2146

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

ANTELOPE: A Semantic-Aware Data Cube
Scheme for Cloud Data Center Networks

Yu Hua, Senior Member, IEEE, Xue Liu, Member, IEEE, and Hong Jiang, Senior Member, IEEE

Abstract—Today’s cloud data centers contain more than millions of servers and offer high bandwidth. A fundamental problem is how to
significantly improve the large-scale system’s scalability to interconnect a large number of servers and meanwhile support various online
services in cloud computing. One way is to deal with the challenge of potential mismatching between the network architecture and the data
placement. To address this challenge, we present ANTELOPE, a scalable distributed data-centric scheme in cloud data centers, in which we
systematically take into account both the property of network architecture and the optimization of data placement. The basic idea behind
ANTELOPE is to leverage precomputation based data cube to support online cloud services. Since the construction of data cube suffers from
the high costs of full materialization, we use a semantic-aware partial materialization solution to significantly reduce the operation and space
overheads. Extensive experiments on real system implementations demonstrate the efficacy and efficiency of our proposed scheme.

Index Terms—Cloud computing, data center networks, semantic awareness, data cube

1 INTRODUCTION

LouD data centers are facing the problem of data deluge.

The volume of digital content maintained in cloud data
centers is growing at an ever increasing pace. According to a
recent International Data Corporation (IDC) study, 800 Exa-
bytes of data were created in 2009 [1]. Facebook reports, in
June 2010, there exists 21PB raw storage capacity in the
internal data warehouse, and moreover, 12TB compressed
new data are added every day [2]. In a foreseeable future, this
already staggering volume of data is projected to increase.
Unfortunately, until now, we are not ready to handle the data
deluge. For example, from 1700 responses to a Science poll [3],
about 20% respondents often use more than 100 GB datasets
(wherein 7% over 1TB), more than 63% have asked colleagues
for data sharing, and about half of those polled store the data
only in their own labs due to lack of funding to support
archiving, let alone real-time data analysis (e.g., online
queries). In order to efficiently handle big data analytics,
cloud platforms have emerged, such as MapReduce [4],
Hadoop [5], Dryad [6], Pig [7] and Hive [8], which demon-
strate the ability to scale to thousands of nodes, and support
fault tolerance, high availability and automatic management.
Moreover, users routinely pose queries across hundreds of
Gigabytes of data stored on data centers [9]. A cost-effective
scheme in real-world applications hence becomes more

® Y. Huais with the Wuhan National Laboratory for Optoelectronics, School of
Computer Science and Technology, Huazhong University of Science and
Technology, Wuhan 430074, China. E-mail: csyhua@hust.edu.cn.

® X. Liu is with the School of Computer Science, McGill University, Montreal,
Quebec H3A OE9, Canada. E-mail: xueliu@cs.mcgill.ca.

® H. Jiang is with the Department of Computer Science and Engineering,
University of Nebraska-Lincoln, Lincoln, NE 68588-0150 USA.
E-mail: jiang@cse.unl.edu.

Manuscript received 28 May 2012; revised 05 Feb. 2013; accepted 24 Apr. 2013.
Date of publication 05 May 2013; date of current version 07 Aug. 2014.
Recommended for acceptance by J. Weissman.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TC.2013.110

important to efficiently satisfy users’ requests and signifi-
cantly improve system performance.

Inrecent years, the data centers for real-world applications
have been built to provide various services, such as informa-
tion retrievals, E-mails, instant messages and Web services.
Major players like Amazon, Google, Microsoft, IBM, Face-
book, Apple, Intel and Yahoo! are constructing mega-data
centers for cloud computing [10]-[12] to compete for such
service-oriented markets, by moving the computation, stor-
age and operations to the cloud computing platform. Data
centers are themselves a networking infrastructure that con-
nects a large number of servers via high-speed links, routers
and switches. Providing online services in a scalable cloud
computing environment has become a main concern for the
IT industry. This has become an emerging and important
research topic in cloud computing.

The essence of online cloud service in data centers is to
provide real-time response when carrying out various opera-
tions, such as query services and system configuration. For
example, an online query service in data centers can identify
“hot spot” data that are frequently visited by measuring the
maximum of I/O accesses. In order to obtain load balance and
alleviate performance bottlenecks, we need to carry out data
migration [13] or replica control [14] in advance. Furthermore,
users are often interested in the “hot spot” data that can satisfy
most query requests with high accuracy. A prefetching or
caching scheme can be further used to decrease query latency.
Therefore, providing online cloud services demonstrates the
benefits of quick response, system optimization and cost
savings, which are critical and important to enhance the
scalability of large-scale cloud data centers.

Most large-scale cloud computing applications essentially
require the online services that cloud data-center networks
support to be scalable and highly efficient. In order to improve
the scalability and efficiency in data centers, researchers have
recently proposed several data-center network architectures,
such as Portland [15], Ficonn [16], VL2 [17], DCell [18], BCube

0018-9340 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

HUA ET AL.: SEMANTIC-AWARE DATA CUBE SCHEME FOR CLOUD DATA CENTER NETWORKS

[19], Spain [20] and fat tree [21]. Although the newly proposed
architectures work well for their own design purposes, such
as throughput increments, reliability enhancements and cost
savings. They do not consider the online applications running
on top of the architectures. The key issue is the lack of the
comprehensive considerations in terms of the data placement,
whichis tightly associated with access patterns in online cloud
services. Therefore, we need to take into account both the
properties of network architecture and data placement to
provide scalable online cloud service. Specifically, we need
to handle three main challenges.and implementation.

Weak scalability: Data center networks mainly use switch-
based tree structure to interconnect the increasing number of
servers and do not scale well. The hierarchical tree based
physical configurations require expensive and high-speed
switches to sustain the exponential growth of servers. Hence,
core and rack switches in this tree often pose as the bandwidth
bottleneck. Furthermore, the source-destination link can be
shared by many other host pairs. Traffic congestion often
arises, in particular near the higher hierarchy (e.g., root switch
of the tree). One observation is that the aggregate throughput
becomes much lower than the sum of network interface card
throughputs [22]-[24].

Limited inter-server bandwidth capacity: Data centers
require bandwidth-intensive communication supports for
IT infrastructure services such as GFS [25], BigTable [26],
MapReduce [4] and Dryad [6]. Limited ports in the high-cost
switches unfortunately decrease aggregate bandwidth mov-
ing up the hierarchy and result in large oversubscription [17].
The over-subscription severely limits the overall performance
due to preventing overloaded services from being assigned to
idle servers and meanwhile requiring high-cost hardware to
support more ports for interconnection. Hence, if all commu-
nications need to go through limited high-level core switches,
data centers will decrease the overall performance.

Low link utilization: Most existing designs for data center
networks pay little attentions to the link bandwidth utiliza-
tion for network transmission. Ideally, a server can obtain
queried results from its own or adjacent servers, rather than
remote ones. The reduction of path length allows us to obtain
the fast query response and the increment of link utilization.
In order to improve link utilization, a key issue is how to carry
out (near)-optimal data placement among millions of servers
in the cloud data-center networks.

In order to address the above challenges and support
online cloud services, we propose ANTELOPE, a scalable
distributed data management scheme, which can bridge the
gap between network architecture and data placement in
large-scale cloud data centers. The basic idea behind
ANTELOPE is to leverage off-line precomputation to improve
online query performance. The precomputation model in
ANTELOPE is data cube [27]. The rationale comes from a
proper understanding between the data cube and the seman-
tic-based data management in cloud data centers. On one
hand, using the data cube can provide the online service and
support rich dimension queries. The data cube supports not
only conventional queries for original data, but also the
queries for statistic based measures, such as Max and Min.
The statistic based queries meet the needs of decreasing data
migration, offering real-time response and supporting queries
for derived dimensions that are the computation results of

2147

source data. Cloud data centers can hence significantly reduce
the amounts of transmitted data since in many cases, what
users are really concerned with is the statistic results, rather
than the source data. On the other hand, the construction of a
data cube is a data-intensive task that incurs large amounts of
computation and storage overheads. The potential semantic
correlation from the access patterns can significantly reduce
the operation overheads. ANTELOPE optimizes the construc-
tion of data cube by identifying semantic correlation and
efficiently supports online cloud services in data centers. We
make the following contributions.

First, a data cube [27] can accurately and efficiently satisfy
on-line aggregate query requests by using precomputed statis-
tics. The data cube consists of multi-dimensional aggregates
that come from a fact table with a measure attribute and a set of
dimensional attributes. However, performing the construction
of a data cube is non-trivial due to the problem of full materi-
alization [28]. The full materialization is to precomputes all
possible aggregates and unfortunately incur very high compu-
tation and storage costs. In order to address this problem, we
use a semantic-aware partial materialization as a suitable tradeoff
between the construction efficiency and the query accuracy by
precomputing the related, rather than all, aggregates.

Second, given the real-life fact of high-cost and limited-
ports switches, what we can do is to optimize the data place-
ment to improve the entire throughput, especially among the
low-level servers. ANTELOPE achieves this by aggregating
data with strong locality into the same or adjacent servers.
Specifically, by exploring access patterns, ANTELOPE places
data close to their locality-aware servers with the aid of
Locality-Sensitive Hashing (LSH) [29], [30]. We thus signifi-
cantly enhance network bandwidth utilization through core
switches. The high-level links in the hierarchy will not become
the performance bottleneck. When new servers are added,
existing running servers have little influence. In particular, our
data-centric placement design serves as virtual layer well and
is suitable for arbitrary low-level network topology.

Third, in order to carry out (near)-optimal data placement in
large-scale cloud data centers, ANTELOPE explores the locality
residing in the access patterns such that data with strong
locality can be aggregated and placed in the same or adjacent
servers. Weimprove the bandwidth utilization. The path length
for completing query operations is significantly reduced. Per-
forming the fastidentification of data locality generally requires
heavy computation and space overheads. LSH [29] can effi-
ciently identify data locality with acceptable complexity.

