
Scheduling Heterogeneous Flows
with Delay-Aware Deduplication

for Avionics Applications
Yu Hua, Member, IEEE, and Xue Liu, Member, IEEE

Abstract—An avionics network demands determinism and predictability. This is especially challenging because of the relatively low

bandwidth of the on-board network, and the emerging needs of heterogeneous flows due to the proliferation of avionics applications.

Redundant transmission and hard real-time scheduling potentially generate many duplicate data, which makes deduplication become

more difficult. Many avionic flows further exhibit dynamic workloads which may change abruptly online. Hence, besides the guarantee

of transmission delay, modern avionic network design needs to flexibly handle burst flows and efficiently implement data deduplication

for bandwidth saving. In order to address these challenges, we propose a DeDuplication-aware Deficit Round Robin (D2DRR)-based

scheduling scheme for Avionics Full DupleX (AFDX) networks with the benefits of low complexity and easy implementation. The core

idea is to judiciously offer proper “division of labor” between switches and end systems and transform the services for heterogeneous

flows to a single representation of utilization, i.e., DRR quantum, which can be flexibly reconfigured. We further leverage Bloom filters

to support fast deduplication in order to reduce the load on the AFDX network. D2DRR, hence, offers salient features, elastic

scheduling and adept deduplication, to deliver substantial performance improvements. Through both simulations and real

implementations, extensive experimental results in an AFDX testbed demonstrate the efficacy and efficiency of our proposed

schemes.

Index Terms—Cyber physical systems, avionics networks, scheduling analysis, data deduplication.

Ç

1 INTRODUCTION

THE standard of Avionics Full DupleX (AFDX) switched
Ethernet supports real-time data transmission among

avionics subsystems. This standard builds upon protocol
specifications of IEEE 802.3 [1] and ARINC 664 [2] and aims to
eliminate the potential indeterminism of conventional
Ethernet transmission and alleviate frame losses. The
indeterministic problem, unfortunately, is not completely
solved but shifted to the switch level, where heterogenous
flows compete for available resources at the switch, thus
resulting in potential network congestion, larger delays,
jitter, and unfairness [3]. Moreover, in order to obtain high
reliability, these heterogeneous flows generally are trans-
mitted on redundant links of the AFDX network, which
further exacerbates the scheduling complexity. Heteroge-
neous flows refer to the transmitted multitype flows, such as
avionics, multimedia and best effort data packets, which have
different requirements in terms of bandwidth and delay.

AFDX has been developed to offer reliable and determi-
nistic delivery of frames for avionics applications. In order to
guarantee the transmission reliability in an AFDX network,

one of the most important characteristics is the redundant
management on Virtual Links (VLs). Specifically, an AFDX
network constructs two independent paths between end
systems and redundant switches to protect the network from
a failure at the MAC level. The same frame is then transmitted
independently. In order to further simplify the operations at
the destination end system, a redundant copy of a frame is
sent within a maximum interval of 0.5 ms at the source end
system [2]. The destination end system only accepts the first
valid frame and discards the redundant one. The parameter
in implementing redundancy management is SkewMax,
which represents the maximum time between the reception
of the original frame and its redundant copy. The value of
SkewMax depends upon network topology, i.e., the number of
switches crossed by the transmitted frames, and is defined by
system administrators. Since the frames transmitted within
an AFDX network come from heterogeneous flows with
different priorities and the end-to-end delays meanwhile
depend upon the configurations of two independent net-
works, performing end-to-end delay analysis becomes more
challenging. Even the implementation of a simulation plat-
form, although not impossible, requires nontrivial work.

End-to-end delays are the sum of transmission delays on
the links and processing delays in switches and end systems,
usually depending upon network configurations, such as
available bandwidth, predefined frame length, and schedul-
ing policies. The dominant delays come from the longest
waiting service time within frame queues, where FIFO policy
is often used, which assumes that all VLs have the same
priority to obtain the resource utilization. The utilization is
interpreted as the resource consumption rate within a given
time interval. Each VL flow can transmit frames when it

1790 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2012

. Y. Hua is with the School of Computer Science and Technology, Wuhan
National Lab for Optoelectronics, Huazhong University of Science and
Technology, Wuhan 430074, China. E-mail: csyhua@hust.edu.cn.

. X. Liu is with the School of Computer Science, McGill University,
Montreal H3A 2A7, Canada. E-mail: xueliu@cs.mcgill.ca.

Manuscript received 13 Sept. 2011; revised 10 Jan. 2012; accepted 21 Jan.
2012; published online 27 Jan. 2012.
Recommended for acceptance by S. Papavassiliou, N. Kato, Y. Liu, C.-Z.
Xu, and X. Wang.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number
TPDSSI-2011-09-0624.
Digital Object Identifier no. 10.1109/TPDS.2012.51.

1045-9219/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

obtains enough utilization. However, it is difficult to
accurately obtain quantitative representation of multitype
flows due to their heterogeneity.

The AFDX network in the envisioned future involves
heterogeneous flows, such as avionics, multimedia (video
and audio) and best effort data, to monitor real-time
working status and manipulate avionics devices. For
instance, a pilot needs to check navigation videos from
electronic cameras, monitor real-time data from installed
sensors and discuss with other flight crew through audio
voice, thus requiring reliable and real-time services for
heterogeneous flows that have differentiated requirements
for transmission delays. Besides the FIFO policy in the
AFDX standard [2], Static Priority (SP) [4], and probabilistic
scheduling [5] have been also proposed in an AFDX
network to provide suitable flow management, which
unfortunately fail to efficiently schedule heterogeneous
flows that are transmitted on redundant links due to the
existence of two main challenges.

Challenge 1: Indeterminism of burst flows. Avionics
systems generally support real-time data transmission for
burst flows when unpredictable cases occur, such as
weather changes and emergency malfunction. These burst
flows often result in large amounts of variable-size data
packets. Important flows, e.g., avionics data with hard real-
time deadlines, must be timely handled with higher priority
and more transmission bandwidth, to meet the needs of the
high reliability and high security of avionics applications.
Unfortunately, existing schemes, such as FIFO and SP, are
inefficient to deal with the indeterminism of burst flows,
since they heavily rely on static “one-size-fit-all” policies for
heterogeneous flows. The inflexible scheduling further
exacerbates the quality of data transmission due to hard
real-time requirements from avionics flows, possibly result-
ing in severe network congestion. Network congestion
occurs when virtual links and switches carry so many data
that the transmission quality deteriorates, such as larger
queuing delay and more packet losses. Although existing
aggressive retransmission can partially compensate for the
packet loss, the hard real-time deadlines can be satisfied
with small probability. Therefore, in order to address the
indeterminism of burst flows, a flexible and reconfigurable
scheduling scheme will be helpful and become important.

Challenge 2: Existence of duplicate copies. There are
large amounts of duplicate copies in AFDX networks. The
reasons are twofold. First, as mentioned above, in order to
alleviate packet loss, the networks have to retransmit data
whose hard real-time deadlines cannot be satisfied. Second,
due to the redundant transmission property of AFDX
networks, original and duplicate data have to be routed in
independent paths. The destination end systems hence
receive two copies of the same data. The existence of
duplicate copies incurs extra computation and space over-
heads in end systems, thus increasing the processing delay.
The destination end system becomes the potential perfor-
mance bottlenecks of entire AFDX network. We hence need
to offer a fast and efficient deduplication scheme.

In order to address the above challenges, we propose a
deduplication-aware Deficit Round Robin, called D2DRR,
that offer flexible scheduling for heterogeneous flows and
implement fast deduplication. D2DRR is a proper extension

of conventional DRR scheduling policy [6], [7], [8] in an
AFDX network. Note that the delay bounds of an AFDX
network using D2DRR scheduler are highly versatile and can
be tailored for delay analysis of other networked applica-
tions. Specifically, we make the following contributions.

First, (for Challenge 1), in order to efficiently handle
burst flows and alleviate network congestion, D2DRR
makes use of a quantitative approach to flexibly scheduling
heterogeneous flows, and unifies their utilization require-
ments into the quanta of the D2DRR scheduler. The
different transmission requirements are then represented
as a single number of allocated quanta. We leverage this
property in our analysis for studying the end-to-end delays
in an AFDX network. We hence transform the problem of
scheduling heterogeneous flows into simple quanta com-
putation. D2DRR is a frame-based round robin schedulers
and can reduce per-packet computation cost with worst
case per packet Oð1Þ complexity. This indicates that the
number of operations required for selecting the next
transmitted packet is constant with respect to the number
of flows. D2DRR works well since it is flexibly reconfigur-
able by simply changing the quanta values. Our work
focuses on the delay analysis of redundant transmission on
two independent paths and the management of duplicate
data in the switches and end systems.

