
FINEdex: A Fine-grained Learned Index

Scheme for Scalable and Concurrent

Memory Systems

Pengfei Li, Yu Hua, Jingnan Jia, Pengfei Zuo

Huazhong University of Science and Technology

VLDB 2022

Traditional B-Trees overlook data patterns

1

Efficient point/range query
Key

Sorted Data

CPU

Main Memory

Cache

Dynamic structure adjustment

Enable high concurrency

Low memory footprint

High penalty of multiple pointer jumpings

Dynamic tree balancing

Multiple-level inner nodes

Heavy dependency among nodes

Exact data distribution enables efficiency

1

Key

Sorted Data

0 1 2 3 ··· 1M

• memory jumpings > cost-efficient computations

𝑌 = 𝑥

0 1 2 3 ··· 1M

Latency & Memory footprint:

• multiple-level nodes > small number of parameters

Consider Indexes as ML models

Learned indexes

1

Key

Index Structures

(e.g., B+-trees or learned indexes)

Prediction leaf node

leaf node
pred-max_err pred+max_err

············

Indexes are regression models

Learned indexes

1

Key

Index Structures

(e.g., B+-trees or learned indexes)

Prediction leaf node

leaf node
pred-max_err pred+max_err

············

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Key

P
o
s
it
io

n

 normal lognormal ycsb

 weblogs documentid

Learn CDF for high accuracy

Learned indexes could be better

1

Efficient point/range query

Dynamic structure adjustment

Enable high concurrency

Low memory footprint

Cost-efficient computations for searching

High-overhead retraining

Small number of parameters

Heavy data dependency

Challenge 1: Limited Scalability

1

Schemes
Insertion without

data loss

Keep all data

sorted

Concurrency

Write retrain

Learned indexes

SIGMOD’ 18

FITing-tree

SIGMOD’ 19

Xindex

PPoPP’ 20

ALEX

SIGMOD’ 20

PGM-index

VLDB’ 20

FINEdex

Challenge 1: Limited Scalability

1

Position

Key

Model 1.1

Model 2.1 Model 2.2

Model 3.1 Model 3.2 Model 3.3

S
ta

g
e

1
S

ta
g

e
2

S
ta

g
e

3

Pos

Key

-max_err

f(x)

a

b

xa

xb

xa'

a'

actual
Data loss

Model & Data dependency hinders scalability

• Inflexible to update models • Fail to process inserts

Challenge 2: High Overheads

1

[FITing-tree & Xindex] delta buffer

• Construct a delta buffer (e.g., B-tree, Masstree) to process new inserts

• Periodically retrain the retrained data array and the delta buffer

• Data are not sorted

Inefficient range query

• Large buffer decreases the performance

Long latency to search the buffer

• Data dependency in the shared buffer

Poor concurrent performance

Challenge 2: High Overheads

1

[ALEX & PGM-index] preserve empty slots

• Preserve empty slots in the trained data array to process inserts

• Expand the trained data array and retrain the models to construct sufficient slots

• Data dependency  poor concurrency

Different threads compete for empty slots

• Fail to support concurrent retraining

Block the system to move data and retrain models

 Incurs long latency

 Decrease the overall performance

FINEdex: Fine-grained Learned Index Scheme

1

Design overview

 Model part: training independent models

 Data part: flattened data structure with low data dependency

 Two-granularities concurrent retraining

Model part: Model accuracy

1

0 2x1012 4x1012 6x1012 8x1012 1x1013
0

50

100

150

200

250

P
re

d
ic

ti
o
n
 E

rr
o
rs

Key

 LPA RMI_1

 RMI_10 RMI_100

0 1x1014 2x1014 3x1014 4x1014 5x1014
1

10

100

1k

10k

100k

P
re

d
ic

ti
o
n
 E

rr
o
rs

 (
lo

g
1
0
)

