1212

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.4, APRIL2016

Real-Time Semantic Search Using Approximate
Methodology for Large-Scale Storage Systems

Yu Hua, Senior Member, IEEE, Hong Jiang, Fellow, IEEE, and Dan Feng, Member, IEEE

Abstract—The challenges of handling the explosive growth in data volume and complexity cause the increasing needs for semantic
queries. The semantic queries can be interpreted as the correlation-aware retrieval, while containing approximate results. Existing
cloud storage systems mainly fail to offer an adequate capability for the semantic queries. Since the true value or worth of data heavily
depends on how efficiently semantic search can be carried out on the data in (near-) real-time, large fractions of data end up with their
values being lost or significantly reduced due to the data staleness. To address this problem, we propose a near-real-time and
cost-effective semantic queries based methodology, called FAST. The idea behind FAST is to explore and exploit the semantic
correlation within and among datasets via correlation-aware hashing and manageable flat-structured addressing to significantly reduce
the processing latency, while incurring acceptably small loss of data-search accuracy. The near-real-time property of FAST enables
rapid identification of correlated files and the significant narrowing of the scope of data to be processed. FAST supports several types
of data analytics, which can be implemented in existing searchable storage systems. We conduct a real-world use case in which
children reported missing in an extremely crowded environment (e.g., a highly popular scenic spot on a peak tourist day) are identified
in a timely fashion by analyzing 60 million images using FAST. FAST is further improved by using semantic-aware namespace to
provide dynamic and adaptive namespace management for ultra-large storage systems. Extensive experimental results demonstrate
the efficiency and efficacy of FAST in the performance improvements.

Index Terms—Cloud storage, data analytics, real-time performance, semantic correlation

1 INTRODUCTION

CLOUD storage systems generally contain large amounts
of data that critically require fast and accurate data
retrieval to support intelligent and adaptive cloud serv-
ices [1], [2], [3]. For example, 7 percent of consumers stored
their contents in the cloud in 2011, and the figure will grow
to 36 percent in 2016, according to the Gartner, Inc. [4] and
Storage Newsletter [5] reports. Average storage capacity
per household will grow from 464 Gigabytes in 2011 to 3.3
Terabytes in 2016. So far, only a tiny fraction of the data
being produced has been explored for their potential values
through the use of data analytics (DA) tools. IDC estimates
that by 2020, as much as 33 percent of all data will contain
information that might be valuable if analyzed [6]. Hence,
efficient data analytics are important.

Existing content-based analysis tools not only cause high
complexity and costs, but also fail to effectively handle the
massive amounts of files. The high complexity routinely
leads to very slow processing operations and very high and
often unacceptable latency. Due to the unacceptable latency,
the staleness of data severely diminishes the value of data.
The worth or value of data in the context of data analytics

e Y. Hua and D. Feng are with the Wuhan National Laboratory for
Optoelectronics, School of Computer Science and Technology, Huazhong
University of Science and Technology, Wuhan, China.

E-mail: {csyhua, dfeng)@hust.edu.cn.

e H. Jiang is with the Department of Computer Science and Engineering,
University of Nebraska-Lincoln, Lincoln, NE 68588.

E-mail: jiang@cse.unl.edu.

Manuscript received 27 Dec. 2014; revised 25 Mar. 2015; accepted 13 Apr.
2015. Date of publication 21 Apr. 2015; date of current version 16 Mar. 2016.
Recommended for acceptance by Z. Lan.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2015.2425399

means the valuable knowledge hidden in the data that can
directly translate into economic values/gains in business-
intelligence applications or new scientific discoveries in sci-
entific applications. Since the value/worth of data typically
diminishes with time, large amounts of data are often ren-
dered useless, although costly resources, such as computa-
tion, storage and network bandwidth, have already been
consumed to generate, collect and/or process these data.
Therefore, we argue that (near-) real-time schemes are
critical to obtaining valuable knowledge in searchable
data analytics [7].

In the context of this paper, searchable data analytics are
interpreted as obtaining data value/worth via queried
results, such as finding a valuable record, a correlated pro-
cess ID, an important image, a rebuild system log, etc. In the
remainder of the paper, the term data analytics will be used
to refer to searchable data analytics for brevity. In order to
efficiently and effectively support (near-) real-time data
analytics, we need to carefully address the following three
research problems:

High access latency. Existing approaches to unstructured
data search and analytics rely on either system-based
chunks of data files or multimedia-based features of images.
The exact content-based methodology produces large
amounts of auxiliary data (e.g., high-dimensional vectors,
complex metadata, etc), which can be even larger than the
original files. Even with the support of cloud platforms, it is
non-trivial for these schemes to obtain the desired analytics
results in a timely manner. For example, processing a typi-
cal image of IMB, using the state-of-the-art PCA-SIFT
approach [8], results in 200 KB worth of features on average.
This means that analyzing 1 million such images will lead to
approximately 200 GB of storage space requirement just for

1045-9219 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

HUA ETAL.: REAL-TIME SEMANTIC SEARCH USING APPROXIMATE METHODOLOGY FOR LARGE-SCALE STORAGE SYSTEMS

the features. A simple operation, such as finding a match for
a given image from a 2-million-image set, would require
12.6 minutes of time on a commercial platform, due to
frequent accesses to hard disks [9], [10].

High query costs. Data analytics for the cloud typically
consume substantial system resources, such as memory
space, 1/O bandwidth, high-performance multicore pro-
cessors (or GPUs) [11]. One of the main culprits for the high
resource costs is the severe performance bottleneck fre-
quently caused by query operations. In fact, many data-ana-
lytics related operations heavily rely on queries to identify
the candidates for various operations. For example, query
is the key process for finding access patterns, correlated
files, cost-effective data replication. Thus, we argue that
improving query performance is of paramount importance
to bridging the gap between data-analytics performance
requirements and cloud system support.

Diminished analytics values. Due to the long latency
incurred in data processing and the resulting data staleness,
the value/worth of data becomes diminished and eventu-
ally nullified. In some cases, the results of data analytics on
stale data can even be misleading, leading to potential fatal
faults. For instance, the prediction for earthquake, tsunami
and tornado relies heavily on analyzing large amounts of
data from earthquake sensors, ocean-mounted bottom sea-
level sensors and satellite cloud imagery. The analysis must
be completed within a very limited time interval to avoid or
minimize disastrous results.

In order to support efficient data analytics in the cloud,
real-time processing approaches are very important in deal-
ing with large-scale datasets. This is also non-trivial to cloud
systems, although they contain high processing capability
(hundreds of thousands of cores) and huge storage capacity
(PB-level). The fundamental reason is because the analytics
must be subject to hard time deadlines that usually cannot
be met by brute force with an abundance of resources alone.
Existing approaches often fail to meet the (near-) real-time
requirements because they need to handle high-dimen-
sional features and rely on high-complexity operations to
capture the correlation.

To address the above problems facing real-time data ana-
lytics, we propose a novel near-real-time methodology for
analyzing massive data, called FAST, with a design goal of
efficiently processing such data in a real-time manner. The
key idea behind FAST is to explore and exploit the correlation
property within and among datasets via improved correla-
tion-aware hashing [12] and flat-structured addressing [13] to
significantly reduce the processing latency of parallel queries,
while incurring acceptably small loss of accuracy. The
approximate scheme for real-time performance has been
widely recognized in system design and high-end computing.
In essence, FAST goes beyond the simple combination of
existing techniques to offer efficient data analytics via signifi-
cantly increased processing speed. Through the study of the
FAST methodology, we aim to make the following contribu-
tions for near real-time data analytics.

Space-efficient summarization. FAST leverages a Bloom-fil-
ter based summarization representation that has the salient
features of simplicity and ease of use. We hash the large-
size vectors of files into space-efficient Bloom filters to effi-
ciently and effectively identify similar files in a real-time

1213

manner. Two similar files generally contain multiple identi-
cal vectors. Bloom filters can maintain the memberships of
vectors and succinctly represent the similarity of files.
Due to the space efficiency, substantially more membership
information can be placed in the main memory to signifi-
cantly improve the overall performance.

Energy efficiency via hashing. In order to substantially
reduce the amount of similar images to be transmitted,
FAST improves the energy efficiency in the smartphones
via a near-deduplication scheme. Our design alleviates the
computation overheads of existing schemes for similarity
detection of files by using locality-sensitive hashing
(LSH) [12] that has a complexity of O(1) to identify and
aggregate similar files into correlation-aware groups. This
allows the retrieval to be narrowed to one or a limited num-
ber of groups by leveraging correlation awareness. Unlike
conventional hashing schemes that try to avoid or alleviate
hash collisions, LSH actually exploits the collisions in its
vertical addressing to identify the potential correlation in a
real-time manner.

Semantic-aware namespace. By exploiting semantic correla-
tions among files, FAST leveraging SANE [14] to dynami-
cally aggregate correlated files into small, flat but readily
manageable groups to achieve fast and accurate lookups.
Moreover, in the context of semantic-aware namespace, due
to the variable lengths of linked lists, LSH hash tables will
likely lead to unbalanced loads and unpredictable query
performance of vertical addressing. To address this prob-
lem, FAST optimizes its LSH-based hash functions by
means of a manageable flat-structured addressing scheme
using a novel cuckoo-hashing based storage structure to
support parallel queries. FAST exploits the semantic corre-
lation to offer an O(1) addressing performance. Moreover,

Real system implementation. In order to comprehensively
evaluate the system performance, we implement all compo-
nents and functionalities of FAST in a prototype system.
The prototype system is used to evaluate a use case of near
real-time data analytics of digital images. We collect a big
and real image set that consists of more than 60 million
images (over 200 TB storage capacity) taken of a top tourist
spot during a holiday. In the cloud, instantaneously upload-
ing and widely sharing images are growing as a habit and a
culture, which helps form large reservoirs of raw images on
which accurate analytics results may be obtained. Using
this real-world image dataset as a case study, we evaluate
the performance of FAST of finding missing children from
the image dataset and compare it with the state-of-the-art
schemes. The case study evaluation demonstrates the
efficiency and efficacy of FAST in the performance
improvements and energy savings.

