
Efficiently Detecting Concurrency Bugs in Persistent Memory
Programs

Zhangyu Chen
Huazhong University of Science and Technology

Wuhan, Hubei, China
chenzy@hust.edu.cn

Yu Hua∗

Huazhong University of Science and Technology
Wuhan, Hubei, China
csyhua@hust.edu.cn

Yongle Zhang
Purdue University

West Lafayette, Indiana, USA
yonglezh@purdue.edu

Luochangqi Ding
Huazhong University of Science and Technology

Wuhan, Hubei, China
lcqding@hust.edu.cn

ABSTRACT

Due to the salient DRAM-comparable performance, TB-scale ca-

pacity, and non-volatility, persistent memory (PM) provides new

opportunities for large-scale in-memory computing with instant

crash recovery. However, programming PM systems is error-prone

due to the existence of crash-consistency bugs, which are challeng-

ing to diagnose especially with concurrent programming widely

adopted in PM applications to exploit hardware parallelism. Exist-

ing bug detection tools for DRAM-based concurrency issues cannot

detect PM crash-consistency bugs because they are oblivious to

PM operations and PM consistency. On the other hand, existing

PM-specific debugging tools only focus on sequential PM programs

and cannot effectively detect crash-consistency issues hidden in

concurrent executions.

In order to effectively detect crash-consistency bugs that only

manifest in concurrent executions, we propose PMRace, the first

PM-specific concurrency bug detection tool. We identify and define

two new types of concurrent crash-consistency bugs: PM Inter-

thread Inconsistency and PM Synchronization Inconsistency. In par-

ticular, PMRace adopts PM-aware and coverage-guided fuzz testing

to explore PM program executions. For PM Inter-thread Inconsis-

tency, which denotes the data inconsistency hidden in thread inter-

leavings, PMRace performs PM-aware interleaving exploration and

thread scheduling to drive the execution towards executions that

reveal such inconsistencies. For PM Synchronization Inconsistency

between persisted synchronization variables and program data, PM-

Race identifies the inconsistency during interleaving exploration.

The post-failure validation reduces the false positives that come

from custom crash recovery mechanisms. PMRace has found 14

bugs (10 new bugs) in real-world concurrent PM systems including

PM-version memcached.

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9205-1/22/02. . . $15.00
https://doi.org/10.1145/3503222.3507755

CCS CONCEPTS

· Hardware → Memory and dense storage; · Software and its

engineering→ Software testing and debugging.

KEYWORDS

Persistent Memory, Crash Consistency, Testing, Debugging, Con-

currency

ACM Reference Format:

Zhangyu Chen, Yu Hua, Yongle Zhang, and Luochangqi Ding. 2022. Effi-

ciently Detecting Concurrency Bugs in Persistent Memory Programs. In

Proceedings of the 27th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS ’22), Febru-

ary 28 ś March 4, 2022, Lausanne, Switzerland. ACM, New York, NY, USA,

15 pages. https://doi.org/10.1145/3503222.3507755

1 INTRODUCTION

Persistent Memory (PM) is a technology that provides large-scale

non-volatile memory with DRAM-comparable performance. PM

devices, such as Intel Optane DC PM [9] Ð a real PM product with

up to 512 GB capacity per module, have been available on the

market. Recent research [24, 63] show that PM significantly boosts

the performance of many applications with instant crash recovery.

Programming PM systems is error-prone due to the existence of

crash-consistency bugs [19, 35, 44, 45]. In typical write-back CPU

caches, common PM writes are cached in the volatile CPU caches

but not immediately flushed (persisted) to PM. Moreover, the order

of cache flushes is not guaranteed to respect the PM write order

because of potential reordering in cache eviction. However, PM

data need to remain consistent or can be recovered after system

restarts, called crash consistency. To ensure efficient crash consis-

tency, developers need to insert appropriate cache line flushes (e.g.,

CLWB) and fences (e.g., SFENCE) after PM writes. This programming

practice is error-prone and requires expertise in crash consistency.

Though programmers can utilize the transaction interfaces from

PM libraries, e.g., Persistent Memory Development Kit (PMDK) [11],

such interfaces are typically implemented using write-ahead log-

ging and introduce non-negligible overheads. The misuse of PM

libraries also leads to crash-consistency bugs [44, 45].

Crash-consistency bugs in PM are extremely challenging to di-

agnose, especially for the concurrent PM systems exploiting hard-

ware parallelism [3, 13, 32, 43, 70]. It prevents developers from per-

forming architecture oblivious debugging and forces developers to

873

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3503222.3507755
https://doi.org/10.1145/3503222.3507755

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Zhangyu Chen, Yu Hua, Yongle Zhang, and Luochangqi Ding

lock(&g);

x = A;
unlock(&g);

...

clwb(&x);

sfence;

lock(&g);

y = x;
clwb(&y);

sfence;

Thread‐1 Thread‐2

PM Inter‐thread Inconsistency:
y != x in PM

PM Synchronization Inconsistency:
unreleased lock g in PM

Figure 1: An example of PM concurrency bugs.

consider possible interleavings between cache flushes (persistency

states) and program executions, similar to the way concurrency

bugs [33, 38] force developers to consider possible interleavings

among threads and processes. However, due to the lack of persis-

tency awareness, existing DRAM-based concurrency bug detection

tools cannot find PM-specific crash-consistency bugs involving

thread interleavings.

We refer to concurrency bugs that only occur in PM programs

(not triggered in non-PM programs) as PM concurrency bugs. Many

PM-specific testing tools have been proposed to detect the viola-

tions of crash consistency in PM programs by leveraging various

mechanisms, e.g., programmer-annotated assertions [37], crash-

consistency bug patterns [15, 35, 36], symbolic execution [45],

model checking [20, 29], and likely-correctness conditions with

output equivalence checking [19], but none targets PM concur-

rency bugs. In fact, the concurrency bugs triggered only in specific

interleavings are known to be more difficult to detect [33, 38].

In this paper, we target PM-specific concurrency bugs that have

not been addressed in existing testing tools. In particular, we cate-

gorize PM concurrency bugs into two categories, identify one new

type of inconsistency in each category that lead to PM concurrency

bugs, explore the challenges to detect bugs caused by such incon-

sistencies, and build a fuzz testing tool to effectively identify PM

concurrency bugs.

PM concurrency bugs break PM applications’ crash consistency

guarantees under concurrent executions. According to the types

of broken consistency guarantees, we categorize PM concurrency

bugs into two categories: PM Interleaving Concurrency Bugs happen

when the interleaving of concurrent executions breaks the crash

consistency guarantee on PM application’s data such as program

variables. PM Execution Context Bugs occur when the broken crash

consistence guarantee involves a dynamic instance of concurrent

execution context (e.g., thread state and program data). For instance,

if a lock is acquired before a crash and restored to the locked state

after restarts, the execution context of the corresponding thread

holding the lock should also be recovered to a state consistent with

the acquired lock (immediately before the crash). Otherwise, after

restarts, the unreleased lock causes a hang when threads try to

acquire this lock. For each category, we identify a new type of

inconsistency that could lead to PM concurrency bugs.

PM Inter-thread Inconsistency: We define a program execu-

tion in which one thread makes durable side effects (e.g., writes to

PM/disks) based on non-persisted data written by another thread as

a PM Inter-thread Inconsistency. For example, as shown in Figure 1,

thread-1 writes a value A to a shared variable xwithout immediately

flushing the value to PM (via CLWB and SFENCE). Thread-2 reads

non-persisted value A, writes the read value A to another variable

y, and flushes y to PM. A crash-consistency bug occurs under the

interleaving if a crash occurs after thread-2 flushes y and before

thread-1 flushes x to PM. After recovery, y is not equal to x, thus

causing crash inconsistency.

PM Synchronization Inconsistency: A synchronization vari-

able refers to a piece of shared data, such as a lock and a mutex, that

coordinates the execution of threads. Assuming threads (including

their execution contexts such as program counter and stack) are

not persisted to PM, if synchronization variables are persisted to

PM and recovered after crashes, the inconsistency between syn-

chronization variables and the new threads in the recovered PM

application induces a new type of inconsistency, called PM Synchro-

nization Inconsistency. For example, in Figure 1, if a crash occurs

right after thread-2 gets and persists the lock g, after recovery all

future accesses to variables x and ywill be blocked due to the locked

state of g.

Existing testing tools for sequential PM programs cannot de-

tect PM Inter-thread Inconsistency or PM Synchronization Inconsis-

tency because they do not check cross-thread crash inconsistency in

thread interleavings and ignore the inconsistency between synchro-

nization data and executing threads. Given the previous example,

existing testing tools for persistency checking only automatically

verify whether the writes to x and y are followed by cache flushes in

each thread.Witcher [19] detects ordering violation via dependency

analysis but only focuses on single-threaded PM programs.

We propose PMRace, a PM-aware coverage-guided fuzzer to

efficiently detect consistency bugs for concurrent PM programs.

Our PMRace addresses two main challenges.

False Positives. A false positive refers to the case that an iden-

tified bug is not a true bug. Finding all consistency bugs without

false positives is challenging, since each PM system has application-

specific data structures and unique consistency requirements. More-

over, the recovery mechanism in an application can recover from

an inconsistent state, causing false positives in the detected incon-

sistencies. Output equivalence checking [19] avoids false positives

but at the cost of false negatives (missing true bugs) Ð some im-

plicit crash-consistency bugs that do not affect program’s output,

such as PM leakage and redundant flushes, successfully pass the

output equivalence checking. In order to reduce the false positive

rate of identified inconsistencies without missing true bugs, PM-

Race detects PM inconsistencies using fuzz testing with post-failure

validation. For PM Inter-thread Inconsistency, PMRace instruments

the target application and accurately captures the cross-thread data

inconsistency by identifying reading non-persisted data and the

following durable side effects via taint analysis. In the post-failure

stage, PMRace automatically validates if the detected inconsistent

data and user-annotated synchronization variables for PM Synchro-

nization Inconsistency are correctly recovered to a consistent state.

The detected inconsistencies not fixed by the immediate recovery

code are marked as consistency bugs, and the detailed bug reports

are attached for bug diagnosis.

Exponential Interleaving Search Space. For concurrent pro-

grams, each non-atomic instruction can be a preemption point and

the possible interleavings grow at an exponential rate with respect

874

Efficiently Detecting Concurrency Bugs in Persistent Memory Programs ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

to the number of instructions in the application. Conventional inter-

leaving exploration schemes are unaware of PM characteristics and

cost-inefficient to detect PM-specific concurrency bugs. To acceler-

ate the bug detection, PMRace leverages PM-aware coverage-guided

interleaving exploration. We propose a new coverage metric, PM

alias pair coverage, to record the tested thread interleavings. For

interleaving exploration, PMRace performs PM-aware thread sched-

uling to drive the execution towards reading non-persisted data

by injecting conditional waiting in prioritized preemption points,

which are selected from the shared data accesses to PM.

Though our tool focuses on PM Inter-thread Inconsistency and

PM Synchronization Inconsistency, these two inconsistencies are

representative for PM concurrency bugs: PM Inter-thread Inconsis-

tency represents PM Interleaving Concurrency Bugs and PM Syn-

chronization Inconsistency represents PM Execution Context Bugs.

Moreover, PMRace’s framework is easy-to-use and extensible for

other (concurrency) bug patterns by adding new PM checkers and

interleaving exploration strategies. For instance, the checking for

PM Synchronization Inconsistency can be leveraged to detect other

inconsistencies between unreleased exclusive resources (e.g., sock-

ets) and execution contexts. In the evaluation, we have implemented

a random delay injection scheme using PMRace’s framework for

interleaving exploration in fuzz testing for comparison.

In summary, we have made the following contributions:

• PM Concurrency Bug Patterns. We identify and define

new PM-specific concurrency bug patterns, including PM

Inter-thread Inconsistency and PM Synchronization Inconsis-

tency.

• PM-Aware Coverage-Guided Fuzzing. We design PM

checkers and PM-aware coverage-guided fuzzing in PMRace.

By using the PM-aware interleaving exploration and post-

failure validation, PMRace efficiently identifies PM concur-

rency bugs. To the best of our knowledge, PMRace is the

first testing tool for concurrent PM programs.

• New Bugs. We have implemented PMRace that is used to

test real-world concurrent PM systems. PMRace has found 14

bugs, 10 of which are new bugs. Our source code is available

at https://github.com/yhuacode/pmrace.