Second, (for Challenge 2), in order to implement fast and
accurate deduplication, D2DRR leverages space-efficient
Bloom filters [9] as an index to identify potential duplicate
copies. Since Bloom filters suffer from false positives with
some probability, we carry out the deduplication in a two-
level structure that consists of Bloom filters and a hash
table. After Bloom filters identify a duplicate packet,
D2DRR needs to examine its original ID in the hash table
to avoid the false positives. Moreover, in order to support
deletion operations in Bloom filters, we use the form of
Counting Bloom Filter (CBF) [10] that uses 4-bit counters,
rather than one bit. D2DRR hence provides cost-effective
deduplication for avionics applications.

Third, in order to examine the performance of our
proposed scheduling schemes, we build a testbed of an
AFDX network to evaluate the deduplication function and
end-to-end delays for heterogeneous flows. The components
and interfaces of the prototype resemble those in typical
AFDX networks. Our experiments in Section 5 compare
D2DRR with worst case fair Weighted Fair Queuing (WF2Q)
[11]. WF2Q is a data packet scheduling technique that allows
different scheduling priorities to statistically multiplex data
flows. Each data flow has an independent FIFO queue.
WF2Q incurs the OðlognÞ scheduling complexity, where n is
the number of active flows. In contrast, D2DRR introduces
only Oð1Þ complexity by handling constant-scale packets
with variable sizes. Experimental results demonstrate the
efficacy and efficiency of the proposed schemes.

The rest of the paper is organized as follows. Section 2
shows the backgrounds of scheduling the flows in an AFDX
network. Section 3 presents the design of D2DRR. Section 4
studies the end-to-end delays of scheduling D2DRR. Section 5
shows the simulation-based analysis. Section 6 describes the
real implementation and evaluation results. Section 7 shows
the related work. Finally, Section 8 concludes our paper.

HUA AND LIU: SCHEDULING HETEROGENEOUS FLOWS WITH DELAY-AWARE DEDUPLICATION FOR AVIONICS APPLICATIONS 1791

2 SCHEDULING AFDX FLOWS

An AFDX network generally consists of avionics subsys-
tems, interconnect networks and source/destination end
systems. Specifically, the avionics subsystems include
traditional on-board aircraft systems, such as Global
Position System (GPS) and Flight Control System (FCS).
The interconnect networks leverage a full-duplex switched
Ethernet that consists of links and switches to transmit
heterogeneous flows among avionics end systems. The end
systems actually serve as an interface between the sub-
systems and the interconnect networks to guarantee real-
time and reliable data transmission by using deterministic
Virtual Links.

A virtual link establishes a virtual communication
connection from one source end system to one or more
destination end systems, forming a monosender multicast
path. According to the AFDX specification [2], a VL has its
own 16-bit ID, Bandwidth Allocation Gap (BAG) and the
largest length of VL frames (Lmax). Specifically, BAG
represents the minimum interval between two consecutive
frames sent to a VL. An AFDX network specifies the BAG
duration from 1 to 128 ms to implement bandwidth control.
Moreover, Lmax parameter is the largest length of VL
frames. An AFDX network obtains deterministic end-to-end
delays due to its static definition of VLs routing paths.

Fig. 1 shows the architecture of an AFDX network that
consists of end systems, multiple interconnected switches
and VLs. Each VL is characterized by its BAG and Lmax
parameters. The end systems serve for the input and output
of entire network. A switch has a buffer at its input ports
and incurs a constant delay proportional to the maximal
packet length of the VLs. There is one FIFO buffer at each
output port that unfortunately overlooks differentiated
transmission requirements from heterogeneous flows. The
FIFO buffer, thus, becomes potential transmission bottle-
neck due to longer queuing delay and possible network
congestion when transmitting heterogeneous flows.

Heterogeneous flows are prevalent in an AFDX network.
The AFDX network aggregates data flows from output
ports into VLs to carry out deterministic routing. A VL
beginning from a single end system transmits data to a
fixed set of end systems. Moreover, an AFDX network
improves upon transmission reliability by sending each
frame to two independent switched networks. The destina-
tion end system then receives two copies of each frame.

Conventional redundancy management mechanism within
an AFDX network identifies duplicate copies by checking
the predefined sequence number, which is not cost-effective
in scheduling end-to-end heterogeneous flows.

The analysis of end-to-end delay relies on scheduling
algorithms. The main function of a scheduling algorithm is
to select the next transmitted packet and transmission time
while taking into account performance metrics [12], [13].
Existing work-conserving scheduling algorithms can be
classified into two categories, i.e., sorted-priority and time
slot-based. The former first allocates a timestamp to each
queued packet and then transmits the packets in the order
of increasing timestamp. The latter divides time into slots
and a packet is selected in a per-slot basis. Round-robin
algorithms belong to the time slot-based method and can
cyclically offer services for various flows. In order to
efficiently schedule heterogeneous flows, we propose
Deficit Round Robin (DRR) [6] based scheduling algorithm,
while adding deduplication functionality, called deduplica-
tion-aware DRR (D2DRR), due to its ease of use and
simplicity of implementation.

3 SCHEDULING DESIGN IN D2DRR

In this section, we first present the flexible scheduling in
D2DRR. We then show the design for efficient deduplica-
tion.

3.1 Scheduling Design

We propose D2DRR scheduling policy in an AFDX network
to efficiently support flexible scheduling for multiple
heterogeneous flows with bounded end-to-end delays.
Fig. 2 shows an example of the AFDX network using
D2DRR schedulers, rather than FIFO schedulers, at output
ports in switches. Each end system sends multitype flows,
including avionics, multimedia (video and audio), and best
effort data, which are further aggregated into VLs. VLs then
transmit these multitype flows that have different transmis-
sion requirements, which are represented as different
amounts of quanta.

VLs follow standard operations at switch as defined in
ARINC 664 [2]. The main problem of efficiently transmit-
ting multitype flows comes from their heterogeneity that
introduces relatively high operation complexity for unified
scheduling, i.e., by using a single utilization to carry out

1792 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2012

Fig. 1. The architecture of an AFDX network. Fig. 2. AFDX network with D2DRR scheduler for scheduling hetero-
geneous flows.

quantitative evaluation for end-to-end delays. Recall that
the utilization is the resource consumption rate within the
given time interval. We handle this problem by using
D2DRR scheduler for incoming flows at output ports to
guarantee fairness among all transmitted flows and
mitigate potential network congestion.

3.2 Homogeneous Utilization Representation for
Scheduling Heterogeneous Flows

We use the DRR-based approach to scheduling heteroge-
neous flows that are represented by using homogeneous
utilization, i.e., DRR quanta. DRR is a variation of Weighted
Round-Robin (WRR) [14] through allowing flows with
variable packet sizes to share available bandwidth, i.e.,
obtaining the utilization corresponding to their require-
ments. Specifically, D2DRR characterizes each flow by a
quantum and a deficit variable. The quantum viewed as
utilization shows the quantity of packets that a flow ideally
transmits during a round. The deficit variable measures the
available quantum at the current round, i.e., the balance of
utilization. In each round, D2DRR allows a flow to transmit
packets no more than the sum of the allocated quantum and
deficit variable. After servicing for a backlogged flow,
D2DRR decreases its deficit by the number of transmitted
bits. When a flow cannot transmit a packet due to too large
size in the current round, its allocated quantum will be added
to the flow’s deficit variable for the next round. D2DRR can
further offer efficient scheduling upon heterogeneous flows
over redundant virtual links in an AFDX network.