The rest of this paper is organized as follows. Section 2.1
presents the results of a user survey, as well as the FAST
methodology. Section 3 describes the FAST architecture and
implementation details. We evaluate the FAST performance
in Section 4. Section 5 presents the related work. Section 6
concludes the paper.

2 FAST METHODOLOGY

In order to improve query efficiency and reduce operation
cost in smartphones, we need to reduce the redundant data,

1214 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.4, APRIL2016
TABLE 1
Survey Results
Answer PCT Answer PCT Answer PCT Answer PCT Answer PCT
Data Total size 0,1MB) 0.1% (1MB, 115% (100MB, 225% (10GB,1TB) 47.5% (1 TB, 18.4%
Attributes 100 MB) 10 GB) 100 TB)
Average (0,710MB) 552% (10MB, 24.8% (100MB, 10.2% (1GB,10GB) 7.6% (10 GB, 2.2%
file size 100 MB) 1 GB) 100 GB)
Number of (1, 10) 7.5% (10,50) 46.8% (50,100) 37.9% (100, 500) 4.2% more 3.6%
formats
Task Execution (1s,1min) 55% (Imin, 225% (1hour, 40.5% (1 day, 21.5% morethan 10%
Attributes time 1 hour) 1 day) 1 week) 1 week
Resource CPU 17.5% memory 42.8% hard disks 2.5% SSD 14.4% network 22.8%
bottleneck
General Metric of Accuracy 28.2% Timeeffi. 39.2% Spaceeffii 3.5% Energyeffi. 10.6% Costs 18.5%
Concerns importance
Acceptable (0, 80) 4.2% (80,90) 125% (90,95) 28.5% (95, 100) 45.2 100 9.6%

accuracy (%)

such as identifying and filtering redundant data at the client
side. The data reduction allows users to upload more valu-
able data in a limited time frame and battery budget, thus
increasing the chance of data sharing. Moreover, massive
images are generated by the smartphones of users who rou-
tinely take, share and upload pictures with their phone’s
HD cameras. These images collectively form huge data sets
readily available for many data analytics applications. It's a
known fact that users must charge their smartphones after a
single day of moderate usage. In a 2011 market study con-
ducted by ChangeWave [15] concerning smartphone dis-
likes, 38 percent of the respondents listed that the battery
life was their biggest complaint, with other common
criticisms such as poor 4G capacity and inadequate screen
size lagging far behind. A substantial fraction of energy con-
sumption in mobile phones may be caused, arguably, by
frequently taking and sharing pictures via the cloud
(uploading/downloading). An intuitive idea is to signifi-
cantly reduce the number of images to be uploaded by shar-
ing (and uploading) only the most representative one rather
than all, at least when the mobile phone is energy-con-
strained. This idea is feasible since the images to be
uploaded are often identical or very similar to the ones that
have already been stored in the servers of the cloud. The
challenge thus lies in how to efficiently and accurately
identify such identical and similar images.

2.1 Observations, Insights and Motivations

In this section, we first present a comprehensive survey of
administrators/scientists at a cloud center and then study
three real-world cases, with a goal of gaining useful insights
to motivate the FAST research.

2.1.1 Insights from a Comprehensive Survey

of Cloud Users

In order to better understand the requirements from high-
performance cloud users, we conducted a user survey to
obtain insights and observations that are very helpful to
our design and, hopefully, to the cloud storage research
community.

The survey was conducted among researchers in the
computing center. A total of 200 researchers, including 40

administrators, 90 engineers and 70 scientists, were polled
on their opinions on large-scale data analytics (e.g., size,
types, computation complexity, average running time,
resource consumption, top concerns, acceptable accuracy of
analytics results) based on their experiences in using the
cloud services. The application domains include computa-
tional biology and bioinformatics, computational earth and
atmospheric sciences, computational chemistry and compu-
tational physics, data analysis and data mining, computa-
tional fluid dynamics, computational solid mechanics,
medicine and biotechnology computing, materials science,
and engineering simulation, etc.

The survey results are summarized in Table 1. Specifi-
cally, three categories of questions were asked, i.e., data
attributes (e.g., average file size, total size and the number of
formats), task attributes (e.g., execution time and resource bot-
tleneck) and general concerns (i.e., metric of importance and
acceptable accuracy of results). Answers to the questions are
grouped into ranges (i.e., minimum and maximum). PCT in
the table indicates the percentage of all users who provide
the corresponding answers (in the column on the immediate
left). We assume that each person has one dataset.

The survey results help us gain some valuable insights
and observations that are summarized below.

Temporal and spatial overheads of large-size indexing are not
cost-efficient. The total data size per high-performance cloud
application was much larger than 10 GB (around 66 percent)
and more than 18 percent of datasets were larger than 1 TB,
in 2012. This observation is consistent with the Science
poll [16] in 2011, in which 7 percent of datasets exceeded
1 TB. While taking into account the rapid growth of data-
sets, this percentage increase is reasonable. Moreover, we
observe that a large fraction (55.2 percent) of the data in the
datasets is stored in the form of small files (smaller than
10 MB per file). This trend implies that a disproportionally
large size of index structure must be dedicated to small files
and consumes substantial space in the main memory.

Real-time cloud applications require fast responses. Over
71 percent of tasks require more than 1 hour execution time,
of which 10 percent tasks run for one week or more. This
observation demonstrates the importance of real-time proc-
essing. We discuss with the researchers about the reasons.
The main reasons, according to the researchers, are twofold.

HUA ETAL.: REAL-TIME SEMANTIC SEARCH USING APPROXIMATE METHODOLOGY FOR LARGE-SCALE STORAGE SYSTEMS

The first is that, consistent with our first insight above, index
structures of these cloud applications are too big to fit entirely
in the high-speed main memory, even if the allocated main
memory size is up to the TB scale. The ensuing frequent disk
I/0s and network transmissions further aggravate the execu-
tion performance. Second, some applications encounter occa-
sional system crashes, which leads to re-computation that
substantially lengthens the latency. Clearly, since the most
expensive resource is memory and it is the insufficient memory space
for index structures that causes most of the execution delays, space-
efficient index structures are a key to delivering the high perfor-
mance required for (near-) real-time data analytics.

Willingness to trade small loss of accuracy of results for
significantly improved performance. Although 28.2 percent
respondents select accuracy as the most important concern,
around 40 percent choose time efficiency as their topmost
concern. We further asked how much accuracy is acceptable if
100 percent accuracy can not be guaranteed. Only 9.6 percent
respondents insist on 100 percent accuracy, while 73.7 percent
can accept more than 90 percent accuracy. These results sug-
gest that approximate data analytics are often acceptable and there
is a willingness to trade acceptably small loss of accuracy for signifi-
cantly improved performance.

2.1.2 One Case

Although surveillance systems are helpful in finding clues,
facial recognition is often difficult to use in large-scale inves-
tigations because surveillance footage often does not have
full-frontal images or sufficient clarity due to the relatively
low image resolution, a basic requirement for computers to
identify the necessary key points on a face with the state-of-
the-art facial recognition techniques [17], [18], [19], [20],
[21]. Fortunately, citizens are playing an increasing role in
investigations as a result of the growing culture of crowd-
sourcing of individually taken high-resolution pictures,
with the latest example of this being the investigation. Pho-
tographs from average citizens, news organizations and
others have played a helpful role in identifying useful clues
during the investigation. In fact, combining forensic image
data from professional and personal sources has worked
previously as well. In 2011, authorities used nearly 1 million
digital images and 1,600 hours of video gathered from the
public and closed-circuit cameras to identify acts. Now,
more than a billion people carry a basic tool of surveillance
in their pockets, namely, their camera-equipped smart-
phones and portable cameras, that can be easily connected
to the Internet. Given the increasingly crowd-sourced and
growing image data store, it is up to the data analytics and
systems support to quickly and accurately identify useful
clues, patterns, etc.

Based on and inspired by the survey observations and
the real-world case analysis, our research concentrates on fast
and cost-effective approximate data analytics. The main function
is to fast identify similar images from the massive image datasets
in the cloud.

2.2 The Methodology
221 The ldea

The idea behind FAST is to explore and exploit the
semantic correlation property within and among datasets

1215

Near Real-time Data Analytics

Flat-structured

|

I

|

Semantic :
Addressing |
|

|

|

|

|

|

Aggregation

Hashing
Summarization

| The Inputs of FAST

Multi-dimensional Vectors
A

A
Construct Vectors
Content based
Representation
A

Multi-dimensional
Metadata
A

Extract Information

Heterogeneous Types of Data

Fig. 1. The FAST methodology for multiple data types.

via correlation-aware hashing [12] and flat-structured
addressing [13] to significantly reduce the processing
latency, while incurring acceptably small loss of accu-
racy, as shown in Fig. 1. Specifically, the correlation-
aware hashing is to identify the correlated files via the
hash-computing manner, such as locality-sensitive hash-
ing. Moreover, unlike the frequent probing and address-
ing in the conventional multi-level hierarchy, the flat-
structured addressing is to find the queried item by
directly probing the bucket.

Semantic correlations measure the affinity among files.
We use correlations to estimate the likelihood that all files in
a given correlated group are of great interest to a user or to
be accessed together within a short period of time. Affinity
in the context of this research refers to the semantic correla-
tion derived from multi-dimensional file attributes that
include but are not limited to temporal or spatial locality.
We derive this measure from multiple attributes of files,
also called multi-dimensional correlation. To put things in
perspective, linear brute-force search approaches use no
correlation, which we call zero-dimensional correlation.
Spatial-/temporal-locality approaches, such as Spy-
glass [22], SANE [14] and SmartStore [23], use limited-
dimensional correlations either in access time or reference
space, which can be a special case of our proposed
approach. The main benefit of measuring semantic correla-
tions in multi-dimensional attribute space is that the affinity
among files can be more accurately identified.