2 BACKGROUND AND MOTIVATION

2.1 Crash Consistency in PM Programming

Persistent memory (PM) provides byte-addressability and durability,

thus enabling high performance and instant recovery for many

applications. After memory-mapping, the data in PM can be directly

accessed via byte-grained load/store instructions bypassing page

cache, which delivers DRAM-scale performance [6, 28, 32, 63, 67].

Unlike DRAM, PM data survive power outages due to the inherent

non-volatility of device characteristics (e.g., 3D XPoint [21]).

The non-volatility of PM introduces the crash consistency re-

quirement for programming. Although PM is durable for stored

data, typical CPU caches are volatile. Moreover, the persist order

depends on the eviction order of cache lines (based on cache re-

placement strategies and manual flush operations), which is differ-

ent from the issue order of store instructions. Due to the volatile

CPU caches and write reordering, it is nontrivial to implement effi-

cient and crash-consistent PM programs. Some programs leverage

high-level mechanisms, e.g., logging [28, 67] and Copy-on-Write

(CoW) [43, 70], to enforce crash consistency. To avoid the high

costs in write-ahead logging or CoW, it is possible to use low-level

instructions to explicitly flush cache lines for persistency and insert

memory fences for ordering [13, 32, 43, 70]. For instance, the ISA in

x86 systems [10] provides CLWB and CLFLUSHOPT to flush a cache

line into (persistent) memory and SFENCE to ensure previous store

or flush operations are visible before any store or flush operations

following the SFENCE. Similar flush (e.g., DC CVAP) and fence (e.g.,

DSB) instructions are available in ARM [1, 34]. Alternatively, pro-

grammers can use non-temporal stores to directly write data to PM

bypassing CPU caches [63]. However, it disables the fast caching

in CPU caches and is unsuitable for hot data.

2.2 Fuzz Testing

Fuzzing is a common software testing technique interpreted as the

process of running programs repeatedly with inputs from its gener-

ator. Fuzz testing refers to the use of fuzzing in testing. Each round

of fuzz testing with a generated input is called a fuzz campaign.

The tool for fuzz testing is called a fuzzer. Due to its simplicity and

efficiency, fuzzing has been widely used in the security and system

communities [35, 41, 42, 60]. Leveraging fuzz testing to check the

correctness and efficiency of PM programs is promising to improve

the software quality [35, 45].

2.3 Motivation

2.3.1 Debugging Concurrent PM Programs. Developing correct and

efficient PM applications is hard. The low-level flush and fence

instructions are flexible and efficient, but require the expertise

in PM programming and are prone to cause consistency issues.

Some high-level libraries, e.g., Persistent Memory Development Kit

(PMDK) [11], provide simplified programming interfaces, e.g., trans-

actions. Misunderstanding or misuse of library APIs also induces

inconsistency or performance issues [45].

Existing testing tools for the crash consistency of hard-drive

based file systems are inefficient for PM-based systems. Note that

traditional hard-drive based file systems flush data at block gran-

ularity via only explicit software persistency operations, which

are fundamentally different from the cache line granularity and

hardware-based arbitrary cache eviction in PM [20, 29]. Such dif-

ferences cause numerous states of data and significantly enlarge

the search space of inputs and interleavings for PM programs.

It is important but challenging to identify crash-consistency bugs,

especially for concurrent PM programs. Existing PM-based debug-

ging tools record the PM accesses [36, 37] or track the persistency

states [45] to detect the violation of consistency rules. However,

these debugging tools fail to efficiently detect the bugs in concur-

rent PM programs due to the following two reasons: (1) existing

PM-specific debugging tools do not consider the thread interleav-

ings in concurrent programs, thus overlooking the inconsistency

hidden in specific interleavings and (2) the input space of programs

can be so huge that it is almost impossible to efficiently trigger

bugs using exhaustive testing. We further present an example in

concurrent PM applications and the consequences of inconsistency.

2.3.2 A Real-World Example. This example comes from a new

bug PMRace found in P-CLHT [32], a concurrent chained hash

875

https://github.com/yhuacode/pmrace

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Zhangyu Chen, Yu Hua, Yongle Zhang, and Luochangqi Ding

Thread-1: ht_resize_pes Thread-2: ht_put

/************ clht_lb_res.c@70bf21c ***********/

SWAP_U64(h->ht_off, pmemobj_oid(ht_new).off);

clwb(&h->ht_off); sfence();

 hashtable = clht_ptr_from_off(h->ht_off);

 bin = clht_hash(hashtable, key)

 bucket = clht_ptr_from_off(hashtable->

 table_off) + bin;

 ... // Find an empty slot in the bucket

 bucket->val[j] = val;

 ...

 clwb(&bucket->val[j]); sfence();

 movnt64(&bucket->key[j], key); sfence();

 ...

417

483

489

785

786

488

418

419

KV inserted into a non-persisted table

Thread-1: ht_resize_pes Thread-2: ht_put

/************ clht_lb_res.c@70bf21c ***********/

SWAP_U64(h->ht_off, pmemobj_oid(ht_new).off);

clwb(&h->ht_off); sfence();

 hashtable = clht_ptr_from_off(h->ht_off);

 bin = clht_hash(hashtable, key)

 bucket = clht_ptr_from_off(hashtable->

 table_off) + bin;

 ... // Find an empty slot in the bucket

 bucket->val[j] = val;

 ...

 clwb(&bucket->val[j]); sfence();

 movnt64(&bucket->key[j], key); sfence();

 ...

417

483

489

785

786

488

418

419

KV inserted into a non-persisted table

Figure 2: A PM Interleaving Concurrency Bug in P-CLHT

found by PMRace.

index for PM. If the number of allocated buckets for chained linked

lists exceeds a threshold, P-CLHT is resized by allocating a new

hash table and migrating inserted key-value items to the new table.

For concurrency control, P-CLHT leverages bucket-grained locks

and the search operations are lock-free. While the hash table is

resizing, threads performing write operations on buckets of the

(old) hash table will be blocked or help migrate items until the

resizing completes.

The concurrent execution of resizing and write operations in

specific interleavings leads to potential data loss in P-CLHT. Figure 2

shows a simplified buggy execution of two threads. Specifically,

thread-1 is resizing the table and swapping the global hash table

pointer to a new hash table (line 785). Thread-2 reads the unflushed

table pointer (line 417) ś h->ht_off ś and then inserts a key-value

item into the new table (lines 483-489, movnt64 denotes a non-

temporal store). If a crash occurs before flushing the table pointer

(line 786), the table is recovered to the old version in PM and the

new item inserted by thread-2 is lost. Note that the acquisition of a

bucket lock for thread-2’s insertion is not blocked by resizing, since

the bucket and its lock come from the new hash table.

For existing PM-specific debugging tools, it is hard to detect the

consistency issue in Figure 2 due to the unawareness of reading

non-persisted data hidden in interleavings. Some designs check if

PM writes are persisted at the end of functions [45] or by manually

annotated checkers [37] to avoidmissing flushes or fences. However,

for the execution of thread-1 in Figure 2, the update of table pointer

is followed by CLWB and SFENCE, which would successfully pass the

checking formissing persistency operations, causing false negatives.

Some schemes [35, 36], including the testing tool in RECIPE [32],

inject crashes before persistency instructions and check the crash

consistency. However, these tools require expertise for the accurate

injection of crashes. Moreover, even if the crash point is found, these

tools do not explore interleavings and cannot detect the cross-thread

crash-consistency issue hidden in the buggy interleaving shown in

Figure 2. In summary, detecting such PM concurrency bugs requires

interleaving exploration to find buggy interleavings and reports

of real data inconsistencies (e.g., inserting key-value items based

on the unflushed table pointer) to support bug diagnosis and fix.

The observation of new PM concurrency bugs and requirements

for bug detection motivate our PMRace.

3 PM CONCURRENCY BUG PATTERNS

This section provides the assumptions and definitions of our PM

concurrency bug patterns (ğ3.1) and revisits the P-CLHT example

based on the definitions (ğ3.2).

3.1 Assumptions and Definitions

We assume that a system crash renders all transient states of all

threads/processes lost [23]. This failure model of PM is based on

the assumption that CPU registers and caches are volatile, which is

commonly used in real hardware (e.g., Intel Optane PM with asyn-

chronous DRAM refresh (ADR) [24, 63]), computer systems [28, 32,

67, 70], and PM-specific testing tools [15, 19, 35, 45]. Enhancing

CPU caches with durability is possible but requires hardware mod-

ifications [1, 68] or additional intel-specific extended ADR (eADR)

support [50], which are not necessary for PM programming (refer

to ğ6.6 for more discussions about eADR). Hence, in the context

of this paper, following previous work [15, 19, 20, 35ś37, 45], we

assume that CPU caches are not included in the persistent domain.

We further provide complete definitions of the PM-specific con-

currency bugs discussed in this work.We first define PM Inter-thread

Inconsistency Candidate.

Definition 1. A PM Inter-thread Inconsistency Candidate

occurs, when one thread reads non-persisted data written by other

threads.

A PM Inter-thread Inconsistency Candidate occurs because, for

store instructions, the visibility of data in cache does not guarantee

the persistency in the PM. The mismatch between the points of

visibility and persistency causes undetermined behaviors.

Note that PM Inter-thread Inconsistency Candidates can be bug-

free. For example, if a system crashes just after a thread reads

non-persisted data, the program will terminate immediately and

the reading will not introduce any observable impacts after reboot-

ing. Hence, we call cross-thread reading non-persisted data as a

candidate for inconsistency.We use the definition of PM Inter-thread

Inconsistency to refine this pattern.

Definition 2. A PM Inter-thread Inconsistency is one PM

Inter-thread Inconsistency Candidate that has durable side effects

based on the non-persisted data.

In Definition 2, durable side effects (side effects [56] + persistency)

refer to actions durably changing program states, e.g., writing to

PM (except the dependent non-persisted data), writing to disks, and

sharing information with other programs. The inconsistency stems

from the mismatch between the durable side effects and correspond-

ing old dependent data in PM. Specifically, while the durable effects

indicate the completion of previous operations, the dependent non-

persisted write is lost upon a crash, thus causing data inconsistency.

A verified PM Inter-thread Inconsistency (requiring programmer’s

efforts) is classified as a PM Interleaving Concurrency Bug.

PM Inter-thread Inconsistency Candidate and PM Inter-thread In-

consistency have their sequential variants. Specifically, we define a

program execution in which one thread reads non-persisted data

from its previous PM writes as a PM Intra-thread Inconsistency Can-

didate. If the thread further makes durable side effects based on

non-persisted read data, we refer to such case as a PM Intra-thread

Inconsistency.

876

Efficiently Detecting Concurrency Bugs in Persistent Memory Programs ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

Cache

PM

store ht_off

load ht_off store val[j] clwb &val[j]

clwb &ht_off

KV

Thread‐1

Thread‐2

KV

Point of Visibility

Point of Persistency

movnt64 &key[j]

ht_off

ht_off’

: PM Inter‐thread Inconsistency Candidate : PM Inter‐thread Inconsistency

Figure 3: The timeline and data states of the P-CLHT exam-

ple shown in Figure 2. (SFENCE instructions after CLWB and

movnt64 are not shown for clearness)

Definition 3. A PM Synchronization Inconsistency occurs,

when the synchronization data for concurrency control and the PM

application’s execution context are not in a consistent state after it

restarts.

If synchronization data such as locks and conditional variables

are persisted to PM and restored after a crash, the execution con-

text of the corresponding threads should be persisted and restored.

Otherwise, if threads are reconstructed after restarts, the restored

synchronization data will block the program execution. This pattern

is also applied to the inconsistencies from exclusive resources, such

as sockets. Similar to PM Inter-thread Inconsistency, the confirmed

harmful PM Synchronization Inconsistencies belong to PM Execution

Context Bugs.

3.2 Revisiting the P-CLHT Example

Based on previous definitions, we revisit the P-CLHT example. As

shown in Figure 3, thread-2 reads the non-persisted table pointer

stored by thread-1 in the CPU cache (i.e., ℎ𝑡_𝑜 𝑓 𝑓 ′), thereby causing

a PM Inter-thread Inconsistency Candidate. When thread-2 writes

a new key-value item into PM based on the non-persisted table

pointer, a PM Inter-thread Inconsistency occurs. A system failure

after persisting the item and before the persistency of the new

table pointer (i.e., ℎ𝑡_𝑜 𝑓 𝑓 ′) causes data loss: we cannot access the

inserted item (i.e., 𝐾𝑉) via the recovered table pointer (i.e., ℎ𝑡_𝑜 𝑓 𝑓)

in PM.

