
Open access to the Proceedings of
USENIX ATC ’14: 2014 USENIX Annual Technical

Conference is sponsored by USENIX.

This paper is included in the Proceedings of USENIX ATC ’14:
2014 USENIX Annual Technical Conference.

June 18–20, 2014 • Philadelphia, PA

978-1-931971-10-2

Accelerating Restore and Garbage Collection
in Deduplication-based Backup Systems via

Exploiting Historical Information
Min Fu, Dan Feng, and Yu Hua, Huazhong University of Science and Technology;

Xubin He, Virginia Commonwealth University; Zuoning Chen, National Engineering Research
Center for Parallel Computer; Wen Xia, Fangting Huang, and Qing Liu,

Huazhong University of Science and Technology

https://www.usenix.org/conference/atc14/technical-sessions/presentation/fu_min

USENIX Association 	 2014 USENIX Annual Technical Conference  181

Accelerating Restore and Garbage Collection in Deduplication-based
Backup Systems via Exploiting Historical Information

Min Fu†, Dan Feng†B, Yu Hua†, Xubin He‡, Zuoning Chen*, Wen Xia†, Fangting Huang†, Qing Liu†

†Wuhan National Lab for Optoelectronics
School of Computer, Huazhong University of Science and Technology, Wuhan, China

‡Dept. of Electrical and Computer Engineering, Virginia Commonwealth University, VA, USA
*National Engineering Research Center for Parallel Computer, Beijing, China

BCorresponding author: dfeng@hust.edu.cn

Abstract
In deduplication-based backup systems, the chunks of
each backup are physically scattered after deduplication,
which causes a challenging fragmentation problem. The
fragmentation decreases restore performance, and results
in invalid chunks becoming physically scattered in dif-
ferent containers after users delete backups. Existing
solutions attempt to rewrite duplicate but fragmented
chunks to improve the restore performance, and reclaim
invalid chunks by identifying and merging valid but frag-
mented chunks into new containers. However, they can-
not accurately identify fragmented chunks due to their
limited rewrite buffer. Moreover, the identification of
valid chunks is cumbersome and the merging operation
is the most time-consuming phase in garbage collection.

Our key observation that fragmented chunks remain
fragmented in subsequent backups motivates us to pro-
pose a History-Aware Rewriting algorithm (HAR). HAR
exploits historical information of backup systems to
more accurately identify and rewrite fragmented chunks.
Since the valid chunks are aggregated in compact con-
tainers by HAR, the merging operation is no longer re-
quired. To reduce the metadata overhead of the garbage
collection, we further propose a Container-Marker Al-
gorithm (CMA) to identify valid containers instead of
valid chunks. Our extensive experimental results from
real-world datasets show HAR significantly improves
the restore performance by 2.6X–17X at a cost of only
rewriting 0.45–1.99% data. CMA reduces the metadata
overhead for the garbage collection by about 90X .
1 Introduction
Deduplication has become a key component in modern
backup systems due to its demonstrated ability of im-
proving storage efficiency [26, 6]. A deduplication-based
backup system divides a backup stream into variable-
sized chunks [13], and identifies each chunk by its SHA-
1 digest [19], i.e., fingerprint. A fingerprint index is used
to map fingerprints of stored chunks to their physical

addresses. In general, small and variable-sized chunks
(e.g., 8KB on average [26]) are managed at a larger unit
called container [26, 7, 9] that is a fixed-sized (e.g.,
4MB [26]) structure. The containers are the basic unit of
read and write operations. During a backup, the chunks
that need to be written are aggregated into containers to
preserve the locality of the backup stream. During a re-
store, a recipe (i.e., the fingerprint sequence of a backup)
is read, and the containers serve as the prefetching unit.
A restore cache holds the prefeteched containers and evi-
cts an entire container via an LRU algorithm [9].

Since duplicate chunks are eliminated between multi-
ple backups, the chunks of a backup unfortunately be-
come physically scattered in different containers, which
is known as fragmentation [18, 14]. First, the fragmen-
tation severely decreases restore performance [15, 9].
The infrequent restore is important and the main con-
cern from users [17]. Moreover, data replication, which
is important for disaster recovery [20], requires recon-
structions of original backup streams from deduplication
systems [16], and thus suffers from a performance prob-
lem similar to the restore operation.

Second, the fragmentation results in invalid chunks
(not referenced by any backups) becoming physically
scattered in different containers when users delete ex-
pired backups. Existing solutions (i.e., reference mana-
gement [7, 24, 4]) identify valid chunks and the contain-
ers holding only a few valid chunks. A merging opera-
tion is required to copy the valid chunks in the identified
containers to new containers [10, 11], and then the iden-
tified containers are reclaimed. The merging is the most
time-consuming phase in garbage collection [4].

A comprehensive category is helpful to understand the
fragmentation. We observe that the fragmentation comes
in two categories of containers: sparse containers and
out-of-order containers. During a restore, a majority of
chunks in a sparse container are never accessed, and the
chunks in an out-of-order container are accessed inter-

182  2014 USENIX Annual Technical Conference	 USENIX Association

mittently. Both of them hurt the restore performance. In-
creasing the restore cache size alleviates the negative im-
pacts of out-of-order containers, but it is ineffective for
sparse containers because they directly amplify read op-
erations (read many never accessed chunks). Addition-
ally, the merging operation is required to reclaim spar-
se containers in the garbage collection after users delete
backups.

Reducing sparse containers is important to address the
fragmentation problem. Existing solutions [15, 8, 9] pro-
pose to rewrite duplicate but fragmented chunks during
the backup via rewriting algorithms, which is a trade-
off between deduplication ratio (the size of the non-
deduplicated data divided by that of the deduplicated
data) and restore performance. These approaches buffer
a small part of the backup stream, and identify the frag-
mented chunks within the buffer. They fail to iden-
tify sparse containers because an out-of-order container
seems sparse in the limited-sized buffer. Hence, most
of their rewritten chunks belong to out-of-order contain-
ers, which limit their gains in restore performance and
garbage collection efficiency.

Our key observation is that two consecutive backups
are very similar, and thus historical information collect-
ed during the backup is very useful to improve the next
backup. For example, sparse containers for the current
backup possibly remain sparse for the next backup. This
observation motivates our work to propose a History-
Aware Rewriting algorithm (HAR). During a backup,
HAR rewrites the duplicate chunks in the sparse contain-
ers identified by the last backup, and records the emer-
ging sparse containers to rewrite them in the next backup.
HAR outperforms existing rewriting algorithms in terms
of both restore performance and deduplication ratio. We
also develop two optimization approaches for HAR to
reduce the negative impacts of out-of-order containers
on the restore performance, including an efficient restore
caching scheme and a hybrid rewriting algorithm.

During the garbage collection, we need to identify
valid chunks for identifying and merging sparse contain-
ers, which is cumbersome and error-prone due to the
existence of large amounts of chunks. Since HAR ef-
ficiently reduces sparse containers, the identification of
valid chunks is no longer necessary. We further propose
a new reference management approach called Container-
Marker Algorithm (CMA) that identifies valid contain-
ers (holding some valid chunks) instead of valid chunks.
Comparing with existing reference management approa-
ches, CMA significantly reduces the metadata overhead.

