
SmartCuckoo: A Fast and Cost-Efficient Hashing
Index Scheme for Cloud Storage Systems

Yuanyuan Sun, Yu Hua, Song Jiang*, Qiuyu Li,
Shunde Cao, Pengfei Zuo

Huazhong University of Science and Technology
*University of Texas, Arlington

1

Presented in the USENIX ATC 2017

Indexing services in cloud storage

n Large amounts of data
Ø From small hand-held devices to large-scale data centers
Ø 44ZB in total, 5.2TB for each user in 2020 (IDC' 2014)

n Fast query services are important to both users and systems
Ø Returning accurate results in a real-time manner
Ø Improving system performance and storage efficiency

2

The importance of hash tables
n Hash tables are widely used in data stores and caches

Ø Key-value stores, e.g., Memcached, Redis
Ø Relational databases, e.g., MonetDB, HyPer
Ø In-cache index (ICS 2014, MICRO 2015)

n Strengths:
Ø Constant-scale addressing complexity ~O(1)
Ø Fast query response

n Weakness:
Ø Risk of high-latency for handling hashing collisions

n Cuckoo hashing
3

Cuckoo hashing

n Kick-out operations: like cuckoo birds
n Open addressing
n Supporting fast lookups: O(1) time complexity
n However, insertion latency can be very high and

unpredictable, especially
Ø when an endless loop occurs!

4

How is an endless loop formed?

H1()

a

0

1

2

3

4

5

6

7

5

How is an endless loop formed?

a 0

1

2

3

4

5

6

7

H1()c

6

How is an endless loop formed?

a 0

1

2

3

4

5

6

7

c
H1()b

H2()

7

How is an endless loop formed?

a 0

1

2

3

4

5

6

7

c

T2T1

b

8

How is an endless loop formed?

a 0

1

2

3

4

5

6

7

c

T2T1

b

d

e

H1()
x

H2()

9

How is an endless loop formed?

a 0

1

2

3

4

5

6

7

c

T2T1

b

d

e

x

My alternative location

10

Kickout for empty buckets

How is an endless loop formed?

a 0

1

2

3

4

5

6

7

c

T2T1

b

d

e

x

My alternative location

11

Kickout for empty buckets

How is an endless loop formed?

a 0

1

2

3

4

5

6

7
c

T2T1

b

d

e

x

My alternative location

12

Kickout for empty buckets

How is an endless loop formed?

a 0

1

2

3

4

5

6

7

c

T2T1

b

d

e

x

My alternative location

13

a b

d x

n An endless loop is formed.

n Endless kickouts for any
insertion within the loop.

Observations

n Endless loops widely exist in the Cuckoo hashing structures.
Ø More than 25% (cuckoo hashing with a stash)

n Loop ratio: the percentage of insertion failures due to loops

0
5

10
15
20
25
30
35
40
45
50

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

Lo
op

 R
at

io
s (

%
)

Load Factor

RandomInteger
MacOS
DocWords

14

Existing works

n ChunkStash @USENIX ATC’10
Ø Collisions: resursive strategy to relocate one of keys in candidates
Ø Loops: an auxiliary linked list (or, hash table)

n MemC3 @NSDI’13
Ø Collisions: random and repeat relocation (500 times)
Ø Loops: an expansion process
Ø Stand-alone implementation: libcuckoo @ EuroSys’14

n Horton tables @USENIX ATC’16
Ø Recursively evicting keys within a certain search tree height

15

Motivations

n Due to endless loops:
Ø Substantial resources consumption

u A large number of step-by-step kick-out operations
Ø Unbounded performance

u Fruitless effort

n Design Goal:
Ø Predetermining and avoiding occurrence of endless loops

16

Our approach: SmartCuckoo

n Tracking item placements in the hash table

Ø Representing the hashing relationship as a directed pseudoforest

Ø Classifying item insertions into three cases

Ø Predetermining and avoiding loops during insertion without any
kick-out attempts.

17

n Pseudoforest:
Ø A graph: each vertex has an outdegree of at most one
Ø Each connected component (subgraph) has at most one cycle (loop)
Ø In a subgraph:

Loop #Vertices = #Edges

How to identify loop(s)?

e

c
d

a

k

j
n

m

l

b
i

hf g

e

c
d

a

k

j
n

mb

hf g Vacancy

No loop #Vertices = #Edges + 1

18Maximal Non-maximal

Classification and predetermination
n Three cases depending on the number of vertices added to the graph

n v+0, v+1, and v+2
n v+0: 5 possible scenarios based on the status of corresponding subgraph(s)

19

Three cases v+0 v+1 v+2
Two insert

positions of a key
Same subgraph Different subgraphs A new

one
Two new

ones

Subgraph status Non-
maximal

Maximal Both non-
maximal

A maximal
and a non-
maximal

Both maximal
- -

Scenarios (a) (e) (b) (c) (d) - -

v+0: (a) One non-maximal subgraph

Pseudoforest

c
b

d

T1 T2

0

1
2
3
4
5

a

6
7

x1

H1()

H2()
a

b

c

dH1(x1)

H2(x1)

c
b

d

T1 T2
0

1
2
3
4
5

a

6
7

x1
a

b

c

d

x1

n One empty bucket
n Success!