4 THE PMRACE DESIGN

PMRace is a PM-specific fuzzer to find PM concurrency bugs. To

efficiently and accurately detect such bugs, there are three main

problems: (1) How to efficiently explore interleavings and find the

buggy interleavings causing PM concurrency bugs? (2) For each fuzz

campaign with an interleaving, how to accurately detect possible PM

concurrency bugs? (3) How to reduce the false positives due to custom

recovery mechanisms?

We present the overview of PMRace (ğ4.1) and the main com-

ponents in PMRace to address the above problems: PM-aware

coverage-guided fuzzing to explore interleavings (ğ4.2), PM check-

ers to detect inconsistencies (ğ4.3), and a post-failure validation

mechanism to reduce false positives (ğ4.4). We introduce PMRace’s

input generator for high-quality seeds (ğ4.5).

PM Interleaving
Exploration

PM Checkers

PM Input
Generator

Post‐Failure
Validation

Instrumentation

Bug reports

Coverage feedback

1 3

2 5 6

4

Figure 4: The PMRace overview.

4.1 Overview

PMRace is a PM-aware coverage-guided fuzzer to detect PM concur-

rency bugs. Figure 4 shows an overview of PMRace. Before the fuzz

testing, the program needs to be instrumented by the LLVM [30]

pass from PMRace (step 1). By using the instrumented program and

generated inputs from PMRace’s operation mutator (step 2), the in-

terleaving exploration starts. PMRace leverages biased exploration

strategies towards read-after-write PM accesses (step 3). In each

execution, our PM checkers detect the reading of non-persisted

data (i.e., PM Inter-thread Inconsistency Candidate) and if there are

any durable side effects based on the non-persisted data (i.e., PM

Inter-thread Inconsistency). The changes of user-annotated synchro-

nization variables in PM are recorded as PM Synchronization Incon-

sistency (step 4). The results and coverage improvement from PM

checkers are used as feedback to guide future interleaving explo-

ration (step 5). In the post-failure stage, PMRace verifies whether

any durable side effects or modified synchronization variables are

recovered to a consistent state. If so, the detected inconsistency

is considered as a false positive; otherwise, PMRace generates a

detailed bug report with stack traces and corresponding program

inputs to facilitate bug diagnosis (step 6).

4.2 PM-Aware Coverage-Guided Fuzzing

4.2.1 PMAlias Pair Coverage. Existing coveragemetrics are unsuit-

able for the inconsistency detection. The reason is that conventional

branch coverage (the coverage of explored code branches) [40, 59]

and recent PM path (PM-specific branch coverage) [35] do not con-

sider the interleavings of executions. Recent work proposes alias

coverage [60], a metric for the coverage of instructions accessing

the same memory address, for concurrent programs. However, alias

coverage is insensitive to the persistency states of memory, thus

being inefficient for crash-consistency bugs.

PMRace defines a newmetric used for the coverage of PM-related

interleavings, called PM alias pair coverage (or PM alias coverage).

A PM access to address 𝑥 is identified by (𝐼𝑥 , 𝑃𝑥 ,𝑇𝑥), in which 𝐼𝑥 ,

𝑃𝑥 , and 𝑇𝑥 respectively denote the instruction ID (a unique integer

assigned in PMRace’s compiler pass), the persistency state of data,

and the thread ID. A PM alias instruction pair (or PM alias pair) refers

to two back-to-back PM accesses to the same address by different

threads. For example, two back-to-back PM accesses are a PM alias

pair, denoted by ⟨(𝐼𝑥 , 𝑃𝑥 ,𝑇𝑥), (𝐼𝑦, 𝑃𝑦,𝑇𝑦)⟩, iff 𝑥 = 𝑦
∧
𝑇𝑥 ≠ 𝑇𝑦 .

PMRace maintains a bitmap in shared memory for the coverage of

PM alias pairs (i.e., PM alias coverage).

4.2.2 PM-Aware Interleaving Exploration. Existing interleaving ex-

ploration strategies, e.g., enumerating thread interleavings [18, 25]

and injecting delays at runtime [33, 47], do not consider the per-

sistency of PM and become inefficient for the detection of PM

877

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Zhangyu Chen, Yu Hua, Yongle Zhang, and Luochangqi Ding

store &x, A;
hook_store(&x);

unlock(&g);

...

cond_signal(&m);

hook_flush(&x);

clwb(&x);

lock(&g);

cond_wait(&m);

hook_load(&x);

load &x;

Thread‐1 Thread‐2

Figure 5: An example of injecting cond_wait and cond_signal

to trigger inconsistency candidates in Figure 1 (Functions

with łhook_*ž indicate instrumented calls).

concurrency bugs. Unlike them, the PM-aware exploration strat-

egy in PMRace selects and prioritizes the interleavings that may

introduce inconsistency. The idea in the PM-aware interleaving

exploration is to select some preemption points to drive programs

towards reading non-persisted data.

There are three principles for the preemption point selection to

debug a PM program: (1) Target PM accesses; (2) Focus on accesses

to global PM data visible in the program, called shared data accesses;

(3) Prioritize frequent shared data access instructions. The former

two principles are straightforward, since we are interested in mem-

ory accesses that lead to possible inconsistencies. The third point

stresses the checking on hot data in concurrent programs due to

the high inconsistency possibility from frequent context switches.

In general, the shared data are frequently accessed and often be-

come the critical data (e.g., metadata) in the program, where the

non-persistency tends to cause crash inconsistencies. In fact, the

priority of preemption point is possible to be customized: different

strategies for the priority can be implemented and integrated into

PMRace’s framework.

PMRace maintains a priority queue of PM shared data access

instructions grouped by addresses. Each entry of the priority queue

contains an address with corresponding load and store instructions.

To explore a new interleaving, PMRace fetches one entry that has

not been explored from the priority queue. Given one entry from

the priority queue, PMRace tries to schedule the program execution

towards reading non-persisted data, i.e., PM Inter-thread Inconsis-

tency Candidates. The load instructions from the selected entry are

called sync points. Specifically, PMRace inserts conditional waits (i.e.,

cond_wait) before these sync points; the signals of conditions (i.e.,

cond_signal) are triggered after corresponding store instructions

from the selected entry but before the flush operations for the writ-

ten data. The cond_signal will stall the writer thread for a while

(a configurable parameter) to execute the load instructions in corre-

sponding reader threads. Figure 5 presents an example of injecting

cond_wait and cond_signal to trigger reading non-persisted x in

thread-2.

The proposed thread scheduling is effective for simple cases,

which however fails in a real-world system with complicated syn-

chronization for concurrency control due to the following pitfalls.

Pitfall-1: The frequent execution of sync points causes a long

testing time due to the stall for each sync point. In order to mitigate

the overheads of conditional waiting, PMRace disables cond_wait

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

m = 0; // A condition variable

/* Before load instruction: wait for m */

void cond_wait(&m) {

 if (sync.is_enabled && !t->bypass_sync) {

 if (sync.skip == 0) {

 while (!atomic_load(&m)) {

 usleep(100);

 if (/* Some threads block */) {

 sync.is_enabled = 0;

 break;

 }

 if (/* All threads block */) {

 // Thread t is the privileged

 t->bypass_sync = 1;

 break;

 }

 }

 }

 else {

 sync.skip--;

 }

 }

}

/* After store instruction: signal m */

void cond_signal(&m) {

 atomic_store(&m, 1);

 usleep(writerWaiting); // Wait for readers

}

Figure 6: The pseudo-code of the synchronization algorithm.

after receiving a signal. Specifically, as shown in Figure 6, the con-

dition variable łmž is set to 1 in cond_signal (line 28), which will

disable the while loop and usleep in cond_wait (lines 7-18) in

current fuzz campaign, thus decreasing the testing time.

Pitfall-2: The system hangs because all threads are blocked

(based on the number of executed while loops in lines 7-18) on sync

points waiting for a signal from a writer thread that does not exist.

A typical example is concurrent łht_putž in P-CLHT for inserting

key-value items: all threads are executing łht_putž operations and

waiting for the signal from the update of the table pointer. In such

cases, as shown in Figure 6, PMRace randomly selects a thread as a

privileged one (line 15), which receives the permission to bypass

all cond_wait (line 5). It is possible that the randomly selected

privileged thread does not execute corresponding store instruc-

tions and cond_signal. However, since we select the sync points

from priority queue, it is of high possibility to encounter the cor-

responding store instructions in current fuzz campaign. Moreover,

with enough fuzz campaigns, the random selection of privileged

threads can cover the cases that the thread to execute cond_signal

is selected. In the P-CLHT example, by using enough fuzz cam-

paigns, it is expected that the selected privileged thread from four

worker threads (see ğ6.1 for workload configurations) performs re-

sizing, updates the table pointer, and sends a signal to other threads

via cond_signal. Otherwise, stalled reader threads still wait for

unavailable signals, which falls into the following case.

Pitfall-3: The system hangs because some threads are blocked

on sync points. One reason for such hangs is that the privileged

thread does not execute corresponding store instructions. Another

reason is unnecessary blocking in the initialization or cleanup

878

Efficiently Detecting Concurrency Bugs in Persistent Memory Programs ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

stages. For such cases, when PMRace detects hangs in a thread

due to cond_wait, it disables current sync point and stops waiting

(line 10), as shown in Figure 6. At the end of this fuzz campaign,

PMRace increases and saves the initial skip of all disabled sync

points (is_enabled = 0), which indicates the execution times of

cond_wait to be skipped in future (lines 6 and 21). Specifically, in

the following fuzz campaigns using the same seed, PMRace loads

and enables the saved sync point info, thus avoiding unnecessary

blocking on the same sync point (lines 6 and 21).

The pseudo-code of the synchronization algorithm to trigger PM

Inter-thread Inconsistency Candidates is presented in Figure 6. Hangs

for some or all threads are handled in cond_wait. Note that the

waiting time for store instructions (i.e., writerWaiting) depends

on the execution of load instructions and durable side effects, which

is supposed to be short. Hence, we set writerWaiting to the typical

total execution time of the original program.

4.2.3 Coverage-Guided Fuzzing. PMRace leverages PM alias cov-

erage and conventional branch coverage as the feedback to guide

future fuzzing progress. If the coverages do not increase, PMRace

tries the following three tiers of exploration.

• Execution tier: The program is executed multiple times before

switching to another interleaving. For each execution, PMRace

records coverages and updates the priority queue of shared data

accesses. All detected PM Inter- and Intra- thread Inconsistency

(Candidates) are saved.

• Interleaving tier: When repeated executions do not improve

the coverages, we try another interleaving. For each interleaving,

PMRace fetches an entry from the priority queue for sync points

to detect inconsistencies.

• Seed tier: If fuzz campaigns with different executions and inter-

leavings still do not increase the coverage, PMRace switches to

another seed and reconstructs the priority queue.

4.3 PM Inconsistency Checkers

The runtime PM checkers in PMRace detect the inconsistency cases

defined in ğ3.1. Specifically, PMRace instruments memory accesses

(e.g., load/store instructions, non-temporal stores) and persistency

instructions (e.g., CLWB) in PM programs. When encountering these

instrumented instructions, corresponding hooked functions for

checkers are invoked. We further present PMRace’s checkers for

PM concurrency bug patterns.

PM Inter-thread Inconsistency Candidate. In order to iden-

tify reading non-persisted data as inconsistency candidates (Defini-

tion 1), PMRace maintains a hash table to record the persistency

states of PM data during runtime. Specifically, for a PM store in-

struction, PMRace finds its corresponding entry via the store ad-

dress, updates the persistency state to PM_DIRTY (PM_CLEAN for

non-temporal stores), and records current thread ID. The flush op-

erations update the persistency states of corresponding regions to

PM_CLEAN, indicating that previous PM writes are persisted. For

a PM load instruction, if corresponding PM state is PM_DIRTY, an

inconsistency candidate (i.e., reading non-persisted data) occurs.

PMRace further checks the thread ID of previous store instruction

for the address. If previous writer thread ID is different from current

reader thread ID, it is a PM Inter-thread Inconsistency Candidate;

otherwise, a PM Intra-thread Inconsistency Candidate occurs.