The paper makes the following contributions.

• We observe that the fragmentation is classified in-
to two categories: out-of-order and sparse contain-
ers. The former reduces restore performance, which

can be addressed by increasing the restore cache
size. The latter reduces both restore performance
and garbage collection efficiency, and we require
a rewriting algorithm that is capable of accurately
identifying sparse containers.

• In order to accurately identify and reduce sparse
containers, we observe that sparse containers re-
main sparse in next backup, and hence propose
HAR. HAR significantly improves restore perfor-
mance with a slight decrease of deduplication ratio.

• In order to reduce the metadata overhead of the
garbage collection, we propose CMA that iden-
tifies valid containers instead of valid chunks in the
garbage collection.

The rest of the paper is organized as follow. Section 2
describes related work. Section 3 illustrates how the
fragmentation arises. Section 4 discusses the fragmen-
tation category and our observations. Section 5 presents
our design and optimizations. Section 6 evaluates our
approaches. Finally we conclude our work in Section 7.

2 Related Work
A deduplication system employs a large key-value sub-
system, namely fingerprint index, to identify duplicates.
The fingerprint index is too large to be completely stor-
ed in memory. However, a disk-based index that offers
large-sized storage capacity suffers from severe perfor-
mance bottleneck of accessing the fingerprints [19]. In
order to address the performance problem of the finger-
print index, Zhu et al. [26] propose to leverage the local-
ity of backup streams to accelerate fingerprint lookups.
Extreme Binning [3], Sparse Index [10], and SiLo [25]
mainly eliminate duplicate chunks among similar super-
chunks (consists of many chunks). ChunkStash [5] stores
the index in SSDs instead of disks.

The fragmentation problem in deduplication systems
has received many attentions. iDedup [21] eliminates se-
quential and duplicate chunks in the context of primary
storage systems. Nam et al. propose a quantitative metric
to measure the fragmentation level of deduplication sys-
tems [14], and a selective deduplication scheme [15] for
backup workloads. The Context-Based Rewriting algori-
thm (CBR) [8] and the capping algorithm (CAP) [9] are
recently proposed to address the fragmentation problem.

CBR uses a fixed-sized buffer, called stream context,
to maintain the following chunks of the pending dupli-
cate chunk that is being determined whether fragmented.
CBR defines the rewrite utility of a pending chunk as the
size of the chunks that are in the disk context (physically
adjacent chunks) but not in the stream context, divided
by the size of the disk context. If the rewrite utility of

2

USENIX Association 	 2014 USENIX Annual Technical Conference  183

Table 1: Existing reference management approaches.
Offline Perfect Hash Vector [4]
Inline Reference Counter [24], Grouped

Mark-and-Sweep [7]

the pending chunk is higher than the predefined mini-
mal rewrite utility, the chunk is fragmented. CBR uses a
rewrite limit to avoid too many rewrites.

CAP divides the backup stream into fixed-sized seg-
ments, and conjectures the fragmentation within each
segment. CAP limits the maximum number (say T) of
containers a segment can refer to. Suppose a new seg-
ment refers to N containers and N > T , the chunks in the
N − T containers that hold the least chunks in the seg-
ment are rewritten.

Both of CBR and CAP buffer a small part of the on-
going backup stream during a backup, and identify frag-
mented chunks within the buffer (generally 10-20MB).
They fail to accurately identify fragmented chunks, sin-
ce physically adjacent chunks of a duplicate chunk can
be accessed beyond the buffer. Increasing the buffer size
alleviates this problem but is not scalable. Our approach
is based on a new observation that fragmented chunks
remain fragmented in the next backup, hence accurately
identifying fragmented chunks.

Reference management for the garbage collection
is complicated in deduplication systems, because each
chunk can be referenced by multiple backups. Exist-
ing reference management approaches are summarized
in Table 1. The offline approaches traverse all finger-
prints (including the fingerprint index and recipes) when
the system is idle. For example, Botelho et al. [4]
build a perfect hash vector as a compact representa-
tion of all chunks. Since recipes need to occupy sig-
nificantly large storage space [12], the traversing oper-
ation is time-consuming. The inline approaches main-
tain additional metadata during backup to facilitate the
garbage collection. Maintaining a reference counter
for each chunk [24] is expensive and error-prone [7].
Grouped Mark-and-Sweep (GMS) [7] uses a bitmap to
mark which chunks in a container are used by a backup.

3 The Fragmentation Problem
Deduplication improves storage efficiency but causes
fragmentation [18, 14], which exacerbates restore per-
formance and garbage collection efficiency. Figure 1 il-
lustrates an example of two consecutive backups to show
how the fragmentation arises. There are 13 chunks in
the first backup. Each chunk is identified by a character,
and duplicate chunks share an identical character. Two
duplicate chunks, say A and D, are identified by dedupli-
cating the stream, which is called self-reference. A and
D are called self-referred chunks. All unique chunks are
stored in the first 4 containers, and a blank is appended
to the 4th half-full container to make it be aligned. With

Figure 1: An example of two consecutive backups. The
shaded areas in each container represent the chunks re-
quired by the second backup.

a 3-container-sized LRU cache, restoring the first back-
up needs to read 5 containers. The self-referred chunk A
requires extra reading container I.

We observe that the second backup contains 13
chunks, 9 of which are duplicates in the first backup. The
four new chunks are stored in two new containers. With a
3-container-sized LRU cache, restoring the second back-
up needs to read 9 containers.

Although both of the backups consist of 13 chunks,
restoring the second backup needs to read 4 more con-
tainers than restoring the first backup. Hence, the restore
performance of the second backup is much worse than
that of the first backup. Recent work [15, 8, 9] also re-
ported the severe decrease of restore performance in de-
duplication systems. We observe a 21X decrease in our
Linux dataset (detailed in Section 6.2).

If we delete the first backup, several chunks including
chunk K in container IV become invalid. Because chunk
J is still referenced by the second backup, we can’t re-
claim container IV. Existing work [10, 11] uses the of-
fline container merging operation. The merging reads the
containers that have only a few valid chunks and copies
them to new containers. Therefore, it suffers from a per-
formance problem similar to the restore operation, thus
becoming the most time-consuming phase in the garbage
collection [4].

4 Fragmentation Classification and Our
Observations

We observe that the fragmentation comes in two cate-
gories: sparse containers and out-of-order containers. In
this section, we describe these two types of containers
and their impacts, and then present our key observations
that motivate our work.
4.1 Sparse Container
As shown in Figure 1, only one chunk in container IV is
referenced by the second backup. Prefetching contain-
er IV for chunk J is inefficient when restoring the sec-
ond backup. After deleting the first backup, we require a
merging operation to reclaim the invalid chunks in con-
tainer IV. This kind of containers exacerbates system per-
formance on both restore and garbage collection. We de-
fine a container’s utilization for a backup as the fraction

3

184  2014 USENIX Annual Technical Conference	 USENIX Association

of its chunks referenced by the backup. If the utiliza-
tion of a container is smaller than a predefined utiliza-
tion threshold, such as 50%, the container is considered
as a sparse container for the backup. We use the average
utilization of all the containers related with a backup to
measure the overall sparse level of the backup.