The rest of the paper is organized as follows. Section 2
shows the research backgrounds especially in traffic patterns
analysis, data cube and locality sensitive hashing. Section 3
describes the design principles of ANTELOPE. Section 4
shows the implementation details. We study extensive ex-
periments in real system implementations in Section 5. We
present the related work in Section 6. Finally, we conclude our
paper in Section 7.

2 BACKGROUNDS

This section shows the research backgrounds of ANTELOPE
design. Observations from access pattern analysis motivate
our research work that makes use of data cube as precompu-
tation model.

2148

Core

Aggregation

Edge ¢

(a) LR=3/30. (b) LR=7/30.

Fig. 1. Locality rates for multi-rooted hierarchy with random routing.

2.1 Locality-Aware Analysis

Currently, since no large-scale data center traffic traces are
publicly available, we generate patterns along the lines of
traffic distributions in published work and open system traces
to emulate typical data center workloads. The measured
traces are listed as follows.

* LANL: Los Alamos National Laboratory (LANL) recently
released multiple sets of data [37]. These metadata show
the information about files. This data set is about 19 GB
and consists of roughly 112 million lines of archive data
and roughly 9 million lines of home/project space data.
The attributes of these data include unique ID, file sizes (in
bytes), creation time, modification time, block sizes (in
bytes) and the paths to files.

+ HP: HP file system provides a 10-day 500 GB trace [33]
that records the accesses from 236 users. The trace records
multiple operations, such as READ, WRITE, LOOKUP,
OPEN, and CLOSE, on the accessed files with file names
and device numbers.

* MSN: MSN trace [34] maintains metadata information
and correlated users within a 6-hour period and has been
divided into 10-minute intervals. This trace contains
1.25 million files and records 3.3 million “READ” and
1.17 million “WRITE” operations. The queried objects are
the files that exhibit multi-dimensional attributes, includ-
ing access time, the amounts of READ, the amounts of
WRITE, operational sequence IDs and file size within an
examined interval.

* Google Cluster: Google recently releases anonymized log
data from their clusters [35]. This is a collected tracein a 7-
hour period. The workload in the trace consists of a set of
tasks and each task runs on a single machine. Tasks
consume memory and one or more cores (in fractional
units). Each task belongs to a single job. One job may have
multiple tasks (e.g. mappers and reducers). The trace has
totally 3,535,029 observations, 9218 unique jobs and
176,580 unique tasks.

To measure the locality of access patterns in data centers,
we make use of a metric, called locality rate, which is defined as
the percentage of switches/routers that recursively contain
the visited nodes as shown in Fig. 1. A lower value of this rate
means much stronger locality.

We illustrate the Cumulative Distribution Function (CDF)
of locality rates for above traces in Fig. 2. We observe that real-
world applications usually exhibit strong locality by accessing
close and correlated data. The average value of four traces’
locality rates is 3.25% and the maximum is 11.2%, which
means that most access requests can be completed within
adjacent low-level servers. Based on the observations, we
argue that an optimized data placement can improve

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

100

0.001 i 1 L L 1 L 1 L 1
1

0 20 30 40 50 60 70 80 90 100

Normalized Access Requests (%)

Fig. 2. Cumulative distribution function of the locality rates of the real-
world traces.

scalability and improve link utilization. The observations also
motivate our ANTELOPE design for supporting online cloud
service.

2.2 Data Cube for Online Query

A data cube [27] uses multi-dimensional aggregates based on
off-line precomputation to obtain fast on-line runtime perfor-
mance. A cube consists of a lattice of cuboids. Each cuboid is
associated with an aggregate of measure attributes according
to a group-by operation. This operation uses a subset of the
dimensional attributes. Data cube hence precomputes the
aggregation of all possible combination of dimensions to
facilitate the queries.

Definition 1 (Data Cube). Consider a relation R(A,S) with
p-dimensional attributes Ay, As,---, A, and non-negative
scores, S, to represent the attributes A% ordered by S. The
data cube Dy, is the set of aggregates that are the precomputed
results through executing group-by operations on R.

When the cardinality of p attributes are L;, Ls,---, L,
it becomes [[L; +1). A cell ¢ over cube measure can be
represented as a group-by cell in a d-dimensional cuboid
when d(d < p) values from A, Ay, -+, A, exist.

Ranking operations in ANTELOPE need to rank the
multi-dimensional aggregates in each cuboid in ascending
or descending order. The ranked aggregates allow explicit
representation of stored data to efficiently answer aggregate
queries. The ranked results can be ordered by score defined
in Definition 1. The score comes from the computation of
ranking functions on the measures in each cuboid.

Definition 2 (Ranking Function). A ranking function F*¥ sorts
each aggregate based on measure values represented as score S'in
descending or ascending order. The ranked aggQregates are
formulated by group-by attributes, A7, A5, -+, A7 (d < p).
Typical ranking functions execute precomputation by using

aggregation measures, such as sum,ave, max and stddev, and in
this paper, as an example, we use max to compute the maximum
of the aggregates that are then ranked by their scores. According
to the ranking function, we can further obtain the ranking
cuboids, in which the aggregates are ordered by their scores
in multi-dimensional analysis.

Definition 3 (Cuboids). Given group-by attributes
AS={A}, A5, ASH(AS C A,d <p) and ranking function
F'S, the ranking cuboids C* are defined as the subset of all traffic
messages and each cuboid contains d cells, {r',r? --- r},
which come from the agqregation over S by using ranking
measures from F2, Fy, .- F? respectively.

HUA ET AL.: SEMANTIC-AWARE DATA CUBE SCHEME FOR CLOUD DATA CENTER NETWORKS

2149

TABLE 1
Typical Schemes for Cube Compression and Aggregation

Design Purpose |

Performance Metrics

Basic eas Examples Compression]Aggregation[[Query Accuracy|[Space Efficiency|Time Efficiency] Scalability
Sampling Dynamic Selection [40] v/ Approximate Y N Y
Factorization Multi-way Array [41] v/ Approximate Y N N (clustering)
Probability Density| Compressed cube [42] N Approximate Y N N (clustering)
Loglinear Quasi cube [43] vV Approximate Y N N (clustering)
Rankinie ARCube [44] N Approximate N Y Y
Ranking Cube [45] 4 Approximate N Y Y
Signature P-Cube [46] R/ Exact N Y Y
Tuples Aggr. Condensed Cube [47] vV Exact Y N N (fully computed)
Correlation Range cube [48] v/ Exact Y Y N (careful partition)
Semantics ANTELOPE vV Approximate Y Y Y |

A series of ranking cuboids construct ANTELOPE that
takes into account ranking measures to facilitate top-k aggre-
gate queries.

Definition 4 (Ranking (Top-k) Aggregate Queries). A
ranking aggqregate query can obtain k cells {ci,co,---, ¢}
through involving the group-by R(AS) to satisfy that any
other cell ¢* € R(A%), F5(¢*) < min(c;|c; € R(A%)).

Data cube answers top-k aggregate queries by ranking
the group-by results from precomputed aggregate values
and further obtaining the top-k groups. The ranking aggre-
gates in the above example actually utilize full materialization
approach to first precompute all possible combinations of
multi-dimensional attributes and then rank them in the des-
cending order. Storing these multi-dimensional precomputed
results often consumes too much storage space, in particular
with the growth of the number of dimensions and the size
of associated hierarchy.

Performing the materialization on a data cube is to precom-
pute the ranked multi-dimensional aggregates for each cuboid
to facilitate ranking-based aggregate queries while requiring
certain storage space to store and maintain generated results.
In practice, there are two baseline choices for cube materializa-
tion. One is to use no materialization method that fully depends
on on-line computation and does not precompute any of
“non-base” cuboids. Since there is no precomputed results,
no materialization approach essentially requires expensive
costs for on-line computation and thus gives extremely slow
responses to query requests. In contrast, the other approach,
i.e., full materialization, precomputes all possible combinations
of aggregates. Although the full materialization can quickly
provide query response, it obviously occupies huge amounts
of storage space that is often much larger than the available
capacity of local memory. Therefore, a tradeoff between stor-
age space and response time is more interesting and important
to efficiently organize and store the precomputed results.

A data cube usually suffers from the high space overhead in
practical applications and the main solutions to decrease cube

TABLE 2
An Example of 1/0O Access Behaviors

| ServerA | ServerB | ServerC | ServerD |

Read 56 206 127 82
Morning Write 28 372 165 55
Read 57 196 188 152
Afternoon | Write 35 107 162 67
Read 10 22 6 8
Evening Write 5 17 11 9

sizes can be classified into compression and aggregation as
shown in Table 1. Compared with existing work, ANTELOPE
uses typical information retrieval tool to exploit the semantic
correlation among received messages and only precomputes
correlated aggregates to carry out partial materialization with
the benefits of space savings.

In practice, the ANTELOPE needs to carefully select
precomputed aggregates that consist of some subsets of
entire dataset. These selected subsets are represented as some
cuboids to satisfy user-specified requests. Since user requests
usually produce the checking on some correlated subsets of
entire cube structure, it is naturally unnecessary to precompute
all possible cuboids.

2.3 An Example
A data cube in cloud data centers can provide online aggre-
gate queries by using precomputed results. A typical service
as a case study is to identify potential performance bottleneck,
e.g., “hot spot” data. Table 2 shows an example of I/ O access
behaviors according to the dimensions Position, I/O Behavior
and Period by considering Access Times as a numeric measure.
The measure value representing a numerical function aggre-
gates the data belonging to a given cuboid defined by dimen-
sion-value pairs in the data cube space. For instance, this table
shows the numbers of 1/O access going through 4 servers
(A, B, C and D), at 3 periods (Morning, Afternoon and
Evening) and in 21/O behaviors (Read and Write). According
to the fact table, we further construct a 3-dimensional data
cube as shown in Fig. 3 to illustrate the data cube structure.
Note that the data cubes are multi-dimensional, not limited to
3-D, and any n-D data tables can be displayed as a series of
(n —1)-D cubes. Due to space limitation, here we do not
display higher dimensional cubes.

