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Indexing services in cloud storage

n Large amounts of data
Ø From small hand-held devices to large-scale data centers
Ø 44ZB in total, 5.2TB for each user in 2020 (IDC' 2014)

n Fast query services are important to both users and systems
Ø Returning accurate results in a real-time manner
Ø Improving system performance and storage efficiency
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The importance of hash tables 
n Hash tables are widely used in data stores and caches

Ø Key-value stores, e.g., Memcached, Redis
Ø Relational databases, e.g., MonetDB, HyPer
Ø In-cache index (ICS 2014, MICRO 2015) 

n Strengths:
Ø Constant-scale addressing complexity ~O(1)
Ø Fast query response

n Weakness:
Ø Risk of high-latency for handling hashing collisions

n Cuckoo hashing
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Cuckoo hashing

n Kick-out operations: like cuckoo birds
n Open addressing 
n Supporting fast lookups: O(1) time complexity
n However, insertion latency can be very high and

unpredictable, especially
Ø when an endless loop occurs!
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How is an endless loop formed?
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n An endless loop is formed.

n Endless kickouts for any 
insertion within the loop.



Observations

n Endless loops widely exist in the Cuckoo hashing structures.
Ø More than 25% (cuckoo hashing with a stash)

n Loop ratio: the percentage of insertion failures due to loops
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Existing works

n ChunkStash @USENIX ATC’10
Ø Collisions: resursive strategy to relocate one of keys in candidates
Ø Loops: an auxiliary linked list (or, hash table)

n MemC3 @NSDI’13
Ø Collisions: random and repeat relocation (500 times)
Ø Loops: an expansion process
Ø Stand-alone implementation: libcuckoo @ EuroSys’14

n Horton tables @USENIX ATC’16
Ø Recursively evicting keys within a certain search tree height
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Motivations

n Due to endless loops:
Ø Substantial resources consumption 

u A large number of step-by-step kick-out operations
Ø Unbounded performance

u Fruitless effort

n Design Goal:
Ø Predetermining and avoiding occurrence of endless loops 
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Our approach: SmartCuckoo

n Tracking item placements in the hash table

Ø Representing the hashing relationship as a directed pseudoforest

Ø Classifying item insertions into three cases

Ø Predetermining and avoiding loops during insertion without any 
kick-out attempts.
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n Pseudoforest:
Ø A graph: each vertex has an outdegree of at most one
Ø Each connected component (subgraph) has at most one cycle (loop)
Ø In a subgraph:

Loop #Vertices = #Edges     

How to identify loop(s)?
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Classification and predetermination
n Three cases depending on the number of vertices added to the graph

n v+0, v+1, and v+2
n v+0: 5 possible scenarios based on the status of corresponding subgraph(s)
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Three cases v+0 v+1 v+2
Two insert

positions of a key
Same subgraph Different subgraphs A new

one
Two new

ones

Subgraph status Non-
maximal

Maximal Both non-
maximal

A maximal
and a non-
maximal

Both maximal
- -

Scenarios (a) (e) (b) (c) (d) - -



v+0: (a) One non-maximal subgraph
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n One empty bucket
n Success!
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v+0: (b) Two non-maximal subgraphs
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n Two empty buckets
n Success!

Pseudoforest
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v+0: (c) One maximal and one non-maximal
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n One loop and one empty bucket
n Conventional cuckoo hashing: taking a random walk

Ø T1: executing extra useless kick-out operations
Ø T2: making a success
Ø SmartCuckoo: directly selecting to enter from T2

n Success!

Pseudoforest
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v+0: (d) Two maximal subgraphs
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n Two loops!
n Execution:

Ø Conventional cuckoo hashing: sufficient attempts, then reporting a failure
Ø SmartCuckoo: reporting a failure without any kick-out operations.

Pseudoforest
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v+0: (e) One maximal subgraph
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Case: v+1
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n A new vertex after the item's insertion
n Success!
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Case: v+2
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n Two new vertices after the insertion
n Success!
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Evaluation methodology
n Comparisons:

Ø Baseline (Cuckoo hashing with a stash @ SIAM Journal on Computing'09)
Ø libcuckoo @ EuroSys'14
Ø BCHT (bucketized cuckoo hash table)

n Traces:
Ø RandomInteger: random integer generator @ TOMACS'98
Ø MacOS: http://tracer.filesystems.org
Ø DocWords: http://archive.ics.uci.edu/ml/datasets/Bag+of+Words
Ø YCSB: https://github.com/brianfrankcooper/YCSB @ SOCC'11

n Metrics: in millions of operations per second
Ø Insertion throughput
Ø Lookup throughput: positive/negative
Ø Throughput of workload with mixed queries (YCSB)
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Insertion throughput

0

0.5

1

1.5

2

2.5

3

3.5

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

M
ill

io
ns

 o
f I

ns
er

tio
ns

 P
er

 
Se

co
nd

Load Factor

Baseline
libcuckoo
BCHT
SmartCuckoo

n SmartCuckoo significantly increases insertion throughputs. 
n 0.5× to 5×speedups compared to Baseline. 
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Lookup throughput
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n 0%:  all candidate positions for a key have to be accessed.
n Almost the same lookup throughput with Baseline.
n Significantly higher than libcuckoo and BCHT.
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Throughput of workload with mixed queries
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n With the decrease of the percentage of insertions, all schemes increase the 
throughputs.

n In each workload, SmartCuckoo produces higher throughput than other 
three schemes.
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Workload Insert Lookup Update

YCSB-1 100 0 0

YCSB-2 75 25 0

YCSB-3 50 50 0

YCSB-4 25 75 0

YCSB-5 0 95 5



Conclusion and future work
n Cuckoo hashing is cost-efficient to offer O(1) query 

performance.
n We address the problem of potential endless loops in item 

insertion. 
n SmartCuckoo helps improve predictable performance in 

storage systems.

n To-do-list:
n SmartCuckoo in hash tables with more than two hash functions;
n The use of multiple slots in each bucket.
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Thanks and questions?

Open-source code: https://github.com/syy804123097/SmartCuckoo
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