Sparse containers directly amplify read operations.
Prefetching a container of 50% utilization at most
achieves 50% of the maximum storage bandwidth, be-
cause 50% of the chunks in the container are never ac-
cessed. Hence, the average utilization determines the
maximum restore performance with an unlimited restore
cache. The chunks that have never been accessed in spar-
se containers require the slots in the restore cache, thus
decreasing the available cache size. Therefore, reducing
sparse containers can improve the restore performance.

After backup deletions, invalid chunks in a sparse con-
tainer fail to be reclaimed until all other chunks in the
container become invalid. Symantec [22] reports the
probability that all chunks in a container become invalid
is low. We also observe that garbage collection reclaims
little space without additional mechanisms, such as of-
fline merging sparse containers. Since the merging oper-
ation suffers from a performance problem similar to the
restore operation, we require a more efficient solution to
migrate valid chunks in sparse containers.

4.2 Out-of-order Container
If a container is accessed many times intermittently dur-
ing a restore, we consider it as an out-of-order contain-
er for the restore. As shown in Figure 1, container V
will be accessed 3 times intermittently while restoring
the second backup. With a 3-container-sized LRU re-
store cache, restoring each chunk in container V incurs a
cache miss that decreases restore performance.

The problem caused by out-of-order containers is
complicated by self-references. The self-referred chunk
D improves the restore performance, since the two ac-
cesses to D occur close in time. However, the self-
referred chunk A decreases the restore performance.

The impacts of out-of-order containers on restore per-
formance are related to the restore cache. For exam-
ple, with a 4-container-sized LRU cache, restoring the
three chunks in container V incurs only one cache miss.
For each restore, there is a minimum cache size, called
cache threshold, which is required to achieve the max-
imum restore performance (defined by the average uti-
lization). Out-of-order containers reduce restore perfor-
mance if the cache size is smaller than the cache thresh-
old. They have no negative impact on garbage collection.

A sufficiently large cache can address the problem
caused by out-of-order containers. However, since the
memory is expensive, a restore cache of larger than the
cache threshold can be unaffordable in practice. Hence,

it is necessary to either decrease the cache threshold or
assure the demanded restore performance if the cache is
relatively small. If restoring a chunk in a container incurs
an extra cache miss, it indicates that other chunks in the
container are far from the chunk in the backup stream.
Moving the chunk to a new container offers an opportu-
nity to improve restore performance. Another more cost-
effective solution to out-of-order containers is to develop
a more intelligent caching scheme than LRU.

4.3 Our Observations
Because out-of-order containers can be alleviated by the
restore cache, how to reduce sparse containers becomes
the key problem. Existing rewriting algorithms cannot
accurately identify sparse containers due to the limit-
ed buffer. Accurately identifying sparse containers re-
quires the complete knowledge of the on-going backup.
However, the complete knowledge of a backup cannot be
known until the backup has concluded, making the iden-
tification of sparse containers a challenge.

Due to the incremental nature of backup, two consecu-
tive backups are very similar, which is the major assump-
tion behind DDFS [26]. Hence, they share similar chara-
cteristics, including the fragmentation. We analyze three
datasets, including virtual machines, Linux kernels, and
a synthetic dataset (detailed in Section 6.2), to explore
and exploit potential characteristics of sparse containers
(the utilization threshold is 50%). After each backup,
we record the accumulative amount of the stored data, as
well as the total and emerging sparse containers for the
backup. An emerging sparse container is not sparse in
the last backup but becomes sparse in the current back-
up. An inherited sparse container is already sparse in
the last backup and remains sparse in the current backup.
The total sparse containers are the sum of emerging and
inherited sparse containers.

The characteristics of sparse containers are shown in
Figure 2. First, the number of total sparse containers
continuously grows. It indicates sparse containers be-
come more common over time. Second, the number of
total sparse containers increases smoothly most of time.
A few exceptions in the Kernel datasets are major revi-
sion updates, which have more new data and increase the
amount of stored data sharply. It indicates that a large
update results in more emerging sparse containers. How-
ever, due to the similarity between consecutive backups,
the number of emerging sparse containers of each backup
is relatively small most of time. Third, the number of in-
herited sparse containers of each backup is equivalent to
or slightly less than the number of total sparse containers
of the previous backup. A few sparse containers of the
previous backup become not sparse to the current back-
up since their utilizations drop to 0. It seldom occurs that
the utilization of an inherited sparse container increases

4

USENIX Association 	 2014 USENIX Annual Technical Conference  185

 0

 1000

 2000

 3000

 4000

 5000

 6000

 50 60 70 80 90 100
 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

of
 sp

ar
se

 c
on

ta
in

er
s

th
e

am
ou

nt
 o

f s
to

re
d

da
ta

 (M
B

)

version number

inherited sparse containers
emerging sparse containers

the amount of stored data

(a) VMDK

 0

 100

 200

 300

 400

 500

 600

 50 60 70 80 90 100
 0
 200
 400
 600
 800
 1000
 1200
 1400
 1600
 1800

of

 sp
ar

se
 c

on
ta

in
er

s

th
e

am
ou

nt
 o

f s
to

re
d

da
ta

 (M
B

)

version number

inherited sparse containers
emerging sparse containers

the amount of stored data

(b) Linux

 0

 500

 1000

 1500

 2000

 50 60 70 80 90 100
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

of

 sp
ar

se
 c

on
ta

in
er

s

th
e

am
ou

nt
 o

f s
to

re
d

da
ta

 (M
B

)

version number

inherited sparse containers
emerging sparse containers

the amount of stored data

(c) Synthetic

Figure 2: Characteristics of sparse containers in three datasets. 50 backups are shown for clarity.

in the current backup, unless a rare rollback occurs. The
observation indicates that sparse containers of the back-
up remain sparse in the next backup.

The above observations motivate our work to exploit
the historical information to identify sparse containers.
After completing a backup, we can determine which
containers are sparse within the backup. Because these
sparse containers remain sparse for the next backup, we
record these sparse containers and allow chunks in them
to be rewritten in the next backup. In such a scheme,
the emerging sparse containers of a backup become the
inherited sparse containers of the next backup. Due to
the second observation, each backup needs to rewrite the
chunks in a small number of inherited sparse contain-
ers, which would not degrade the backup performance.
Moreover a small number of emerging sparse contain-
ers left to the next backup would not degrade the restore
performance of the current backup. From the third ob-
servation, the scheme identifies sparse containers accu-
rately. This scheme is called History-Aware Rewriting
algorithm (HAR).

5 Design and Implementation
5.1 Architecture Overview

Figure 3: The HAR architecture.

Figure 3 illustrates the overall architecture of our HAR
system. On disks, we have a container pool to provide
container storage service. Any kinds of fingerprint in-
dexes can be used. Typically we keep the complete fin-
gerprint index on disks, as well as the hot part in memory.
An in-memory container buffer is allocated for chunks to
be written.