Most file systems or their traces include the multi-dimen-
sional attributes to support real-time case. For instance,
there are five attributes in the HP trace (i.e., file name,
device ID, last modified time, user ID, file size) [24], five
attributes in the MSN trace (i.e., user ID, device ID, file size,
filename, executed time) [25], four attributes in the EECS
trace (i.e., user ID, device ID, file size, filename) [26] and
four attributes in the Google clusters trace (i.e., access time,
job ID, task ID and job Type) [27].

2.2.2 Extension to Multiple Types of Data

The FAST methodology can be extended to and well suited
for multiple data types. The generality of FAST can be

1216 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.4, APRIL2016
TABLE 2
The Relationship and Correspondence between the FAST Methodology and Example System Implementations
FAST Methodology Use-case (Images) Spyglass [22] SmartStore [23]
Data Analvtics Flat-structured Addressing Cuckoo Hashing Storage Hierarchical Addressing Hierarchical Addressing
y Semantic Aggregation LSH based Clustering Subtree Partitioning Latent Semantic Indexing

Hash Summarization

Content Description

Vector Extracti .
ector Extraction Metadata Representation

Summary Vectors

PCA-SIFT Features
Vectors

Membership Bloom Filters Membership Bloom Filters

Signature Files No
K-D Tree R-Tree

explained as follows. First, most data types can be repre-
sented as vectors based on their multi-dimensional attrib-
utes, including metadata (e.g., created time, size, filename/
record-name, etc.) and contents (e.g., chunk fingerprints,
image interest points, video frames, etc.). FAST extracts key
property information of a given type in the form of multi-
dimensional attributes and represents this information in
multi-dimensional vectors (i.e., multi-dimensional tuples).
Each dimension is one component of the vector. Second, the
vector-based representation is fed as input to FAST for
the subsequent operations of hash-based summarization,
semantic aggregation (SA) and flat-structured addressing.
In essence, the hash computation meets the needs of han-
dling heterogeneous types of data. Hence, FAST as a meth-
odology has the potential to efficiently support the analytics
for heterogeneous types of data.

As shown in Table 2, we elaborate on the corresponding
relationship between the modules of the FAST methodology
and typical searchable storage systems, such as Spyglass [22]
and SmartStore [23], as well as a use case illustrated in
Section 3.1. The corresponding relationship includes the
vector extraction (VE) for metadata and content, and the
data analytics in a near real-time manner. The comparisons
and analysis can be considered in two aspects. First, FAST
is a generalizable methodology, of which some components
and aspects are derived from and have been partially used
in existing storage systems, such as Spyglass and Smart-
Store. However, due to their specific and custom designs,
these systems, while achieving their original design goals,
fail to efficiently support near real-time data analytics.
Second, by incorporating the FAST methodology, existing
systems can be enhanced to achieve better performance. For
example, the LSH algorithm with O(1) complexity and the
cuckoo-driven storage of FAST can respectively accelerate
semantic aggregation and provide flat-structured address-
ing for queries. We believe that FAST has the potential to be
used in multiple storage systems with several data types.

By leveraging SANE’s semantic-aware namespace [14],
FAST aims to further improve the scalability, flexibility
and entire system performance to achieve the following
design goals.

2.2.3 Design Goals of Implementing Semantic-Aware
Namespace

The FAST namespace design attempts to achieve the follow-
ing major goals.

Goal 1: High scalability. By leveraging semantic aggrega-
tion, FAST is able to improve entire system scalability. The
semantics embedded in file attributes and user access pat-
terns can be used to reveal the potential correlation of file in

a large and distributed storage system. These files are thus
aggregated into the same or adjacent groups by using the
semantic-aware per-file namespace. For future file opera-
tions, such as read, write and update, we can carry out these
operations within one or a very small number of groups.

Goal 2: Smart namespace. In order to offer smart name-
space in FAST, we need to manage the file system name-
space in an intelligent and automatic way. In FAST’s
namespace, we identify semantic correlations and data
affinity via lightweight hashing schemes. In a namespace, a
file uses its most closely semantically correlated files to
build the per-file namespace. One salient feature is that the
namespace is flat without hierarchy. In order to accurately
represent the namespace, FAST makes use of multi-dimen-
sional, rather than single-dimensional, attributes to identify
semantic correlations. FAST hence obtains the accuracy and
simplicity in namespace for large-scale file systems.

Goal 3: Efficient compatibility. FAST is designed to be com-
patible with or orthogonal to existing file systems. We hence
implement FAST as a middleware between user applica-
tions and file systems. For the file system stacks, FAST is
transparent, thus being flexibly used in most file systems to
significantly improve system performance.

3 DESIGN AND IMPLEMENTATIONS

In this Section, we present the architecture and implementa-
tion details of the FAST methodology via a use case.

3.1 AUse Case and Its Problem Statement

To implement FAST and examine the efficiency and efficacy
of the proposed methodology, we leverage “Finding Missing
Children” as a use case to elaborate the FAST design and
evaluate its performance. A missing child is not only devas-
tating to his/her family but also has negative societal conse-
quences. Although existing surveillance systems are
helpful, they often suffer from the extremely slow identifica-
tion process and the heavy reliance on manual observations
from overwhelming volumes of data.

There exists a large amount of similar multimedia images
in the cloud (e.g., images of celebrities, popular sceneries,
and events), as a result of people’s habits, such as the ten-
dency to take the pictures of the same scene multiple times
to guarantee the quality of their images. Furthermore,
many photo-sharing sites, such as Facebook, Flickr, and
Picasa, maintain similar images from friends with common
interests. Due to the wide existence and explosive growth
of such duplicate and similar images, commercial sites,
such as Imagery, Google, Yahoo!, Bing Images search, Pic-
search, Ask Images Search, etc., have already begun to
address this practical problem. It is of paramount

HUA ET AL.: REAL-TIME SEMANTIC SEARCH USING APPROXIMATE METHODOLOGY FOR LARGE-SCALE STORAGE SYSTEMS

Add/Delete/Update m

importance to address the data-volume challenge facing
data analytics in the cloud systems.

We propose to use a crowd-based aid, i.e., personal
images that can be openly accessed, to identify helpful clues.
People often take many similar pictures on a famous scenic
spot, which actually are the snapshots of those locations in a
given period of time. High-resolution cameras offer high
image quality and multiple angles. Repeatedly taking pic-
tures can further guarantee the quality of snapshots. Given
the convenient and easy access to the cloud, these images are
often uploaded and shared on the web instantaneously (e.g.,
by smartphones). We can therefore leverage these publicly
accessible images made possible in part by the crowdsourc-
ing activities to help find the images that are correlated with
a given missing child. For example, if someone takes pictures
in the Big Ben, the images possibly contain not only the
intended men/women, but also occasionally other people,
such as a missing child in the background. If this image is
uploaded and open to the public (openly accessible), we
have an opportunity to find the missing child based on the
input of his/her image. We can quickly obtain the clues sug-
gesting whether the missing child had ever appeared around
the Big Ben. This clue helps us locate the missing child. The
rationale comes from the observations that instantaneously
uploading and widely sharing images are becoming a habit
and culture in the cloud.

We must admit that the effectiveness of this approach is
probabilistic. For instance, if this valuable image is not
uploaded and not publicly accessible, FAST will fail to
identify the clues, while consuming some system resources.
However, based on our observations and real-world
reports, users are becoming increasingly willing to share
their sightseeing images due to the shared interests and the
easy access to the Internet. In the meantime, our approach is
orthogonal and complementary to existing surveillance sys-
tems in fast locating the missing children, by avoiding
brute-force frame-by-frame manual checking upon massive
monitor videos. In this way, only the correlated segments
will be checked carefully to obtain significant time savings.
By considering the incomparable value of finding missing
children, the modest costs are obviously acceptable.

3.2 The Architecture of Use Case

FAST supports a fast and cost-effective scheme for near real-
time data analytics. It employs a simple and easy-to-use
index structure with three unique properties: space-efficient
summarized vectors, semantic-aware hashing and flat-
structured addressing for queries. The summarized vectors
fit the index into the main memory to improve indexing
performance. The semantic-aware hashing significantly
reduces the complexity of identifying similar images. The
flat-structured addressing offers O(1) complexity for real-
time queries.

The proposed FAST methodology is implemented as a
system middleware that can run on existing systems,
including the Hadoop file system, by using the general file
system interface and exploiting correlation property of data.
Fig. 2 shows the architecture of FAST in the use case of
“Finding Missing Children”. The correlation-awareness fea-
ture of FAST not only offers various services to users (e.g.,

1217

Caching Prefetching

System Perspective
(Performance Optimization)

)(Semantic-aware)

A

Manageable Flat
Addressing

Cuckoo Hashing-driven 4

Storage Strategy Metadata Exploitation

(Correlated Groups)

LSH based Semantic
Aggregation
File Summarized
System S i Bloom Filter
Correlation
Analysis T

Operating
Systems

Multi-hashing Summarization

Feature Vectors
PCA-SIFT
based Feature Exaction

DoG based Detection
of Interest Points

Interest Points

File System Interface

Physical

===

Fig. 2. The FAST implementation of the image-identification use case.

queries), but also supports system optimization, such as cach-
ing and prefetching. FAST consists of two main functional
modules, i.e., big data processing and semantic correlation
analysis. Specifically, the former provides the function of fea-
ture extraction (FE) (i.e., lightweight feature extraction) based
on the detection of interest points, while the latter consists of
Summarization (SM) (i.e., space-efficient summarized vec-
tors), semantic aggregation (i.e., semantic-aware grouping)
and cuckoo hashing-driven storage (CHS) (i.e., manageable
flat-structured addressing). The FE function makes use of the
DoG [28] and PCA-SIFT schemes [8] to respectively detect
and represent interest points of an image. In the computer
vision field, an interest point refers to the point that is stable
under local and global perturbations in the image domain. By
capturing their interest points, FAST can identify and extract
the features of similar images.

The identified features generally require a relatively large
space for representation, for example, 200 KB per 1 MB
image in the state-of-the-art PCA-SIFT scheme [8]. One bil-
lion such images would thus require about 200 TB storage
space. The storage and maintenance of these features con-
sume substantial space, usually too large to be fully held in
the main memory. The SM module, based on Bloom fil-
ter [29], is therefore designed to represent these features in a
more space-efficient manner. The Bloom filters in SM hash
the input features into constant-scale positions in a bit array.
Since only the hashed bits need to be maintained, these filters
help significantly reduce the space requirement of features.