Given a set of dimensions, a data cube consists of a series of
cuboids. Each cuboid is correlated with a subset of the given
dimensions. Fig. 4 shows the data representation at different

. Evening /10 /22 /6 / 8
Period dfiernoon /s7” 7196,/188,/152
Morning
9
/o Read| 56 |206 127 | 82 7
Behavior
Write | 28 | 372|165 | 55
Server.A Server.B Server.C Server.D
Position

Fig. 3. A 3-D representation of the data in Table 2.

2150

(%% %)

0-D cuboid

(period, *,
1-D cuboid @ (** position)

(*1/0 behavior, position)

3-D cuboid
(period, I/O behavior, position)

Fig. 4. A data cube consisting of a lattice of cuboids for the dimensions
position, I/O behavior and period.

levels of aggregation. Each dimension in the 0-D (apex) cuboid
is not specified and thus the cuboid aggregates all information
in entire data cube. In contrast, when each dimension in the 4-D
(base) cuboid is specified, the cuboid only displays one cell in
the data cube. Thus, the data cube can answer aggregate query
by checking multiple cuboids, each of which represents a
different level of summarization over a set of cells.

A data cube can support aggregate queries that are corre-
lated with multiple dimensions in an ad-hoc manner by veri-
fying a subset of all precomputed combinations of multi-
dimensional attributes. Query requests receive answers by
checking partial cuboids as shown in Fig. 4. For example,
“How many accesses are there onServer_B?” can be answered by
checking a 1-D cuboid, and “How many accesses are there by
reading operation in the morning?” can be answered by checking
a 2-D cuboid. On the other hand, these examples potentially
indicate another critical problem of ranking aggregates, since
each cuboid possibly contains multiple aggregates and the
nearest results should be the answers. In addition, the concept
of hierarchy means a sequence of concept mapping among
different levels. For example, considering the dimension
Position, the Server values can be mapped to disk or directory
which it belongs to.

ANTELOPE uses partial materialization to obtain signifi-
cant space savings and provide fast query response. For
example, considering the I/O access records in Table 2, “hot
spot” data in Server.A possibly introduce further queries on
alternative servers for load balance, which may consider I/O
access history for performance prediction and decision mak-
ing. We thus need to locate the cuboid that is correlated with
the event and then check the precomputed subsets in the
cuboid to obtain query answers. As shown in Fig. 4, when
Server.A becomes performance bottleneck, the 3 rd point
(*, *, position) in the 1-D cuboid is correlated with the event
and then the 2-D and 3-D cuboids in the lower levels con-
necting with this point will be also precomputed to answer
query requests. The “hot spot” data drive the precomputation
on partial, not all, cuboids.

In essence, ANTELOPE offers approximate query accuracy
in the context of the big data era. The potential applications
demonstrate some common characteristics, such as massive
data, distributed deployment, heterogeneous forms and on-
line processing, which introduce the great challenge of data
processing. In order to address this challenge, ANTELOPE
leverages a proper tradeoff between a very small query
inaccuracy and significant performance improvements.
In general, this tradeoff can be accepted by many typical

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

real-world applications, such as on-line image query and
processing [45], [46], keyword-based search in documents
[47], [48], social network analysis [49] and industrial product
optimization [50], [51].

3 DESIGN OF ANTELOPE

In this section, we present the design principles of ANTE-
LOPE. To significantly decrease the computation complexity,
we leverage cost-effective partial materialization, rather than
full or no materialization, to build the cube structure that
stores and maintains semantic-aware data. Semantic vectors
are further used to accurately represent the semantic-aware
data. Moreover, in order to handle the curse of dimensionality
[29], we make use of the locality sensitive hashing (LSH) to fast
and efficiently identify the semantic-aware data.

3.1 Section Partial Materialization

Performing the materialization on a data cube is to precom-
pute the ranked multi-dimensional aggregates for each cu-
boid to facilitate ranking-based aggregate queries. The data
cube follows a principle to simplify computation costs.

Principle 1. If a given cell does not satisfy minimum support,
then no descendant of the cell will satisfy minimum support.

Based on this principle, there are two baseline choices for
cube materialization. One is no materialization method that
fully depends on on-line computation and does not precom-
pute any of “non-base” cuboids. Since there is no precom-
puted results, this approach essentially demands expensive
costs for on-line computation and thus gives extremely slow
responses to query requests. In contrast, the other approach,
i.e., full materialization, precomputes all possible combinations
of aggregates. Although the full materialization can quickly
provide query response, it obviously requires large storage
capacity. The used storage capacity is often much larger than
the available memory size. Therefore, a suitable tradeoff
between storage space and response time, i.e., partial materi-
alization, is more important to efficiently execute the pre-
computation for online services.

ANTELOPE needs to select which aggregates can be pre-
computed based on the access patterns upon the locality-
aware data. These aggregates actually come from the subsets
of entire dataset and are represented as the cuboids to meet the
needs of system optimization from an administrator. An
administrator may be concerned with the servers with “hot
spot” data, which is described as the maximum of I/O
accesses as show in Fig. 7. We can compute the cuboids that
havel/O accesses more than a threshold, e.g., 150 times. Thus,
according to the Principle 1, since (evening,*,+) and
(%, %, Server_A) have the values that are smaller than 150,
their descendants will not contain the larger value. It is
unnecessary to compute the descendant cuboids. Therefore,
we partially materialize the data cube model and obtain the
computation and space savings. The thresholds in multiple
levels determine the sizes of precomputed results and depend
upon the available memory sizes.

In order to efficiently support the operations of partial
materialization, we need to accurately represent and carefully
identify correlated data. These correlated data can facilitate
the cost-effective construction of cube structure.

HUA ET AL.: SEMANTIC-AWARE DATA CUBE SCHEME FOR CLOUD DATA CENTER NETWORKS

Sa =(s1; SZJ Y SD) Sq =(SI) SZ’ o Sd)
L]

fl: =(81, 825 Sp)
o

Fig. 5. Measure of semantic vectors.

3.2 Correlation-Based Semantic Representation
Information retrieval tools, such as vector space model (VSM)
[52], K-means [53] and latent semantic indexing (LSI) [54],
play a role in supporting correlation analysis. VSM heavily
suffers from synonyms and noise in representing correlated
documents since there are false positives from word sub-
strings match and false negatives from documents with simi-
lar context but different term vocabulary while overlooking
the order of terms appearing in the document. The results
from K-means approach may be not satisfactory due to the
inappropriate choice of K input and the distribution of the
initial set of clusters.

We use Latent Semantic Indexing (LSI) [54] as an analysis
tool to measure semantic correlation of stored data [55], [56].
The data are essentially represented as base cuboids that are
further extracted by LSI to identify which are correlated with
each other. Specifically, LSI leverages the Singular Value
Decomposition (SVD) [57] to measure semantic similarity.
SVD reduces a high-dimensional vector into a low-dimension-
al one by projecting the large vector into a semantic subspace.
Specifically, SVD decomposes an attribute-file matrix A, whose
rank is r, into the product of three matrices A = UX VT where
U=(uy,...,u;) € R and V = (vy,...,v,) € R™" are or-
thogonal, ¥ = diag(oy,...,0,) € R™" is diagonal, and o; is
the i-th singular value of A. V7 is the transpose of matrix V. LSI
utilizes an approximate solution by representing A with a
rank-p matrix to delete all but p largest singular values,
A, =UB, VI

Definition 5. Each data item a with D-dimensional attributes can
be represented as semantic vector S, = [Si,S2,---,Spl.
Similarly, query q can be also represented as S, =[Sy, S, - -,
Sa)(1<d< D).

Fig. 5 shows an example to measure semantic vectors. We
observe that vector a is more correlated with vector ¢ than b
since the former exhibits smaller angle by computing cosine
similarities in the multi-dimensional space.

In this way, LSI projects a query vector ¢ € R**! into the
p-dimensional semantic space in the form of ¢ = Uqu or
=X, 1UpT g. The latter, i.e., inverse of the singular value, is
used to scale the vector. The similarity between semantic
vectors is measured by their inner product.

LSI tool is able to identify correlated data in real-world
applications [58], [59]. However, it is difficult to directly apply
LSI into large-scale data centers due to frequent dynamic
configuration and potential skewed distribution with bursts
in the stored data, thus making challenging the operations of
semantic analysis. We hence present an improved LSI to
reduce analysis complexity by using the popularity of multi-
dimension attributes of data.

In essence, LSI uses the SVD to derive low-dimensional
representation of semantic space and in practice, low-rank

2151

matrix is an approximate representation of high-rank matrix.
Unfortunately, SVD in LSI is not scalable with respect to
storage space and computation costs to execute matrix-
based computation. The main reason is that conventional
LSI equally treats each value in the matrix, which often
becomes sparse, and overlooks their popularity, which
comes from the spatial, temporal and content localities of
multi-dimensional attributes.

Example 1 (Popularity Awareness)

* Spatial Popularity: Adjacent files are often visited together.

* Temporal Popularity: A visited file is possible to be frequently

accessed.

* Content Popularity: Similar files are usually prefetched.

Our Popularity-aware LSI (PLSI) exploits the popularity
of data objects and further transforms the original sparse
matrix into a block matrix without losing any information.
The block matrix allows the divided parts of entire matrix
to be processed in parallel, thus decreasing computation
delays.