The system assigns each dataset a globally unique ID,

such as DS1 in Figure 3. The collected historical in-
formation of each dataset is stored on disks with the
dataset’s ID, such as the DS1 in f o file. The collected his-
torical information consists of three parts: IDs of inher-
ited sparse containers for HAR, the container-access se-
quence for the Belady’s optimal replacement cache, and
the container manifest for Container-Marker Algorithm.
5.2 History-Aware Rewriting Algorithm
At the beginning of a backup, HAR loads IDs of all
inherited sparse containers to construct the in-memory
Sinherited structure, and rewrites all duplicate chunks in
the inherited sparse containers. In practice, HAR main-
tains two in-memory structures, Ssparse and Sdense (in-
cluded in collected info in Figure 3), to collect IDs of
emerging sparse containers. The Ssparse traces the con-
tainers whose utilizations are smaller than the utilization
threshold. The Sdense records the containers whose utili-
zations exceed the utilization threshold. The two struc-
tures consist of utilization records, and each record con-
tains a container ID and the current utilization of the con-
tainer. After the backup is completed, HAR replaces the
IDs of the old inherited sparse containers with the IDs of
emerging sparse containers in Ssparse. Hence, the Ssparse
becomes the Sinherited of the next backup. The complete
workflow of HAR is described in Algorithm 1.

Figure 4: The lifespan of a rewritten sparse container.

Figure 4 illustrates the lifespan of a rewritten sparse
container. The rectangle is a container, and the blank area
is the chunks not referenced by the backup. We assume
4 backups are retained. (1) The container becomes spar-
se in backup n. (2) The container is rewritten in backup
n+1. The chunks referenced by backup n+1 are rewrit-
ten to a new container that holds unique chunks and other

5

186  2014 USENIX Annual Technical Conference	 USENIX Association

Algorithm 1 History-Aware Rewriting Algorithm
Input: IDs of inherited sparse containers, Sinherited ;
Output: IDs of emerging sparse containers, Ssparse;

1: Initialize two sets, Ssparse and Sdense.
2: while the backup is not completed do
3: Receive a chunk and look up its fingerprint in the

fingerprint index.
4: if the chunk is duplicate then
5: if the chunk’s container ID exists in Sinherited

then
6: Rewrite the chunk, and obtain a new contain-

er ID.
7: else
8: Eliminate the chunk.
9: end if

10: else
11: Write the chunk, and obtain a new container ID.
12: end if
13: if the chunk’s container ID doesn’t exist in Sdense

then
14: Update the associated utilization record (add it

if doesn’t exist) in Ssparse with the chunk size.
15: if the utilization exceeds the utilization thresh-

old then
16: Move the utilization record to Sdense.
17: end if
18: end if
19: end while
20: return Ssparse

rewritten chunks (blue area). However the old container
cannot be reclaimed after backup n+1, because backup
n−2, n−1, and n still refer to the old container. (3) Af-
ter backup n+ 4 is finished, all backups referring to the
old container have been deleted, and thus the old con-
tainer can be reclaimed. Each sparse container decreases
the restore performance of the backup recognizing it, and
will be reclaimed when the backup is deleted.

Due to the limited number of inherited sparse contain-
ers, the memory consumed by the Sinherited is negligible.
Ssparse and Sdense consume more memory because they
need to monitor all containers related with the backup.
If the default container size is 4MB and the average uti-
lization is 50% which can be easily achieved by HAR,
the two sets of a 1TB stream consume 8MB memory
(each record contains a 4-byte ID, a 4-byte current uti-
lization, and an 8-byte pointer). This analysis shows that
the memory footprint of HAR is low in most scenarios.

There is a tradeoff in HAR. A higher utilization thresh-
old results in more containers being considered sparse,
and thus backups are of better average utilization and re-
store performance but worse deduplication ratio. If the
utilization threshold is set to 50%, HAR promises an av-
erage utilization of no less than 50%, and the maximum

restore performance is no less than 50% of the maximum
storage bandwidth.
5.2.1 The Impacts of HAR on Garbage Collection
We define Ci as the set of containers related with backup
i, |Ci| as the size of Ci, ni as the number of inherited
sparse containers, ri as the size of rewritten chunks, and
di as the size of new chunks. T backups are retained
at any moment. The container size is S. The storage
cost can be measured by the number of valid containers.
A container is valid if it has chunks referenced by non-
deleted backups. After backup k is finished, the number
of valid containers is Nk.

Nk = |
k∪

i=k−T+1

Ci|= |Ck−T+1|+
k

∑
i=k−T+2

(
ri +di

S
)

For those deleted backups (before backup k−T + 1),
we have

|Ci+1|= |Ci|−ni+1 +
ri+1 +di+1

S
,0 ≤ i < k−T +1

⇒ Nk = |C0|−
k−T+1

∑
i=1

(ni −
ri +di

S
)+

k

∑
i=k−T+2

(
ri +di

S
)

C0 is the initial backup. Since the |C0|, di, and S are con-
stants, we concentrate on the part δ related with HAR,

δ =−
k−T+1

∑
i=1

(ni −
ri

S
)+

k

∑
i=k−T+2

(
ri

S
) (1)

The value of δ demonstrates the additional storage
cost of HAR. If HAR is disabled (the utilization thresh-
old is 0), δ is 0. A negative value of δ indicates that HAR
decreases the storage cost. If k is small (the system is in
the warn-up stage), the latter part is dominant thus HAR
introduces additional storage cost than no rewriting. If k
is large (the system is aged), the former part is dominant
thus HAR decreases the storage cost.

A higher utilization threshold indicates that both ni
and ri are larger. If k is small, a lower utilization thresh-
old is helpful to decrease the storage cost since the latter
part is dominant. Otherwise, the best utilization thresh-
old is related with the backup retention time and chara-
cteristics of datasets. For example, if backups never ex-
pire, a higher utilization threshold always results in high-
er storage cost. Only retaining 1 backup would yield the
opposite effect. However we find a value of 50% works
well according to our experimental results in Section 6.7.

5.3 Optimal Restore Cache
To reduce the negative impacts of out-of-order containers
on restore performance, we implement Belady’s optimal
replacement cache [2]. Implementing the optimal cache
(OPT) needs to know the future access pattern. We can

6

USENIX Association 	 2014 USENIX Annual Technical Conference  187

collect such information during the backup, since the se-
quence of reading chunks during the restore is just the
same as the sequence of writing them during a backup.

After a chunk is processed through either elimina-
tion or over-writing its container ID, its container ID is
known. We add an access record into the collected info
in Figure 3. Each access record can only hold a container
ID. Sequential accesses to the identical container can be
merged into a record. This part of historical information
can be updated to disks periodically, and thus would not
consume much memory.

At the beginning of a restore, we load the container-
access sequence into memory. If the cache is full, we
evict the cached container that will not be accessed for
the longest time in the future. Belady has proven the
optimality [2].

The complete sequence of access records can consume
considerable memory when out-of-order containers are
dominant. Assuming each container is accessed 50 times
intermittently and the average utilization is 50%, the
complete sequence of access records of a 1TB stream
consumes over 100MB of memory. Instead of check-
ing the complete sequence of access records, we can use
a slide window to check a fixed-sized part of the future
sequence, as a near-optimal scheme. The memory foot-
print of this near-optimal scheme is hence bounded. Be-
cause the recent backups are most likely restored [8], we
only maintain the sequences of a few recent backups for
storage savings, and restore earlier backups via an LRU
replacement caching scheme.