We use the D2DRR policy to represent utilization of
heterogeneous flows in a homogeneous way to facilitate the
analysis of end-to-end delays. Utilization is generally
defined as the resource consumption rate within a
measured time interval [15], which is also called as a flow’s
period. However, since not all tasks are periodic in real-
world applications, existing work mainly makes use of
relative deadlines to represent the measured intervals and
has to introduce extra restrictive constraints, being unable
to provide versatile utilization bounds for scheduling
models. In order to handle this issue and further provide
the efficient scheduling for heterogeneous flows, we present
a unified utilization policy based on the D2DRR scheduler,
in which we formulate the utilization of different flows into
their allocated quanta. The quanta in fact demonstrate the
amounts of resources to be used by a flow in each round.
Since the utilization of all heterogeneous flows can be easily
represented as a single quantum, we schedule these VL
flows in a unified way by adjusting their associated quanta.
The transmission requirements from heterogeneous flows
are then transformed into the amounts of allocated quanta.
For example, a multimedia flow demanding higher priority
than best effort data can be represented as the description
that the former obtains larger quanta than the latter.

3.3 Fast Deduplication by Using Bloom Filters

End-to-end delay can be decreased through fast deduplica-
tion upon duplicate packets at destination end systems with
the aid of Bloom filters. A standard Bloom filter is a space-
efficient data structure that consists of a bit array of M bits
for representing a set S ¼ fa1; a2; . . . ; aNg ofN items. All bits
in the array are initially set to 0. A Bloom filter then uses q

independent hash functions fh1; . . . ; hqg to map the set to
the bit address space ½1; . . . ;M�. For each item a, the bits of
hiðaÞ are set to 1. To check whether an item a is a member of
S, we need to check whether all hiðaÞ are set to 1. If not, item
a is not in the set S. If so, a is regarded as a member of S with
a false positive, which suggests that set S contains an item a
although it in fact does not. In general, the false positive is
acceptable if the false positive probability is sufficiently
small. The false positive probability is

PrðFalse PositiveÞ �
�
1� e�

qN
M

�q ¼ ð1� e�NmÞq;
when the Bloom filter has totally M bits and q hash
functions for storing N items. The probability becomes its
minimum ð1=2Þq or ð0:6185ÞM=N when q ¼ ðM=NÞ ln 2. The
detailed proof can refer to [16].

Since destination end systems need to identify and delete
duplicate packets, conventional deduplication is becoming
the performance bottleneck of entire end-to-end transmis-
sion. In order to decrease the delay at the end systems, we
make use of Bloom filter-based deduplication upon data
redundancy. Fig. 3 shows the deduplication architecture that
consists of two components, i.e., a counting Bloom filter [10]
and a hash table. The counting Bloom filter as a membership
index is a variant from standard Bloom filters by replacing
original bits with counters so as to support deletion
operation. It has been well recognized that 4-bit counters
can satisfy most real-world applications [16]. Moreover, the
hash table is used for actually storing packets.

Deduplication operations occur on the two-level struc-
tures. First, when a packet arrives, we first hash its ID into
the counting Bloom filter to check whether it is duplicate. If
the counting Bloom filter says no hit, this packet is regarded
as a new one. It is then inserted into both the Bloom filter and
the hash table. If a hit occurs, it means that the packet is
duplicate with some probability due to potential false
positives. In order to avoid false positives, we carry out the
indexing in the hash table. If we can find the same packet in
the hash table, the packet will be deleted from both the
Bloom filter and hash table, and sent to the higher level
applications. If not, the packet is falsely regarded as
duplicate copies by the Bloom filter, and we further insert
it into both Bloom filter and hash table. Due to the very small

HUA AND LIU: SCHEDULING HETEROGENEOUS FLOWS WITH DELAY-AWARE DEDUPLICATION FOR AVIONICS APPLICATIONS 1793

Fig. 3. Fast deduplication with the aid of counting Bloom filters.

probability of false positives in the Bloom filter, the two-level
hashing-based design can significantly reduce the delay of
deduplication operations at destination end systems.

The use of Bloom filters can significantly reduce the
delay of deduplication operations due to fast identification
of duplicate data in a space-efficient way. The Bloom filters
have been widely used or discussed in real-world dedupli-
cation systems, such as DDFS [17], Sparse Indexing [18],
ChunkStash [19], SiLo [20], and cluster-based deduplication
system [21].

4 END-TO-END DELAY ANALYSIS

In this section, we study the end-to-end delay of transmitting
heterogeneous flows through multiple intermediate switches
where D2DRR scheduling is implemented at output ports. In
our analysis, the end-to-end delays are first decomposed into
several parts, including the delays from source end systems,
transmission links, switches and destination end systems,
which are then studied, respectively.

4.1 Redundant Frame Transmission

An AFDX network improves upon system reliability by
transmitting each frame into two independent switched
networks. The destination end system, thus, receives two
copies of each frame. Conventional redundancy manage-
ment mechanism relies on time-consuming brute-force
approach, i.e., checking the predefined sequence number
on a VL, to identifying redundant copies.

Moreover, in order to decrease the potential interference
among multiple virtual links that use the same physical link,
an AFDX network limits the transmission rate of frames on a
virtual link, represented as BAG, to explicitly regulate the
minimum transmission interval between successive frames.
On the other hand, since the original frame and its
redundant copy are sent within the maximum time interval
of 0.5 ms, they hence produce an upper bound of 0.5 ms
delay at the source end system. Note that the BAG interval is
used to shape multiple frames and the 0.5 ms time interval is
used for the original frame and its redundant copy.

4.2 End-to-End Delay Composition

The end-to-end delay of a VL, called EðDVLÞ, can be
characterized by the devices that the VL passes through.
Hence, the total delay is the sum of all the delays of
individual devices including source end system, transmis-
sion links, switches and destination end system, i.e.,
EðDVLÞ ¼ Dsource þDtransmit þDswitch þDdestination.

. Dsource is the processing delay in the source end
system while generating ðb; rÞ-constrained flows as
shown in Section 4.3. The source end system needs
to first select a transmitted frame from a virtual link
queue, then assign the per-VL sequence number,
further replicate the frame in the redundant manage-
ment and finally transmit the frame and its duplicate
copy on the physical links.

. Dtransmit is the transmission delay over the links and
mainly consists of the number of links nl, available
bandwidth bni and frame size FVL, i.e., Dtransmit ¼Pnl

i¼1ðbniÞ � FVL, which in practice depends upon

environment settings and is a constant in specific
network configurations.

. Dswitch is the delay in the switches from source to
destination end systems. Specifically, the delay can
be divided into two parts, technological delay, dt,
which is bounded by a constant for specified
hardware and switch capacity [22], and queuing
delay, DD2DRR, which depends upon the scheduling
strategy. We make comprehensive analysis of delays
using the D2DRR policy as shown in Section 4.4.

. Ddestination is the delay in the destination end system
where each arriving frame needs to pass through
integrity checking and redundancy management,
since source end system generally sends each frame
twice, i.e., frames F1 and F2, with the same sequence
number to transmit within two independent net-
works and obtain high reliability. The end-to-end
delays are, respectively, represented as DVL1

and
DVL2

. In addition, the destination end system allows
at most SkewMax time to wait [2] for receiving
redundant frames.

According to the above composition, we further study
each part of the end-to-end delays when transmitting
heterogeneous flows by using the D2DRR scheduler in an
AFDX network. Moreover, we make use of leaky bucket
function as arrival curve, i.e., �ðtÞ ¼ rtþ b, where b is the
burst and r is the rate, to generate ðb; rÞ-constrained flows.
The service curve is rate delay function, i.e., �ðtÞ ¼ Rðt� T Þ
with delay T and rate R.

4.3 Delay from Source End System

The delay in source end system depends upon arrival
curves that produce ðb; rÞ-constrained flows with different
priorities.

Theorem 1 (Source End System Delay). Consider n arrival
nonpreemptive flows with arrival curves �1; �2; . . . ; �n that
are ðbi; riÞ-constrained ði ¼ 1; 2; . . . ; nÞ with static priorities.
By using redundant transmission management in an AFDX
network, the source end system delay Di

source of flow i is
bounded by P

j:!j��!i� bj þ Li;max
C �

P
j:!j�>!i�

rj
þ 0:5 ms; ð1Þ

where 0:5 ms is the maximum time interval of original frame
and its copy at the source end system, Li;max is the maximum
length of packets in flow i, C is the output capacity, � is the
standard allocated quantum and !i is a scaling factor.

Proof. When a flow i with static priorities arrives, we

identify the priority by checking its allocated quantum

!i�. The processed packets contain the bursts from

higher priority flows, i.e.,
P

j:!j��!i� bj, and its own

maximum packet, i.e., Li;max. On the other hand, the

allocated bandwidth for flow i is C �
P

j:!j�>!i�
rj. Thus,

for a single flow i, its delay can be bounded byP
j:!j��!i� bj þ Li;max
C �

P
j:!j�>!i�

rj
:

AFDX network generally makes use of redundant
management to transmit packets for high reliability.