PM Inter-thread Inconsistency. To confirm if an inconsistency

candidate causes crash-consistency issues, PMRace performs data

flow analysis to detect durable side effects of reading non-persisted

data. PMRace leverages dynamic taint analysis [46, 53] to check if

there is data flow between previous inconsistency candidates and

current PM writes. Specifically, there are two classes of data flows

in PM writes that induce data inconsistencies: (1) The contents to be

written to PM are based on non-persisted data. Such inconsistencies

would cause unexpected data contents. (2) The address of a PM store

instruction is based on non-persisted data. In this case, the data layout

is inconsistent and may lead to data loss, e.g., the P-CLHT example

in Figure 2. If one of the two types of data flow exists, PMRace

confirms the durable side effects and reports a PM Inter-thread (or

Intra-thread) Inconsistency.

PM Synchronization Inconsistency. Since thread contexts

(e.g., registers and stack) are usually reconstructed, PMRace de-

tects the updates of annotated synchronization variables in PM and

marks each update as a PM Synchronization Inconsistency. Devel-

opers need to annotate synchronization data and their expected

initial values via lightweight annotations (ğ5). Despite the numer-

ous updates of PM synchronization data (e.g., locking/unlocking),

PMRace checks each type of update operation for only one time,

which significantly reduces the debugging overheads.

Implementing other PM checkers is possible by using PMRace’s

framework. For instance, unnecessary persistency operations can be

detected by a checker in the hooked function for cache line flushes.

Specifically, the checker needs to check if all data to be persisted

exist in PM_CLEAN state via PMRace’s hash table for persistency

states. Another example is to check if PM data modified in a branch

(e.g., basicblock in LLVM [30]) are persisted before the branch exits

for the missing of flushes. We focus on PM concurrency bugs and

leave other checkers for the future work.

4.4 Post-Failure Validation

Due to the existence of custom recovery mechanisms in some

PM systems, some inconsistency issues are automatically fixed

in the post-failure recovery stage and are benign. For example,

memcached-pmem [13] rebuilds the LRU cache and the hash table

from persistent slabs (i.e., persistent storage of inserted key-value

items), which implicitly fixes some of the data inconsistencies found

by PMRace and recent work [15] (e.g., inconsistencies limited to the

łnextž and łprevž fields of items are automatically fixed due to the

index rebuilding), thus causing false positives. Another example

is undo logging [11, 62] based transactions (e.g., PMDK), which

copy old consistent data via write-ahead logging before transaction

executions. During the recovery of uncommitted transactions, the

data modified in transactions are reverted to the old consistent

version from previous logs. Note that the undo logging based trans-

actions in PMDK cannot avoid concurrency bugs. Unlike legacy

transactions, PMDK’s transactions do not guarantee the isolation

for concurrent programs: the PM writes inside transactions are

immediately visible to other threads [51].

Figure 7 shows an example of benign PM Intra-thread Incon-

sistencies detected by PMRace in clevel hashing [3], which is a

lock-free PM hash index. During the construction of hash index, a

new level object is allocated and assigned to a non-persisted level

879

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Zhangyu Chen, Yu Hua, Yongle Zhang, and Luochangqi Ding

159

160

162

165

166

/*********** clevel_hash_ycsb.cpp@cae716f **********/

{

 transaction::manual tx(pop);

 proot->cons = make_persistent<clevel_hash>();

 ...

 transaction::commit();

}

/************* clevel_hash.hpp@cae716f *************/

clevel_hash() : meta(make_persistent<level_meta>()) {

 // Read non-persisted meta

 m = convert_to_ptr(meta, my_pool_uuid);

 // Allocate a new level based on meta

 m->first_level = make_persistent<level_bucket>();

 ...

}

278

294

300

320

Failure-atomic region

159

160

162

165

166

/*********** clevel_hash_ycsb.cpp@cae716f **********/

{

 transaction::manual tx(pop);

 proot->cons = make_persistent<clevel_hash>();

 ...

 transaction::commit();

}

/************* clevel_hash.hpp@cae716f *************/

clevel_hash() : meta(make_persistent<level_meta>()) {

 // Read non-persisted meta

 m = convert_to_ptr(meta, my_pool_uuid);

 // Allocate a new level based on meta

 m->first_level = make_persistent<level_bucket>();

 ...

}

278

294

300

320

Failure-atomic region

Figure 7: A benign inconsistency example in clevel hashing.

pointer (line 300). However, this durable side effect of PM allocation

does not lead to harmful impacts (e.g., PM leakage), since the outer

PMDK transaction ensures the index construction is performed in

an atomic manner (lines 160-165). If a crash occurs in this uncom-

mitted transaction, the inconsistency will be fixed via rebuilding

the index.

In order to reduce false positives due to application-specific re-

covery mechanisms, we propose a post-failure validation scheme

to verify if detected inconsistencies are fixed in the recovery stage.

Specifically, once an inconsistency is found in the pre-failure stage,

PMRace duplicates the mmapped PM pool file at this crash point

and records the address of durable side effects (PM Inter-thread

Inconsistency) or the PM updates of synchronization variables (PM

Synchronization Inconsistency). Note that the addresses are saved

as offsets within the pool to avoid the effects of address space lay-

out randomization (ASLR) [57]. PMRace leverages different mecha-

nisms to automatically identify inconsistencies fixed in the recovery

code (i.e., false positives).

(1) For each PM Inter-thread Inconsistency, the idea behind our

automatic validation is to check if all inconsistent data are over-

written during the recovery stage. In the post-failure stage, PMRace

restarts the tested program and mmaps the duplicated pool file. If

all recorded inconsistent PM writes (durable side effects) are over-

written, PMRace marks the inconsistency as a false positive. This

mechanism is also used for the validation of PM Intra-thread Incon-

sistency. The benign inconsistency shown in Figure 7 is automatic

identified as a false positive via post-failure validation due to the

overwriting of m->first_level during recovery.

(2) For each PM Synchronization Inconsistency, in the post-failure

stage, PMRace checks if the detected synchronization variable up-

date is correctly restored to the expected value, which comes from

programmer’s annotations (ğ5). If the synchronization variable

is correctly reinitialized, corresponding synchronization inconsis-

tency is benign.

PMRace’s post-failure validation does not filter all false positives.

The reason is that some PM programs leverage application-specific

mechanisms, such as lazy recovery [22], checksums [13], and redo

logging [52], to tolerate inconsistencies. For instance, many incon-

sistencies in FAST-FAIR B+-Tree [22] are lazily fixed upon future

accesses to related keys. Hence, PMRace’s validation during the

immediate recovery stage misses these lazily recovered inconsis-

tencies. For checksums and redo logging, the durable side effects

occur in crash-consistent regions and are recovered by disregard-

ing inconsistent contents with mismatched checksums or uncom-

mitted redo logs. To address the missed false positive, PMRace

provides a whitelist for developers to specify the benign reading

of non-persisted data, e.g., crash-consistent reading protected by

redo logging and checksums, by listing related locations of codes

in the whitelist. When PMRace finds the stack trace of a detected

inconsistency contains codes in the whitelist, PMRace marks the

inconsistency to be safe and does not report this inconsistency as

a bug. For example, the default whitelist of PMRace includes the

transactional allocations in PMDK (redo logging) [52]. Hence, the

PMDK awareness in the default whitelist transparently reduces the

false positives for PMDK-based applications.

4.5 PM Input Generator

Unlike the default binary transformation based mutator [40] used

in recent PM-specific fuzzer [35], our PMRace proposes an oper-

ation mutator to efficiently generate valid structured inputs that

conform to the syntactic and semantic requirements of program

interfaces. Our operation mutator originates from the fact that ex-

isting PM-based programs are usually in-memory applications with

interactive APIs, e.g., key-value stores and indexes, which require

structured inputs to be parsed by these programs. PMRace’s input

generator allows developers to provide operation rules (in the form

of C code) based on existing examples. By efficiently exploiting

these application-specific knowledge on inputs, PMRace generates

high-quality seeds containing operation sequences for concurrent

programs to efficiently achieve high coverage in łdeeperž code

(behind the input parsing stage).

Specifically, PMRace implements the custom mutations used

by AFL++ [40]. Inspired by Krace [60], PMRace provides several

evolution strategies to mutate existing seeds:

• Mutation: updating an arbitrary parameter of a random opera-

tion to another valid value.

• Addition: adding an operation at an arbitrary position.

• Deletion: deleting an arbitrary operation.

• Shuffling: shuffling operations and distributing to threads.

• Merging: merging two existing seeds into a new seed.

Different from Krace, PMRace prioritizes similar keys as opera-

tion parameters to increase the shared memory accesses and PM

alias pairs. Moreover, if theses evolution strategies do not improve

the branch coverage, our mutator tries to populate the PM sys-

tems by generating lots of łinsertž operations with various keys.

The load phase with many insertions effectively triggers resizing

mechanisms in PM key-value stores and indexes. Based on these

mutation strategies and awareness of PM system properties, PM-

Race efficiently generates high-quality seeds to improve the branch

coverage.

To guarantee the speed of seed generation, the PM input gen-

erator is decoupled with the interleaving exploration so that the

separate mutator runs fast without exploring interleavings. In the

meantime, each round of execution in input generation and inter-

leaving exploration begins with an empty PM pool to avoid the

880

Efficiently Detecting Concurrency Bugs in Persistent Memory Programs ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

side effects of previous PM pools. Reusing an old PM pool compli-

cates the bug diagnosis, especially for concurrent programs. This

problem is also studied in the łagingž OS problem for kernel bug

detection [60, 61].

5 SYSTEM IMPLEMENTATIONS

We have implemented all components of PMRace. The compiler

pass for instrumentation is based on LLVM-11 [30]. The PM check-

ers are implemented in a dynamic runtime library and the data

flow analysis is based on the dynamic taint analysis from LLVM’s

DataFlowSanitizer [58].We implement PMRace’s operationmutator

based on the AFL++ framework (v3.01) [40]. The main components

of PMRace are connected by using Python scripts.

PMAwareness. In order to distinguish PM accesses fromDRAM

accesses, PMRace instruments the calls to memory-mapping related

interfaces to obtain the mapped memory regions. If a memory-

mapped pool path is on PM devices, the mapped memory is PM. In

addition to the POSIX mmap(), PMRace also instruments the pool

management APIs in PMDK. Hence, programs using raw mmap()

or PMDK’s API are both supported in PMRace.

Annotations for Synchronization Variables. An annotation

interface, pm_sync_var_hint(size, init_val), is provided in

PMRace, in which łsizež denotes the synchronization variable size

and łinit_valž denotes the expected reinitialized value after recovery.

Essentially, this annotation interface is a wrapped macro based on

Clang’s __attribute__((annotate())) syntax. Since developers

only need to annotate the definitions of synchronization variables

or the fields in declarations, few annotations are required.

In-Memory Checkpoints for Input Generation. Due to the

overheads of loading a PMpool file and pool initialization in PMDK’s

libpmemobj, each fuzz campaign spends lots of time to initialize

the PM pool. PMRace leverages the fork server from AFL++ [40]

with in-memory checkpoints for PM pools. After a PM pool is ini-

tialized, PMRace maintains only one in-memory copy of the pool

and starts the fork server. Each forked fuzz campaign begins

with a copy of the initialized pool, thus avoiding expensive initial-

ization overheads. Note that these checkpoints should not be used

for low-level PM libraries (e.g., libpmem) or mechanisms (ğ6.5).

Concurrent Fuzzing. PMRace supports concurrent fuzzing to

accelerate the bug detection. Themain fuzzing process starts several

worker processes and dispatches seeds to these worker processes,

thus enabling concurrent fuzz campaigns with low contention.

6 EVALUATION

6.1 Experimental Setup

Our experiments run on a 2-socket server with two Intel Xeon Gold

6230R CPUs. Each CPU has 26 cores and 52 threads. This system

contains 1.5 TB Intel Optane Persistent Memory 100 Series (128 GB

× 12 in App Direct mode [11]) and 192 GB DRAM (16 GB × 12). Our

machine runs on Ubuntu 18.04 with Linux kernel version 5.4.0.

We have tested existing open-source concurrent PM systems

based on PMDK (v1.9), including hashing-based indexes (P-CLHT

from RECIPE [32], clevel hashing [3], CCEH [43]), a tree-based in-

dex (FAST-FAIR B+-Tree [22]), and a key-value store (memcached-

pmem [13]). The details of the evaluated PM systems are shown in

Table 1. Note that during our evaluation of RECIPE we only tested

Table 1: The concurrent PM programs tested by PMRace.