Definition 6 (Popularity-Based Block Matrix). Given a
matrix R = [byby---by] € R4 it is g popularity-based block
matrix when each submatrix sub(R) = [b;---b;],1 <i<j<d
is zero or has less than (j — i + 1) different matrix eigenvalues
(- A).

Popularity-based block matrix contains multiple zero sub-
matrixes that can be simplified in matrix computation. The
popularity-aware non-zero submatrixes exhibit the correlation
in the stored data, thus supporting efficient aggregation.

Theorem 1 (Submatrix Correlation). Submatrix sub(R) =
[bi---bj), 1 <i<j<d, is linearly correlated if the number of
different matrix eigenvalues is less than (j — i + 1).

Proof. According to the Definition 6, the submatrix in the
popularity-based block matrix has less than (j—i+ 1)
different matrix eigenvalues. We first consider the proof
by contradiction, ie., if the submatrix has (j—i+1)
different matrix eigenvalues, it must be linearly
independent. The conclusion can be further proved by
mathematical induction.

Assuming (j — 7) different eigenvalues in sub(R) corre-
spond to (j — i) characteristic vectors [b; - - - b;—] that are
linearly independent, i.e.,

Ezb;++5]*1b]*1 :0 (1)

We then need to prove that for (j—i+ 1) different
eigenvalues (); - - -);), the corresponding vectors are also
linearly independent. Assume sub(R)b = Ab and

5ibi + -+ 6jbj =0. (2)

Thus we obtain ZZ):Z gvApby, = 0. Further combining
Equation 2 produces €;_ 1 (A, — Ai—j+1) = 0. On the other
hand, since Equation 1 shows the (A, — Ai_j11) # 0, &1
must be zero. Thus, the submatrix with (j — ¢ + 1) different
matrix eigenvalues must be linearly independent. Since
block matrix has less than (j—i+ 1) different matrix
eigenvalues, sub(R) = [b;---b;], 1 <i<j<d, is linearly
correlated.]

2152

We can transform a large and sparse matrix to become
small and dense block matrix while decreasing processing
delays due to parallel computation. The matrix decomposition
only aggregates approximate data to accelerate the computa-
tion without information loss.

Theorem 2 (Lossless Block Matrix). The block matrix with
multiple submatrixes is equivalent to the original matrix.

Proof. Therank of block matrix comes from its submatrixes in
which we count the number of non-zero rows/columes.
The submatrixes are linearly correlated and distinguished
from zero submatrixes. Furthermore, the division on the
original matrix only needs to carry out the transformation
of matrix row and columns, thus keeping its rank
unchanged. Since block and original matrixes have the
same rank, they are equivalent. |

3.3 Identification of Locality-Aware Data

ANTELOPE uses locality sensitive hashing (LSH) [29] to
identify locality-aware data. Specifically, data points a and
b that have d-dimensional attributes can be represented as
vectors d; and l;,; If the distance between vectors d; and 5:1 is
smaller than a pre-defined threshold, they are considered to
be similar [65]. We then say that these similar data are locality-
aware.

LSH maps similar items into the same hash buckets with a
high probability to serve main memory algorithms for simi-
larity search. For a given request for similarity search query,
we need to hash query point ¢ into buckets in multiple hash
tables, and furthermore union all items in those chosen
buckets by ranking them according to their distances to the
query point g. We hence can select the closest items to a
queried one. LSH function family has the property that items
that are close to each other will have a higher probability
of colliding than items that are far apart. We define S to be
the domain of items. Distance functions || * || correspond to
different LSH families of [, norms based on s-stable distri-
bution to allow each hash function h,; : R? — Z to map a
d-dimensional vector v onto a set of integers.

Definition 7. LSH function family, ie., H={h:S — U} is
called (R, cR, Py, Py)-sensitive for distance function ||« || if
forany p,q € S
* If ||p,ql| < R then Pru[h(p) = h(q)] > P,

* If ||p, q|| > ¢R then Prylh(p) = h(q)] < Ps.

The settings of ¢ > 1 and P, > P, support similarity search.
Multiple hash functions can further increase the gap between
Py and P». The hash functionin His h,;(v) = L%“’J ,where ais
a d-dimensional random vector with chosen entries following
an s-stable distribution, b is a real number chosen uniformly
from the range [0,w) and w is a large constant.

Fig. 6 shows an example of LSH working scheme in terms
of measured distance. Specifically, LSH can determine the
proximate locality between two points by examining their
distance in a metric space. If the circle centered at ¢ with radius
R covers at least one point, e.g. p;, as shown in Fig. 6(a), LSH
can provide a point with no more than cR distance to ¢ as a
query result. We can observe that there is an uncertain space in
LSH from R to cR distance and the query ¢ will obtain a reply
of either point p; or p,, since both points locate within distance
cR, ie. ||p1,¢l| <cR and ||ps,q|| <cR. On the other hand,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

A
cR 7/ s
q ® o
P3
’\\ ri @ p
p3 N @
[] \ \\ vy
\ N by
| \/ >
TS D V2
V2
p2 ° e |
° »

Fig. 6. An example of LSH working scheme.

points ps and p, are not close to the queried ¢ due to more
than cR distance. Fig. 6(b) shows the geometry hashing results
from two vectors v; and vs.

In practice, we use hash tables as temporary storage space
to maintain the locality-aware data that are then mapped into
an R-tree. A server can contain one or more leaf nodes and
branches of this R-tree, i.e., a subtree, depending on its own

capacity.

4 SYSTEM IMPLEMENTATIONS

This Section discusses the implementation issues of
ANTELOPE in cloud data centers. In order to offer efficient
management of computation and storage models, we first
describe the mapping scheme between precomputed cube
and storage structure R-tree [61]. We also present the opera-
tions, including insertion, deletion, aggregate queries and
incremental updates, in ANTELOPE.

4.1 Structure Mapping
We use R-tree [61] to maintain the locality-aware data. The
benefits are twofold. One is to support online query service
and the other is to facilitate partial materialization. We
respectively discuss them.

An R-tree structure is a dynamic and height-balanced index
structure. The R-tree height, i.e., the path length from the root to
any leaf node, is identical. Minimum Bounding Rectangles
(MBR) represent the data that has multi-dimensional attributes.
MBR in each dimension denotes an interval of the enclosed
data with a lower and an upper bound. MBR in fact partitions
data into different groups in the multi-dimensional space. An
R-tree allows multi-dimensional queries by aggregating attri-
bute values into corresponding ranges. We can build an R-tree
in an iterative way. R-tree provides efficient query service via
accessing only a small amount of nodes.

ANTELOPE maps locality-aware data in hash tables to
the nodes of R-tree, which correspond to the servers of cloud
data center network. Specifically, we map the precomputed
cuboids of ANTELOPE to corresponding R-tree nodes that
further support aggregate queries and other dynamic opera-
tions, such as insertion, deletion and update. Fig. 7 shows an
example to illustrate the mapping between the cuboids of
ANTELOPE and R-tree nodes. Due to space limitation, we
only display the mapping for 0-D and 1-D cuboids as exam-
ples and higher-dimension cuboids follow the same way. In
each cuboid, the aggregated data are ranked according to the
ranking function and here we use the max operation in the
descending order. All data groups in each cuboid are stored
by sorted lists.

HUA ET AL.: SEMANTIC-AWARE DATA CUBE SCHEME FOR CLOUD DATA CENTER NETWORKS

(%%

0-D cuboid
i * ¥
(period,* *) %% position) Cube cuboids
1-D cuboid
(*, /O behavior,*)
I Mapping
%%
32
R-tree nodes
* #Yaft ing") (read,’) (*write,*) (** Server.A)(**, Server.B)(** Server.C)(*}, Server.D)

|| 206 | 372 || 57 | 372 | 188 I 152 |

Fig. 7. Implementation mapping from cube cuboids to ANTELOPE nodes
for 0-D and 1-D cuboids using MAX operation.

4.2 Grouping Procedures

We calculate the correlation among the groups, each of which
is represented by a leave node of R-tree. Given multiple nodes
storing high-dimensional metadata, a semantic vector with d
attributes (1 < d < D) is constructed to represent each of the
N metadata nodes. By using the semantic vectors of these NV
nodes as the input, we obtain the semantic correlation value
between two nodes, = and y, among N nodes.

We need to further build the parent nodes in the R-tree.
Nodes x and y are aggregated into a new group if their
correlation value is larger than a predefined threshold «;.
When a node has multiple correlation values that are larger
than ¢, the node with the largest correlation value will be
chosen. These groups are recursively aggregated until all of
them form a single one that is the root of R-tree. Each tree node
uses minimum bounding rectangles to represent all metadata
that can be accessed through its children nodes.

The above procedures aggregate all data into an R-tree. For
queries, the query traffic is very likely bounded within one or
a small number of tree nodes due to metadata semantic
correlations and similarities. If each tree node is stored on a
single metadata server, such query traffic is then bounded
within one or a small number of metadata servers. Therefore,
ANTELOPE can avoid or minimize the linear searches.

While there exist other available grouping tools, such as
K-means [53] and Vector Space Model (VSM) [62], ANTELOPE
leverages Latent Semantic Indexing (LSI) [54], [56] to aggre-
gate semantically-correlated files due to its high efficiency
and ease of implementation. K-means algorithm exploits
multi-dimensional attributes of » items to cluster them into
K(K < n) partitions. While the iterative refinement mini-
mizes the total intra-cluster variance that is assumed to
approximately measure the cluster, the final results heavily
depend on the distribution of the initial set of clusters. VSM is
an algebraic model for representing document objects as
vectors of identifiers. The grouping depends upon the as-
signed weights. VSM suffers from the scalability problem for
long documents and fails to efficiently deal with the potential
problems of synonymy and polysemy. The LSI tool over-
comes these problems by using statistically derived concepts
instead of terms for retrieval.