In the SA module, FAST employs locality sensitive hash-
ing [12], [30] to capture correlated features that identify sim-
ilar images. In the CHS module, we make use of the cuckoo
hashing structure to store the data items that incur hash col-
lisions. The cuckoo hashing is essentially a multi-choice

1218

scheme to allow each item to have more than one available
hashing position. The items can “move” among multiple
positions to achieve load balance and guarantee constant-
scale complexity of queries. However, a simple and naive
use of cuckoo hashing in LSH will likely result in frequent
operations of item replacement and potentially incur high
probability of rehashing due to limited available buckets.
This can lead to a severe performance bottleneck. We
address this problem via adjacent neighboring storage as
described in Section 3.4.3.

The above functional modules enable FAST to reduce the
need for on-disk index lookups and decrease the complexity
of identifying similar images. The workflow can be summa-
rized as follows. First, the FE module is used to detect the
interest points in the similar images with the DoG scheme
and the detected interest points are represented by the
PCA-SIFT scheme in a compact way to obtain substantial
space savings. In the second step, in order to obtain further
space savings and efficiently support semantic grouping,
the SM module hashes the features per image into a space-
efficient Bloom-filter based indexing structure. The rationale
behind this strategy comes from the observations that simi-
lar images contain some identical features that project the
same bits onto the Bloom filters. Therefore, the bit-aware
Bloom filters can conjecture similar images. Finally, the
Bloom filters are fed as inputs to LSH in the SA module. SA
uses semantic-aware multiple hash functions to aggregate
correlated images together. The correlated images are then
stored in a cuckoo-hashing manner.

3.3 Features of Images

The features of an image are invariant to the scale and rotation
of the image, thus providing robust matching across a sub-
stantial range of affine distortion, changes in various view-
points, additions of noise, and changes in illumination.
Interest points are effective local descriptions of image fea-
tures and widely employed in real-world applications such
as object recognition and image retrieval because they are
robust to photometric changes and geometric variation and
can be computed efficiently. Therefore, we use interest
points in FAST to capture similarity properties of images.

To perform reliable and accurate matching between dif-
ferent views of an object or scene that characterize similar
images, we extract distinctive invariant features from
images. Feature-based management can be used to detect
and represent similar images to support correlation-aware
grouping and similarity search. Potential interest points are
identified by scanning the image over location and scale.
This is implemented efficiently by constructing a Gaussian
pyramid and searching for local peaks in a series of differ-
ence-of-Gaussian (DoG) images.

We construct a local image descriptor for each interest
point, based on the image gradients in its local neighbor-
hood. The local image gradients are measured at the
selected scale in the region around each interest point, and
are transformed into a representation that allows for local
shape distortion and change in illumination. Moreover, we
apply principal components analysis (PCA) to the normal-
ized gradient patch. The patch covers an area in the original
image that is proportional to the size of the interest point.
The vector-based representation is both more distinctive

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.4, APRIL2016

and more compact, leading to significant improvements in
matching accuracy and processing speed.

3.4 Semantic-Aware Grouping
3.4.1 The Summary Vectors as Inputs

The feature-based representation generally requires large-
sized memory. In order to reduce space overhead, we use
Bloom-filter based bits as the input of semantic grouping to
obtain significant space savings [29]. The space-efficient
representation allows the main memory to contain more
features. In general, two similar images imply that they con-
tain many identical features. The identical features are
hashed into the same bit locations in Bloom filters. Hence,
two Bloom filters representing two similar images will share
a significant number of identical bits. In the multi-dimen-
sional space, each Bloom filter can be considered as a bit
vector. Two similar Bloom filters can represent close-by
items by virtue of their Hamming distance. Two similar
images can be represented as two near-by points/items in
the multi-dimensional space.

A Bloom filter is a bit array of m bits representing a data-
set S ={ai,as,...,a,} of n items. All bits in the array are
initially set to 0. A Bloom filter uses k independent hash
functions to map items of the dataset to the bit vector
[1,...,m]. Each hash function maps an item « to one of the
m-array bit positions. To determine whether an item a is an
exact member of dataset S, we need to check whether all k&
hash-mapped bit positions of a are set to 1. Otherwise, a is
not in the set S.

Bloom filters are used as the input to the locality sensitive
hashing module to fast and efficiently identify similar
images. Since not all bits need be maintained, we only need
to store the non-zero bits to reduce space overhead. For
example, for a given image, the space required by its fea-
tures can be reduced from the original 200 KB to 40 B, a
5000-fold space reduction, with only O(1) computational
complexity.

3.4.2 Semantic Grouping Scheme

To identify and group similar images, we leverage LSH to
map similar images into the same hash buckets with a
high probability [12]. Owing to its simplicity and ease of
use, Bloom-filter based representation is used as LSH's
input to reduce the complexity and accelerate the process-
ing. Moreover, LSH function families have the locality-
aware property, meaning that the images that are close to
one another collide with a higher probability than images
that are far apart. We define S to be the domain of
images.

Definition 1. LSH function family, ie., H={h:S — U}, is
called (R, cR, Py, Py)-sensitive for distance function ||« || if
foranyp,q e S

1) If||p,q|| < Rthen Pry[h(p) = h(q)] > P,
2) Ifllp,ql| > cR then Pry[h(p) = h(q)] < P».

To allow similarity identification, we choose ¢ > 1 and
Py > P,. In practice, we need to widen the gap between P;
and P, by using multiple hash functions. Distance functions
|| * || correspond to different LSH families of /; norms based

HUA ETAL.: REAL-TIME SEMANTIC SEARCH USING APPROXIMATE METHODOLOGY FOR LARGE-SCALE STORAGE SYSTEMS

on an s-stable distribution to allow each hash function
hap : R — Z to map a d-dimensional vector v onto a set of
integers. The hash function in H can be defined as
hap(v) = L%”’J, where a is a d-dimensional random vector
with chosen entries following an s-stable distribution and b
is a real number chosen uniformly from the range [0,w),
where w is a constant.

Each image representation consists of Bloom-filter based
vectors, which are the inputs to LSH grouping mechanism.
LSH computes their hashed values and locates them in the
buckets. Since LSH is locality-aware, similar vectors will be
placed into the same or adjacent buckets with a high proba-
bility. We select them from the hashed buckets to form the
correlation-aware groups and support similarity retrieval.

Due to the property of hash collisions, which is exploited
to identify similar images, LSH may introduce false posi-
tives and false negatives. A false positive means that dissim-
ilar images are placed into the same bucket. A false negative
means that similar images are placed into different buckets.
In general, false negatives may decrease query accuracy
and false positives may increase system computation and
space overheads. Since reducing false negatives increases
query accuracy and thus is more important than reducing
false positives, we leverage extra probes by grouping not
only the same, but also the adjacent buckets into a group.
This is based on the locality-ware property of LSH, meaning
that close-by buckets have stronger semantic correlation
than far-apart ones. This methodology has been well veri-
fied by multi-probe LSH [31].

3.4.3 Flat-Structured Addressing

Conventional LSH is able to group locality-aware data via
exploring and exploiting the correlation in multi-dimen-
sional attributes. In practice, this LSH scheme needs to
alleviate high time and space overheads from vertical
addressing. The vertical addressing is interpreted as the lin-
ear retrieval in a linked list that is generally used to avoid or
mitigate hash collisions. However, due to no strict latency
bounds of carrying out the vertical addressing, existing sys-
tems fail to obtain real-time query performance. In order to
offer real-time performance in the cloud, we leverage flat
addressing that executes cuckoo-hashing based operations
and only incurs O(1) complexity [13]. The cuckoo hashing
based approach, in essence, exhibits query parallelism that
can in turn be easily exploited by modern multi-core pro-
cessors for performance improvements.

The flat-structured addressing probes a constant-scale
number of buckets in parallel, each of which maintains one
data item to offer O(1) complexity, rather than checking the
nondeterministic-length linked lists in conventional hash
tables. The name of cuckoo-hashing method was inspired
by how cuckoo birds construct their nests. The cuckoo birds
recursively kick other eggs or birds out of their nests [13],
[32]. This behavior is akin to hashing schemes that recur-
sively kick items out of their positions as needed. The
cuckoo hashing uses two or more hash functions to alleviate
hash collisions and in the meantime decrease the complex-
ity of querying the linked lists in the conventional hash
tables. A conventional hash table generally provides a sin-
gle position for placing an item a. The cuckoo hashing

1219

can offer two possible positions, i.e., hi(a) and hy(a), thus
significantly alleviating the potential hash collisions and
supporting flat addressing.

3.5 Semantic-Aware Namespace to Improve
System Performance

The namespace serves as a middleware in the file systems
by offering an optional semantic-aware function. To be com-
pliant with conventional hierarchical file systems, the user-
level client contains two interfaces, which can be decided by
the application requirements. If working with the conven-
tional systems, the proposed namespace bypasses the
semantic middleware and directly links with the applica-
tion, like existing file systems. Users can access file systems
via the existing POSIX interfaces. Otherwise, the namespace
is used via the enhanced POSIX I/O in the user space. By
exploiting the semantic correlations existing in the files’
metadata, FAST is able to support efficient semantic group-
ing and allow users to carry out the read/write operations
on files via the enhanced POSIX I/0O interfaces.

In order to communicate with users or application, FAST
leverages the client components, in which the enhanced
POSIX system interface is exposed to provide naming and
offer complex query services. Moreover, in order to signifi-
cantly improve the entire system performance, FAST offers
both user-level and kernel-level clients. Specifically, the
user-level client may choose to directly link with the appli-
cation or work in the user space FUSE [33]. In the kernel-
level client, FAST is mounted into a conventional file sys-
tem. We allow virtual file system (VFS) operations to be
redirected to a user-level daemon. Unlike conventional
directory based hierarchy, FAST makes use of the VFS oper-
ations to support semantic grouping. We can obtain the
data from page cache to further transmit to the daemon.
Furthermore, most operations run in the form of the name-
space-based tuples. In the tuples, a VFS readdir is able to
return the names of the encapsulated data. The main opera-
tions, such as create and rename, guarantee that there
are no collisions between the claimed namespace and exist-
ing tuples. In the kernel module, the operation 1ookup sup-
ports the Linux dentry working with the inode for a given
file name. Other VFS operations, such as commit_write
and unlink, are able to contact with the daemon and
update the modified file representation.