Systems Version Scope Concurrency

P-CLHT [32] 70bf21c Static hashing Lock-based

clevel hashing [3] cae716f PM-optimized hashing Lock-free

CCEH [43] 46771e3 Extendible hashing Lock-based

FAST-FAIR [22] 0f047e8 B+-Tree Lock-based

memcached-pmem [13] 8f121f6 Key-value store Lock-based

P-CLHT. The reason is that the implementations of other indexes in

the open-source RECIPE project were based on łlibvmmallocž [12],

in which the allocator did not ensure crash consistency [31]. Instead

of the original level hashing [69] implemented on simulated PM,

we tested an optimized PMDK-based scheme (i.e., clevel hashing).

For each PM system, we have implemented a driver program to

concurrently issue requests via the system interfaces. The number

of threads in the driver program is set to 4, since 96% of traditional

concurrency bugs on DRAM are guaranteed to manifest using 2

threads [38]. To accelerate the bug detection, PMRace runs concur-

rently using 13 worker processes by default (ğ5).

We summarize the bugs found by PMRace (ğ6.2), demonstrate

the accuracy including the false positive reduction (ğ6.3), and quan-

titatively evaluate the PM-aware exploration strategies (ğ6.4) and

the input generator in PMRace (ğ6.5). Due to the lack of debugging

tools for PM concurrent bugs, we compare the following schemes

to evaluate the interleaving exploration.

• PMRace is our proposed scheme to detect crash inconsistencies

in concurrent PM programs.

• Delay Inj (Delay Injection) is implemented in PMRace’s frame-

work but using delay injection [33, 47, 60] for interleaving ex-

ploration. Before each PM access, we inject a random delay (1

millisecond at most) following a uniform distribution.

6.2 The Bugs Found by PMRace

As shown in Table 2, we have found 14 unique bugs in concurrent

PM systems and 10 bugs are new. A unique bug is a group of bugs

of reading non-persisted data written by the same store instruction

or inconsistencies due to the same synchronization variable type.

For PM concurrency bugs, PMRace has found 10 bugs (6 new bugs).

All bugs in P-CLHT have been confirmed by authors. The details

of bugs are as follows.

PM Concurrency Bugs (PM Inter-thread Inconsistency and PM

Synchronization Inconsistency). In reported PM Inter-thread Incon-

sistencies, we found 8 unique bugs, 4 of which are new bugs. For

P-CLHT, the bug (Bug 1) is inserting items into a non-persisted

new hash table (ğ2.3), causing item loss after restarts. Similar to

P-CLHT, the bug in FAST-FAIR (Bug 8) comes from inserting data

based on a non-persisted node pointer. For memcached-pmem, we

have identified 6 bugs (Bugs 9-14). Specifically, the previous 2 new

bugs (Bugs 9 and 10) write item values based on non-persisted item

values, causing inconsistent data in memcached-pmem. The other 4

bugs (Bugs 11-14) are also reported by recent PMDebugger [15] as

missing flush operations. Unlike PMDebugger, PMRace identified

consequent durable side effects based on unflushed data, indicating

the existence of crash inconsistencies. For instance, though the

łprevž and łnextž fields of items are rebuilt and tolerant to inconsis-

tencies (ğ4.4), the following durable side effects (e.g., łslabs_clsidž

881

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Zhangyu Chen, Yu Hua, Yongle Zhang, and Luochangqi Ding

Table 2: The unique bugs found by PMRace.

łInterž: PM Inter-thread Inconsistency łSyncž: PM Synchronization Inconsistency

łIntraž: PM Intra-thread Inconsistency łOtherž: Bug 4 is an inconsistency candidate and Bug 5 is a DRAM concurrency bug

Systems # Type New Write code Read code Description Impact

P-CLHT

1 Inter ✓ clht_lb_res.c:785 clht_lb_res.c:417 read unflushed table pointer and insert items data loss

2 Sync ✓ clht_lb_res.c:429 do not initialize bucket locks after restarts hang

3 Intra ✓ clht_lb_res.c:789 clht_gc.c:190 read unflushed table pointer and perform GC PM leakage

4 Other ✓ clht_lb_res.c:321 clht_lb_res.c:616 read unflushed keys redundant PM writes

5 Other ✓ clht_lb_res.c:526 do not release bucket locks in update hang

CCEH
6 Sync ✓ CCEH.h:86 do not release segment locks after restarts hang

7 Intra ✓ CCEH.h:165 CCEH.cpp:171 read unflushed capacity and allocate segments PM leakage

FAST-FAIR 8 Inter ✓ btree.h:560 btree.h:876 read unflushed pointer and insert data data loss

memcached-pmem

9 Inter ✓ memcached.c:4292 memcached.c:2805 read unflushed value and write value inconsistent data

10 Inter ✓ memcached.c:4293 memcached.c:2805 read unflushed value and write value inconsistent data

11 Inter ✗ items.c:423 items.c:464 read unflushed "prev" and write "slabs_clsid" inconsistent index

12 Inter ✗ slabs.c:549 slabs.c:412 read unflushed "next" and write "it_flags" or value inconsistent index

13 Inter ✗ items.c:1096 memcached.c:2824 read unflushed "it_flags" and write value inconsistent data

14 Inter ✗ items.c:627 items.c:623 read unflushed "slabs_clsid" and write "slabs_clsid" inconsistent index

Table 3: The results of PM concurrency bug detection.

łInter-Candž: PM Inter-thread Inconsistency Candidate łValidated/Whitelisted FPž: false positives identified by post-failure validation/whitelist

Systems
PM Interleaving Concurrency Bug PM Execution Context Bug

Inter-Cand Inter Validated FP Whitelisted FP Bug Annotation Sync Validated FP Bug

P-CLHT 35 10 0 2 1 4 4 3 1

clevel hashing 6 2 0 2 0 0 0 0 0

CCEH 15 0 0 0 0 2 1 0 1

FAST-FAIR 179 69 3 2 1 0 0 0 0

memcached-pmem 266 79 62 0 6 0 0 0 0

Total 501 160 65 6 8 6 5 3 2

and łit_flagsž fields) survive crashes and lead to possible inconsis-

tent index (Bugs 11 and 12).

In reported PM Synchronization Inconsistency, we found a new

bug in P-CLHT in which persistent bucket locks are not released

after restarts (Bug 2). A similar bug about segment locks is found in

CCEH (Bug 6). After crash recovery, these bugs cause hangs when

accessing corresponding data due to never released locks.

PM Intra-Thread Inconsistency. We have found 2 new bugs

due to PM Intra-Thread Inconsistencies. For P-CLHT, PMRace iden-

tifies the rehashing of items based on non-persisted łtable_newž

field (Bug 3). We further observe that the allocated memory for

łtable_newž leaks after failures. The bug in CCEH is allocating a seg-

ment array based on non-persisted łcapacityž (Bug 7). After restarts,

the łcapacityž is undefined and the allocated segment array may

be leaked. Note that PM leakage is more significant than conven-

tional DRAM leakage, since the leaked PM cannot be automatically

recycled by rebooting due to the non-volatility of PM [5, 14].

Other Bugs. Besides crash-consistency bugs, we have found one

bug of redundant PM writes (Bug 4) and one conventional concur-

rency bug (Bug 5) in P-CLHT. During our testing, PMRace reported

an inconsistency candidate of reading non-persisted buckets and

we further found that the writing of buckets is unnecessary, which

decreases the system performance. The concurrency bug comes

from the missing of unlock in clht_update(), which leads to hang

triggered during the fuzz testing.

6.3 False Positives

In Table 3, we present the results of PM concurrency bug detection

including detected inconsistencies, filtered false positives, found

unique bugs from inconsistencies, and required efforts for annota-

tions. By checking the durable side effects, PMRace prunes 68.5%

PM Inter-thread Inconsistency Candidates. The post-failure valida-

tion filters many false positives (automatically fixed cross-thread

data or synchronization inconsistencies), especially for memcached-

pmem (62 false positives). As a result, the number of remaining

inconsistencies to be checked is often small, e.g., 17 inconsistencies

for memcached-pmem. The only exception is FAST-FAIR, which tol-

erates inconsistencies by using lazy recovery mechanism. PMRace’s

default whitelist covers the transactional allocations in PMDK and

checksum-based crash-consistent operations in memcached-pmem.

Providing more rules in the whitelist about the application-specific

crash-consistency guarantees in the tested programs will further

decrease the false positive rate. Moreover, bugs can be quickly iden-

tified by programmers via PMRace’s detailed reports with stack

traces and corresponding seeds.

In terms of PM Synchronization Inconsistency, five inconsistencies

are detected in P-CLHT and CCEH (other systems do not have

persistent locks). Three benign cases are identified in the post-

failure validation. Considering only 6 annotations are required in

source codes of two PM concurrent programs, the efforts from

programmers for annotations are slight and cost-efficient.

882

Efficiently Detecting Concurrency Bugs in Persistent Memory Programs ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

0

4

8

12

0 1 2 3

N
u

m
 o

f
In

c
o

n
s
is

te
n

c
y

Time (hour)

Delay Inj

PMRace

(a) P-CLHT

0

20

40

60

80

0 1 2 3 4

N
u

m
 o

f
In

c
o

n
s
is

te
n

c
y

Time (hour)

Delay Inj

PMRace

(b) FAST-FAIR

0

20

40

60

80

0 3 6 9 12 15

N
u

m
 o

f
In

c
o

n
s
is

te
n

c
y

Time (hour)

Delay Inj

PMRace

(c) memcached-pmem

Figure 8: The time to identify PM Inter-thread Inconsistency (Each point indicates at least one inconsistency in an execution).

0 1 2 3 4 5 6 7 8

Time (hour)

4000

4100

4200

4300

4400

4500

4600

C
o
d
e
B
ra
n
ch
es

(B
ra
n
ch

C
ov
er
ag

e)

Branch

Branch w/o IE

Branch w/o SE

0

200

400

600

800

1000

1200

P
M

A
li
as

P
ai
rs

(P
M

A
li
as

C
ov
er
ag

e)

PM Alias

PM Alias w/o IE

PM Alias w/o SE

łIEž: interleaving-tier exploration łSEž: seed-tier exploration

Figure 9: The runtime-coverage of PMRace with P-CLHT.

Table 4: The code coverage ofmemcached-pmem commands.

łErrorž: invalid commands łGet*ž: get/bget commands

łUpdate*ž: add/set/replace/prepend/append commands

Schemes Get* Update* incr decr delete Error Total

AFL++ 154 647 132 143 148 707 2116

PMRace 190 902 179 183 166 0 2144

6.4 Exploration Efficiency

Figure 8 shows the time to find PM Inter-thread Inconsistencies in P-

CLHT, FAST-FAIR, and memcached-pmem in the pre-failure stage

(clevel hashing and CCEH are not included because no PM Inter-

leaving Concurrency Bug was found). Due to the PM-aware thread

scheduling, PMRace tries to block the PM read accesses until the

write accesses to the same address occur, thus efficiently trigger-

ing reading non-persisted data (i.e., PM Inter-thread Inconsistency

Candidates) than random delay injection at any PM accesses.

To measure the contribution of each exploration tier in PMRace,

we conduct a case study of the runtime-coverage tradeoffs in P-

CLHT using PMRace (single worker process) without interleaving-

tier (w/o IE) or seed-tier exploration (w/o SE). As shown in Figure 9,

PMRace w/o SE is difficult to improve the coverages, since one seed

does not cover all possible executions. Unlike PMRace w/o IE, the

interleaving-tier exploration in PMRace efficiently improves the

coverages by searching and triggering inconsistency candidates.

Conventional execution-tier exploration is known to be useful for

coverage improvement for non-deterministic interleavings [33, 60].

In summary, all three exploration tiers are important to PMRace.

0

10

20

30

40

F
u
z
z
in

g
 S

p
e
e
d
 (

H
z
)

PMRace w/ CP AFL++ w/ CP
PMRace w/o CP AFL++ w/o CP

Figure 10: The impact of checkpoints (CP) in fuzzing.

6.5 Input Generator Efficiency

Since our operation mutator is based on AFL++ [40], we compare

our mutator with the default mutator of AFL++.

The Improvement on PMRace’s Mutator. AFL-COV [49] is used

to measure the code coverage of random 100 seeds about input

parsing, e.g., the process_command() in memcached-pmem, which

is invoked about 2,100 times for each mutator. As shown in Table 4

(some valid commands are not presented), 1/3 of the commands in

AFL++ are aborted due to invalid command inputs. Compared with

the default mutator of AFL++, PMRace mutates seeds with semantic

knowledge, thus generating high-quality seeds and satisfying the

syntactic checking of program inputs to test łdeeperž code and

improve the code coverage.