5.4 A Hybrid Scheme
As discussed in Section 4.2, rewriting chunks in out-
of-order containers offers opportunities to reduce their
negative impacts. Since most of the chunks rewritten
by existing rewriting algorithms belong to out-of-order
containers, we propose a hybrid scheme that takes ad-
vantages of both HAR and existing rewriting algorithms
(e.g., CBR [8] and CAP [9]) as optional optimizations.
The hybrid scheme is straightforward. Each duplicate
chunk not rewritten by HAR is further examined by CBR
or CAP. If CBR or CAP considers the chunk fragmented,
the chunk is rewritten.

To avoid a significant decrease of deduplication ratio,
we configure CBR or CAP to rewrite less data than the
exclusive uses of themselves. For example, CBR uses
a rewrite limit to control the rewrite ratio (the size of the
rewritten chunks divided by that of the total chunks). The
default rewrite limit in CBR is 5%, and thus CBR at-
tempts to rewrite top-5% fragmented chunks. Generally
a higher rewrite limit indicates CBR rewrites more data
for higher restore performance. We set rewrite limit to
0.5% in the hybrid of HAR and CBR. The hybrid of HAR
and CAP is similar. Based on our observations, only

rewriting a small number of additional chunks further
improves restore performance when the restore cache is
small. However, the hybrid scheme always rewrites more
data than HAR. Hence, we propose disabling the hybrid
scheme if a large restore cache is affordable (Since re-
store is rare and critical, a large cache is reasonable).

5.5 Container-Marker Algorithm
Existing garbage collection schemes rely on merging
sparse containers to reclaim invalid chunks in the con-
tainers. Before merging, they have to identify invalid
chunks to determine utilizations of containers, i.e., ref-
erence management. Existing reference management
approaches [24, 7, 4] are inevitably cumbersome due to
the existence of large amounts of chunks.

HAR naturally accelerates expirations of sparse con-
tainers and thus the merging is no longer necessary.
Hence, we need not to calculate the exact utilization of
each container. We design the Container-Marker Algori-
thm (CMA) to efficiently determine which containers are
invalid. CMA is fault-tolerant and recoverable.

CMA maintains a container manifest for each dataset.
The container manifest records IDs of all containers re-
lated to the dataset. Each ID is paired with a backup
time, and the backup time indicates the dataset’s most
recent backup that refers to the container. Each backup
time can be represented by one byte, and let the backup
time of the earliest non-deleted backup be 0. One byte
suffices differentiating 256 backups, and more bytes can
be allocated for longer backup retention time. Each con-
tainer can be used by many different datasets. For each
container, CMA maintains a dataset list that records IDs
of the datasets referring to the container. A possible ap-
proach is to store the lists in the blank areas of contain-
ers, which on average is half of the chunk size. After a
backup is completed, the backup time of the containers
whose IDs are in the Ssparse and Sdense are updated to the
largest time in the old manifest plus one. CMA adds the
dataset’s ID to the lists of the containers that are in the
new manifest but not in the old one. If the lists (or man-
ifests) are corrupted, we can recover them by traversing
manifests of all datasets (or all related recipes).

If we need to delete the oldest t backups of a dataset,
CMA loads the container manifest into memory. The
container IDs with a backup time smaller than t are re-
moved from the manifest, and the backup time of the re-
maining IDs decreases by t. CMA removes the dataset’s
ID from the lists of the removed containers. If a con-
tainer’s list is empty, the container can be reclaimed. We
further examine the fingerprints in reclaimed containers.
If a fingerprint is mapped to a reclaimed container in the
fingerprint index, its entry is removed.

Because HAR effectively maintains high utilizations
of containers, the container manifest is small. We as-

7

188  2014 USENIX Annual Technical Conference	 USENIX Association

Table 2: Characteristics of datasets.
dataset name VMDK Linux Synthetic

total size 1.44TB 104GB 4.5TB
of versions 102 258 400

deduplication 25.44 45.24 37.26ratio
avg. chunk size 10.33KB 5.29KB 12.44KB

sparse medium severe severe
out-of-order severe medium medium

sume that each backup is 1TB and 90% identical to ad-
jacent backups. Recent 20 backups are retained. With
a 50% average utilization, the backups at most refer to
1.5 million containers. Hence the manifest and lists con-
sume at most 13.5MB storage space (each container has
a 4-byte container ID paired with a 1-byte backup time
in the manifest, and a 4-byte dataset ID in its list).

6 Performance Evaluation

6.1 Experimental Configurations
We implemented an experimental platform to evaluate
our design, including HAR, OPT, and CMA. We also im-
plement CBR [8] (The original CBR is designed for Hy-
draStor [6], and we implement the idea in the container
storage), CAP [9], and their hybrid schemes (HAR+CBR
and HAR+CAP) for comparisons. Since the design of
fingerprint index is out of scope for the paper, we simply
accommodate the complete fingerprint index in memory.
The baseline has no rewriting, and the default caching
scheme is OPT. The container size is 4MB. The default
utilization threshold in HAR is 50%. We retain 20 back-
ups thus backup n− 20 is deleted after backup n is fin-
ished. We don’t apply the offline container merging as
in previous work [15, 9], because it requires a long idle
time.

We use Speed Factor [9] as the metric of the restore
performance. The speed factor is defined as 1 divided by
mean containers read per MB of restored data. Higher
speed factor indicates better restore performance. Given
the container size is 4MB, 4 units of speed factor corre-
spond to the maximum storage bandwidth.

6.2 Datasets
Two real-world datasets, including VMDK and Linux,
and a synthetic dataset, i.e., Synthetic, are used for eval-
uation. Their characteristics are listed in Table 2. Each
dataset is divided into variable-sized chunks.

VMDK is from a virtual machine installed Ubuntu
12.04LTS, which is a common use-case in real-world [7].
We compile source code, patch the system, and run an
HTTP server on the virtual machine. We backup the vir-
tual machine regularly. It consists of 102 full backups.
Each full backup is 14.48GB on average, and 90–98%
identical to its adjacent backups. Each backup contains

 0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

VMDK Linux Synthetic

av
er

ag
e

ut
ili

za
tio

n

baseline
CBR

CAP
HAR

HAR+CBR
HAR+CAP

Figure 5: The average utilization of last 20 backups
achieved by each rewriting algorithm.

about 15% self-referred chunks, and thus out-of-order
containers are dominant.

Linux, downloaded from the web[1], is a commonly
used public dataset [23]. It consists of 258 consecutive
versions of unpacked Linux kernel sources. Each version
is 412.78MB on average. Two consecutive versions are
generally 99% identical except when there are large up-
grades. In Linux, there are only a few self-references and
sparse containers are dominant.

Synthetic is generated according to existing approa-
ches [23, 9]. We simulate common operations of file
systems, such as create/delete/modify files. We finally
obtain a 4.5TB dataset with 400 versions. There is no
self-reference in Synthetic.