4 PERFORMANCE EVALUATION

In order to evaluate the performance of the proposed FAST
methodology for near real-time data analytics, we use a
case-in-point scenario. This application aims to identify
images similar to a given set of portraits from large image
datasets in the cloud. A potential use case of this application
could be to find a child reported missing in a crowded park
by identifying images containing features similar to the
given portraits of this child (e.g., by his/her parents) from
images taken and uploaded by tourists of that park in the
past few hours. The rationale for this is threefold. First, this
application has the strong requirements for near real-time
processing, for which long query latency will severely
weaken the value/worth of the results. Second, to offer fast
query performance, an efficient data structure, rather than a

1220
TABLE 3
The Properties of Collected Image Sets

Datasets No.Images Total Size File Type Landmarks

Wuhan 21 million 62.7TB bmp(11%), jpeg(74%), 16
gif(15%)

Shanghai 39 million 152.5TB bmp(9%), jpeg(79%), 22
gif(12%)

simple index structure is required for the large image store
to facilitate semantic grouping and narrow the query scope.
Third, due to the post-verification property, e.g., results will
be verified by the missing child’s parents or guardians, this
use case is tolerant to small false results, which trades for
significantly increased query efficiency.

4.1 Experiment Setup

We implemented a FAST prototype of the use case on a 256-
node cluster. Each node has a 32-core CPU, with a 64 GB
RAM, a 1,000 GB 7200 RPM hard disk and a Gigabit net-
work interface card. The implementation required approxi-
mately 1,200 lines of C code in the Linux environment. To
drive the FAST prototype evaluation, we use a real and
large image dataset collected from the cloud. Initially, the
image dataset is randomly distributed among the nodes.
FAST then uses space-efficient and correlation-aware tech-
niques for fast and efficient image indexing.

4.1.1 Evaluation Workload: Real Image Dataset

We collect real and openly accessible images from the popu-
lar campus networks of multiple universities, in the Cities of
Wuhan and Shanghai in China, and well-known social net-
works. In order to faithfully demonstrate the real-time prop-
erty of real-world image datasets, we set certain temporal
and spatial constraints on the collection. First, the temporal
constraint defines the uploading interval to be between a
week-long holiday. This temporal constraint may poten-
tially introduce some false positives and false negatives.
The analysis of false positives and negatives can be found in
our conference version [34]. The spatial constraint confines
the locations to Wuhan and Shanghai in China, with each
having its own unique and popular landmarks and scener-
ies. While Wuhan has 16 such landmarks, Shanghai has 22.
We only collect images that contain these representative
landmarks, which facilitates a meaningful evaluation. The
collected image dataset ultimately contains 60 million
images that amount to more than 200 TB in storage size.
The key characteristics of the image dataset are summarized
in Table 3. Moreover, the query requests, which are simulta-
neously issued from 500 clients, consist of the queried por-
traits in the real datasets.

4.1.2 Evaluation Baselines, Metrics and Parameters

We compare FAST with the state-of-the-art schemes, SIFT
[35], PCA-SIFT [8] and real-time near-duplicate photo elimi-
nation (RNPE) [10]. Since there are no complete open-source
codes, we choose to re-implement them. PCA-SIFT is a
popular and well-recognized feature extraction approach
that uses principal components analysis for dimensional-
ity reduction to obtain compact feature vectors. We

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.4, APRIL2016

implement scale-invariant feature transform (SIFT) [35],
principal components analysis, point matching, query
interface and storage tools. Moreover, RNPE studies the
features of different location views to carry out real-time
photo elimination. We implement its location visualiza-
tion framework to retrieve and present diverse views
captured within a local proximity.

The performance of FAST is associated with its parame-
ter settings. One of the key parameters is the metric R that
regulates the measure of approximate membership. The
LSH-based structures can work well if R is roughly equal to
the distance between the queried point ¢ and its nearest
neighbors. Unfortunately, identifying an optimal R value is
a non-trivial task due to the uncertainties and probabilistic
properties of LSH [12], [36]. In order to obtain appropriate
R values for our experiments, we use the popular and well-
recognized sampling method that was proposed in the
original LSH study [37] and has been used in practical
applications [30], [38]. We define “proximity measure
x = |lp¥ = qll/|lp1 — ¢||” to evaluate the top-1 query quality
for queried point g, where p} and p, respectively represent
the actual and searched nearest neighbors of point ¢ by com-
puting their distances. We determine the suitable R values
to be 600 and 900 respectively for the Wuhan and Shanghai
image datasets to appropriately and quantitatively repre-
sent the correlation. In addition, to construct the indexing
structures, weuse L = 7, w = 0.85, M = 10 in the LSH-based
computation and & = 8 for the hash functions in the Bloom
filters based on the above sampling mechanism.

The accuracy of approximate queries is in essence quali-
tative and often subjective, and thus cannot be determined
by computers alone. FAST hence leverages the verification
and responses from users to help determine the query
accuracy. In the performance evaluation, FAST provides
the query results to the relevant 1,000 users who will give
their feedbacks.

4.2 Results and Analysis
4.2.1 Query Latency

Fig. 3 shows the average query latency. The query latency
includes the computation time of descriptors, e.g., image gra-
dients and SIFT, as described in Section 3.3. We examine
query performance as a function of the number of simulta-
neous requests from 1,000 to 5,000 with an increment of
1,000. The latency of PCA-SIFT, at 2 min, is one order of mag-
nitude better than SIFT’s 35.8 min, due to its PCA property.
However, SIFT and PCA-SIFT rely on brute-force-like match-
ing to identify similar features that are then stored into an
SQL-based database. Their space inefficiency causes frequent
disk I/0s, leading to long query latency. We also observe
that RNPE performs better when the number of query
requests is smaller (e.g., smaller than 1,000) but its perfor-
mance degrades noticeably, as the number of query requests
increases, to as long as 55 s. This is because the high-complex-
ity MNPG identification algorithm and the R-tree based
O(logn) query complexity of RNPE [39]. The query latency
of FAST is much shorter than any of the other schemes and
remains roughly at 102.6 ms for all datasets and numbers of
queries, making FAST more than 3 orders of magnitude faster
than PCA-SIFT and 2 orders of magnitude faster than RNPE.

HUA ETAL.: REAL-TIME SEMANTIC SEARCH USING APPROXIMATE METHODOLOGY FOR LARGE-SCALE STORAGE SYSTEMS

M SIFT W PCASSIFT M RNPE M FAST M SIFT M PCA-SIFT M RNPE M FAST

1.00E+07 1.00E407

1.00E+06 1.00E+06

1.00E+05 1.00E405
1.00E+04 1.00E+04
1.00E403 1.00E+03

1.00E+02 1.00E402

Average Query Latency (ms)
Average Query Latency (ms)

1.00E401 1.00E+01

1000 2000 3000 4000 5000
Number of Query Requests

(b) Shanghai Dataset.

1000 2000 3000 4000 5000

Number of Query Requests
(a) Wuhan Dataset.

Fig. 3. The average query latency.

The reasons for FAST’s advantage are threefold. First,
FAST leverages principal components analysis for
dimensionality reduction and obtains compact feature vec-
tors. The number of dimensions to be processed is consider-
ably reduced, which in turn lowers the space overhead.
Second, the Bloom filter-based summarization further sim-
plifies the representation of feature vectors, which allows us
to put more vectors into the main memory. Third, FAST
uses cuckoo hashing flat-structured addressing to obtain
O(1) real-time query performance.

4.2.2 Query Accuracy

Table 4 shows the query accuracy of all evaluated schemes
normalized to that of SIFT, which is one of the state-of-the-
art exact-matching approaches and thus serves as the base-
line, i.e., 100 percent accuracy in this metric. Since RNPE lev-
erages simple but error-prone tags to identify similar
images, it has the lowest accuracy. PCA-SIFT, on the
other hand, uses compact feature vectors and carries out
dimensionality reduction, which helps it reduce the number
of dimensions to be processed but at a negligible cost of accu-
racy and results in an accuracy of 99.9983 percent on average.
The accuracy of FAST is around 99.995 percent, slightly
lower than PCA-SIFT. The reason is the possible hash colli-
sions in Bloom filters and LSH. The accuracy of FAST is
around 0.005 percent lower than PCA-SIFT in the Wuhan
image dataset. Considering FAST’s significant superiority in
the search-latency performance (by up to 3 orders of magni-
tude), we argue that such insignificant loss in accuracy is
acceptable, especially for near real-time applications.