1794 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2012

Specifically, two VL frames need to be sent within the
maximum interval, i.e., 0.5 ms. Thus, we can obtain the
delay of flow i is bounded by

X
j:!j��!i�

bj þ Li;max

0
@

1
A, C �

X
j:!j�>!i�

rj

0
@

1
Aþ 0:5 ms:

ut

4.4 D2DRR-Based Switching Delay

An AFDX network utilizes the D2DRR scheduler to support
the transmission of heterogeneous flows essentially by
allowing the remaining quantum from previous rounds to
be used for the next round. D2DRR exhibits Oð1Þ complex-
ity if the allocated quantum of each flow is no smaller than
its maximum packet size. Specifically, in this paper, the
allocated quanta are scaled by the tunable factor !
according to their heterogeneous types, rather than active
list number [7] and relative deadline [15].

D2DRR uses round-robin fashion to provide fair trans-
mission service and guaranteed bounds of end-to-end
delays. Initially, the deficit counter �i of flow i is set to 0
and the counter �i is increased by a quantum � that is
further scaled by !i. The selected flow i thus obtains !i�
quantum for data transmission. The flow i totally has �i þ
!i� allowable transmitted length each round. When the
current packet size in the flow i is larger than �i þ !i�, the
packet cannot be sent in this round. However, the allocated
quantum !i� is saved and added into deficit counter for
next round. When a packet is transmitted, the deficit
counter is decreased by the packet length. D2DRR can also
be considered as a delay-rate server [23], characterized by
its worst case delay and guaranteed service rate, in order to
provide affine services.

Theorem 2 (D2DRR Scheduling Delay). Given time interval

½t1; t2�, the upper bound of D2DRR scheduling delay Di
D2DRR

for flow i is

1

C

Xn
j¼1;j6¼i

Li
!i�
þ 1

� �
!j�þ

Xn
j¼1;j6¼i

Lj;max þ Li;max

" #
; ð2Þ

where C is the output capacity, !i is scaling factor, � is the

standard allocated quantum and Li;max is the maximum length

of packets in flow i during time interval ½t1; t2�.
Proof. According to the conclusion in [6], two flows i and j

obtain one round-robin opportunity for data transmis-

sion between two opportunities if they are backlogged

during time interval ½t1; t2�, represented as

jopportunityðiÞ � opportunityðjÞj � 1:

In the meantime, a packet in flow i with length Li may

obtain scheduling service if the opportunity numbers of

all flows are d Li!i�
e þ 1 [6], [7], [8], which allows the flow i

to have another opportunity. Thus, during interval

½t1; t2�, flow i allows to send at most d Li!i�
e!i�þ Li;max

packet length. Furthermore, a flow jðj 6¼ iÞ is able to send

at most ðd Li!i�
e þ 1Þ!j�þ Lj;max packet length. Therefore,

when a packet with length Li is transmitted, the total

transmitted packets for n flows during interval ½t1; t2� are

Xn
j¼1;j6¼i

Li
!i�
þ 1

� �
!j�þ

Xn
j¼1;j6¼i

Lj;max þ Li;max:

When further taking into account the available output
capacity C, we can obtain the final result. tu

The above result generalizes previous work [6] and [7].
When setting !i ¼ 1 and !i� ¼ Li;max, we can, respectively,
obtain delay results in [6] and [7], which are the specified
cases of our analysis.

We further study the D2DRR-based service curve in a
single switch and then extend it into multihop scenarios.

Theorem 3 (D2DRR-Based Service Curve). Consider a switch
serving for n arriving flows. Its service curve using D2DRR-
based scheduling in a single node (i.e., no hop) during time
interval ½t1; t2� is �0

D2DRR ¼ R0
D2DRRðt� T 0

D2DRRÞ, where
R0
D2DRR ¼

Pn
i¼1 !i�t1;t2=ðt2 � t1Þ, T 0

D2DRR ¼
Pn

i¼1 D
i
D2DRR,

and �t1;t2 is the allocated quantum in the time interval ½t1; t2�.
Proof. A standard service curve is � ¼ Rðt� T Þ, where R

and T are, respectively, service rate and delay. During
time interval ½t1; t2�, the ideal number of transmitted
frames through D2DRR is

Pn
i¼1 !i�t1;t2 , thus obtaining

the R0
D2DRR. Furthermore, the T 0

D2DRR is the sum of all
flows through D2DRR-based scheduler-based on (2). tu

We consider the multihop transformation where flows
transmit through multiple switches by using “pay-bursts-only-
once” property of network calculus [24]. We study the end-to-
end delays across multiple switches as shown in Fig. 4. The
concatenated switches function as a single one by taking into
account the convolution operations since a burst cannot occur
in all switches at the same time.

Theorem 4 (Pay-Bursts-Only-Once Concatenation). As-
sume a flow traverses two servers with service curves �1ðtÞ
and �2ðtÞ, respectively. The concatenation of two servers is
equivalent to a single server system with service curve �ðtÞ ¼
ð�1 � �2ÞðtÞ.

The theorem can be easily proved by using the
association of min-plus convolution, i.e., ððR� �1Þ �
�2ÞðtÞ ¼ ðR� ð�1 � �2ÞÞðtÞ. The concatenation theorem in
fact exhibits “pay-bursts-only-once” property that allows the
end-to-end delays and backlog bounds to be scaled linearly
in the number of multiple servers, rather than quadratic
scaling in summing up single servers.

The upper bound of the end-to-end delay is tightly
correlated with the transmission time and the aggregate
waiting time in queues.

Corollary 5 (Switches Concatenation). Consider a VL flow
that routes through a switch set S ¼ fS1; S2; . . . ; Smg
represented as service curves �k; ðk ¼ 1; . . . ;mÞ. The switch

HUA AND LIU: SCHEDULING HETEROGENEOUS FLOWS WITH DELAY-AWARE DEDUPLICATION FOR AVIONICS APPLICATIONS 1795

Fig. 4. A “pay-bursts-only-once” scenario.

set can be concatenated into a single switch by using
convolution among all switches �S ¼ �S1

� �S2
� 	 	 	 � �Sm .

Corollary 6 (Multihop Switching Delay). Consider a VL flow
i routing through m switches. The total delay from
intermediate switches, Dswitch, is

Xm
k¼1

TkD2DRR þ
max!ki >!kj fL

k
j;maxg

Rk
D2DRR

þ
Lki;max

min8j 6¼iðRk
D2DRR � rjÞ

 !
:

Therefore, we obtain the delays of a flow before it arrives
at the destination, called “Before-destination delay,” to
facilitate further analysis of redundant management in the
destination end system.

Definition 1 (Before-Destination Delay). Before arriving at
destination end system, the delay of each V L flow is DVL ¼
Dsource þDtransmit þDswitch.

4.5 Destination End Delay

Destination end system needs to spend processing time,
called Ddest, on carrying out integrity check to guarantee
accurate transmission and redundant management to
remove duplicate copies. However, since two frames with
the same sequence number transmit within independent
networks and route in different paths, the time arriving at
destination end system depends upon device configuration
and link status, thus leading to some randomness and
becoming difficult to accurately predict in advance. Para-
meter SkewMax, therefore, defines the maximum allowable
time between valid frames according to the specification in
an AFDX network [2]. When SkewMax value for a VL is
exceeded, the integrity check is reset to accept the next valid
frame, regardless of its sequence number.

4.6 End-to-End Delay

The end-to-end delay of transmitting a frame in a VL,
represented as EðDVLÞ, essentially depends upon the
redundant transmission in an AFDX network. Specially, the
end-to-end delay of a frame is the sum of delays experienced
at all hops from the source to the destination end systems. The
lower bound of delay isDðh1Þ, which assumes that a frame in
a VL transmits through totally h1 hops and is processed at
intermediate nodes without any queuing delays. On the other
hand, the upper bound is represented as DVL as shown in
Definition 1. In practice, an AFDX network makes use of
redundant transmission to guarantee the reliability and
protect the network from a failure. Fig. 5 shows the end-to-
end transmission delays of original flow V L1 and its
corresponding duplication V L2. F ðV L1Þ and F ðV L2Þ repre-
sent their end-to-end delays with a maximum 0:5 ms time
difference when sending them at the source end system [3],
[4], [25]. At the destination end system, the membership of a
frame that has first arrived can be maintained for a maximum
time, i.e., SkewMax, to discard its redundant one that
transmits through another path. Fig. 5 uses ArriveðV L1Þ
and ArriveðV L2Þ to, respectively, represent the random
arriving time of flow V L1 and V L2.