6.3 Average Utilization
The average utilization of a backup exhibits its maximum
restore performance. Figure 5 shows the average utili-
zations of rewriting algorithms. We observe that HAR
significantly improves average utilizations, and obtains
highest average utilizations in all datasets. The average
utilizations of HAR are 99%, 75.42%, and 65.92% in
VMDK, Linux, and Synthetic respectively, which indi-
cate the maximum speed factors (= average utilization∗
4) are 3.96, 3.02, and 2.64. CBR and CAP achieve low-
er average utilizations than the baseline in VMDK, be-
cause they rewrite many copies of self-referred chunks.
They improve the average utilizations in Linux and Syn-
thetic, although less than HAR by 30–50%. The hybrid
schemes achieve average utilizations similar to HAR’s.

6.4 Deduplication Ratio
Deduplication ratio explains the amount of written
chunks, and the storage cost if no backup is deleted. Sin-
ce we delete backups regularly to triggers garbage col-
lection, the actual storage cost is shown in Section 6.6.

Figure 6 shows deduplication ratios of rewriting al-
gorithms. The deduplication ratios of HAR are 22.78,
27.78, and 21.38 in VMDK, Linux, and Synthetic re-
spectively. HAR rewrites 11.66%, 62.83%, and 74.31%
more data than the baseline. However, the corresponding
rewrite ratios remain at a low level, respectively 0.45%,
1.38%, and 1.99%. It indicates the size of rewritten

8

USENIX Association 	 2014 USENIX Annual Technical Conference  189

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

VMDK Linux Synthetic

de
du

pl
ic

at
io

n
ra

tio
baseline

CBR
CAP
HAR

HAR+CBR
HAR+CAP

Figure 6: The comparisons between HAR and other
rewriting algorithms in terms of deduplication ratio.

data is small relative to the size of backups. Due to
such low rewrite ratios, the fingerprint lookup, content-
defined chunking, and SHA-1 computation remain the
performance bottleneck. Hence, HAR has trivial impacts
on the backup performance.

We observe that HAR achieves considerably high-
er deduplication ratios than CBR and CAP. Since the
rewrite ratios of CBR and CAP are 2 times larg-
er than that of HAR, it is reasonable to expect that
HAR outperforms CBR and CAP in terms of back-
up performance. The hybrid schemes, HAR+CBR and
HAR+CAP, achieve better deduplication ratio than CBR
and CAP respectively, but decrease deduplication ratios
compared with HAR, such as by 10% in VMDK.

6.5 Restore Performance
Figure 7 shows the restore performance achieved by each
rewriting algorithm with a given cache size. We tune the
cache size according to the datasets, and show the im-
pacts of varying cache size later in Figure 8. The default
caching scheme is OPT. We observe severe declines of
the restore performance in the baseline. For instance,
restoring the latest backup is 21X slower than restoring
the first backup in Linux. OPT alone increases restore
performance by 1.51X , 1.47X , and 1.88X respectively in
last 20 backups, however the performance remains at a
low level.

We further examine the average speed factor in last
20 backups of each rewriting algorithm. In VMDK,
CBR and CAP further improve restore performance by
1.46X and 1.53X respectively based on OPT. HAR out-
performs them and increases restore performance by a
factor of 1.72. The hybrid schemes are efficient, be-
cause HAR+CBR and HAR+CAP increase restore per-
formance by 1.2X and 1.3X based on HAR. Given
that their deduplication ratios are slightly smaller than
HAR, CBR and CAP are good complements to HAR
in the datasets where out-of-order containers are domi-
nant. The restore performance of the initial backups ex-
ceeds the maximum storage bandwidth (4 units of speed
factor), because self-referred chunks in the scope of the
cache improve restore performance.

In Linux, CBR and CAP further improve restore per-
formance by 5.4X and 6.12X . HAR is more efficient
and further increases restore performance by a factor of
10.25. Because out-of-order containers are less domi-
nant, the hybrid schemes can’t achieve significantly bet-
ter performance than HAR. Thus the hybrid schemes can
be disabled in the datasets where the problem of out-of-
order containers is less severe. There are some occasion-
al smaller values in the curve of HAR, because a large
upgrade in Linux kernel produces a large amount of spar-
se containers.

The results in Synthetic are similar with those in Lin-
ux. CBR, CAP, and HAR further increase restore per-
formance by 6.41X , 6.35X , and 9.08X respectively. The
hybrid schemes can’t outperform HAR remarkably.

Figure 8 compares restore performance among rewrit-
ing algorithms under various cache sizes. In VMDK,
because out-of-order containers are dominant, HAR re-
quires a large cache (e.g., 2048-container-size) to achieve
the maximum restore performance. We observe that if
the cache size continuously increases, the restore perfor-
mance of the baseline is approximate to that of CBR and
CAP. The reason is that the baseline, CBR, and CAP
achieve similar average utilizations as shown in Fig-
ure 5. CBR and CAP are great complements to HAR.
When the cache is small, the restore performance of
HAR+CBR (HAR+CAP) is approximate to that of CBR
(CAP); when the cache is large, the restore performance
of the hybrid schemes is approximate to that of HAR.
Compared with HAR, the hybrid schemes successfully
decrease the cache threshold by nearly 2X , and improve
the restore performance when the cache is small.

In Linux, HAR achieves better restore performance
than CBR and CAP, even with a small cache (e.g.,
8-container-size). Compared with HAR, the hybrid
schemes decrease the cache threshold by a factor of 2,
and improve the restore performance when the cache is
small. However, because the cache threshold of HAR is
small, a restore cache of reasonable size can address the
problem caused by out-of-order containers without de-
creasing deduplication ratio.

In Synthetic, HAR outperforms CBR and CAP by
1.41X and 1.42X when the cache is no less than 32-
container-size. With a small cache (e.g., 8-container-
size), CBR and CAP are better. However, because the
cache threshold of HAR is small, it is reasonable to allo-
cate sufficient memory for a restore. The hybrid schemes
improve restore performance when the cache is small.

The experimental maximum restore performance in
each dataset verifies our estimated values in Section 6.3.
In summary, we propose to use the hybrid schemes when
self-references are common; otherwise the exclusive use
of HAR is recommended.

9

190  2014 USENIX Annual Technical Conference	 USENIX Association

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 0 20 40 60 80 100

sp
ee

d
fa

ct
or

version number

baseline(LRU)
baseline(OPT)

CBR
CAP

HAR
HAR+CBR
HAR+CAP

(a) VMDK

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0 50 100 150 200 250

sp
ee

d
fa

ct
or

version number

baseline(LRU)
baseline(OPT)

CBR
CAP

HAR
HAR+CBR
HAR+CAP

(b) Linux

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0 50 100 150 200 250 300 350

sp
ee

d
fa

ct
or

version number

baseline(LRU)
baseline(OPT)

CBR
CAP

HAR
HAR+CBR
HAR+CAP

(c) Synthetic

Figure 7: The comparisons of rewriting algorithms in terms of restore performance. The cache is 512-, 32-, and
64-container-sized in VMDK, Linux, and Synthetic respectively.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

64 128 256 512 1024 2048 4096

sp
ee

d
fa

ct
or

cache size

baseline
CBR
CAP

HAR
HAR+CBR
HAR+CAP

(a) VMDK

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

4 8 16 32 64 128 256

sp
ee

d
fa

ct
or

cache size

baseline
CBR
CAP

HAR
HAR+CBR
HAR+CAP

(b) Linux

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

8 16 32 64 128 256 512

sp
ee

d
fa

ct
or

cache size

baseline
CBR
CAP

HAR
HAR+CBR
HAR+CAP

(c) Synthetic

Figure 8: The comparisons of rewriting algorithms under various cache size. Speed factor is the average value of last
20 backups. The cache size is in terms of # of containers.
Table 3: Metadata space overhead of inline reference
management approaches. HAR is used in all approaches.