4.2.3 Rehash Probability

Since hash collisions are unavoidable for any hash functions,
rehashing is thus possible in FAST when hash collisions

TABLE 4
Query Accuracy Normalized to SIFT
Dataset Number of SIFT PCA-SIFT RNPE FAST
Queries
1,000 100% 99.9995% 97.3% 99.999%
2,000 100% 99.9992% 96.5% 99.997%
Wuhan 3,000 100% 99.9984% 959% 99.995%
4,000 100% 99.9977% 941% 99.994%
5,000 100% 99.9965% 93.5% 99.990%
1,000 100% 99.9992% 96.3% 99.998%
2,000 100% 99.9988% 95.3% 99.994%
Shanghai 3,000 100% 99.9982% 94.2% 99.991%
4,000 100% 99.9969% 93.5% 99.988%
5,000 100% 99.9957% 92.5% 99.986%

1221

1.00E+00

g
1.00E-01 g;g g

—7/— Standard (Wuhan)
—&— FAST (Wuhan)

—©— Standard (Shanghai)
—H— FAST (Shanghai)

1.00E-02
1.00E-03

]
1.00E-04 [}

1.00E-05 L L L L L L L L
100 200 300 400 500 600 700 800 900 1000

Failure Probability (%)

Number of Inserting Items (x1000)

Fig. 4. Insertion failure (rehash) probability.

occur. More specifically, rehashing is required in FAST when
an endless loop forms in the recursive cuckoo hashing process
during the item-insertion operation, which in turn renders the
insertion operation a failure. In other words, rehash probabil-
ity is equal to the failure probability of the insertion operation
in FAST. Owing to the flat-structured cuckoo hashing scheme
employed, however, FAST is able to significantly reduce the
rehashing probability from that of the standard cuckoo hash-
ing. To evaluate FAST for its rehash probability and compare
it with the standard cuckoo hashing, we present the experi-
mental results by plotting the insertion-failure probability as
a function of the number of items inserted in Fig. 4. The aver-
age failure probability of FAST is 3 orders of magnitude
smaller than that of the standard cuckoo hashing, 1.61 x 106
for FAST versus 3.6 x 1073 for the standard cuckoo hashing
in the Wuhan dataset, and 1.77 x 1079 for FAST and
4.8 x 1072 for the standard cuckoo hashing in the Shanghai
dataset. In other words, on average, one insertion failure will
occur in FAST for several millions of successful insertions, in
contrast to one such a failure in only thousands of successful
insertions with the standard cuckoo hashing.

4.2.4 User Experiences from Smartphones

In FAST’s Android-based clients, we designed a friendly
and easy-to-use interface for users to upload images and
submit queries. To support local image processing, we
ported an open-source implementation of PCA-SIFT feature
extraction algorithm to Android. Moreover, in order to com-
prehensively evaluate the performance, we divide 1,000
users who use this client in their smartphones into three
groups based on their crowdsourcing interests (i.e., approxi-
mately equal number of the landmarks of disaster zones in
the image sets). Users download and install FAST’s client
application software that offers the functions of image iden-
tification and energy-efficient network transmission as
shown in Fig. 5. We compare FAST with the Chunk-based
scheme due to its energy efficiency, which has been exam-
ined and recommended by the evaluation of battery power
consumption with 11 Internet applications [40].

In a common case, a smartphone needs to upload all
images to the destination server via wireless data transmis-
sion and requires continuous bandwidth guarantee, a
stringent requirement that is difficult to meet in a crowd-
sourcing environment. FAST leverages its near-duplicate
identification technique to significantly reduce the amount
of images to be transmitted. Fig. 5a shows the network
transmission overhead by examining the practical use of
bandwidth in transmitting a batch of images.

1222

M Group1 (Chunk) M Group1 (FAST)
= Group2 (Chunk) ® Group2 (FAST)
W Group3 (Chunk) M Group3 (FAST)

® Group1 (Chunk)
™ Group2 (Chunk)
B Group3 (Chunk)

® Group1 (FAST)
™ Group2 (FAST)
M Group3 (FAST)

Network Transmission Overhead (MB)
Energy Consumption (J)

100 200 300 400 500
The Number of the Images to be Transmitted

100 200 300 a00

500
Number of the Images to be Transmitted

(b) Energy consumption.

(a) Network transmission overhead.

Fig. 5. User Experiences from Smartphones.

We have two observations from the results. First, com-
pared with chunk-based transmission scheme, FAST can
achieve more than 55.2 percent bandwidth savings due to
the significantly decreased amount of images to be transmit-
ted. Second, we observe that the percentage of bandwidth
savings will increase with the increasing number of images.
This is because with more images there is a higher probabil-
ity of images being similar. These results also demonstrate
the scalability of FAST.

To measure energy consumption, we use the Monsoon
Power Monitor [41] and run the experiments of upload-
ing and sharing the interested images. The Monsoon
Power Monitor is configured by blocking the positive ter-
minal on the phone’s battery with electrical tape. The
voltage normally supplied by the battery is supplied by
the monitor. It records voltage and current with a sample
rate of 6 kHz. During our experiments, the screen is set
to stay in the awake mode with constant brightness
and auto-rotate screen off. All radio communication is
disabled except for Wi-Fi.

Fig. 5b shows the energy consumption with the increase
in the number of the transmitted images. We observe that,
compared with the chunk-based transmission scheme, the
FAST scheme can achieve from 46.9 to 62.2 percent energy
savings in the three user groups due to the significantly
decreased numbers of the images to be transmitted. More-
over, the percentage of energy savings is consistent with
that of bandwidth savings since fewer transmitted images
consume less energy. These results show that FAST offers
an energy-saving benefit to some smartphone applications.

4.2.5 Semantic-Aware Namespace

We examine the performance of FAST in terms of name-
space construction time, space overhead, renaming cost
and multi-node scalability. To facilitate fair and compre-
hensive comparisons, we use four representative system-
level traces, of which three collected from the industry
and one from the academia. These traces include HP file
system trace [24], MSN trace [25], EECS NFS server
(EECS) trace at Harvard [26] and Google clusters
trace [27], which drive the FAST performance evaluation.
Moreover, for the sizes of these traces, Google cluster con-
tains 75 five-minute reporting intervals. There are a total
of 3,535,029 observations, 9,218 unique jobs and 176,580
unique tasks. HP contains 94.7 million requests for a total
of 4 million files from 32 users. MSN has 1.25 million files
and records 4.47 million operations, in which there are
3.3 million read and 1.17 million write operations. EECS
contains 4.44 million operations. The number and size of
read operations are respectively 0.46 million and 5.1 GB.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.4, APRIL2016

10000

o~ MsN
X EECS

~6- Google
+ WP

M Lustre W Spyglass M FAST

Time (s)

8
6
4
2

+

Construction Latency (s)

1 20 3 40 S5 6 70 8 % 100

Percentage of the Constructed Files

HP MSN EECS Google

(a) Initial Construction Time. (b) Times for different amounts of

the constructed files.

Fig. 6. Time overhead in the FAST namespace construction.

Those of write operations are respectively 0.667 million
and 9.1 GB.

Namespace construction time. In order to construct the
namespace, FAST uses locality-aware hash computation.
Initially, we first serve for the in-memory files and need to
construct their semantic-aware per-file namespaces. We
execute these operations until a new file is loaded into
the main memory. A simple LRU policy is used to handle
the case that the memory is full. We then replace the name-
space of a file, which is flushed to the secondary memory.

We compare FAST with Lustre [42] and Spyglass [22] in
terms of the times of the initial namespace construction as
shown in Fig. 6a. We observe that FAST consumes the
smallest time due to its simple and low-complexity hashing
computation. Lustre relies on the hierarchical tree based
structure for directory indexing, thus causing much larger
latency. Due to the use of K-D tree [43], Spyglass alleviates
the time overhead. Fig. 6b further shows the namespace
construction time with the growth of the constructed files.
FAST is able to efficiently carry out the operations of name-
space construction.

Space overhead. Table 5 shows the actual space overheads
in FAST, Lustre and Spyglass. Lustre consumes the largest
space overhead, which is derived from a large hierarchical
tree for the naming service. Compared with Lustre, Spy-
glass uses the lightweight binary tree to reduce the space
overhead. Unlike them, FAST obtains more than 60 percent
space savings due to the use of simple, flat and semantic-
aware namespace.

Renaming cost. In the context of FAST’s namespace, the
renaming operation is to change the name of a file. In order
to rename a file, we need to first identify this file and then
modify the file name. In general, the renaming operation
also needs to update the files’ metadata [44], [45].

We use a scaled-up method to intensify the used trace
in terms of both spatial and temporal scales. This
method has been successfully used in Glance [46] and
SmartStore [23]. We first decomposed the trace into sub-
traces and further add a unique sub-trace ID to all files.
The start times of all sub-traces are set to zero and thus
can be replayed concurrently. We maintain the chrono-
logical order among all requests within a sub-trace. The

TABLE 5
The Space Overhead
HP MSN EECS Google
Lustre 58.72 GB 15.81 GB 36.93 GB 61.52 GB
Spyglass 37.26 GB 12.53 GB 25.68 GB 47.59 GB
FAST 16.51 GB 4.75 GB 11.83 GB 19.16 GB

HUA ET AL.: REAL-TIME SEMANTIC SEARCH USING APPROXIMATE METHODOLOGY FOR LARGE-SCALE STORAGE SYSTEMS

0.25

M HP

W Google

W EECS
MSN

0.2 -

Renaming Latency (s)

50 100 150 200 250 300 350 400

Trace Intensifying Factor (TIF)

Fig. 7. Renaming latency.

combined trace contains the identical histogram of file
system calls like the original one but exhibits much
heavier workloads. The number of sub-traces replayed
concurrently is represented as Trace Intensifying Factor
(TIF). Fig. 7 shows the latency of a “rename” operation
in FAST. The average renaming latency in FAST is
0.072 s, 0.047 s, 0.052 s and 0.061 s for HP, MSN, EECS
and Google traces, respectively. Due to the use of seman-
tic grouping in Member(f) and Namespace,(f) sets, FAST
allows the rename operation to complete in one or a very
small number of tuples of correlated files.

4.2.6 Multi-Node Scalability

FAST has the salient feature of efficiently supporting
parallel query operations via its flat-structured address-
ing. This design allows FAST execution to contain a
large amount of parallel queries. Fig. 8 shows the latency
of queries carried out on a multi-node based system as a
function of the number of nodes. We observe that the
query latency decreases almost linearly with the increase
in the number of nodes. Due to the promising advantage
in the linear speedup, we argue that the FAST has the
scalability in the multi-node system.

5 RELATED WORK

In this section, we present a brief survey of recent studies in
the literature most relevant to the FAST research from the
aspects of data analytics, searchable file systems and dedu-
plication-based redundancy detection.