4.3 Insertion
When a data object is inserted into a group, the R-tree is
adaptively adjusted to balance the workload among all

2153

On-line_Aggregate Top-k Query

Input: Top-k query Q for dQ -dimensional attributes (dp < p), A5,

Cuboids C5(4;),C5(4y),---,C5(4,)

Output: Top-k aggregate cells

: For each materialized cuboid CS(4;)(i = 1,---
sorted list;

: Scan all cuboids into memory to initialize sorted lists;

: Result := 0 for storing found results;

: while Nonempty(All_sorted_lists) N (Number(Result) < k) do

Select the ranking cell ¢; with measure maximum F5(c;) from

each cuboid CS (4);

¢=Max{all selected cells ¢;};

Insert ¢ into Result;

Delete ¢ from its sorted list;

: end while

: Return Result

—

,dp), create a

A R -]

SPeRAD

—

Fig. 8. Top-k aggregate query algorithm.

Qa

storage nodes within this group. An insertion operation in-
volves two steps: group location and threshold adjustment.
Both steps only access a small fraction of the R-tree in order to
avoid message flooding in the entire system.

When inserting a data object as a leaf node of the R-tree, we
need to first identify a group that is the most closely related to
this unit. Semantic correlation value between this new node
and a randomly chosen group is computed by using LSI
analysis over their semantic vectors. If the value is larger than
admission threshold, the group accepts the data as a new
member. Otherwise, the new data will be forwarded to adja-
cent groups for admission checking. After a data object is
inserted into a group, MBR will be updated to cover the new
node.

The admission threshold is one of the key design parameter
tobalance load among multiple storage nodes within a group. It
directly determines the semantic correlation, membership, and
size of a semantic-aware group. The initial value of this thresh-
old is determined by sampling analysis. After inserting a new
data object into a semantic group, the threshold is dynamically
adjusted to keep the semantic-aware R-tree balanced.

4.4 Deletion

The deletion operation in the semantic-aware R-tree is similar
to a deletion in a conventional R-tree. Deleting a given node
entails adjusting the semantic correlation of that group, in-
cluding the value of group vector and the multi-dimensional
MBR of each group node. If a group contains too few storage
nodes, the remaining nodes of this group are merged into its
sibling group. When a group becomes a child node of its
former grandparent in the semantic-aware R-tree as a result of
becoming the only child of its father due to group merging, its
height adjustment is executed upwardly.

4.5 Aggregate Queries

In order to efficiently support aggregate queries, we simplify
the representation of the stored data and only keep partial
precomputation results, i.e., semantically correlated subset.
Correlated data often have higher probability to satisfy the
query requests from adjacent data center nodes since they
potentially keep approximate spatial and temporal localities.
A query request with d-dimensional attributes can be

2154

transformed into a vector ¢. The vector consists of a series of
binary numbers, each of which denotes a dimension. We first
hash the vector ¢ into the LSH and obtain all data in the hit
buckets. These data are much correlated and further orga-
nized into an R-tree structure [61]. We hence only need to
select the data correlated with ¢ by using LSH to build a light-
weight and adaptive cube for aggregate queries.

We present an on-line ranking-based (top-k) aggregate
query algorithm as shown in Fig. 8, which can return
top-k query results. The algorithm first creates dg sorted
lists for ranking cuboids (Line 1) and then initializes these
sorted lists by scanning materialized cuboids into memory
(Line 2). When all sorted lists are nonempty and the number
of found results are smaller than £, ANTELOPE selects the
cell with the largest aggregate value, represented as ¢
according to the ranking function F°. The cell ¢ is then
inserted into Result and deleted from its sorted list as shown
From Line 3 to Line 9. The cube finally returns top-k query
results in Line 10.

4.6 Incremental Updates

A data center node usually maintains the messages to
execute updates on the stale data. The messages contain
new changes of system status. However, performing the
updates potentially introduces extra re-computation overhead
on ANTELOPE to guarantee query accuracy. ANTELOPE
leverages the locality property within the received messages
to carry out incremental updates. The main benefits are to
provide quick response and reduce 1/O costs. The basic idea
behind incremental updates is to leverage multi-version based
method and aggregate some amounts of received messages
that exhibit the locality. The preprocess operations combine the
same or similar messages that report approximate information
into one update.

The multi-version based scheme in real system implemen-
tations of ANTELOPE offers cost-effective incremental update
and supports the precomputation based queries. Specifically,
at the beginning, the time is set to ¢;. When the updated data
arrive, ANTELOPE creates the versions for corresponding
groups. From the times ¢;_; to t;, updates are aggregated into
the i-th version. These updates contain the operations of
insertion, deletion and modification of data, which are labeled
in the versions.

In practice, the versioning scheme may incur extra over-
heads due to checking the attached versions, besides the
original information when executing a query. However, since
the versions only maintain the changes that essentially require
small storage overheads, the extra latency of searching is
usually small. A query operation needs to check the original
data and its versions from ¢; backward to ty. The advantage of
checking backward is to fast obtain the most recent changes
since version ¢; generally maintains the newer information
than the version ¢;_;.

ANTELOPE removes the attached versions when reconfi-
guring the original grouped data. The frequency of reconfig-
uration depends on the user requirements and environment
constraints. Removing versions needs to apply the changes of
the versions into its original data. To adapt to the system
changes, ANTELOPE allows the groups to have different
numbers and sizes of the attached versions.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

5 PERFORMANCE EVALUATION

In this Section, we evaluate the performance of ANTELOPE in
terms of its effectiveness and efficiency, including aggregate
throughput in multiple communication patterns (one to one,
one to many, many to one and all to all), initialization time,
and online query service quality (query delay, query accuracy
and update time).

5.1 Experimental Setup

The application scenario of ANTELOPE is in the large-scale
data centers to support online services. We make use of real-
world online query application datasets for our experiments.
Due to space limitation, we mainly report the experimental
results from HP [33] and MSN [34] traces, which represent the
bounds as shown in Fig. 1 in Section 2.1.

We have designed and implemented ANTELOPE proto-
typein the Linux environment. We built the testbed consisting
of 30 servers, each of which is 2.0 GHz dualcore CPU, 2 GB
DRAM, 250 GB disk and 1000PT quad-port Ethernet NIC. All
servers are connected with 5 24-port Gigabit Ethernet
switches. We use the parameters, L =8, w =0.9, M =12 to
support online aggregate queries.

In order to support the use of ANTELOPE, we leverage
semantic grouping to aggregate correlated data together and
store the computation results in the R-tree with the aid of
structure mapping. Furthermore, the results of cube compu-
tation in the R-tree are distributed in multiple network nodes
by using typical schemes of subtree partitioning [58], [63]. The
basic idea of subtree partitioning is to allow each node to
maintain one or multiple adjacent branches of entire tree.
Moreover, in order to support efficient updates and fast
queries, each node also stores the information of root node
to locate the queried data. Hence, an update operation will
incur local computation for a small branch of R-tree. If the new
result leads to the modification of root node, it will be
transmitted to other nodes for updates. The modification on
the root node occurs with small probability in practice.

ANTELQOPE stores the precomputed results of partial mate-
rialization to facilitate ranking-based (top-k) aggregate queries by
setting specified 1/O interfaces. When a server receives a query
request, the request is then issued to cube interfaces to allow
aggregate query operations in ANTELOPE. On the other hand,
we set up to 2000 query requests for at most top-20 query results.

We compare ANTELOPE with state-of-the-art schemes,
i.e., fat tree [21], VL2 [17] and pSearch [64]. Specifically, fat-
tree is a switch-centric structure, motivated by reducing over-
subscription ratio and removing single-failure points. Since
switches are concatenated, the effective port number for
scaling out is half (except the root layer). VL2 uses flat
addressing to allow service instances to be placed anywhere
in the network and further leverages the end-system based
address resolution to scale to large server pools, without
introducing the complexity to the network control plane.
pSearch is a decentralized non-flooding P2P information
retrieval system. By using Latent Semantic Indexing (LSI) to
generate semantics, pSearch is able to distribute the indices
through the P2P network. Due to aggregating semantically
correlated items, the query costs can be reduced significantly.

ANTELOPE shares the similar design goals with fat tree,
VL2 and pSearch. To facilitate the comparisons, we

HUA ET AL.: SEMANTIC-AWARE DATA CUBE SCHEME FOR CLOUD DATA CENTER NETWORKS

400

500 | —=—Fat tree —=—Fat tree]
—B—VL2 300 —E—VL2
@ 400 | —©—ANTELOPE 0 —o—ANTELOPE
] [}
£ 300 £ 200
F F

100 |

0 Tt 45 eny e
20 30 40 50 60 70 80 90 100
Construction Percentage (%)

(b) MSN trace.

0 T ol T
20 30 40 50 60 70 80 90 100
Construction Percentage (%)

(a) HP trace.

Fig. 9. Construction time.

implement the components and functionalities in fat tree and
VL2, not including their fault tolerance and fairness models,
which are not the main concerns in this paper. Moreover, a
pSearch prototype is constructed based on the guidance [64].
Since pSearch mainly aims to offer scalable and efficient query
services, we compare ANTELOPE with pSearch in terms of
online query quality as shown in Section 5.2.2. We also
compute the VSM and SVD results in the system implementa-
tions [66], [67], [68].

It is worth noting that our comparison does not imply that
other structures are not suitable for their original design
scenarios. Instead, we intend to show that ANTELOPE is a
better scheme for data centers that need to understand data to
optimize network architecture design.

5.2 Experimental Results
We examine the performance of ANTELOPE by using several
metrics and analyze the evaluation results.

5.2.1 Initialization

Cube-based designs need to initially carry out the pre-
computation on the combinations of multi-dimensional

n
=]
=]

2155

attributes, indicated by construction time as shown in
Fig. 9.

