloads

− YCSB with 6 workloads; Weblogs; DocID; Lognormal & Normal distributions

− 8-byte keys and value-pointers (point to variable-length values)

 Comparisons

− Masstree (a variant of concurrent B+tree) [EuroSys’12]

− Learned Indexes + delta-buffer (not support concurrent retraining) [SIGMOD’18]

− XIndex (support concurrent retraining) [PPoPP’20]

Open-source address: https://github.com/iotlpf/FINEdex 

https://github.com/iotlpf/FINEdex


Throughputs on YCSB: Work well on dynamic workloads
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Throughputs with heavy writes
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• FINEdex improves the insert performance by 1.3x~2.0x

• FINEdex delivers high performance on write-intensive workloads
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Throughputs on different workloads
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• FINEdex improves the insertion performance

• FINEdex has high search performance after a large number of inserts
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Overheads analysis
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• FINEdex incurs lower latency than other schemes by 1.3x~8.9x

• FINEdex obtains a large amount of memory savings
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(a) Training latency (b) Memory overheads of models/inner nodes
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Conclusion
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• Existing learned index schemes show limited scalability and incurs 

high overheads to process dynamic workloads

− Requirements: No data lose, keep all data sorted, high concurrency

• We propose FINEdex for scalable and concurrent memory systems 

− Adaptive training algorithm generates independent models

− Flattened data structure with low data dependency

− Cost-efficient concurrent retraining scheme

• FINEdex outperforms state-of-the-art learned index schemes by up 

to 2.0x in write-intensive workloads
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