VMDK Linux Synthetic
Reference 4.64MB 328.36KB 6.53MBCounter [24]
GMS [7] 5.26MB 190KB 7.23MB

CMA 58.19KB 2KB 81.62KB

6.6 Garbage Collection
We compare the metadata space overhead among exist-
ing inline reference management approaches in Table 3.
We assume each reference counter consumes one byte.
The metadata overhead of CMA is lowest, and no more
than 1/90 of that of GMS.

We examine how rewriting algorithms affect garbage
collection. The number of valid containers after garbage
collection exhibits the actual storage cost, and the results
are shown in Figure 9. In the initial backups, the base-
line has least valid containers, which verifies the discus-
sions in Section 5.2.1. The advantage of HAR becomes
more apparent over time, since the proportion of the for-
mer part in Equation 1 increases. Finally HAR decreases
the number of valid containers by 27.37%, 68.15%, and
68.43% compared to the baseline in VMDK, Linux, and
Synthetic respectively. In Synthetic, the number of valid
containers increases continuously because the data size
increases. The results indicate HAR achieves better stor-
age saving than the baseline, and the merging is no longer
necessary in a deduplication system with HAR.

We observe that CBR and CAP increase the number
of valid containers by 26.8% and 36.47% respectively in
VMDK compared to the baseline. It indicates that CBR
and CAP exacerbate the problem of garbage collection
in VMDK. The reason is that they rewrite many copies
of self-referred chunks into different containers, which
reduces the average utilizations as shown in Figure 5. In
Linux and Synthetic, CBR and CAP reduce the number
of valid containers by 50%, however they still require the
merging operation to achieve further storage savings.

HAR+CBR and HAR+CAP respectively result in
2.3% and 12.5% more valid containers than HAR in
VMDK. However they significantly reduce the number
of valid containers compared with the baseline. They
perform slightly worse than HAR in Linux and Synthet-
ic, and outperform CBR and CAP in all three datasets.

6.7 Varying the Utilization Threshold
The utilization threshold determines the definition of
sparse containers. The impacts of varying the utilization
threshold on deduplication ratio and restore performance
are both shown in Figure 10.

Varying the utilization threshold from 90% to 10%,
the deduplication ratio increases from 17.03 to 25.06
and the restore performance decreases by about 35%
in VMDK. In particular, with a 70% utilization thresh-
old and a 2048-container-sized cache, the restore perfor-
mance exceeds 4 units of speed factor. The reason is
that the self-referred chunks restore more data than them-

10

USENIX Association 	 2014 USENIX Annual Technical Conference  191

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 20 30 40 50 60 70 80 90 100

of

 v
al

id
 c

on
ta

in
er

s

version number

baseline
CBR
CAP
HAR

HAR+CBR
HAR+CAP

(a) VMDK

 100

 200

 300

 400

 500

 600

 700

 800

 20 45 70 95 120 145 170 195 220 245

of

 v
al

id
 c

on
ta

in
er

s

version number

baseline
CBR
CAP
HAR

HAR+CBR
HAR+CAP

(b) Linux

 0

 5000

 10000

 15000

 20000

 25000

 30000

 20 60 100 140 180 220 260 300 340 380

of

 v
al

id
 c

on
ta

in
er

s

version number

baseline
CBR
CAP
HAR

HAR+CBR
HAR+CAP

(c) Synthetic

Figure 9: The comparisons of rewriting algorithms in terms of garbage collection.

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5

 17 18 19 20 21 22 23 24 25

sp
ee

d
fa

ct
or

deduplication ratio

cache size=64
cache size=128
cache size=256
cache size=512

cache size=1024
cache size=2048
cache size=4096

(a) VMDK

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 15 20 25 30 35 40

sp
ee

d
fa

ct
or

deduplication ratio

cache size=4
cache size=8

cache size=16
cache size=32

cache size=64
cache size=128
cache size=256

(b) Linux

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 5 10 15 20 25 30 35

sp
ee

d
fa

ct
or

deduplication ratio

cache size=8
cache size=16
cache size=32
cache size=64

cache size=128
cache size=256
cache size=512

(c) Synthetic

Figure 10: Impacts of varying the utilization threshold on restore performance and deduplication ratio. Speed factor
is the average value of last 20 backups. The cache size is in terms of # of containers. Each curve shows varying the
utilization threshold from left to right: 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, and 10%.

 4500
 5000
 5500
 6000
 6500
 7000
 7500
 8000
 8500

 20 30 40 50 60 70 80 90 100

of

 v
al

id
 c

on
ta

in
er

s

version number

UT=10%
UT=20%
UT=30%

UT=40%
UT=50%
UT=60%

UT=70%
UT=80%
UT=90%

(a) VMDK

 100
 150
 200
 250
 300
 350
 400
 450

 20 45 70 95 120 145 170 195 220 245

of

 v
al

id
 c

on
ta

in
er

s

version number

UT=10%
UT=20%
UT=30%

UT=40%
UT=50%
UT=60%

UT=70%
UT=80%
UT=90%

(b) Linux

 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

 20 60 100 140 180 220 260 300 340 380

of

 v
al

id
 c

on
ta

in
er

s

version number

UT=10%
UT=20%
UT=30%

UT=40%
UT=50%
UT=60%

UT=70%
UT=80%
UT=90%

(c) Synthetic

Figure 11: Impacts of varying the Utilization Threshold (UT) on garbage collection.

selves. In Linux and Synthetic, deduplication ratio and
restore performance are more sensitive to the change of
the utilization threshold than in VMDK. Varying the uti-
lization threshold from 90% to 10%, the deduplication
ratio increases from 14.34 to 42.49, and 5.68 to 35.26
respectively. The smaller the restore cache is, the more
significant the performance decrease is as the utilization
threshold decreases.

Varying the utilization threshold also has significant
impacts on garbage collection. The results are shown
in Figure 11. A lower utilization threshold results in
less valid containers in initial backups of all our data-
sets. However, we observe a trend that higher utilization
thresholds gradually outperform lower utilization thresh-
olds over time. For instance, the best utilization thresh-
old finally is 50–60% in VMDK, 50–70% in Linux, and
50% in Synthetic. There are some periodical peaks in

Linux, since a large upgrade to kernel results in a large
amount of emerging sparse containers. These containers
will be rewritten in the next backup, which suddenly in-
creases the number of valid containers. After the backup
expires, the number of valid containers is reduced.

Based on the experimental results, we believe a 50%
threshold is practical in most cases, since it causes mod-
erate rewrites and obtains significant improvements in re-
store and garbage collection.