We first examine the initial construction time as a metric to
examine fat tree, VL2 and ANTELOPE schemes. The cube
construction needs to first precompute the selected cuboids
and then carry out the mapping operations from precom-
puted cube results to physical storage space. Fig. 9 shows that
ANTELOPE using HP and MSN traces can save time on
average 71.8% and 52.6% respectively over fat tree and VL2.
The main reason is that ANTELOPE makes use of LSH to
aggregate correlated data together. These correlated data
serve for building cube with high probability and thus reduce
potential data migration among multiple servers. In addition,
we also observe that VL2 obtains better performance than fat
tree due to the flat addressing in the former, which allows
flexible data placement.

5.2.2 Online Query Service Quality

Query delay refers to the time interval from initiating the
query request to receiving the results. Figs. 10 and 11 show the
average query delays to respectively answer top-5, 10 and 20
queries in HP and MSN traces. We observe that ANTELOPE
requires shorter latency, respectively by 35.6%, 47.2% and
65.8% in three queries, than pSearch, VL2 and fat tree.
ANTELOPE uses LSH computation to quickly and accurately
identify correlated data that can be indexed with high proba-
bility, which hence significantly decrease the searching space.
In addition, pSearch leverages latent semantic indexing to
generate the semantics that help narrow the searching scope
and hence reduce query latency. Two typical traces exhibit the
similar observations and conclusions.

Since ANTELOPE uses partial materialization to decrease
the construction time and space overhead, it may potentially

»n
(=]
S

©
o
=]

w N —B— ANTELOPE N
£ —5- ANTELOPE £ R Fat tree B & é‘mi';o“
> —X—Fat tree > [VL2 > VL2
@ 150 VL2 © 150 © ——
< —— < —6—pSearch 3 200 o pSearch
3 —©—pSearch 3 3
E 100 E 100 | i E 150
2 s &
100
(]
S 50 & 50)
s 4 1 © S 50
@ o @
> > >
L 9 < 9 L . . <
400 600 800 1000 1200 1400 1600 1800 2000 400 600 800 1000 1200 1400 1600 1800 2000 400 600 800 1000 1200 1400 1600 1800 2000
Number of query requests Number of query requests Number of query requests
(a) Top-5 query. (b) Top-10 query. (¢) Top-20 query.
Fig. 10. Average query delays for answering top-k queries in HP trace.
m 150 m 200 7 300
—5— ANTELOPE —B— ANTELOPE
g ?zﬁi’;opE é —X—Fat tree E 250 —X—Fat tree
> = > VL2 > VL2
= vi2 L 5 —O— pSearch
g 100 —O—pSearch % _g 200
2 2 2 150
= > >
P 50 ® ® 100 @
g g 2 5l
< L < L L L L L L L < L L L L L L L

0
400 600 800
Number of query requests

0
400 600 800 1000 1200 1400 1600 1800 2000
Number of query requests

(a) Top-5 query.

Fig. 11. Average query delays for answering top-k queries in MSN trace.

1000 1200 1400 1600 1800 2000

(b) Top-10 query.

0
400 600 800 1000 1200 1400 1600 1800 2000
Number of query requests

(c) Top-20 query.

2156
B Top5 M Top-10 M Top-20 B Top5 M Top-10 M Top-20

100 _
9 IS
- >
8 8
g g
= =
8 8
] ®
-y)
o [d
g $
< <

2000 400 800

1200
Number of requests

(b) MSN trace.

1600 2000

400 800
Number of requests

(a) HP trace.

1200 1600

Fig. 12. The accuracy of queries.

introduce some query inaccuracy. We evaluate the query
accuracy by examining different top-k queries. Fig. 12(a) and
12(b) respectively show query accuracy of HP and MSN
traces. We observe that more than 92.6% queries even consid-
ering 2000 requests for top-20 requests can obtain accurate
results, meaning that there are one or two inaccurate items
from 20 found ones, which can satisfy the query requirements.
While considering the significant space savings and the de-
crease of construction time, the query accuracy in ANTELOPE
can be acceptable by most online query applications.

We evaluate the dynamic update operations in ANTE-
LOPE and VL2 as shown in Section 4.6 by examining the
metric of incremental update time. The fat tree structure uses a
central scheduler to collect flows whose last update is older
than a given time and this reservation-based method may
introduce more update latency. For updating stale data, VL2
sends the new data to a single directory server to determine
the updated position, which introduces extra latency. Fig. 13
shows the execution time of updating different percentages of
cuboids in ANTELOPE that leverages the locality character-
istics. ANTELOPE in two traces requires on average 57.2%
and 38.6% smaller update time than fat tree and VL2, effi-
ciently supporting the operation of updating stale
information.

5.2.3 Throughput

We perform experiments to demonstrate ANTELOPE’s sup-
port for one-to-one, one-to-several, one-to-all and all-to-all
patterns. The transmission data from source to destination
servers are set to 20 GB. We further compare ANTELOPE with
fattreeand VL2. The source server in the one-to-several pattern
is to send data to three other servers through TCP connections.
Table 3 shows the per-server throughput under different traffic
patterns. We observe that ANTELOPE obtains around 2 times
faster than fat tree and averagely 35.9% than VL2.

400 400
m [FAT tree @ il [CFAT tree
£ 0w £ ST Wiz
> 300" W ANTELOPE > 30 W ANTELOPE
Q 2501 2 2501
% 200 - % 200
E 150 [E 150 [
g 100 [g 100 F
Q 50 Q 50
o] =

5 10 15 20 25 5 10 15 20 25
Updated percentage (%) Updated percentage (%)

(a) HP trace. (b) MSN trace.

Fig. 13. Incremental update delay.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

TABLE 3
Per-Server Throughput (Gb/s)
| Patterns (HP/MSN) | Fattree | VL2 [ANTELOPE |
One-to-one 1.26/1.31 1.65/1.67 2.1712.21
One-to-several 0.98/1.12 1.43/1.55 1.82/1.96
One-to-all 0.61/0.73 | 1.15/1.22 1.53/1.68
All-to-all 0.37/0.49 | 0.62/0.78 1.06/1.26

ANTELOPE is a scalable network scheme and we examine
its per-server throughput by adding new servers. Fig. 14
shows the experimental results. We observe that ANTELOPE
exhibits better scalability than VL2 and fat tree, respectively
improving the throughput by averagely 0.86 and 2.17 times.
ANTELOPE also shows it can obtain near-linear increase of
throughput when adding new servers. The benefit mainly
comes from the locality-aware design that allows most opera-
tions to be completed in the partial, not entire, networks.

6 RELATED WORK

Data center architecture in the cloud is important to system
performance. Existing network architectures focus on the
study of scalability and fault tolerance, modular forms and
inexpensive design.

Scalability and fault tolerance. A data center should be
scalable and fault tolerance. PortLand [15] is a scalable, fault
tolerant layer 2 routing and forwarding protocol for data center
environments. Ficonn [16] is a server interconnection network
structure that uses dual-port configuration in data center
servers. VL2 [17] leverages the programmability of servers
and achieves hot-spot-free routing and scalable layer-2 seman-
tics. DCell [18] proposes a dense interconnection network built
by adding multiple network interfaces to servers that can
forward packets. Since a high-level DCell is constructed from
many low-level DCells, DCell can be recursively defined.

Modular design. The recently proposed shipping contain-
er data centers use a modular scheme to reduce the costs of
cooling, powering and administration in a container. BCube
[19] uses switches for faster processing and active probing for
load-spreading. BCube supports various bandwidth-inten-
sive applications by speeding up one-to-one, one-to-several,
and one-to-all traffic patterns. To construct the inter-container
structure and reduce the cabling complexity, MDCube [70]
uses high-speed up-link interfaces of the commodity switches
in BCube containers. Ripcord [71] is a platform for rapidly
prototyping, testing, and comparing different data center
networks. Ripcord offers a common infrastructure, and a set
of libraries to allow quick prototyping of new schemes.

8 8

w 0

a8 Tf B ANTELOPE 8 7F B ANTELOPE

e X VL2 o X--VL2

5 6F ®- Fat tree 5 6F @ Fattree .

e a a-

£ il £ #

& 5F S s5f

- ° - ;

f a -_c‘__, = x o

g 3t B % X g 3)

H X § gl X

9 2 g L f2f X%

b W s e o i P . S f
10 15 20 25 30 5 10 15 20 25 30
Number of added servers Number of added servers
(a) HP trace. (b) MSN trace.

Fig. 14. Per-server throughput.

HUA ET AL.: SEMANTIC-AWARE DATA CUBE SCHEME FOR CLOUD DATA CENTER NETWORKS

Furthermore, in order to build mega data center from hetero-
geneous containers, uFix [72] interconnects heterogeneous
data center containers and can flexibly scale to large-scale
servers. Moreover, a multi-class Bloom filter (MBF) [73] is
proposed to support scalable data center multicast and con-
siders element uncertainty. MBF determines the number of
hash functions by considering the probability that a group is
inserted into the Bloom filter.

Optimized costs. A high end router with more capacity is
generally used to scale out the intermediate devices to a large
number, thus requiring enormous costs. In order to improve
the design of high bandwidth and multi-path data-center
networks, Perseus [74] can optimize parameter choices from
bandwidth, latency, reliability, parts cost, and other real-
world details. SPAIN [20] provides multipath forwarding
using inexpensive, commodity off-the-shelf (COTS) Ethernet
switches. By exploiting the redundancy in a given network
topology, SPAIN precomputes a set of paths and further
merges them into a set of trees. Fat tree [21] presents a data
center communication architecture that leverages commodity
Ethernet switches to deliver scalable bandwidth for large-
scale clusters.