The Impact of In-Memory Checkpoints. We measure the aver-

age fuzzing speed of input generators with or without in-memory

checkpoints for pool initialization. As shown in Figure 10, for

all tested workloads except memcached-pmem, both PMRace and

AFL++ benefit from the in-memory checkpoints and respectively

increase the fuzzing speeds by 199% and 65% on average, because

the fuzz testing directly uses in-memory copies of initialized PM

pools instead of re-constructing new ones. However, memcached-

pmem leverages lightweight pmem_map_file, a simple wrapper of

POSIX mmap, from libpmem, avoiding the expensive PM pool initial-

ization in libpmemobj. Hence, we recommend disabling in-memory

checkpoints when testing programs based on libpmem.

6.6 Discussions

Bug Coverage. Since our current implementation of PMRace fo-

cuses on PM concurrency bugs, PMRace does not detect sequential

crash-consistency bugs (e.g., missing flush/fence operations) or tra-

ditional DRAM-based concurrency bugs in PM programs. A recent

work [5] shows that traditional concurrency bugs still occur in

PM programs and can cause persistent consequences Ð restarts do

not solve the faults in PM systems. However, existing debugging

tools have proposed many detection mechanisms for PM sequential

883

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Zhangyu Chen, Yu Hua, Yongle Zhang, and Luochangqi Ding

crash-consistency bugs [15, 19, 36, 45] or DRAM-based concur-

rency bugs [26, 33, 39, 55, 60], which are complementary to the

cross-thread inconsistency checking in PMRace. To improve the

bug coverage, it is possible to integrate existing checkers into PM-

Race’s framework, e.g., adding existing PM checkers for flush/fence

operations into PMRace’s runtime library.

The Applicability of PMRace with eADR. When the eADR fea-

ture is available and enabled on a PM platform (requiring Intel

Optane Persistent Memory 200 Series, the third generation Intel

Xeon Scalable Processor, and OEM supports for additional bat-

teries [50]), CPU caches become persistent domains protected by

batteries. As a result, the cache line flush primitives are not required

for PM programming [1, 50], thus avoiding PM Inter-thread Incon-

sistency. However, for PM Synchronization Inconsistency identified

by PMRace, corresponding PM Execution Context Bugs still occur

on eADR-based PM systems, since the unreleased locks and other

exclusive resources in PM survive system crashes. After restarts,

these unreleased resources will hinder the post-failure executions,

e.g., uninitialized locks after recovery will block threads that need

to acquire these locks.

7 RELATED WORK

Testing for PM Programs. There are two general classes of PM-

related bugs studied by existing debugging tools: correctness bugs

(e.g., inconsistent data) and performance bugs (e.g., extra flush/fence

operations). Intel released Pmemcheck [7] and Persistency Inspec-

tor [8] to test PM programs by binary instrumentation, which,

however, require accurate annotations. PMTest [37] detects the

violation of inserted assertions in memory access traces. Though

the assertions from PMTest are flexible, the correct placements

of assertions require the expertise in crash consistency. XFDetec-

tor [36] injects failure points and checks reading non-persisted

data or semantically inconsistent data based on commit variables

in the post-failure stage. PMFuzz [35] addresses the problem of

test case generation in XFDetector by using PM path coverage

with AFL++ [40]. The reading non-persisted pattern in XFDetector

is similar to the PM Inter-thread Inconsistency Candidate of PM-

Race, but overlooks thread identity and only checks the violation

in the post-failure stage. However, as discussed in ğ3.1, reading

non-persisted may be not a bug, e.g., the benign cross-failure race

defined in XFDetector. Different from XFDetector, our PMRace

confirms the data inconsistency based on non-persisted data in

the pre-failure stage. PMDebugger [15] optimizes data structures

and summarizes nine rules of PM bugs to accelerate the debug-

ging. Unlike existing tools, AGAMOTTO [45] leverages symbolic

execution with PM state machines to automatically find missing

or extra flushes/fences. However, application-specific correctness

bugs are left to custom checkers. Yat [29] is a testing tool for Intel’s

persistent memory file system (PMFS) [48]. The detection workflow

in Yat enumerates the combinations of instructions for possible exe-

cution orders, which is cost-inefficient (5 years) for debugging [29].

Jaaru [20] leverages dynamic partial order reduction (DPOR) [17]

to optimize the model checking overheads in Yat. Witcher [19]

automatically detects correctness bugs for sequential PM programs

by static analysis with output equivalence checking. Note that all

above existing PM-specific debugging tools do not explore the pos-

sible thread interleavings in concurrent PM programs, thus leading

to false negatives for PM concurrency bugs.

Testing for Concurrency Bugs. Concurrency bugs refer to bugs

involving more than one thread. Common concurrency bugs can be

classified into deadlock bugs and non-deadlock bugs [2]. Deadlocks

occur when each thread holding resources (e.g., locks) are waiting

for the resources held by other threads [27]. To avoid deadlocks,

one solution is to acquire locks in a total order to prevent circular

waiting [27]. Non-deadlock bugs include two major categories:

atomicity-violation bugs and order-violation bugs [38]. Researchers

have developed many tools to detect [26, 39, 55] or fix [64, 66]

concurrency bugs based on the two patterns. However, concurrency

bugs for PM are substantially different from conventional DRAM-

based concurrency bugs due to persistency dimension and crash-

consistency models (e.g., durable linearizability [23]). Some designs

focus on data race detection for concurrent programs [16, 47, 54,

60]. However, these tools for race detection also do not consider

PM characteristics. PMRace focuses on PM programs and checks

inconsistencies in read-after-write sequences.

Fuzzing for Bug Detection. Fuzz testing is widely used to find

software bugs with different inputs (or thread interleavings). Dur-

ing testing, fuzzers (e.g., AFL [65]) leverage coverage (e.g., branch

coverage) to guide the testing to explore łnewž inputs or interleav-

ings, thus efficiently triggering buggy executions [41]. PMFuzz [35]

proposes PM path coverage to enhance the conventional branch

coverage with persistency awareness. However, both branch cover-

age and PM path coverage fail to represent the context changes of

thread interleavings. In order to explore different thread interleav-

ings, there are three categories of techniques: multiple runs with

random scheduler, delay injection [33, 47, 60, 66], and interleaving

enumeration [18, 25]. Unlike existing schemes, PMRace leverages

the crash-consistency patterns in PM programs and focuses on the

buggy read-after-write interleavings, thus significantly reducing

the search space of interleavings.

8 CONCLUSION

For concurrent PM programs, crash-consistency bugs hidden in

thread interleavings are challenging to detect. Existing PM-specific

debugging tools do not explore interleavings in concurrent PM pro-

grams. In this paper, we identify two new types of PM concurrency

bugs and propose PMRace to efficiently detect these concurrency

bugs via PM-aware coverage-guided fuzzing. The false positives

are reduced in the post-failure validation. In real-world concurrent

PM systems, PMRace has found 10 new bugs.

DATA AVAILABILITY STATEMENT

We have released reusable artifact (GitHub project and archived

version [4]) for public use, as described in Appendix A.

ACKNOWLEDGMENTS

This work was supported in part by National Natural Science Foun-

dation of China (NSFC) under Grant No. 62125202 and Key Labora-

tory of Information Storage System, Ministry of Education of China.

We are grateful to our shepherd, Samira Khan, and the anonymous

reviewers for their constructive comments and suggestions.

884

Efficiently Detecting Concurrency Bugs in Persistent Memory Programs ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

A ARTIFACT APPENDIX

A.1 Abstract

PMRace is a debugging tool to detect persistent memory (PM) con-

currency bugs in PM systems. For hardware dependencies, the arti-

fact needs 16 CPU threads and 32 GB DRAM. The minimal software

requirements include vagrant and VirtualBox. The entry of artifact

is a vagrant project to automatically construct the environments

for the artifact evaluation on a VirtualBox virtual machine (VM).

The evaluation spans the bug detection results in 5 PM systems,

the time for PM Inter-thread Inconsistency detection, and the input

generator efficiency.

A.2 Artifact Check-List (Meta-Information)
• Program: PMRace

• Compilation: clang-11, clang++-11

• Data set: Open-source concurrent PM systems

• Hardware: 16 CPU threads and 32 GB DRAM

• Run-time environment: VirtualBox VM

• Output: Bug reports

• Experiments: Bug detection and performance evaluation

• How much disk space required (approximately)?: 100 GB

• How much time is needed to prepare workflow (approxi-

mately)?: 2 hours

• How much time is needed to complete experiments (approxi-

mately)?: 20 hours

• Publicly available?: Yes

• Code licenses (if publicly available)?: GNU GPL v3.0

• Workflow framework used?: Vagrant

• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.5790730

A.3 Description

A.3.1 How to Access. In addition to the archived version, we main-

tain aGitHub project: https://github.com/yhuacode/pmrace-vagrant.

A.3.2 Hardware Dependencies. The artifact evaluation does not

require real PM. In general, the VM needs 16 CPU threads and

32 GB DRAM. Therefore, the host machine needs to have enough

hardware resources for the evaluation.

A.3.3 Software Dependencies. Vagrant and VirtualBox need to be

installed on a host machine running Linux.

A.3.4 Data Sets. The artifact tests 5 open-source PM systems: P-

CLHT in RECIPE, clevel hashing, CCEH, FAST-FAIR B+-tree, and

memcached-pmem. Our scripts will automatically download and

configure these workloads from GitHub.

A.4 Installation

After installing the software dependencies (Appendix A.3.3), the

vagrant up command will complete the VM installation and setup

in an automatic manner. In summary, the vagrant up command

will automatically finish the following three main steps: (1) Con-

struct a new VirtualBox VM using the configurations from the

Vagrantfile; (2) Start the constructed VM and initialize the ssh

settings; (3) Install the software prerequisites of the artifact in the

VM (e.g., llvm-11).

Table 5: The number of unique bugs found by PMRace.

(łn|mž: n new bugs and m bugs in total).

Systems Version Inter Sync Intra Other Total

P-CLHT 70bf21c 1|1 1|1 1|1 2|2 5|5

clevel hashing cae716f - - - - -

CCEH 46771e3 - 1|1 1|1 - 2|2

FAST-FAIR 0f047e8 1|1 - - - 1|1

memcached-pmem 8f121f6 2|6 - - - 2|6

Total 4|8 2|2 2|2 2|2 10|14

Table 6: The numbers of detected inconsistencies and filtered

false positives in the PM concurrency bug detection.

Systems

Inconsistencies False Positives

Bug(pre-failure) (post-failure)

Inter-Cand Inter Sync Inter Sync

P-CLHT 35 10 4 0 3 2

clevel hashing 6 2 0 0 0 0

CCEH 15 0 1 0 0 1

FAST-FAIR 179 69 0 3 0 1

memcached-pmem 266 79 0 62 0 6

Total 501 160 5 65 3 10

A.5 Experiment Workflow

The goal of PMRace’s fuzzing is to identify durable side effects based

on non-persisted data (i.e., PM Inter- and Intra- thread Inconsistency)

and unreleased synchronization data (i.e., PM Synchronization In-

consistency). To debug a PM program, PMRace first instruments the

source code via its LLVM pass. During the executions, inconsisten-

cies are detected by PM checkers, which are implemented in the

runtime library. The coverage of concurrent accesses to shared PM

data (i.e., PM alias coverage) is leveraged as feedback to guide the in-

terleaving exploration of fuzzing progress. In the post-failure stage,

PMRace detects the automatically fixed durable side effects and

synchronization data during recovery (i.e., false positives). For each

detected inconsistency, PMRace generates a detailed bug report.

A.6 Evaluation and Expected Results

The experiments are classified into two categories: bug detection

and performance evaluation. The experimental evaluation is au-

tomated using the provided scripts in the artifact and covers the

following key results:

(1) The unique bugs found in 5 PM systems (Table 5, a summarized

version of Table 2)

(2) The inconsistencies and false positives in the PM concurrency bug

detection (Table 6, a summarized version of Table 3)

(3) The time to detect PM Inter-thread Inconsistency (Figure 8)

(4) The code coverage of memcached-pmem commands (Table 4)

(5) The impact of checkpoints for input generation (Figure 10)

After the installation of VM, users can log in to the VM via the

vagrant ssh command. The details about running experiments

are presented in the łEXPERIMENTS.mdž of the artifact.