Therefore, we obtain the end-to-end delay using D2DRR
scheduling in an AFDX network.

Corollary 7 (End-to-End Delay). The upper bound of end-to-
end delay of a flow transmitting through an AFDX network is

EðDVLÞ ¼
DVL1

þDdest

þ SkewMax; if 0:5 ms > SkewMax;
DVL2

þDdest; if 0:5 ms � SkewMax:

8<
:

where DVL1
and DVL2

, respectively, represent the delays of
original and duplicate VL flows, SkewMax is maximum time
between the valid frames.

Proof. The upper bound of end-to-end transmission delays
depends upon the parameter setting, i.e., 0:5 ms and
SkewMax. When 0:5 ms is larger than SkewMax, flow
V L1, which first arrives, needs to spend a Ddest time to
process the frame and then wait a SkewMax time to
complete the end-to-end transmission. On the other hand,
when 0:5 ms is smaller than SkewMax, the maximum
value of end-to-end delay comes from the flow V L2 and
the upper bound becomes DVL2

and the processing time
Ddest. tu

4.7 Parameter Analysis for Quanta

One key issue in an AFDX is to accurately determine the
quanta of heterogeneous flows for D2DRR-based schedul-
ing. The quanta allocation is nontrivial since it depends
upon the specified network configuration and unpredict-
able bursts of network traffic. If the quanta is too large, the
current flow allowing to use will occupy the scheduler for a
long time and other flows have to wait, thus resulting in
long delays and potential packet loss. On the other hand, if
the quanta is too small, the scheduler will run for many
rounds, in which few packets can be transmitted, and most
flows have to wait to obtain larger quanta, also leading to
potential delays and packet loss.

In order to select the proper quanta for network
implementations, we make use of a popular experiment-
based methodology, i.e., sampling approach [26], [27], to
accurately identify the optimal values to facilitate the
analysis of the end-to-end delays. Specifically, we first
construct a simulation platform according to the specifica-
tions in real-world avionics applications [2], [3] to find the
quanta for multiple heterogeneous flows, represented as
different ! values. The sampling-based approach examines
end-to-end delays under different ratios of allocated quanta
with standard setting � ¼ 1;000 and BAG ¼ 32 ms, when
taking into account a heavy-load star topology that runs at
100 Mbps.

Fig. 6 shows the end-to-end delays of heterogeneous
flows in terms of increased ratios of !ðAvionicsÞ to !ðDataÞ
and !ðMultimediaÞ to !ðDataÞ. We finally select the
optimal ratio of three typical flows to be 6:3:1, respectively,

1796 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2012

Fig. 5. Redundant end-to-end transmission delays for flows V L1 and
V L2.

for avionics, multimedia and best effort data to facilitate the
following experiments.

4.8 Bloom Filter and Hash Table for Deduplication

We leverage a counting Bloom filter and a hash table to
offer efficient deduplication for avionics applications as
described in Section 3.3. We first study the false positive
probability in the Bloom filter. In order to address the
potential false positives, we make use of the hash table to
verify the duplicate data.

A counting Bloom filter (CBF) consists of an array of M
counters. Each counter contains 4-bits-based on the conclu-
sion in [10], which has been accepted in the research
community and widely used in real-world applications [16],
[28], [29], [30], [31], [32]. All values are initialized to 0. We
then represent a set S ¼ fa1; a2; . . . ; ang of n items with the
aid of the computation of q independent hash functions
fh1; . . . ; hqg. These results in fact map the set S to the
counter address space ½1; . . . ;M�.

We insert an item a into the space-efficient Bloom filter
and in the meantime increase the hashed counters of hiðaÞ
by 1. By checking whether all hiðaÞ are equal to or larger
than 1, we determine the membership of item a in a set S. If
there exists a counter 0, item a is not a member in the set S.
Otherwise, item a is considered as a member of set S with
certain false positive probability [10], [16]. A false positive
means that an item a is considered in the set S although it is
actually not.

Theorem 8. The false positive probability is fCBF � ð1�
e�

qn
MÞq ¼ ð1� e�n

mÞq when the Bloom filter contains M
counters and q hash functions for n items. The probability
achieves the minimum ð1=2Þq or ð0:6185ÞM=n when q ¼
ðM=nÞln2.

Proof. Assume that a Bloom filter has q random hash
functions, each of which is associated with m (m ¼M=q

and m > n) counters. The probability that a particular
counter in an array is equal to or larger than 1 by a hash
function is q

M. Moreover, the probability that a counter is
not increased by the hash function is (1� q

M) (or (1� 1
m)).

After inserting n items into the Bloom filter, the
probability that a counter is still 0 is (1� q

MÞ
n � e�qnM .

Thus, the false positive probability in the counting Bloom
filter is fCBF ¼ ð1� ð1� q

MÞ
nÞq � ð1� e�qnMÞq ¼ ð1� e�n

mÞq

because indexed counters in q arrays must be equal to or
larger than 1.

It is easy to check that the minimum of the false
positive probability minðfCBF Þ ¼ ð1=2Þq � ð0:6185ÞM=n

when q ¼ ln 2ðM=nÞ. tu

Obviously, the probability of false positives decreases as

M increases, and increases as n increases. Therefore, a CBF

can decrease its probability by increasing the storage space
(M) for a fixed number of stored items.

5 PERFORMANCE EVALUATION

In this section, we present the experimental results from the
simulation of D2DRR-based scheduler to schedule hetero-
geneous flows. Current AFDX standards support FIFO [33]
scheduling. In order to efficiently examine the performance,
besides FIFO and static priority scheduling policies (i.e.,
Rate Monotonic Analysis (RMA) [34]1 that generally
exhibits pessimistic worst case estimate to determine
whether a particular set of tasks can be scheduled in a
given environment), we compare D2DRR with WF2Q [11]
that can also schedule heterogeneous flows. The simulation
results further guide the system implementation in practical
devices. It is worth noting that the traditional DRR [6]
mainly schedules data packets in the intermediate
switches/routers, not including packet management in
destination end systems. Instead, D2DRR provides a
comprehensive end-to-end scheduling solution and tradi-
tional DRR is not comparable with the proposed D2DRR
due to their different functionalities in networked systems.

5.1 Simulation Setup

Our simulations are configured according to the specifica-

tions of AFDX networks [2]. Our experiments evaluate the

end-to-end delays of different scheduling policies. Fig. 7

shows the network configuration for our experiments,

which include 11 source end systems, 1 destination end

system, and 5 switches. In order to facilitate comparisons,

we also implemented FIFO, SP, and WF2Q. We use 16-bit
values as virtual link IDs to route Ethernet frames in the

entire AFDX network. A VL transmission ends when it

HUA AND LIU: SCHEDULING HETEROGENEOUS FLOWS WITH DELAY-AWARE DEDUPLICATION FOR AVIONICS APPLICATIONS 1797

Fig. 6. End-to-end delays for different ratios of allocated ! values.

1. RMA generally exhibits pessimistic worst case estimate to determine
whether a particular set of tasks can be scheduled in a given environment.

Fig. 7. An AFDX prototype configuration under one partial scenario.

passes through integrity and redundant checking as shown
in Section 4.5.

In our simulation, we take into account three types of
heterogeneous flows, i.e., avionics, multimedia (video and
audio) and best effort data, to comprehensively evaluate the
proposed scheme in terms of end-to-end delays. Table 1
demonstrates the BAG and frame sizes of avionics, multi-
media and best effort data flows. These settings come from a
synthetic scenario to simulate a real AFDX network. All links
run at 100 Mbps. All BAGs are limited within 128 ms and
most frames are smaller than 1,000 bytes according to the
AFDX specification [2] and the experiences from real-world
environments [2], [5], where avionics VLs often show heavier
workloads than multimedia and best effort data flows.