7 CONCLUSION

Network architecture design is important in cloud data cen-
ters networks. In order to improve system efficiency and
scalability, we need to study the network architecture and
data placement, and bridge the gap between them. We pres-
ent the design and implementation of ANTELOPE, a novel
data-centric network scheme, for large-scale data centers.
ANTELOPE explores and exploits the access patterns to
identify locality-aware data with the aid of LSH that has
constant-scale complexity. We further make use of an appli-
cation, i.e., the precomputation-based data cube, to imple-
ment scalable distributed data placement and examine the
real performance of ANTELOPE. ANTELOPE implements
the partial materialization by leveraging the LSH computa-
tion, in which the correlated data are identified to build data
cube. Extensive experimental results show the efficiency and
scalability of our proposed ANTELOPE scheme.

ACKNOWLEDGMENTS

This work was supported in part by National Natural Science
Foundation of China (NSFC) under Grant 61173043; National
Basic Research 973 Program of China under Grant
2011CB302301; NSFC under Grant 61025008, 61232004;
Fundamental Research Funds for the central universities,
HUST, under grant 2012QN098; the NSERC Discovery Grant
341823; US NSF under Grants NSF-IIS- 0916859, NSF-CCF-
0937993, NSF-CNS-1016609 and NSF-CNS-1116606. The
authors greatly appreciate anonymous reviewers for con-
structive comments.

REFERENCES

[1] I.D.C. (IDC). (2013). “2010 Digital Universe Study: A Digital Uni-
verse Decade - Are You Ready” [Online]. Available: http://gigaom.
files.wordpress.com/ 2010/05/2010-digital-universe-iview

2157

[2] A.Thusoo, Z.Shao, S. Anthony, D. Borthakur, N. Jain, J. Sen Sarma,
R.Murthy, and H. Liu, “Data warehousing and analytics infrastruc-
ture at Facebook,” in Proc. Special Interest Group Manag. Data
(SIGMOD), 2010, pp. 1013-1020.

[3] Science Staff, “Dealing with data—Challenges and opportunities,”
Science, vol. 331, no. 6018, pp. 692-693, 2011.

[4] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113, 2008.

[5] Hadoop. [Online]. Available: http://hadoop.apache.org/

[6] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed data-parallel programs from sequential building
blocks,” in Proc. ACM Eur. Conf. Comput. Syst. (SIGOPS/EuroSys),
2007, pp- 59-72.

[7] C.Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig
Latin: A not-so-foreign language for data processing,” in Proc. ACM
Special Interest Group Manag. Data (SIGMOD), 2008, pp. 1099-1110.

[8] A. Thusoo, J. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang,
S. Antony, H. Liu, and R. Murthy, “Hive-a petabyte scale data
warehouse using hadoop,” in Proc. Int. Conf. Data Eng. (ICDE),
2010, pp. 996-1005.

[9] G.Bell, T.Hey,and A. Szalay, “Beyond the data deluge,” Science, vol.
323, no. 5919, pp. 1297-1298, 2009.

[10] J.Dai,]. Huang, S. Huang, B. Huang, and Y. Liu, “Hitune: Dataflow-
based performance analysis for big data cloud,” in Proc. USENIX
Annu. Tech. Conf., 2011, pp. 87-100.

[11] R. Katz, “Tech titans building boom,” IEEE Spectr., vol. 46, no. 2,
pp- 40-54, Feb. 2009.

[12] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs,
“Cutting the electric bill for internet-scale systems,” ACM
SIGCOMM Comput. Commun. Rev., vol. 39, no. 4, pp. 123-134, 2009.

[13] C.Lu, G. Alvarez, and]. Wilkes, “Aqueduct: Online data migration
with performance guarantees,” in Proc. Conf. File Storage Technol.
(FAST), 2002, pp. 219-230.

[14] C. Pu and A. Leff, “Replica control in distributed systems: As
asynchronous approach,” ACM SIGMOD Record, vol. 20, no. 2,
pp- 377-386, 1991.

[15] N. Mysore et al., “PortLand: A scalable fault-tolerant layer 2 data
center network fabric,” in Proc. ACM Special Interest Group Data
Commun. (SIGCOMM), 2009, pp. 39-50.

[16] D. Li, C. Guo, H. Wu, K. Tan, Y. Zhang, and S. Lu, “Ficonn: Using
backup port for server interconnection in data centers,” in Proc. IEEE
Int. Conf. Comput. Commun. (INFOCOM), 2009, pp. 2276-2285.

[17] A. Greenberg,]. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. Maltz, P. Patel, and S. Sengupta, “VL2: A scalable and flexible
data center network,” in Proc. ACM Special Interest Group Data
Commun. (SIGCOMM), 2009, pp. 51-62.

[18] C.Guo,H.Wu, K. Tan,L.Shi, Y. Zhang, and S. Lu, “DCell: A scalable
and fault-tolerant network structure for data centers,” in Proc. ACM
Special Interest Group Data Commun. (SIGCOMM), 2008, pp. 75-86.

[19] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu, “Bcube: A high performance, server-centric network
architecture for modular data centers,” in Proc. ACM Special Interest
Group Data Commun. (SIGCOMM), 2009, pp. 63-74.

[20] J. Mudigonda, P. Yalagandula, M. Al-Fares, and]. Mogul, “Spain:
COTS data-center ethernet for multipathing over arbitrary topolo-
gies,” in Proc. USENIX Symp. Netw. Syst. Des. Implement. (NSDI),
2010, pp. 265-280.

[21] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” in Proc. ACM Special Interest
Group Data Commun. (SIGCOMM), 2008, pp. 63-74.

[22] A.Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha, “Sharing
the data center network,” in Proc. USENIX Symp. Netw. Syst. Des.
Implement. (NSDI), 2011, pp. 309-322.

[23] K.Chen,C.Guo,H. Wy,]. Yuan, Z. Feng, Y. Chen, S. Lu,and W. Wu,
“Generic and automatic address configuration for data center
networks,” in Proc. ACM Special Interest Group Data Commun.
(SIGCOMM), 2010, pp. 39-50.

[24] A. Viswanathan, A. Hussain,]J. Mirkovic, S. Schwab, and
J. Wroclawski, “A semantic framework for data analysis in net-
worked systems,” in Proc. USENIX Symp. Netw. Syst. Des. Implement.
(NSDI), 2011, pp. 127-140.

[25] S. Ghemawat, H. Gobioff, and S. Leung, “The Google file
system,” ACM SIGOPS Oper. Syst. Rev., vol. 37, no. 5, p. 43, 2003.

[26] F.Chang,]. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows,
T.Chandra, A. Fikes, and R. Gruber, “Bigtable: A distributed storage
system for structured data,” in Proc. Symp. Oper. Syst. Des. Implement.
(OSDI), 2006, pp. 205-218.

2158

[27]

(28]

[29]

(30]

[31]

[32]

(33]

(34]

[35]

[36]

[37]

[38]

[39]

(40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

(49]

(50]

J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,
M. Venkatrao, F. Pellow, and H. Pirahesh, “Data cube: A relational
aggregation operator generalizing group-by, cross-tab, and sub-
totals,” Data Mining Knowl. Discov., vol. 1, no. 1, pp. 29-53, 1997.
R. Weber, H. Schek, and S. Blott, “A quantitative analysis and
performance study for similarity-search methods in high-
dimensional spaces,” in Proc. Int. Conf. Very Large Databases (VLDB),
1998, pp. 194-205.

P. Indyk and R. Motwani, “Approximate nearest neighbors:
Towards removing the curse of dimensionality,” in Proc. ACM Symp.
Theory Comput., 1998, pp. 604-613.

A. Andoni and P. Indyk, “Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions,” Commun. ACM,
vol. 51, no. 1, pp. 117-122, 2008.

Y. Hua, B. Xiao, D. Feng, and B. Yu, “Bounded LSH for similarity
search in peer-to-peer file systems,” in Proc. Int. Conf. Parallel Process.
(ICPP), 2008, pp. 644-651.

Los Alamos National Lab (LANL). File System Data [Online].
Available: http://institute.lanl.gov /data/archive-data/

E. Riedel, M. Kallahalla, and R. Swaminathan, “A framework for
evaluating storage system security,” in Proc. Conf. File Storage
Technol. (FAST), 2002, pp. 15-30.

S. Kavalanekar, B. Worthington, Q. Zhang, and V. Sharda, “Char-
acterization of storage workload traces from production windows
servers,” in Proc. IEEE Int. Symp. Workload Characterization (IISWC),
2008, pp. 119-128.

J. L. Hellerstein. (2010, Jan.). Google Cluster Data [Online].
Available: http://googleresearch.blogspot.com/2010/01/google-
cluster-data.html

B. Babcock, S. Chaudhuri, and G. Das, “Dynamic sample selection
for approximate query processing,” in Proc. ACM Special Interest
Group Manag. Data (SIGMOD), 2003, pp. 539-550.

R. Missaoui, C. Goutte, A. Choupo, and A. Boujenoui, “A probabilistic
model for data cube compression and query approximation,” in Proc.
ACM Data Warehousing On-Line Anal. Process. (OLAP), 2007, pp. 33—40.
J. Shanmugasundaram, U. Fayyad, and P. Bradley, “Compressed
data cubes for OLAP aggregate query approximation on continuous
dimensions,” in Proc. ACM Conf. Knowl. Discov. Data Mining
(SIGKDD), 1999, pp. 223-232.

D. Barbara and X. Wu, “Loglinear-based quasi cubes,” J. Intell. Inf.
Syst., vol. 16, no. 3, pp. 255-276, 2001.

T. Wu, D. Xin, and J. Han, “ARCube: Supporting ranking aggregate
queries in partially materialized data cubes,” in Proc. ACM Special
Interest Group Manag. Data (SIGMOD), 2008, pp. 79-92.