Data analytics. Data analytics has received increasing
attention from both industrial and academic communities.
In order to bridge the semantic gap between the low-level
data contents and the high-level user understanding of the
system, a behavior-based semantic analysis framework [47]
is proposed, which includes an analysis engine for extracting
instances of user-specified behavior models. ISABELA-
QA [48] is a parallel query processing engine that is designed
and optimized for analyzing and processing spatiotemporal,
multivariate scientific data. MixApart [49] uses an integrated
data caching and scheduling solution to allow MapReduce
computations to analyze data stored on enterprise storage
systems. The frontend caching layer enables the local storage
performance required by data analytics. The shared storage
back-end simplifies data management. Three common anal-
ysis techniques [50], including topological analysis, descrip-
tive statistics, and visualization, are explored to support

1223

M 4-node W 16-node M 64-node M 256-node

1000

800

600

400

200

Average Query Latency (ms)

0
Wuhan

Shanghai

Fig. 8. Multi-node based query latency.

efficient data movement between in-situ and in-transit com-
putations. In this context, FAST is a useful tool that comple-
ments and improves the existing schemes to obtain
correlated affinity from near duplicate images and execute
semantic grouping to support fast query service.

Searchable file systems. Spyglass [22] exploits the locality of
file namespace and skewed distribution of metadata to map
the namespace hierarchy into a multi-dimensional K-D tree
and uses multilevel versioning and partitioning to maintain
consistency. Glance [46], a just-in-time sampling-based sys-
tem, can provide accurate answers for aggregate and top-k
queries without prior knowledge. SmartStore [23] uses
latent semantic indexing (LSI) tool [51], [52] to aggregate
semantically correlated files into groups and support com-
plex queries. Ceph [53] and its demonstration system [54]
use dynamic subtree partition to avoid metadata-access hot
spots and support filename-based query. FastQuery [55] is a
software framework that utilizes a FastBit based index and
query technology to process massive datasets on modern
supercomputing platforms. Locality-Sensitive Bloom Fil-
ter [56] proposes a locality-aware and space-efficient data
structure that can efficiently support the in-memory com-
puting. SciHadoop [57] executes queries as map/reduce
programs defined over the logical data model to reduce
total data transfers, remote reads, and unnecessary reads.
Unlike these approaches, FAST offers the salient features of
querying near duplicate images in a near real-time manner.

Deduplication based redundancy detection. DDFS [58] pro-
poses the idea of exploiting the backup-stream locality to
reduce network bandwidth and accesses to on-disk index.
Extreme Binning [59] exploits the file similarity for dedupli-
cation and can be applied to non-traditional backup work-
loads with low-locality (e.g., incremental backup).
ChunkStash [32] maintains the chunk fingerprints in an SSD
instead of a hard disk to accelerate the lookups. SiLo [60] is
a near-exact deduplication system that exploits both simi-
larity and locality to achieve high duplicate elimination and
throughput with low RAM overheads. The cluster-based
deduplication [61] examines the tradeoffs between stateless
data routing approaches with low overhead and stateful
approaches with high overhead but being able to avoid
imbalances. Sparse Indexing [62] exploits the inherent
backup-stream locality to solve the index-lookup bottleneck
problem. Moreover, by exploiting similarities between files
or versions of the same file, LBFS [63] is shown to be a low-
bandwidth network file system. The potential of data dedu-
plication in HPC centers is presented in [64] via quantitative
analysis on the potential for capacity reduction for 4 data

1224

centers. In order to opportunistically leverage resources on
end hosts, EndRE [65] uses a fingerprinting scheme called
SampleByte that is much faster than Rabin fingerprinting
while delivering similar compression gains. In contrast to
these existing system-level approaches, FAST provides
both application-level and system-level detection for both
identical and near duplicate data. FAST can meet the
needs of handling the rapid growth of big data in an effi-
cient manner.

6 CONCLUSION

This paper proposes a near real-time scheme, called FAST,
to support efficient and cost-effective searchable data ana-
lytics in the cloud. FAST is designed to exploit the correla-
tion property of data by using correlation-aware hashing
and manageable flat-structured addressing. This enables
FAST to significantly reduce processing latency of corre-
lated file detection with acceptably small loss of accuracy.
We discuss how the FAST methodology can be related to
and used to enhance some storage systems, including Spy-
glass and SmartStore, as well as a use case. FAST is demon-
strated to be a useful tool in supporting near real-time
processing of real-world data analytics applications.

ACKNOWLEDGMENTS

This work was supported in part by National Natural Sci-
ence Foundation of China (NSFC) under Grant 61173043,
National Basic Research 973 Program of China under Grant
2011CB302301, and US National Science Foundation under
Grants NSF-CNS-1016609 and NSF-CNS-1116606. This is an
extended version of our manuscript published in the Pro-
ceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis
(SC), November 2014, Pages: 754-765. Yu Hua is the
corresponding author.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M.
Zaharia, “A view of cloud computing,” Commun. ACM, vol. 53,
no. 4, pp. 50-58, 2010.

[2] A. Marathe, R. Harris, D. K. Lowenthal, B. R. de Supinski, B.
Rountree, M. Schulz, and X. Yuan, “A comparative study of high-
performance computing on the cloud,” in Proc. 22nd Int. Symp.
High-Perform. Parallel Distrib. Comput., 2013, pp. 239-250.

[3] P.Nath, B. Urgaonkar, and A. Sivasubramaniam, “Evaluating the
usefulness of content addressable storage for high-performance
data intensive applications,” in Proc. 17th Int. Symp. High-Perform.
Parallel Distrib. Comput., 2008, pp. 35-44.

[4] Gartner, Inc.,, “Forecast: Consumer digital storage needs,
2010-2016,” 2012.

[5] Storage Newsletter, “7% of consumer content in cloud storage in
2011, 36% in 2016,” 2012.

[6]]. Gantz and D. Reinsel, “The digital universe in 2020: Big data,
bigger digital shadows, and biggest growth in the far east,” Inter-
national Data Corporation (IDC) iView, Dec. 2012.

[7] Y.Hua, W.He, X. Liu, and D. Feng, “SmartEye: Real-time and effi-
cient cloud image sharing for disaster environments,” in Proc.
INFOCOM, 2015, pp. 1616-1624.

[8] Y. Ke and R. Sukthankar, “PCA-SIFT: A more distinctive repre-
sentation for local image descriptors,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recog., 2004, pp. 506-513.

[9]1 Y. Ke, R. Sukthankar, and L. Huston, “Efficient near-duplicate
detection and sub-image retrieval,” in Proc. ACM Multimedia,
2004, pp. 869-876.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.4, APRIL2016

[10] J. Liu, Z. Huang, H. T. Shen, H. Cheng, and Y. Chen, “Presenting
diverse location views with real-time near-duplicate photo
elimination,” in Proc. 29th Int. Conf. Data Eng., 2013, pp. 505-56.

[11] D.Zhan, H. Jiang, and S. C. Seth, “CLU: Co-optimizing locality and
utility in thread-aware capacity management for shared last level
caches,” IEEE Trans. Comput., vol. 63, no. 7, pp. 1656-1667, Jul. 2014.

[12] P. Indyk and R. Motwani, “Approximate nearest neighbors:
towards removing the curse of dimensionality,” in Proc. 13th
Annu. ACM Symp. Theory Comput., 1998, pp. 604-613.

[13] R.Paghand F. Rodler, “Cuckoo hashing,” in Proc. Eur. Symp. Algo-
rithms, 2001, pp. 121-133.

[14] Y. Hua, H. Jiang, Y. Zhu, D. Feng, and L. Xu, “SANE: Semantic-
aware namespace in ultra-large-scale file systems,” IEEE Trans.
Parallel Distrib. Syst., vol. 25, no. 5, pp. 1328-1338, May 2014.

[15] (2011). Changewave research [Online]. Available: http://www.
changewaveresearch.com

[16] Science Staff, “Dealing with data-Challenges and opportunities,”
Science, vol. 331, no. 6018, pp. 692-693, 2011.

[17] X.Tan, S. Chen, Z.-H. Zhou, and F. Zhang, “Face recognition from
a single image per person: A survey,” Pattern Recog., vol. 39, no. 9,
pp- 1725-1745, 2006.

[18] T. Ahonen, A. Hadid, and M. Pietikainen, “Face description
with local binary patterns: Application to face recognition,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 12,
pp. 2037-2041, Dec. 2006.

[19] X. Tan and B. Triggs, “Enhanced local texture feature sets for face
recognition under difficult lighting conditions,” IEEE Trans. Image
Process., vol. 19, no. 6, pp. 1635-1650, Jun. 2010.

[20] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust
face recognition via sparse representation,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 31, no. 2, pp. 210-227, Feb. 2009.

[21] Y. Hua and X. Liu, “Scheduling heterogeneous flows with delay-
aware deduplication for avionics applications,” IEEE Trans. Paral-
lel. Distrib. Syst., vol. 23, no. 9, pp. 1790-1802, Sep. 2012.

[22] A. W. Leung, M. Shao, T. Bisson, S. Pasupathy, and E. L. Miller,
“Spyglass: Fast, scalable metadata search for large-scale storage
systems,” in Proc. 7th USENIX Conf. File Storage Technol., 2009,
pp- 153-166.

[23] Y. Hua, H. Jiang, Y. Zhu, D. Feng, and L. Tian, “SmartStore: A
new metadata organization paradigm with semantic-awareness
for next-generation file systems,” in Proc. Int. Conf. High Perform.
Comput. Netw. Storage Anal., 2009, pp. 1-12.

[24] E. Riedel, M. Kallahalla, and R. Swaminathan, “A framework for
evaluating storage system security,” in Proc. USENIX Conf. File
Storage Technol., 2002, pp. 15-30.

[25] S. Kavalanekar, B. Worthington, Q. Zhang, and V. Sharda,
“Characterization of storage workload traces from production
Windows servers,” in Proc. IEEE Int. Symp. Workload Characteriza-
tion, 2008, pp. 119-128.

[26] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer, “Passive NFS trac-
ing of email and research workloads,” in Proc. USENIX Conf. File
Storage Technol., 2003, pp. 203-216.

[27]]. L. Hellerstein. (2010, Jan). Google cluster data [Online]. Avail-
able: http://googleresearch. blogspot.com/2010/01/google-
cluster-data.html

[28] D. Lowe, “Distinctive image features from scale-invariant
keypoints,” Int. . Comput. Vis., vol. 60, no. 2, pp. 91-110, 2004.

[29] B. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422-426, 1970.