We evaluate end-to-end delays of heterogeneous flows
that are periodically generated. We define the “periodicity”
that is a period for transmitting a periodic message. The
simulations set the periodicity to be 40 ms, which actually
serves as traffic shaping function. Therefore, for periodic
flows with BAGs smaller than 40 ms, we replay them every
40 ms and others are replayed in the time interval of their

own BAG values. The simulations examine the end-to-end
delays of variable loads that are represented as the number
of transmitted VLs. We examine the end-to-end delays
according to the constrained BAG values from 2 to 128 with
exponential growth of 2. The experimental results are the
average values of 50 runs.

5.2 End-to-end Delays

Fig. 8 shows experimental results when executing FIFO, SP,
WF2Q, and D2DRR for scheduling avionics, multimedia
(video and audio), and best effort data. The end-to-end
delays are evaluated with the increased numbers of VLs.
Four scheduling policies produce different end-to-end
delays due to their different strategies for heterogeneous
flows. D2DRR obtains the best performance since it can
significantly alleviate the network congestion and decrease
retransmission probability.

For different scheduling policies, we observe that the
delay of FIFO is the longest while that of D2DRR is the
shortest. FIFO produces, on average, 3.2 times longer delay
than D2DRR. FIFO equally treats heterogeneous flow that
has different deadlines of hard real-time transmission,
which leads to the longest delays among the schedulers.
WF2Q and SP take into account the flow priorities and a
flow is thus allowed to transmit when the queues of all
higher priority flows are empty. These two scheduling
schemes essentially suffer from inflexible configuration and
deteriorate end-to-end transmission quality. In practice,
due to no real-time reconfiguration, they become inefficient
to handle burst flows that are heterogeneous and mean-
while demand variable transmission. Instead, D2DRR offers
flexible reconfiguration and supports fast deduplication. It
significantly reduces the end-to-end latency. D2DRR can
handle the packets of variable sizes without knowing their
mean size.

For scheduling heterogeneous flows, the evaluation of
end-to-end delays involves in avionics, multimedia (video
and audio), and best effort data VLs. Their performance
depends upon frame sizes and scheduling policy. First, as
shown in Fig. 8a, we observe that the average latencies in
avionics flows are, respectively, 4.6 ms in D2DRR, 12.1 ms in
WF2Q, 17.6 ms in SP, and 29.8 ms in FIFO. D2DRR can
guarantee the hard real-time requirements for avionics flows.
Moreover, as shown in Fig. 8b, the latencies of multimedia
flows are, respectively, 8.2 ms in D2DRR, 17.6 ms in WF2Q,
21.2 ms in SP, and 30.4 ms in FIFO. D2DRR delivers
substantial performance improvements due to its flexible

1798 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2012

TABLE 1
Parameter Settings for BAG and Frame Length

Fig. 8. End-to-end delays of heterogeneous flows under FIFO, SP, WF2Q, and D2DRR schedulers.

scheduling. In addition, as shown in Fig. 8c, the average
latencies of data flows are 12.5 ms in D2DRR, 22.7 ms in
WF2Q, 26.3 ms in SP, and 30.9 ms in FIFO. Note that
compared with FIFO, SP, and WF2Q, the end-to-end latency
for the data flows in D2DRR is much shorter. The reason is
that D2DRR alleviates the number of data to be retrans-
mitted, and further mitigates network congestion.

5.3 Retransmission Rate

The number of retransmitted data is a key metric to
evaluate the end-to-end transmission performance. In order
to provide efficient reliability, data are generally retrans-
mitted when packet loss or timeout occurs. Fig. 9 shows the
retransmission rates of scheduling heterogeneous flows. We
observe that compared with FIFO, SP, and WF2Q, D2DRR
can significantly reduce retransmission rate. The reasons is
that D2DRR reduces end-to-end delay and satisfies the
deadlines of most transmitted data. D2DRR hence decreases
the number of time-out packets. Moreover, D2DRR also
reduces the number of packets waiting in the queues of
intermediate switches, hence mitigating packet loss.

6 THE RESULTS FROM SYSTEM IMPLEMENTATION

In this section, we present the end-to-end transmission
performance by using a real system implementation. Based
on our analysis from simulation results, one of main
performance bottlenecks comes from data deduplication at
end systems. We, hence, leverage a space-efficient Bloom
filter [9] with Oð1Þ time complexity to carry out the fast

deduplication, thus obtaining significant performance im-
provements in a real implementation of the AFDX testbed
to examine the real-time transmission performance.

6.1 Experimental Environments

We have built a real testbed to examine the actual
performance of our proposed schemes. Fig. 10 shows the
network topology that consists of four switches between
source and destination end systems. Each switch uses the
D2DRR-based scheduling to handle incoming data packets.
At the end systems, we embed the Bloom filter-based
structures for fast deduplication. The virtual links consist of
either switch ðA;BÞ&ðC;DÞ or switch ðA;DÞ&ðC;BÞ to
facilitate reliable data transmission.

The end systems of the testbed run on Linux kernel
2.4.21 environments that use 3.2 GHz Dual Core processor
with 4 GB RAM. The baseline quantum of D2DRR
scheduling is set to � ¼ 1;000 and we keep adaptivePn

i¼1 !i ¼ 1 for all i flows, in which !avionics : !multimedia :
!data ¼ 6 : 3 : 1 according to the observation of sampling-
based approach in Section 4.7. We make use of the same
parameter settings as simulations for the network traffic
(e.g., BAG and frame length). Furthermore, the Bloom
filters used in our implementation demonstrate the
different end-to-end delays with variable filter sizes.

6.2 Results and Analysis

We demonstrate the performance evaluation in terms of
end-to-end transmission delays and per-switch throughput.

6.2.1 End-to-End Delays

We examine the end-to-end delays when scheduling
heterogeneous flows. The end systems have employed the
counting Bloom filters for fast data deduplication. We
further adjust the filer sizes to examine the actual
performance. Fig. 11 shows the end-to-end delays. Note

HUA AND LIU: SCHEDULING HETEROGENEOUS FLOWS WITH DELAY-AWARE DEDUPLICATION FOR AVIONICS APPLICATIONS 1799

Fig. 9. Retransmission rates of heterogeneous flows.

Fig. 10. System implementation topology.

Fig. 11. End-to-end delays of scheduling heterogeneous flows using D2DRR with different Bloom filter sizes (No. of counters) in real
implementations.

that the baseline demonstrates the transmission delay
without using Bloom filters. We observe that compared
with the baseline scheme, avionics flows, using 640, 1,280,
2,560 and 5,120 counters, on average decrease the end-to-
end delays, respectively, by 24.6, 29.2, 35.7, and 43.5 percent.
For multimedia flows, these decrements are respectively by
28.7, 35.2, 44.9, and 56.1 percent and for data flows, those are
31.6, 40.2, 51.3, and 62.6 percent. The main reasons come
from the Oð1Þ complexity for fast deduplication in Bloom
filters. The hash computation can significantly simplify the
operation complexity at end systems.

The sizes of Bloom filters have the impact on the end-to-
end delays as shown in Fig. 11. In general, the larger size
the Bloom filter has, the smaller the false positive prob-
ability is. A false positive possibly results in an unnecessary
checking operation on the hash table, thus incurring extra
delays. Hence, we need to make this sampling over
different filter sizes to obtain a suitable tradeoff between
space overhead and end-to-end transmission delays.

6.2.2 Per-Switch Throughput

In order to examine per-switch throughputs under differ-
ent scheduling policies, we vary the Maximum Transmis-
sion Unit (MTU) size of the NICs and evaluate the
forwarding throughput in the AFDX switches. Fig. 12
illustrates the experimental result. Compared with the
baseline FIFO scheduling, D2DRR obtains, on average, one
time throughput improvement. Furthermore, the through-
put of using D2DRR is also much larger than that of WF2Q
by 41.8 percent and SP by 70.2 percent. The reason is that
SP and WF2Q make use of static and “one-size-fit-all”
mechanism to schedule data flows, which fails to efficiently
handle the potential network congestion. Instead, D2DRR
can flexibly schedule heterogeneous flows and improve the
utilization of network resources, thus efficiently alleviating
the effects of the congestion and meanwhile significantly
enhancing the throughput.