D. Xin, J. Han, H. Cheng, and X. Li, “Answering top-k queries with
multi-dimensional selections: The ranking cube approach,” in Proc.
Int. Conf. Very Large Databases (VLDB), 2006, pp. 463—474.

M. Riedewald, D. Agrawal, and A. El Abbadi, “pCube: Update-
efficient online aggregation with progressive feedback and error
bounds,” in Proc. Int. Conf. Sci. Stat. Database Manag. (SSDBM), 2000,
pp- 95-108.

W.Luand]. Yu, “Condensed cube: An effective approach to reducing
data cube size,” in Proc. Int. Conf. Data Eng. (ICDE), 2002, pp. 155-165.
Y. Feng, D. Agrawal, A. El Abbadi, and A. Metwally, “Range cube:
Efficient cube computation by exploiting data correlation,” in Proc.
Int. Conf. Data Eng. (ICDE), 2004, pp. 658-669.

X.Jin, J. Han, L. Cao, J. Luo, B. Ding, and C. Lin, “Visual cube and
on-line analytical processing of images,” in Proc. 19th ACM Int. Conf.
Inf. Knowl. Manag., 2010, pp. 849-858.

P.Zhao, X. Li, D. Xin, and J. Han, “Graph cube: On warehousing and
OLAP multidimensional networks,” in Proc. Special Interest Group
Manag. Data (SIGMOD), 2011, pp. 853-864.

B. Ding, B. Zhao, C. Lin, J. Han, and C. Zhai, “Topcells: Keyword-
based search of top-k aggregated documents in text cube,” in Proc.
Int. Conf. Data Eng. (ICDE), pp. 381-384, 2010.

Y. Yu, C. Lin, Y. Sun, C. Chen, J. Han, B. Liao, T. Wu, C. Zhai, D.
Zhang, and B. Zhao, “Inextcube: Information network-enhanced
text cube,” in Proc. Int. Conf. Very Large Databases (VLDB), 2009,
pp. 1622-1625.

B. Bi, S. Lee, B. Kao, and R. Cheng, “Cubelsi: An effective and
efficient method for searching resources in social tagging systems,”
in Proc. Int. Conf. Data Eng. (ICDE), 2011, pp. 27-38.

M. Liu, E. Rundensteiner, K. Greenfield, C. Gupta, S. Wang, I. Ari,
and A. Mehta, “E-cube: Multi-dimensional event sequence proces-
sing using concept and pattern hierarchies,” in Proc. Int. Conf. Data
Eng. (ICDE), 2010, pp. 1097-1100.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

J. Lee, S. Hwang, Z. Nie, and J. Wen, “Product entitycube: A
recommendation and navigation system for product search,” in
Proc. Demonstrations Int. Conf. Data Eng. (ICDE), 2010.

G. Salton, A. Wong, and C. Yang, “A vector space model for
automatic indexing,” Commun. ACM, vol. 18, no. 11, pp. 613-620,
1975.

J. Hartigan and M. Wong, “Algorithm AS 136: A k-means clustering
algorithm,” Appl. Stat., pp. 100-108, 1979.

S. Deerwester, S. Dumas, G. Furnas, T. Landauer, and R. Harsman,
“Indexing by latent semantic analysis,” J. Amer. Soc. Inf. Sci., vol. 41,
pp- 391407, 1990.

M. W. Berry, S. Dumas, and G. OBrien, “Using linear algebra for
intelligent information retrieval,” SIAM Rev., vol. 37, pp. 573-595,
1995.

C. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala, “Latent
semantic indexing: A probabilistic analysis,” |. Comput. Syst. Sci.,
vol. 61, no. 2, pp. 217-235, 2000.

G. Golub and C. Van Loan, Matrix Computations. Baltimore, MD:
Johns Hopkins Univ. Press, 1996.

Y. Hua, H. Jiang, Y. Zhu, D. Feng, and L. Tian, “Semantic-aware
metadata organization paradigm in next-generation file systems,”
IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 2, pp. 337-344,
Feb. 2012.

C. Tang, S. Dwarkadas, and Z. Xu, “On scaling latent semantic
indexing for large peer-to-peer systems,” in Proc. ACM SIGIR Conf.
Res. Develop. Inf. Retriev., 2004, pp. 112-121.

S. Lee, S. Chun, D. Kim, J. Lee, and C. Chung, “Similarity search for
multidimensional data sequences,” in Proc. Int. Conf. Data Eng.
(ICDE), 2000, pp. 599-608.

A. Guttman, “R-Trees: A dynamic index structure for spatial search-
ing,” in Proc. ACM Special Interest Group Manag. Data (SIGMOD),
pp- 47-57, 1984.

G. Salton, A. Wong, and C. Yang, “A vector space model for
information retrieval,” J. Amer. Soc. Inf. Retriev., vol. 18, pp. 613—
620, 1975.

S. Weil, S.A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,”
in Proc. Symp. Oper. Syst. Des. Implement. (OSDI), 2006,
pp- 307-320.

C. Tang, Z. Xu, and S. Dwarkadas, “Peer-to-peer information
retrieval using self-organizing semantic overlay networks,” in Proc.
ACM Special Interest Group on Data Commun. (SIGCOMM), 2003,
pp- 175-186.

Z.Xu, C. Tang, and Z. Zhang, “Building topology-aware overlays
using global soft-state,” in Proc. Int. Conf. Distrib. Comput. Syst.
(ICDCS), 2003, pp. 500-508.

C. Buckley, “Implementation of the smart information retrieval
system,” Dept. Comput. Sci., Cornell Univ., Tech. Rep. TR 85-686,
1985.

M. W. Berry, “Large-scale sparse singular value computations,” Int.
J. Supercomput. Appl., vol. 6, no. 1, pp. 13-49, 1992.

G. H. Golub and C. Reinsch, “Singular value decomposition and
least squares solutions,” Numer. Math., vol. 14, no. 5, pp. 403-420,
1970.

L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear
singular value decomposition,” SIAM]. Matrix Anal. Appl., vol. 21,
no. 4, pp. 1253-1278, 2000.

H. Wu, G. Luy, D. Li, C. Guo, and Y. Zhang, “MDCube: A high
performance network structure for modular data center intercon-
nection,” in Proc Int. Conf. emerg. Netw. Exp. and Technol. (CONEXT),
2009, pp. 25-36.

M. Casado, D. Erickson, I. A. Ganichev, R. Griffith, B. Heller,
N. Mckeown, D. Moon, T. Koponen, S. Shenker, and K. Zarifis,
“Ripcord: A modular platform for data center networking,” EECS
Dept., Univ. of California, San Diego, CA, Tech. Rep. UCB/EECS-
2010-93, 2010.

D. Li, M. Xu, H. Zhao, and X. Fu, “Building mega data center from
heterogeneous containers,” in Proc. IEEE Int. Conf. Netw. Protocols
(ICNP), 2011, pp. 256-265.

D. Li, H. Cui, Y. Hu, Y. Xia, and X. Wang, “Scalable data center
multicast using multi-class bloom filter,” in Proc. IEEE Int. Conf.
Netw. Protocols (ICNP), 2011, pp. 266-275.

J. Mudigonda, P. Yalagandula, and J. C. Mogul, “Taming the
flying cable monster: A topology design and optimization frame-
work for data-center networks,” in Proc. USENIX Annu. Tech. Conf.,
2011.

HUA ET AL.: SEMANTIC-AWARE DATA CUBE SCHEME FOR CLOUD DATA CENTER NETWORKS

Yu Hua received the BE and PhD degrees in
computer science from the Wuhan University,
China, in 2001 and 2005, respectively. He is an
associate professor at the Huazhong University of
Science and Technology, China. His research
interests include computer architecture, cloud
computing, and network storage. He has more
than 50 papers to his credit in major journals and
international conferences including IEEE Trans-
actions on Computers (TC), IEEE Transactions on
Parallel and Distributed Systems (TPDS),
USENIX ATC, INFOCOM, SC, ICDCS, ICPP, and MASCOTS. He has
been on the program committees of multiple international conferences,
including INFOCOM, ICPP and IWQoS. He is a senior member of the
IEEE, and a Member of ACM and USENIX.

Xue Liu received the BS degree in mathematics
and the MS degree in automatic control both from
Tsinghua University, Beijing, China. He received
the PhD degree in computer science from the
University of lllinois at Urbana-Champaign in
2006. He is an associate professor in the School
of Computer Science at McGill University, Montreal,
Quebec, Canada. His research interests are in
computer networks and communications, smart
grid, real-time and embedded systems, cyber-
physical systems, data centers, and software re-
liability. His work has received the Year 2008 Best Paper Award from IEEE
Transactions on Industrial Informatics, and the First Place Best Paper
Award of the ACM Conference on Wireless Network Security (WiSec
2011). He serves as an associate editor of the IEEE Transactions on
Parallel and Distributed Systems and editor of the IEEE Communications
Surveys & Tutorials. He is a member of the ACM and |IEEE.

2159

Hong Jiang received the BSc degree from the
Huazhong University of Science & Technology
(HUST), Wuhan, China, in 1982, the MASc
degree from the University of Toronto, Ontoria,
Canada, in 1987, and the PhD degree from the
Texas A&M University, College Station, in 1991.
He is Willa Cather Professor at the University of
Nebraska-Lincoln. His research interests include
computer architecture, computer storage systems
and parallel/distributed computing. He serves as
an associate editor of the IEEE Transactions on
Parallel and Distributed Systems. He has more than 200 publications in
major journals and international conferences in these areas, including
IEEE-TPDS, IEEE-TC, USENIX-ATC, ISCA, MICRO, FAST, ICDCS,
IPDPS, SC, ICS, HPDC, etc. He is a senior member of the IEEE and a
member of the ACM and ACM SIGARCH.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