Note that due to the differences in hardware environments and

fuzzing time, the evaluation results and inconsistencies may be not

exactly the same with those reported in the paper. Increasing the

fuzzing time and the scale of seeds are beneficial to the PM bug

detection.

885

https://doi.org/10.5281/zenodo.5790730
https://github.com/yhuacode/pmrace-vagrant
https://github.com/yhuacode/pmrace-vagrant/blob/master/EXPERIMENTS.md

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Zhangyu Chen, Yu Hua, Yongle Zhang, and Luochangqi Ding

A.7 Experiment Customization

Though the experiments are run in the VM, the artifact can be

installed on a bare-metal machine. Our scripts, e.g., łbootstrap.shž,

łsetup.shž, and łbuild_*.shž in łpmrace-vagrantž, contain the steps to

install all software dependencies for the artifact (tested on Ubuntu

18.04).

REFERENCES
[1] Mohammad A. Alshboul, Prakash Ramrakhyani, William Wang, James Tuck,

and Yan Solihin. 2021. BBB: Simplifying Persistent Programming using Battery-
Backed Buffers. In IEEE International Symposium on High-Performance Computer
Architecture (HPCA ’21). Seoul, South Korea. https://doi.org/10.1109/HPCA51647.
2021.00019

[2] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. 2018. Operating Sys-
tems: Three Easy Pieces (1.00 ed.). Arpaci-Dusseau Books.

[3] Zhangyu Chen, Yu Hua, Bo Ding, and Pengfei Zuo. 2020. Lock-free Concurrent
Level Hashing for Persistent Memory. In 2020 USENIX Annual Technical Confer-
ence (USENIX ATC ’20). https://www.usenix.org/conference/atc20/presentation/
chen

[4] Zhangyu Chen, Yu Hua, Yongle Zhang, and Luochangqi Ding. 2022. Replication
Package for Article: Efficiently Detecting Concurrency Bugs in Persistent Memory
Programs. https://doi.org/10.5281/zenodo.5790730

[5] Brian Choi, Randal Burns, and Peng Huang. 2021. Understanding and Dealing
with Hard Faults in Persistent Memory Systems. In Sixteenth European Conference
on Computer Systems (EuroSys ’21). Online Event, United Kingdom. https://doi.
org/10.1145/3447786.3456252

[6] Jungsik Choi, Jaewan Hong, Youngjin Kwon, and Hwansoo Han. 2020. Libnvm-
mio: Reconstructing Software IO Path with Failure-Atomic Memory-Mapped
Interface. In 2020 USENIX Annual Technical Conference (USENIX ATC ’20). https:
//www.usenix.org/conference/atc20/presentation/choi

[7] Intel Corporation. 2018. Discover Persistent Memory Programming Errors with
Pmemcheck. https://software.intel.com/content/www/us/en/develop/articles/
discover-persistent-memory-programming-errors-with-pmemcheck.html.

[8] Intel Corporation. 2018. How to Detect Persistent Memory Programming Errors
Using Intel Inspector - Persistence Inspector. https://software.intel.com/content/
www/us/en/develop/articles/detect-persistent-memory-programming-errors-
with-intel-inspector-persistence-inspector.html.

[9] Intel Corporation. 2019. Intel Optane DC persistent memory.
https://www.intel.com/content/www/us/en/products/memory-storage/optane-
dc-persistent-memory.html.

[10] Intel Corporation. 2020. Intel Architecture Instruction Set Extensions Pro-
gramming Reference. https://software.intel.com/content/www/us/en/develop/
download/intel-architecture-instruction-set-extensions-programming-
reference.html.

[11] Intel Corporation. 2020. Persistent Memory Development Kit. http://pmem.io/.
[12] Intel Corporation. 2021. The libvmmalloc man page. https://pmem.io/pmdk/

manpages/linux/v1.3/libvmmalloc.3.html.
[13] Lenovo Corporation. 2018. Memcached-pmem. https://github.com/lenovo/

memcached-pmem.
[14] Tudor David, Aleksandar Dragojevic, Rachid Guerraoui, and Igor Zablotchi. 2018.

Log-Free Concurrent Data Structures. In 2018 USENIX Annual Technical Confer-
ence (USENIX ATC ’18). Boston, MA, USA. https://www.usenix.org/conference/
atc18/presentation/david

[15] Bang Di, Jiawen Liu, Hao Chen, and Dong Li. 2021. Fast, Flexible, and Com-
prehensive Bug Detection for Persistent Memory Programs. In Proceedings of
the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’21). Virtual Event, USA. https:
//doi.org/10.1145/3445814.3446744

[16] Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: Efficient and Precise
Dynamic Race Detection. In Proceedings of the 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’09). Dublin, Ireland.
https://doi.org/10.1145/1542476.1542490

[17] Cormac Flanagan and Patrice Godefroid. 2005. Dynamic partial-order reduction
for model checking software. In Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’05). Long Beach,
California, USA. https://doi.org/10.1145/1040305.1040315

[18] Pedro Fonseca, Rodrigo Rodrigues, and Björn B. Brandenburg. 2014. SKI: Exposing
Kernel Concurrency Bugs through Systematic Schedule Exploration. In 11th
USENIX Symposium on Operating Systems Design and Implementation, (OSDI ’14).
Broomfield, CO, USA. https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/fonseca

[19] Xinwei Fu, Wook-Hee Kim, Ajay Paddayuru Shreepathi, Mohannad Ismail, Sunny
Wadkar, Dongyoon Lee, and Changwoo Min. 2021. Witcher: Systematic Crash
Consistency Testing for Non-Volatile Memory Key-Value Stores. In ACM SIGOPS

28th Symposium on Operating Systems Principles (SOSP ’21). Virtual Event. https:
//doi.org/10.1145/3477132.3483556

[20] Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky. 2021. Jaaru: Efficiently
Model Checking Persistent Memory Programs. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’21). New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3445814.3446735

[21] Frank T. Hady, Annie P. Foong, Bryan Veal, and Dan Williams. 2017. Platform
Storage Performance With 3D XPoint Technology. Proc. IEEE 105, 9 (2017),
1822ś1833. https://doi.org/10.1109/JPROC.2017.2731776

[22] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam. 2018. En-
durable Transient Inconsistency in Byte-Addressable Persistent B+-Tree. In 16th
USENIX Conference on File and Storage Technologies (FAST ’18). Oakland, CA, USA.
https://www.usenix.org/conference/fast18/presentation/hwang

[23] Joseph Izraelevitz, Hammurabi Mendes, andMichael L. Scott. 2016. Linearizability
of Persistent Memory Objects Under a Full-System-Crash Failure Model. In 30th
International Symposium on Distributed Computing (DISC ’16), Vol. 9888. Paris,
France. https://doi.org/10.1007/978-3-662-53426-7_23

[24] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen
Zhao, and Steven Swanson. 2019. Basic Performance Measurements of the
Intel Optane DC Persistent Memory Module. CoRR abs/1903.05714 (2019).
arXiv:1903.05714 http://arxiv.org/abs/1903.05714

[25] Dae R. Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung Lee, and
Insik Shin. 2019. Razzer: Finding Kernel Race Bugs through Fuzzing. In 2019
IEEE Symposium on Security and Privacy (S&P ’19). San Francisco, CA, USA.
https://doi.org/10.1109/SP.2019.00017

[26] Guoliang Jin, Aditya V. Thakur, Ben Liblit, and Shan Lu. 2010. Instrumentation
and sampling strategies for cooperative concurrency bug isolation. In Proceedings
of the 25th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA ’10). Reno/Tahoe, Nevada, USA.
https://doi.org/10.1145/1869459.1869481

[27] Edward G. Coffman Jr., M. J. Elphick, and Arie Shoshani. 1971. System Deadlocks.
ACM Comput. Surv. 3, 2 (1971), 67ś78. https://doi.org/10.1145/356586.356588

[28] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim, Aasheesh Kolli,
and Vijay Chidambaram. 2019. SplitFS: Reducing Software Overhead in File
Systems for Persistent Memory. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles (SOSP ’19). Huntsville, ON, Canada. https:
//doi.org/10.1145/3341301.3359631

[29] Philip Lantz, Dulloor Subramanya Rao, Sanjay Kumar, Rajesh Sankaran, and Jeff
Jackson. 2014. Yat: A Validation Framework for Persistent Memory Software. In
2014 USENIX Annual Technical Conference, (USENIX ATC ’14). Philadelphia, PA,
USA. https://www.usenix.org/conference/atc14/technical-sessions/presentation/
lantz

[30] Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In 2nd IEEE / ACM International
Symposium on Code Generation and Optimization (CGO ’04). San Jose, CA, USA.
https://doi.org/10.1109/CGO.2004.1281665

[31] Se Kwon Lee. 2020. The RECIPE Project. https://github.com/utsaslab/RECIPE/
tree/70bf21c6240327f4f8fac343aba708f194fe19f4.

[32] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay Chi-
dambaram. 2019. RECIPE : Converting Concurrent DRAM Indexes to Persistent-
Memory Indexes. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles (SOSP ’19). Huntsville, ON, Canada. https://doi.org/10.1145/3341301.
3359635

[33] Guangpu Li, Shan Lu, Madanlal Musuvathi, Suman Nath, and Rohan Padhye.
2019. Efficient Scalable Thread-SafetyViolation Detection: Finding thousands
of concurrency bugs during testing. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles (SOSP ’19). Huntsville, ON, Canada. https:
//doi.org/10.1145/3341301.3359638

[34] ARM Limited. 2020. Arm Architecture Reference Manual Armv8, for Armv8-A
architecture profile. https://developer.arm.com/documentation/ddi0487/ga.

[35] Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan. 2021. PMFuzz:
Test Case Generation for Persistent Memory Programs. In Proceedings of the
26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’21). New York, NY, USA, 16 pages.
https://doi.org/10.1145/3445814.3446691

[36] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas F. Wenisch, Aasheesh
Kolli, and Samira Khan. 2020. Cross-Failure Bug Detection in Persistent Memory
Programs. In Proceedings of the Twenty-Fifth International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS ’20).
Lausanne, Switzerland. https://doi.org/10.1145/3373376.3378452

[37] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira Manabi Khan.
2019. PMTest: A Fast and Flexible Testing Framework for Persistent Memory
Programs. In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS ’19).
Providence, RI, USA. https://doi.org/10.1145/3297858.3304015

886

https://doi.org/10.1109/HPCA51647.2021.00019
https://doi.org/10.1109/HPCA51647.2021.00019
https://www.usenix.org/conference/atc20/presentation/chen
https://www.usenix.org/conference/atc20/presentation/chen
https://doi.org/10.5281/zenodo.5790730
https://doi.org/10.1145/3447786.3456252
https://doi.org/10.1145/3447786.3456252
https://www.usenix.org/conference/atc20/presentation/choi
https://www.usenix.org/conference/atc20/presentation/choi
https://software.intel.com/content/www/us/en/develop/articles/discover-persistent-memory-programming-errors-with-pmemcheck.html
https://software.intel.com/content/www/us/en/develop/articles/discover-persistent-memory-programming-errors-with-pmemcheck.html
https://software.intel.com/content/www/us/en/develop/articles/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector.html
https://software.intel.com/content/www/us/en/develop/articles/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector.html
https://software.intel.com/content/www/us/en/develop/articles/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector.html
https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
http://pmem.io/
https://pmem.io/pmdk/manpages/linux/v1.3/libvmmalloc.3.html
https://pmem.io/pmdk/manpages/linux/v1.3/libvmmalloc.3.html
https://github.com/lenovo/memcached-pmem
https://github.com/lenovo/memcached-pmem
https://www.usenix.org/conference/atc18/presentation/david
https://www.usenix.org/conference/atc18/presentation/david
https://doi.org/10.1145/3445814.3446744
https://doi.org/10.1145/3445814.3446744
https://doi.org/10.1145/1542476.1542490
https://doi.org/10.1145/1040305.1040315
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/fonseca
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/fonseca
https://doi.org/10.1145/3477132.3483556
https://doi.org/10.1145/3477132.3483556
https://doi.org/10.1145/3445814.3446735
https://doi.org/10.1145/3445814.3446735
https://doi.org/10.1109/JPROC.2017.2731776
https://www.usenix.org/conference/fast18/presentation/hwang
https://doi.org/10.1007/978-3-662-53426-7_23
https://arxiv.org/abs/1903.05714
http://arxiv.org/abs/1903.05714
https://doi.org/10.1109/SP.2019.00017
https://doi.org/10.1145/1869459.1869481
https://doi.org/10.1145/356586.356588
https://doi.org/10.1145/3341301.3359631
https://doi.org/10.1145/3341301.3359631
https://www.usenix.org/conference/atc14/technical-sessions/presentation/lantz
https://www.usenix.org/conference/atc14/technical-sessions/presentation/lantz
https://doi.org/10.1109/CGO.2004.1281665
https://github.com/utsaslab/RECIPE/tree/70bf21c6240327f4f8fac343aba708f194fe19f4
https://github.com/utsaslab/RECIPE/tree/70bf21c6240327f4f8fac343aba708f194fe19f4
https://doi.org/10.1145/3341301.3359635
https://doi.org/10.1145/3341301.3359635
https://doi.org/10.1145/3341301.3359638
https://doi.org/10.1145/3341301.3359638
https://developer.arm.com/documentation/ddi0487/ga
https://doi.org/10.1145/3445814.3446691
https://doi.org/10.1145/3373376.3378452
https://doi.org/10.1145/3297858.3304015