7 Conclusions
The fragmentation decreases the efficiencies of restore
and garbage collection in deduplication-based backup
systems. We observe that the fragmentation comes in
two categories: sparse containers and out-of-order con-
tainers. Sparse containers determine the maximum re-
store performance of a backup while out-of-order con-

11

192  2014 USENIX Annual Technical Conference	 USENIX Association

tainers determine the required cache size to achieve the
maximum restore performance.

History-Aware Rewriting algorithm (HAR) accurate-
ly identifies and rewrites sparse containers via exploiting
historical information. We also implement an optimal re-
store caching scheme (OPT) and propose a hybrid rewrit-
ing algorithm as complements of HAR to reduce the neg-
ative impacts of out-of-order containers. HAR, as well as
OPT, improves restore performance by 2.6X–17X at an
acceptable cost in deduplication ratio. HAR outperforms
the state-of-the-art work in terms of both deduplication
ratio and restore performance. The hybrid schemes are
helpful to further improve restore performance in data-
sets where out-of-order containers are dominant.

The ability of HAR to reduce sparse containers facil-
itates the garbage collection. It is no longer necessary
to offline merge sparse containers, which relies on iden-
tifying valid chunks. We propose a Container-Marker
Algorithm (CMA) that identifies valid containers instead
of valid chunks. Since the metadata overhead of CMA
is bounded by the number of containers, it is more cost-
effective than existing reference management approaches
whose overhead is bounded by the number of chunks.

Acknowledgments
The work was partly supported by National Basic
Research 973 Program of China under Grant No.
2011CB302301; NSFC No. 61025008, 61173043, and
61232004; 863 Project 2013AA013203; Electronic De-
velopment fund of Information Industry Ministry. The
work was also supported by Key Laboratory of Informa-
tion Storage System, Ministry of Education, China. The
work conducted at VCU was partly supported by US Na-
tional Science Foundation (NSF) Grants CCF-1102624
and CNS-1218960. The authors are also grateful to Jon
Howell and anonymous reviews for their feedback.

References
[1] Linux kernel. http://www.kernel.org/, 2013.

[2] BELADY, L. A. A study of replacement algorithms for a virtual-
storage computer. IBM systems journal 5, 2 (1966), 78–101.

[3] BHAGWAT, D., ESHGHI, K., LONG, D. D., AND LILLIBRIDGE,
M. Extreme binning: Scalable, parallel deduplication for chunk-
based file backup. In Proc. IEEE MASCTOS, 2009.

[4] BOTELHO, F. C., SHILANE, P., GARG, N., AND HSU, W. Mem-
ory efficient sanitization of a deduplicated storage system. In
Proc. USENIX FAST, 2013.

[5] DEBNATH, B., SENGUPTA, S., AND LI, J. ChunkStash: speed-
ing up inline storage deduplication using flash memory. In Proc.
USENIX FAST, 2010.

[6] DUBNICKI, C., GRYZ, L., HELDT, L., KACZMARCZYK, M.,
KILIAN, W., STRZELCZAK, P., SZCZEPKOWSKI, J., UNGURE-
ANU, C., AND WELNICKI, M. HYDRAstor: A scalable sec-
ondary storage. In Proc. USENIX FAST, 2009.

[7] GUO, F., AND EFSTATHOPOULOS, P. Building a highperfor-
mance deduplication system. In Proc. USENIX ATC, 2011.

[8] KACZMARCZYK, M., BARCZYNSKI, M., KILIAN, W., AND
DUBNICKI, C. Reducing impact of data fragmentation caused
by in-line deduplication. In Proc. ACM SYSTOR, 2012.

[9] LILLIBRIDGE, M., ESHGHI, K., AND BHAGWAT, D. Improv-
ing restore speed for backup systems that use inline chunk-based
deduplication. In Proc. USENIX FAST, 2013.

[10] LILLIBRIDGE, M., ESHGHI, K., BHAGWAT, D., DEOLALIKAR,
V., TREZISE, G., AND CAMBLE, P. Sparse indexing: large s-
cale, inline deduplication using sampling and locality. In Proc.
USENIX FAST, 2009.

[11] MEISTER, D., AND BRINKMANN, A. dedupv1: Improving de-
duplication throughput using solid state drives (SSD). In Proc.
IEEE MSST, 2010.

[12] MEISTER, D., BRINKMANN, A., AND SÜSS, T. File recipe com-
pression in data deduplication systems. In Proc. USENIX FAST,
2013.

[13] MUTHITACHAROEN, A., CHEN, B., AND MAZIÈRES, D. A
low-bandwidth network file system. In Proc. ACM SOSP, 2001.

[14] NAM, Y., LU, G., PARK, N., XIAO, W., AND DU, D. H.
Chunk fragmentation level: An effective indicator for read per-
formance degradation in deduplication storage. In Proc. IEEE
HPCC, 2011.

[15] NAM, Y. J., PARK, D., AND DU, D. H. Assuring demanded read
performance of data deduplication storage with backup datasets.
In Proc. IEEE MASCOTS, 2012.

[16] POSEY, B. Deduplication and data lifecycle manage-
ment. http://searchdatabackup.techtarget.com/tip/Deduplication-
and-data-lifecycle-management, 2013.

[17] PRESTON, W. C. Backup & Recovery. O’Reilly Media, Inc.,
2006.

[18] PRESTON, W. C. Restoring deduped data in deduplication sys-
tems. http://searchdatabackup.techtarget.com/feature/Restoring-
deduped-data-in-deduplication-systems, 2010.

[19] QUINLAN, S., AND DORWARD, S. Venti: a new approach to
archival storage. In Proc. USENIX FAST, 2002.

[20] SHILANE, P., HUANG, M., WALLACE, G., AND HSU, W.
WAN-optimized replication of backup datasets using stream-
informed delta compression. ACM Transactions on Storage
(TOS) 8, 4 (2012), 13.

[21] SRINIVASAN, K., BISSON, T., GOODSON, G., AND VORUGAN-
TI, K. iDedup: Latency-aware, inline data deduplication for pri-
mary storage. In Proc. USENIX FAST, 2012.

[22] SYMANTEC. How to force a garbage collection of the dedup-
lication folder. http://www.symantec.com/business/support
/index?page=content&id=TECH129151, 2010.

[23] TARASOV, V., MUDRANKIT, A., BUIK, W., SHILANE, P.,
KUENNING, G., AND ZADOK, E. Generating realistic datasets
for deduplication analysis. In Proc. USENIX ATC, 2012.

[24] WEI, J., JIANG, H., ZHOU, K., AND FENG, D. MAD2: A scal-
able high-throughput exact deduplication approach for network
backup services. In Proc. IEEE MSST, 2010.

[25] XIA, W., JIANG, H., FENG, D., AND HUA, Y. SiLo: a
similarity-locality based near-exact deduplication scheme with
low ram overhead and high throughput. In Proc. USENIX ATC,
2011.

[26] ZHU, B., LI, K., AND PATTERSON, H. Avoiding the disk bot-
tleneck in the data domain deduplication file system. In Proc.
USENIX FAST, 2008.

12