6.2.3 Delays of Deduplication Structures

We examine the delays in deduplication structures, i.e., the
Bloom filter and hash table, as shown in Fig. 13. We observe
that the deduplication structures produce limited processing
delays, on average, 0.42 ms, 0.56 ms, and 0.78 ms,
respectively, for avionics, multimedia, and data flows. The
delays thus become a small fraction of entire end-to-end

delays, compared with the results in Fig. 11. We argue that
the deduplication structures actually introduce slight pro-
cessing overhead. Moreover, as described in Section 6.2.1,
the sizes of Bloom filters produce some impacts on the
delays since larger size can reduce the false positives and
further alleviate the verification operations on the hash table.

7 RELATED WORK

AFDX Ethernet technology offers reliable deterministic
network service and guaranteed bandwidth by using
redundant virtual links for end-to-end transmission. This
technology has recently received the attention from both
industry and academic fields [2], [3].

Existing theoretical analysis and simulation-based de-
sign mainly focus on the end-to-end delays when lever-
aging FIFO and static priority [5] scheduling. In order to
examine the end-to-end delays of using FIFO scheduling in
switch outputs, three methods, including network calculus,
queuing networks simulation and model checking, are
compared [3]. Deterministic network calculus often gives a
guaranteed upper bound of end-to-end delay. Given an
exceedable probability, Ridouard et al. [4] take into account
the transmission of three heterogeneous flows, including
avionic, multimedia and best effort data flows, and leverage
FIFO and static priority scheduling. Moreover, stochastic
network calculus [35], [36] evaluates the distribution of end-
to-end delays that often demonstrate pessimistic results. In
order to improve the computation of end-to-end delay
bounds, Cruz [25] presents network calculus-based design
and handle shaped leaky buckets flows traversing simple
rate-latency network elements, while taking into account
global aggregated flow and FIFO policy. Unlike D2DRR,
they rarely take into account the redundant management
upon dynamic and heterogeneous flows.

A formal model of the AFDX frame management
proposed in [37] leverages a network of timed automata
to reveal the vulnerability. In order to address the problems,
the redundancy management and integrity checking are
integrated by using priority queue and duplication of reset
message. Moreover, traffic shapers in AFDX networks [38]
use static priority [39], [40] and weighted fair queuing
policies [41] in the switch to guarantee real-time behaviors
while managing the traffic.

Utilization-based schedulability analysis becomes an
efficient tool for the design and implementations of real-
time systems by deriving utilization bounds [42]. Utiliza-
tion-bound schedulability analysis using Weighted Round

1800 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2012

Fig. 12. Average per-switch throughput with different MTU sizes.

Fig. 13. The delays in Bloom filter and hash table for deduplication.

Robin [15] maximizes utilization bounds by establishing a
unified modeling framework to facilitate the derivation of
utilization bounds. Recently, nonutilization-based schedul-
ability analysis has been studied in [43], [44]. There still
lacks the study of end-to-end delay analysis for hetero-
geneous flows, especially transmitted within independent
networks for reliability concerns such as in the design of
AFDX network. Instead, D2DRR is flexible and efficient to
schedule heterogeneous flows and further satisfy the real-
time requirements for AFDX networks.

Compared with our conference version [45], this paper
has made significant improvements. We add detailed
backgrounds and characteristics analysis of AFDX net-
works. In order to further accelerate the processing
operations and decrease the waiting time at the destination
end systems, we propose and implement the deduplication
functionality that can fast identify redundant data.

8 CONCLUSION

Switched Ethernet technology provides a deterministic
network with the guaranteed service to support real-time
data transmission in real-world avionics applications. The
determinism provides a worst case upper bound of end-to-
end transmission delays of Virtual Links that are often
assumed to be homogeneous and have similar transmission
requirements. Due to potential network congestion and
redundant transmission property in an AFDX network, it is
still a challenging problem to perform real implementations
and study the end-to-end transmission delays of hetero-
geneous flows.

An AFDX network offers reliable and deterministic
delivery of frames for avionics applications by using
redundant links. In order to address the problems of
indeterminism of burst flows and wide existence of
duplicate copies, this paper proposes DeDuplication-aware
DRR, called D2DRR, to provide flexible reconfiguration and
fast deduplication. D2DRR offers the salient features of
simplicity and ease of use. D2DRR judiciously leverages
conventional DRR with the functionality improvements
upon deduplication. We hence meet the needs of easy
implementations of D2DRR that delivers satisfactory
performance. This paper also studies end-to-end delays of
heterogeneous flows. Different from existing state-of-the-art
work, this paper focuses on studying the end-to-end delays
of heterogeneous flows with different transmission require-
ments. We also investigate the redundant management on
end-to-end delays based on parameter analysis and
deduplication at the destination end systems. D2DRR
supports reliable transmission of heterogeneous flows,
including avionics, multimedia and best effort data. Ex-
tensive experimental results demonstrate the effectiveness
and efficiency of our proposed schemes.

ACKNOWLEDGMENTS

This work was supported in part by National Natural
Science Foundation of China (NSFC) under Grant 61173043
and 60703046, Fundamental Research Funds for the central
universities, HUST, under grant 2012QN098, NSERC Dis-
covery Grant 341823-07, CRIAQ AVIO402-INTL, and Uni-
versity of Nebraska-Lincoln. The authors greatly appreciate
anonymous reviewers for constructive comments.

REFERENCES

[1] H. Frazier and C. Inc, “The 802.3z Gigabit Ethernet Standard,”
IEEE Network, vol. 12, no. 3, pp. 6-7, May/June 1998.

[2] ARINC 664 “Aircraft Data Network, Part 7 Avionics Full Duplex
Switched Ethernet (AFDX) Network,”ARINC 05-005/ADN-39,
2005.

[3] H. Charara, J. Scharbarg, J. Ermont, and C. Fraboul, “Methods for
Bounding End-to-End Delays on an AFDX Network,” Proc. 18th
Euromicro Conf. Real-Time Systems (ECRTS), 2006.

[4] F. Ridouard, J. Scharbarg, and C. Fraboul, “Probabilistic Upper
Bounds for Heterogeneous Flows Using a Static Priority Queueing
on an AFDX Network,” Proc. IEEE Int’l Conf. Emerging Technologies
and Factory Automation, pp. 1220-1227, 2008.

[5] J.-L. Scharbarg, F. Ridouard, and C. Fraboul, “A Probabilistic
Analysis of End-To-End Delays on an AFDX Avionic Network,”
IEEE Trans. Industrial Informatics, vol. 5, no. 1, pp. 38-49, Feb. 2009.

[6] M. Shreedhar and G. Varghese, “Efficient Fair Queuing Using
Deficit Round-Robin,” IEEE/ACM Trans. Networking, vol. 4, no. 3,
pp. 375-385, June 1996.

[7] L. Lenzini, E. Mingozzi, and G. Stea, “Tradeoffs between Low
Complexity, Low Latency, and Fairness with Deficit Round-Robin
Schedulers,” IEEE/ACM Trans. Networking, vol. 12, no. 4, pp. 681-
693, Aug. 2004.

[8] H. Chaskar and U. Madhow, “Fair Scheduling with Tunable
Latency: A Round-Robin Approach,” IEEE/ACM Trans. Network-
ing, vol. 11, no. 4, pp. 592-601, Aug. 2003.

[9] B. Bloom, “Space/Time Trade-Offs in Hash Coding with Allow-
able Errors,” Comm. ACM, vol. 13, no. 7, pp. 422-426, 1970.

[10] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary Cache: A
Scalable Wide-Area Web Cache Sharing Protocol,” IEEE/ACM
Trans. Networking, vol. 8, no. 3, pp. 281-293, June 2000.

[11] J. Bennett and H. Zhang, “WF2Q: Worst-Case Fair Weighted Fair
Queueing,” Proc. INFOCOM, 1996.

[12] D. Stiliadis and A. Varma, “Latency-Rate Servers: A General
Model for Analysis of Traffic Scheduling Algorithms,” IEEE/ACM
Trans. Networking, vol. 6, no. 5, pp. 611-624, Oct. 1998.

[13] P. Brucker, Scheduling Algorithms. Springer Verlag, 2007.
[14] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis, “Weighted

Round-Robin Cell Multiplexing in a General-Purpose ATM
Switch Chip,” IEEE J. Selected Areas in Comm., vol. 9, no. 8,
pp. 1265-1279, Oct. 1991.

[15] J. Wu, J. Liu, and W. Zhao, “Utilization-Bound Based Schedul-
ability Analysis of Weighted Round Robin Schedulers,” Proc. IEEE
28th Int’l Real-Time Systems Symp. (RTSS), pp. 435-446, 2007.