[30] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions,” Commun.
ACM, vol. 51, no. 1, pp. 117-122, 2008.

[31] Q.Lv, W.Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-probe
LSH: Efficient indexing for high-dimensional similarity search,”
in Proc. 33rd Int. Conf. Very Large Data Bases, 2007, pp. 950-961.

[32] B. Debnath, S. Sengupta, and J. Li, “ChunkStash: Speeding up
inline storage deduplication using flash memory,” in Proc. USE-
NIX Conf. USENIX Annu. Tech. Conf., 2010, p. 16.

[33] FUSE [Online]. Available: http://fuse.sourceforge.net/

[34] Y. Hua, H. Jiang, and D. Feng, “FAST: Near real-time searchable
data analytics for the cloud,” in Proc. Int. Conf. High Perform. Com-
put. Netw. Storage Anal., 2014, pp. 754-765.

[35] D. Lowe, “Object recognition from local scale-invariant features,”
in Proc. 7th IEEE Int. Conf. Comput. Vis., 1999, pp. 1150-1157.

[36] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high
dimensions via hashing,” in Proc. 25th Int. Conf. Very Large Data
Bases, 1999, pp. 518-529.

HUA ETAL.: REAL-TIME SEMANTIC SEARCH USING APPROXIMATE METHODOLOGY FOR LARGE-SCALE STORAGE SYSTEMS

[371]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni, “Locality-sen-
sitive hashing scheme based on p-stable distributions,” in Proc.
20th Ann. Symp. Comput. Geometry, 2004, pp. 253-262.

Y. Tao, K. Yi, C. Sheng, and P. Kalnis, “Quality and efficiency in
high-dimensional nearest neighbor search,” in Proc. SIGMOD Int.
Conf. Manage. Data, 2009, pp. 563-576.

A. Guttman, “R-trees: A dynamic index structure for spatial
searching,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 1984,
pp- 47-57.

Y. Liu, L. Guo, F. Li, and S. Chen, “An empirical evaluation of bat-
tery power consumption for streaming data transmission to
mobile devices,” in Proc. 19th ACM Int. Conf. Multimedia, 2011,
pp. 473-482.

(2012). Monsoon power monitor [Online]. Available: http://
WWW.msoon.com

Lustre [Online]. Available: http:/ /lustre.org/

J. L. Bentley, “Multidimensional binary search trees used for asso-
ciative searching,” Commun. ACM, vol. 18, no. 9, pp. 509-517,
1975.

S. Ghemawat, H. Gobioff, and S. Leung, “The Google file system,”
in Proc. 19th ACM Symp. Operating Syst. Principles, 2003, pp. 29-43.
K. Muniswamy-Reddy, C. Wright, A. Himmer, and E. Zadok, “A
versatile and user-oriented versioning file system,” in Proc. 3rd
USENIX Conf. File Storage Technol., 2004, pp. 115-128.

H. Huang, N. Zhang, W. Wang, G. Das, and A. Szalay, “Just-in-
time analytics on large file systems,” in Proc. 3rd USENIX Conf.
File Storage Technol., 2011, p. 16.

A. Viswanathan, A. Hussain,]J. Mirkovic, S. Schwab, and J.
Wroclawski, “A semantic framework for data analysis in net-
worked systems,” in Proc. 8th USENIX Conf. Netw. Syst. Design
Implementation, 2011, pp. 127-140.

S. Lakshminarasimhan, J. Jenkins, I. Arkatkar, Z. Gong, H. Kolla,
S.-H. Ku, S. Ethier, J. Chen, C. S. Chang, S. Klasky, R. Latham, R.
Ross, and N. F. Samatova, “ISABELA-QA: Query-driven analytics
with ISABELA-compressed extreme-scale scientific data,” in Proc.
Int. Conf. High Perform. Comput., Netw., Storage Anal., 2011, pp. 1-11.
M. Mihailescu, G. Soundararajan, and C. Amza, “MixApart:
Decoupled analytics for shared storage systems,” in Proc. 3rd USE-
NIX Conf. File Storage Technol., 2013, pp. 133-146.

J. C. Bennett, H. Abbasi, P.-T. Bremer, R. Grout, A. Gyulassy, T.
Jin, S. Klasky, H. Kolla, M. Parashar, V. Pascucci, P. Pebay, D.
Thompson, H. Yu, F. Zhang, and J. Chen, “Combining in-situ and
in-transit processing to enable extreme-scale scientific analysis,”
in Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., 2012,
p- 49.

S. Deerwester, S. Dumas, G. Furnas, T. Landauer, and R.
Harsman, “Indexing by latent semantic analysis,”]. Amer. Soc. Inf.
Sci., vol. 41, pp. 391-407, 1990.

C. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala,
“Latent semantic indexing: A probabilistic analysis,” J. Comput.
Syst. Sci., vol. 61, no. 2, pp. 217-235, 2000.

S. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,”
in Proc. 7th USENIX Conf. Syst. Design Implementation, 2006,
pp- 307-320.

C. Maltzahn, E. Molina-Estolano, A. Khurana, A. J. Nelson, S. A.
Brandt, and S. Weil, “Ceph as a scalable alternative to the hadoop
distributed file system,” ;login: USENIX Mag., vol. 35, no. 4,
pp- 38-49, Aug. 2010.

J. Chou, K. Wu, O. Rubel, M. Howison, J. Qiang, Prabhat, B.
Austin, E. W. Bethel, R. D. Ryne, and A. Shoshani, “Parallel index
and query for large scale data analysis,” in Proc. Int. Conf. High
Perform. Comput., Netw., Storage Anal., 2011, p. 30.

Y. Hua, B. Xiao, B. Veeravalli, and D. Feng, “Locality-sensitive
bloom filter for approximate membership query,” IEEE Trans.
Comput., vol. 61, no. 6, pp. 817-830, Jun. 2012.

J. B. Buck, N. Watkins, J. LeFevre, K. loannidou, C. Maltzahn, N.
Polyzotis, and S. Brandt, “SciHadoop: Array-based query process-
ing in hadoop,” in Proc. Int. Conf. High Perform. Comput., Netw.,
Storage Anal., 2011, p. 66.

B. Zhu, K. Li, and H. Patterson, “Avoiding the disk bottleneck in
the data domain deduplication file system,” in Proc. 7th USENIX
Conf. File Storage Technol., 2008, p. 18.

D. Bhagwat, K. Eshghi, D. Long, and M. Lillibridge, “Extreme bin-
ning: Scalable, parallel deduplication for chunk-based file back-
up,” in Proc. IEEE Symp. Model., Anal. Simul. Comput. Telecommun.
Syst., 2009, pp. 1-9.

[60]

[61]

[62]

[63]

[64]

[65]

1225

W. Xia, H. Jiang, D. Feng, and Y. Hua, “SiLo: A similarity-locality
based near-exact deduplication scheme with low ram overhead
and high throughput,” in Proc. USENIX Conf. USENIX Annu.
Tech. Conf., 2011, pp. 26-28.

W. Dong, F. Douglis, K. Li, H. Patterson, S. Reddy, and P. Shilane,
“Tradeoffs in scalable data routing for deduplication clusters,”
in Proc. 9th USENIX Conf. File Storage Technol., 2011, p. 2.

M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise,
and P. Camble, “Sparse indexing: Large scale, inline deduplica-
tion using sampling and locality,” in Proc. 7th USENIX Conf. File
Storage Technol., 2009, pp. 111-123.

A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-bandwidth
network file system,” in Proc. 18th ACM Symp. Operating Syst.
Principles, 2001, pp. 174-187.

D. Meister, J. Kaiser, A. Brinkmann, T. Cortes, M. Kuhn, and J.
Kunkel, “A study on data deduplication in HPC storage systems,”
in Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., 2012,
p-7.

B. Aggarwal, A. Akella, A. Anand, A. Balachandran, P. Chitnis, C.
Muthukrishnan, R. Ramjee, and G. Varghese, “EndRE: An end-
system redundancy elimination service for enterprises,” in Proc.
7th USENIX Conf. Netw. Syst. Design Implementation, 2010, p. 28.

Yu Hua received the BE and PhD degrees in
computer science from the Wuhan University,
China, in 2001 and 2005, respectively. He is cur-
rently an associate professor at the Huazhong
University of Science and Technology, China. His
research interests include computer architecture,
cloud computing, network storage, and cyber-
physical systems. He has more than 60 papers to
his credit in major journals and international con-
ferences including IEEE Transactions on Com-
puters (TC), IEEE Transactions on Parallel and

Distributed Systems (TPDS), USENIX ATC, USENIX FAST, INFOCOM,
SC, ICDCS, ICPPR, and MASCQOTS. He has been on the organizing and
program committees of multiple international conferences, including
INFOCOM, ICDCS, ICPPR, RTSS, and IWQoS. He is a senior member of
the IEEE and CCF, a member of the ACM, and USENIX.

Hong Jiang received the BSc degree in com-
puter engineering from the Huazhong University
of Science and Technology, Wuhan, China, in
1982, the MASc degree in computer engineering
from the University of Toronto, Toronto, Canada,
in 1987, and the PhD degree in computer science
from the Texas A&M University, College Station,
in 1991. Since August 1991, he has been at the
University of Nebraska-Lincoln (UNL), where he
served as a vice chair of the Department of Com-
puter Science and Engineering (CSE) from 2001

to 2007, and is a professor of CSE. His present research interests
include computer architecture, computer storage systems, and parallel/
distributed computing. He serves as an associate editor of the IEEE
Transactions on Parallel and Distributed Systems. He has more than
180 publications in major journals and international conferences in these
areas. He is a fellow of the IEEE and a member of the ACM and ACM
SIGARCH.

Dan Feng received the BE, ME, and PhD
degrees in computer science and technology
from the Huazhong University of Science and
Technology (HUST), China, in 1991, 1994, and
1997, respectively. She is a professor and vice
dean of the School of Computer Science and
Technology, HUST. Her research interests include
computer architecture, massive storage systems,
and parallel file systems. She has more than 80
publications to her credit in journals and interna-
tional conferences. She is a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