Key

 LPA RMI_1

 RMI_10 RMI_100

(a) normal distribution (b) lognormal distribution

1.2x1012 1.3x1012 1.4x1012 1.5x1012
0

20

40

60

80

100

P
re

d
ic

ti
o
n
 E

rr
o
rs

Key

 LPA RMI_1

 RMI_10 RMI_100

1x1018 2x1018 3x1018 4x1018
0

50

100

150

200

250

P
re

d
ic

ti
o

n
 E

rr
o

rs

Key

 LPA

 RMI_1

 RMI_10

 RMI_100

(c) weblogs

(e) YCSB zipfian

 RMI requires a large number of models for high accuracy

 The model accuracies become diverse in the same data distribution

(d) docId

2x1013 4x1013 6x1013 8x1013 1x1014
0

20

40

60

80

100

P
re

d
ic

ti
o

n
 E

rr
o

rs

Key

 LPA RMI_1

 RMI_10 RMI_100

Model part: Model accuracy

1

(a) using a single model (b) RMI learning (c) Uniform learning

-2
.0

x1
0
7

0.
0

2.
0x

10
7

4.
0x

10
7

6.
0x

10
7

8.
0x

10
7

1.
0x

10
8

1.
2x

10
8

1.
4x

10
8

1.
6x

10
8

1.
8x

10
8

0

10k

20k

30k

40k

Key

P
o

s
it
io

n

 truth

 single

-2
.0

x1
0
7

0.
0

2.
0x

10
7

4.
0x

10
7

6.
0x

10
7

8.
0x

10
7

1.
0x

10
8

1.
2x

10
8

1.
4x

10
8

1.
6x

10
8

1.
8x

10
8

0

5k

10k

15k

20k

25k

Key

P
o
s
it
io

n

 truth

 RMI

-2
.0

x1
0
7

0.
0

2.
0x

10
7

4.
0x

10
7

6.
0x

10
7

8.
0x

10
7

1.
0x

10
8

1.
2x

10
8

1.
4x

10
8

1.
6x

10
8

1.
8x

10
8

0

3k

6k

9k

12k

Key

P
o

s
it
io

n

 truth

 Uniform

 Various schemes show different learning effects on the same data distribution

 Existing schemes fail to learn the data distribution well

Fail to train models according to the data distributions

poor in dense part

poor in sparse part

Model part: Learning Probe Algorithm (LPA)

1

-2
.0

x1
0
7

0.
0

2.
0x

10
7

4.
0x

10
7

6.
0x

10
7

8.
0x

10
7

1.
0x

10
8

1.
2x

10
8

1.
4x

10
8

1.
6x

10
8

1.
8x

10
8

0

3k

6k

9k

12k

Key

P
o

s
it
io

n

 truth

 LPA

Parameters of LPA:

• threshold determine the max error

• learning_step & learning_rate determine

the learning speed

LPA learns the data distribution well

Data part: Level bins

1

Flattened data structure:

• Append small sized level bins behind each trained data

• Insert data into previous bins for high space utilization

• No data loss

• Keep all data sorted

• low data dependency

Concurrent Retraining: Challenges

1

a. Merge data

b. Resort data

c. Retrain new model

block the system

lose the data

Concurrent Retraining: Retrain in two granularities

1

• Level-bin retraining retrains the full level bins

• Model retraining merges the small models for high performance

Other trained data and LBs are not blocked

Perform in background

Practical Operations

1

Search the data:

 Update the corresponding value pointer

 Insert into the level bins

 Remove the data from the level bins or

unset the tags in the trained data array

Experimental Setup

1

 Testbed

− 12-core Intel(R) Xeon(R) CPU @2.50GHz

− Run codes with 24 threads

 Workloads

− YCSB with 6 workloads; Weblogs; DocID; Lognormal & Normal distributions

− 8-byte keys and value-pointers (point to variable-length values)

 Comparisons

− Masstree (a variant of concurrent B+tree) [EuroSys’12]

− Learned Indexes + delta-buffer (not support concurrent retraining) [SIGMOD’18]

− XIndex (support concurrent retraining) [PPoPP’20]

Open-source address: https://github.com/iotlpf/FINEdex

https://github.com/iotlpf/FINEdex

Throughputs on YCSB: Work well on dynamic workloads

1

A B C D E F
0

10

20

30

40

3
.4

3
2
.1

2

1
.1

0

 Masstree LI+Δ

 Xindex FINEdex
Uniform

1
.7

2

A B C D E F
0

10

20

30

40

50

3
.5

8

2
.3

2

1
.1

2

 Masstree LI+Δ

 Xindex FINEdex
Zipfian

1
.7

3

T
h
ro

u
g
h
p
u
t
(1

0
6

o
p
s
/s

)

YCSB workloads

Throughputs with heavy writes

1

• FINEdex improves the insert performance by 1.3x~2.0x

• FINEdex delivers high performance on write-intensive workloads

T
h
ro

u
g
h
p
u
t
(1

0
6

o
p
s
/s

)

T
h
ro

u
g
h
p
u
t
(1

0
6

o
p
s
/s

)

1 4 8 12 16 20 24
0

2

4

6

8

Number of threads

 Masstree

 LI+Δ

 Xindex

 FINEdex

90/10 70/30 50/50 30/70 10/90
0

5

10

15

20

25

30

35

Read/Write Ratio(%)

 Masstree

 LI+Δ

 Xindex

 FINEdex

(a) Insert with multiple threads (b) performance with different R/W ratios

Throughputs on different workloads

1

• FINEdex improves the insertion performance

• FINEdex has high search performance after a large number of inserts

T
h

ro
u

g
h

p
u

t
(1

0
6

o
p

s
/s

)

Overheads analysis

1

• FINEdex incurs lower latency than other schemes by 1.3x~8.9x

• FINEdex obtains a large amount of memory savings

L
a
te

n
c
y
 (

s
)

S
iz

e
 (

M
B

)

(a) Training latency (b) Memory overheads of models/inner nodes

Normal Lognormal Weblogs DocID
0

3

6

9

12

15

Workloads

 Masstree

 LI+Δ

 Xindex

 FINEdex

Normal Lognormal Weblogs DocID
0

50

100

150

200

250

Workloads

1
6
.1

1
.5

1
.5

 Masstree

 LI+Δ

 Xindex

 FINEdex

4
.3

Conclusion

1

• Existing learned index schemes show limited scalability and incurs

high overheads to process dynamic workloads

− Requirements: No data lose, keep all data sorted, high concurrency

• We propose FINEdex for scalable and concurrent memory systems

− Adaptive training algorithm generates independent models

− Flattened data structure with low data dependency

− Cost-efficient concurrent retraining scheme

• FINEdex outperforms state-of-the-art learned index schemes by up

to 2.0x in write-intensive workloads

Thanks!

Q & A