[16] A. Broder and M. Mitzenmacher, “Network Applications of
Bloom Filters: A Survey,” Internet Math., vol. 1, pp. 485-509, 2005.

[17] B. Zhu, K. Li, and H. Patterson, “Avoiding the Disk Bottleneck in
the Data Domain Deduplication File System,” Proc. Sixth USENIX
Conf. File and Storage Technologies (FAST), 2008.

[18] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise,
and P. Camble, “Sparse Indexing: Large Scale, Inline Deduplica-
tion Using Sampling and Locality,” Proc. Seventh Conf. File and
Storage Technologies (FAST), pp. 111-123, 2009.

[19] B. Debnath, S. Sengupta, and J. Li, “ChunkStash: Speeding Up
Inline Storage Deduplication Using Flash Memory,” Proc. USENIX
Ann. Technical Conf., 2010.

[20] W. Xia, H. Jiang, D. Feng, and Y. Hua, “SiLo: A Similarity-Locality
Based Near-Exact Deduplication Scheme with Low RAM Over-
head and High Throughput,” Proc. USENIX Ann. Technical Conf.,
2011.

[21] W. Dong, F. Douglis, K. Li, H. Patterson, S. Reddy, and P. Shilane,
“Tradeoffs in Scalable Data Routing for Deduplication Clusters,”
Proc. Ninth USENIX Conf. File and Storage Technologies (FAST),
2011.

[22] Y. Jenq, “Performance Analysis of a Packet Switch Based on
Single-Buffered Banyan Network,” IEEE J. Selected Areas in Comm.,
vol. 1, no. 6, pp. 1014-1021, Dec. 1983.

[23] D. Stiliadis and A. Varma, “Latency-Rate Servers: A General
Model for Analysis of Traffic Scheduling Algorithms,” IEEE/ACM
Trans. Networking, vol. 6, no. 5, pp. 611-624, Oct. 1998.

[24] R. Cruz, “A Calculus for Network Delay. I. Network Elements in
Isolation,” IEEE Trans. Information Theory, vol. 37, no. 1, pp. 114-
131, Jan. 1991.

[25] M. Boyer and C. Fraboul, “Tightening End to End Delay Upper
Bound for AFDX Network Calculus with Rate Latency FIFO
Servers Using Network Calculus,” Proc. IEEE Int’l Workshop
Factory Comm. Systems, pp. 11-20, 2008.

HUA AND LIU: SCHEDULING HETEROGENEOUS FLOWS WITH DELAY-AWARE DEDUPLICATION FOR AVIONICS APPLICATIONS 1801

[26] L. Rizzo, “Dummynet: A Simple Approach to the Evaluation of
Network Protocols,” ACM SIGCOMM, vol. 27, no. 1, pp. 31-41,
1997.

[27] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kosti�c, J.
Chase, and D. Becker, “Scalability and Accuracy in a Large-Scale
Network Emulator,” Proc. Fifth Symp. Operating Systems Design and
Implementation (OSDI), pp. 271-284, 2002.

[28] S. Dharmapurikar, P. Krishnamurthy, and D. Taylor, “Longest
Prefix Matching Using Bloom Filters,” Proc. SIGCOMM, pp. 201-
212, 2003.

[29] Y. Zhu, H. Jiang, and J. Wang, “Hierarchical Bloom Filter Arrays
(HBA): A Novel, Scalable Metadata Management System for
Large Cluster-Based Storage,” Proc. IEEE Int’l Conf. Cluster
Computing, pp. 165-174, 2004.

[30] Y. Hua, Y. Zhu, H. Jiang, D. Feng, and L. Tian, “Scalable and
Adaptive Metadata Management in Ultra Large-Scale File
Systems,” Proc. 28th Int’l Conf. Distributed Computing Systems
(ICDCS), 2008.

[31] F. Deng and D. Rafiei, “Approximately Detecting Duplicates for
Streaming Data Using Stable Bloom Filters,” Proc. ACM SIGMOD
Int’l Conf. Management of Data, pp. 25-36, 2006.

[32] F. Bonomi, M. Mitzenmacher, R. Panigrah, S. Singh, and G.
Varghese, “Beyond Bloom Filters: From Approximate Member-
ship Checks to Approximate State Machines,” Proc. SIGCOMM,
pp. 315-326, 2006.

[33] M. Bramson, “Instability of FIFO Queueing Networks with Quick
Service Times,” The Annals of Applied Probability, vol. 4, pp. 693-
718, 1994.

[34] C. Liu and J. Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment,” J. ACM, vol. 20, no. 1,
pp. 46-61, 1973.

[35] F. Ridouard, J. Scharbarg, and C. Fraboul, “Stochastic Network
Calculus for End-to-End Delays Distribution Evaluation on an
Avionics Switched Ethernet,” Proc. IEEE Fifth Int’l Conf. Industrial
Informatics, 2007.

[36] Y. Jiang, “A Basic Stochastic Network Calculus,” Proc. SIGCOMM,
2006.

[37] M. Anand, S. Vestal, S. Dajani-Brown, and I. Lee, “Formal
Modeling and Analysis of the AFDX Frame Management Design,”
Proc. IEEE Int’l Symp. Object and Component-Oriented Real-Time
Distributed Computing, 2006.

[38] A. Mifdaoui, F. Frances, and C. Fraboul, “Full Duplex Switched
Ethernet for Next Generation “1553B”-Based Applications,” Proc.
IEEE 13th Real Time and Embedded Technology and Applications
Symp. (RTAS), 2007.

[39] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings,
“Applying New Scheduling Theory to Static Priority Pre-Emptive
Scheduling,” J. Software Eng., vol. 8, pp. 284-292, 1993.

[40] H. Zhang and D. Ferrari, “Rate-Controlled Static-Priority Queue-
ing,” Proc. INFOCOM, pp. 227-236, 1993.

[41] A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation
of a Fair Queueing Algorithm,” Proc. Applications, Technologies,
Architectures, and Protocols for Computer Comm., pp. 1-12, 1989.

[42] J. Wu, J. Liu, and W. Zhao, “On Schedulability Bounds of Static
Priority Schedulers,” Proc. IEEE 11th Real Time and Embedded
Technology and Applications Symp. (RTAS), pp. 529-540, 2005.

[43] X. Liu and T. Abdelzaher, “On Non-Utilization Bounds for
Arbitrary Fixed Priority Policies,” Proc. IEEE 12th Real-Time and
Embedded Technology and Applications Symp. (RTAS), pp. 167-178,
2006.

[44] X. Liu and T. Abdelzaher, “Non-Utilization Bounds and Feasible
Regions for Arbitrary Fixed-Priority Policies,” J. ACM Trans.
Embedded Computing Systems, vol. 10, 2010.

[45] Y. Hua and X. Liu, “Scheduling Design and Analysis for End-to-
End Heterogeneous Flows in an Avionics Network,” Proc.
INFOCOM, 2011.

Yu Hua received the BE and PhD degrees in
computer science from the Wuhan University,
China, in 2001 and 2005, respectively. He was a
research assistant at Hong Kong Polytechnic
University and PostDoc at the University of
Nebraska-Lincoln. He is an associate professor
at the Huazhong University of Science and
Technology, China. His research interests in-
clude cyber physical systems, computer archi-
tecture, cloud computing, and network storage.

He has more than 30 papers to his credit in major journals and
international conferences including IEEE Transactions on Computers
(TC), IEEE Transactions on Parallel and Distributed Systems (TPDS),
USENIX ATC, INFOCOM, SC, ICDCS, ICPP, and HiPC. He is a
member of the IEEE and USENIX.

Xue Liu received the BS degree in mathe-
matics and the MS degree in automatic control
both from Tsinghua University, China, and the
PhD degree in computer science from the
University of Illinois at Urbana-Champaign, in
2006. Currently, he is working as an associate
professor in the School of Computer Science at
McGill University. His research interests include
computer networks and communications, smart
grid, real-time and embedded systems, cyber-

physical systems, data centers, and software reliability. He has been
granted one US patent and filed four other US patents, and published
more than 120 research papers in major peer-reviewed international
journals and conference proceedings, including the Year 2008 Best
Paper Award from IEEE Transactions on Industrial Informatics, and
the First Place Best Paper Award of the ACM Conference on Wireless
Network Security (WiSec 2011). He is a member of the IEEE, ACM,
and USENIX.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1802 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