Efficiently Detecting Concurrency Bugs in Persistent Memory Programs ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

[38] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from
Mistakes Ð A Comprehensive Study on Real World Concurrency Bug Character-
istics. In Proceedings of the 13th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’08). Seattle, WA,
USA. https://doi.org/10.1145/1346281.1346323

[39] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. 2006. AVIO: Detecting
Atomicity Violations via Access Interleaving Invariants. In Proceedings of the 12th
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’06). San Jose, CA, USA. https://doi.org/10.1145/
1168857.1168864

[40] Dominik Maier, Heiko Eißfeldt, Andrea Fioraldi, and Marc Heuse. 2020. AFL++ :
Combining Incremental Steps of Fuzzing Research. In 14th USENIX Workshop on
Offensive Technologies (WOOT ’20). https://www.usenix.org/conference/woot20/
presentation/fioraldi

[41] Valentin J. M. Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J. Schwartz, and Maverick Woo. 2021. The Art, Science, and
Engineering of Fuzzing: A Survey. IEEE Trans. Software Eng. 47, 11 (2021), 2312ś
2331. https://doi.org/10.1109/TSE.2019.2946563

[42] Barton P. Miller, Lars Fredriksen, and Bryan So. 1990. An Empirical Study of
the Reliability of UNIX Utilities. Commun. ACM 33, 12 (1990), 32ś44. https:
//doi.org/10.1145/96267.96279

[43] Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H. Noh, and Beomseok Nam.
2019. Write-Optimized Dynamic Hashing for Persistent Memory. In 17th USENIX
Conference on File and Storage Technologies (FAST ’19). Boston, MA, USA. https:
//www.usenix.org/conference/fast19/presentation/nam

[44] Ian Neal, Andrew Quinn, and Baris Kasikci. 2021. Hippocrates: Healing Per-
sistent Memory Bugs without Doing Any Harm. In Proceedings of the 26th
ACM International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ’21). New York, NY, USA, 14 pages.
https://doi.org/10.1145/3445814.3446694

[45] IanNeal, Ben Reeves, Ben Stoler, AndrewQuinn, Youngjin Kwon, Simon Peter, and
Baris Kasikci. 2020. AGAMOTTO: How Persistent is your Persistent Memory Ap-
plication?. In 14th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI ’20). https://www.usenix.org/conference/osdi20/presentation/neal

[46] James Newsome and Dawn Xiaodong Song. 2005. Dynamic Taint Anal-
ysis for Automatic Detection, Analysis, and SignatureGeneration of Ex-
ploits on Commodity Software. In Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS ’05). San Diego, California,
USA. https://www.ndss-symposium.org/ndss2005/dynamic-taint-analysis-
automatic-detection-analysis-and-signaturegeneration-exploits-commodity/

[47] Soyeon Park, Shan Lu, and Yuanyuan Zhou. 2009. CTrigger: Exposing Atomicity
Violation Bugs from Their Hiding Places. In Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’09). Washington, DC, USA. https://doi.org/10.1145/1508244.
1508249

[48] Dulloor Subramanya Rao, Sanjay Kumar, Anil S. Keshavamurthy, Philip Lantz,
Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System Software for
Persistent Memory. In Ninth Eurosys Conference 2014 (EuroSys ’14). Amsterdam,
The Netherlands. https://doi.org/10.1145/2592798.2592814

[49] Michael Rash. 2018. AFL-COV. https://github.com/mrash/afl-cov.
[50] Steve Scargall. 2020. Programming Persistent Memory: A Comprehensive Guide

for Developers. Apress, Berkeley, CA, Chapter Persistent Memory Architecture,
11ś30. https://doi.org/10.1007/978-1-4842-4932-1_2

[51] Steve Scargall. 2020. Programming Persistent Memory: A Comprehensive Guide for
Developers. Apress, Berkeley, CA, Chapter Concurrency and Persistent Memory,
277ś294. https://doi.org/10.1007/978-1-4842-4932-1_14

[52] Steve Scargall. 2020. Programming Persistent Memory: A Comprehensive Guide for
Developers. Apress, Berkeley, CA, Chapter PMDK Internals: Important Algorithms
and Data Structures, 313ś331. https://doi.org/10.1007/978-1-4842-4932-1_16

[53] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All You Ever
Wanted to Know about Dynamic Taint Analysis and Forward Symbolic Execution

(but Might Have Been Afraid to Ask). In 31st IEEE Symposium on Security and
Privacy (S&P ’10). Berleley/Oakland, California, USA. https://doi.org/10.1109/SP.
2010.26

[54] Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSanitizer: Data
Race Detection in Practice. In Proceedings of the workshop on binary instrumenta-
tion and applications.

[55] Yao Shi, Soyeon Park, Zuoning Yin, Shan Lu, Yuanyuan Zhou, Wenguang Chen,
and Weimin Zheng. 2010. Do I Use the Wrong Definition? DefUse: Definition-
Use Invariants for Detecting Concurrency and Sequential Bugs. In Proceedings
of the 25th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA ’10). Reno/Tahoe, Nevada, USA.
https://doi.org/10.1145/1869459.1869474

[56] David A. Spuler and A. Sayed Muhammed Sajeev. 1994. Compiler Detection of
Function Call Side Effects. Informatica (Slovenia) 18, 2 (1994).

[57] PaX Team. 2003. PaX Address Space Layout Randomization (ASLR). https:
//pax.grsecurity.net/docs/aslr.txt.

[58] The Clang Team. 2020. DataFlowSanitizer. https://clang.llvm.org/docs/
DataFlowSanitizer.html.

[59] Jinghan Wang, Yue Duan, Wei Song, Heng Yin, and Chengyu Song. 2019. Be
Sensitive and Collaborative: Analyzing Impact of Coverage Metrics in Greybox
Fuzzing. In 22nd International Symposium on Research in Attacks, Intrusions and
Defenses (RAID ’19). Chaoyang District, Beijing, China. https://www.usenix.org/
conference/raid2019/presentation/wang

[60] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim. 2020. Krace: Data
Race Fuzzing for Kernel File Systems. In 2020 IEEE Symposium on Security and
Privacy (S&P ’20). San Francisco, CA, USA. https://doi.org/10.1109/SP40000.2020.
00078

[61] Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning Tseng, and Taesoo Kim.
2019. Fuzzing File Systems via Two-Dimensional Input Space Exploration. In
2019 IEEE Symposium on Security and Privacy, (S&P ’19). San Francisco, CA, USA.
https://doi.org/10.1109/SP.2019.00035

[62] Yi Xu, Joseph Izraelevitz, and Steven Swanson. 2021. Clobber-NVM: Log Less,
Re-execute More. In 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’21). Virtual Event,
USA. https://doi.org/10.1145/3445814.3446730

[63] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steven Swan-
son. 2020. An Empirical Guide to the Behavior and Use of Scalable PersistentMem-
ory. In 18th USENIX Conference on File and Storage Technologies (FAST ’20). Santa
Clara, CA, USA. https://www.usenix.org/conference/fast20/presentation/yang

[64] Jie Yu and Satish Narayanasamy. 2009. A Case for an Interleaving Constrained
Shared-Memory Multi-Processor. In 36th International Symposium on Computer
Architecture (ISCA ’09), StephenW. Keckler and Luiz André Barroso (Eds.). Austin,
TX, USA. https://doi.org/10.1145/1555754.1555796

[65] Michal Zalewski. 2017. American fuzzy lop. https://lcamtuf.coredump.cx/afl/.
[66] Mingxing Zhang, Yongwei Wu, Shan Lu, Shanxiang Qi, Jinglei Ren, and Weimin

Zheng. 2014. AI: A Lightweight System for Tolerating Concurrency Bugs. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE ’14). https://doi.org/10.1145/2635868.2635885

[67] Wen Zhang, Scott Shenker, and Irene Zhang. 2020. Persistent State Machines
for Recoverable In-memory Storage Systems with NVRam. In 14th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI ’20). https:
//www.usenix.org/conference/osdi20/presentation/zhang-wen

[68] Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Norman P. Jouppi. 2013.
Kiln: Closing the Performance Gap Between Systems With and Without Persis-
tence Support. In The 46th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO ’13). Davis, CA, USA. https://doi.org/10.1145/2540708.2540744

[69] Pengfei Zuo. 2018. The Level Hashing Project. https://github.com/Pfzuo/Level-
Hashing.

[70] Pengfei Zuo, Yu Hua, and Jie Wu. 2018. Write-Optimized and High-Performance
Hashing Index Scheme for Persistent Memory. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’18). Carlsbad, CA, USA.
https://www.usenix.org/conference/osdi18/presentation/zuo

887

https://doi.org/10.1145/1346281.1346323
https://doi.org/10.1145/1168857.1168864
https://doi.org/10.1145/1168857.1168864
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://www.usenix.org/conference/fast19/presentation/nam
https://www.usenix.org/conference/fast19/presentation/nam
https://doi.org/10.1145/3445814.3446694
https://www.usenix.org/conference/osdi20/presentation/neal
https://www.ndss-symposium.org/ndss2005/dynamic-taint-analysis-automatic-detection-analysis-and-signaturegeneration-exploits-commodity/
https://www.ndss-symposium.org/ndss2005/dynamic-taint-analysis-automatic-detection-analysis-and-signaturegeneration-exploits-commodity/
https://doi.org/10.1145/1508244.1508249
https://doi.org/10.1145/1508244.1508249
https://doi.org/10.1145/2592798.2592814
https://github.com/mrash/afl-cov
https://doi.org/10.1007/978-1-4842-4932-1_2
https://doi.org/10.1007/978-1-4842-4932-1_14
https://doi.org/10.1007/978-1-4842-4932-1_16
https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1145/1869459.1869474
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt
https://clang.llvm.org/docs/DataFlowSanitizer.html
https://clang.llvm.org/docs/DataFlowSanitizer.html
https://www.usenix.org/conference/raid2019/presentation/wang
https://www.usenix.org/conference/raid2019/presentation/wang
https://doi.org/10.1109/SP40000.2020.00078
https://doi.org/10.1109/SP40000.2020.00078
https://doi.org/10.1109/SP.2019.00035
https://doi.org/10.1145/3445814.3446730
https://www.usenix.org/conference/fast20/presentation/yang
https://doi.org/10.1145/1555754.1555796
https://lcamtuf.coredump.cx/afl/
https://doi.org/10.1145/2635868.2635885
https://www.usenix.org/conference/osdi20/presentation/zhang-wen
https://www.usenix.org/conference/osdi20/presentation/zhang-wen
https://doi.org/10.1145/2540708.2540744
https://github.com/Pfzuo/Level-Hashing
https://github.com/Pfzuo/Level-Hashing
https://www.usenix.org/conference/osdi18/presentation/zuo

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Crash Consistency in PM Programming
	2.2 Fuzz Testing
	2.3 Motivation

	3 PM Concurrency Bug Patterns
	3.1 Assumptions and Definitions
	3.2 Revisiting the P-CLHT Example

	4 The PMRace Design
	4.1 Overview
	4.2 PM-Aware Coverage-Guided Fuzzing
	4.3 PM Inconsistency Checkers
	4.4 Post-Failure Validation
	4.5 PM Input Generator

	5 System Implementations
	6 Evaluation
	6.1 Experimental Setup
	6.2 The Bugs Found by PMRace
	6.3 False Positives
	6.4 Exploration Efficiency
	6.5 Input Generator Efficiency
	6.6 Discussions

	7 Related Work
	8 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results
	A.7 Experiment Customization

	References