20

v+0: (b) Two non-maximal subgraphs

c
b

d

T1 T2

0

1
2
3
4
5

a

f
g6

7

x2
H1()

H2()

a
b

c

d

H1(x2)

H2(x2)

f

g

c
b

d

T1 T2
0

1
2
3
4
5

a

f
g6

7

x2

a
b

c

d

f

gx2

n Two empty buckets
n Success!

Pseudoforest
21

a
b

c

d

e H1(x3)

H2(x3)

f

g

v+0: (c) One maximal and one non-maximal

c
b

d

T1 T2

0

1
2
3
4
5

a

f
g6

7

e
x3

H2()

H1()
c

g

b

d

T1 T2
0

1
2
3
4
5

a

f
x36

7

e

a
b

c

d

e

f

g x3

n One loop and one empty bucket
n Conventional cuckoo hashing: taking a random walk

Ø T1: executing extra useless kick-out operations
Ø T2: making a success
Ø SmartCuckoo: directly selecting to enter from T2

n Success!

Pseudoforest
22

v+0: (d) Two maximal subgraphs

c
b

d

T1 T2

0

1
2
3
4
5

a

f i
g6

7

e
x4

H1()

H2()

h

a
b

c

d

e

H1(x4)

H2(x4)

fi

h g Failure!

n Two loops!
n Execution:

Ø Conventional cuckoo hashing: sufficient attempts, then reporting a failure
Ø SmartCuckoo: reporting a failure without any kick-out operations.

Pseudoforest
23

v+0: (e) One maximal subgraph

c
b

d

T1 T2

0

1
2
3
4
5

a

6
7

e
x5

H1()

H2()

a
b

c

d

e

H1(x5)
H2(x5)

Failure!

n One loop!

Pseudoforest
24

Case: v+1

Pseudoforest

c
b

d

T1 T2

0

1
2
3
4
5

a

6
7

x6

H1()

H2()

a
b

c

d

H1(x6)

H2(x6)

c
b

d

T1 T2
0

1
2
3
4
5

a

6
7

x6

a
b

c

d

x6

n A new vertex after the item's insertion
n Success!

25

Case: v+2

Pseudoforest

c
b

d

T1 T2

0

1
2
3
4
5

a

6
7

x7

H1()

H2()

a
b

c

d

H1(x7) H2(x7)

c
b

d

T1 T2
0

1
2
3
4
5

a

6
7

x7

a
b

c

d

x7

n Two new vertices after the insertion
n Success!

26

Evaluation methodology
n Comparisons:

Ø Baseline (Cuckoo hashing with a stash @ SIAM Journal on Computing'09)
Ø libcuckoo @ EuroSys'14
Ø BCHT (bucketized cuckoo hash table)

n Traces:
Ø RandomInteger: random integer generator @ TOMACS'98
Ø MacOS: http://tracer.filesystems.org
Ø DocWords: http://archive.ics.uci.edu/ml/datasets/Bag+of+Words
Ø YCSB: https://github.com/brianfrankcooper/YCSB @ SOCC'11

n Metrics: in millions of operations per second
Ø Insertion throughput
Ø Lookup throughput: positive/negative
Ø Throughput of workload with mixed queries (YCSB)

27

Insertion throughput

0

0.5

1

1.5

2

2.5

3

3.5

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

M
ill

io
ns

 o
f I

ns
er

tio
ns

 P
er

Se

co
nd

Load Factor

Baseline
libcuckoo
BCHT
SmartCuckoo

n SmartCuckoo significantly increases insertion throughputs.
n 0.5× to 5×speedups compared to Baseline.

28

5×

0.5×

Lookup throughput

0

0.5

1

1.5

2

2.5

100% 0%

M
ill

io
ns

 o
f L

oo
ku

ps
 P

er

Se
co

nd

Percentage of Existent Keys in the Lookup Requests

Baseline libcuckoo BCHT SmartCuckoo

n 0%: all candidate positions for a key have to be accessed.
n Almost the same lookup throughput with Baseline.
n Significantly higher than libcuckoo and BCHT.

29

Throughput of workload with mixed queries

0

0.4

0.8

1.2

1.6

2

2.4

YCSB-1 YCSB-2 YCSB-3 YCSB-4 YCSB-5

M
ill

io
ns

 o
f O

pe
ra

tio
ns

 P
er

Se

co
nd

Workloads

Baseline

libcuckoo

BCHT

SmartCuckoo

n With the decrease of the percentage of insertions, all schemes increase the
throughputs.

n In each workload, SmartCuckoo produces higher throughput than other
three schemes.

30

Workload Insert Lookup Update

YCSB-1 100 0 0

YCSB-2 75 25 0

YCSB-3 50 50 0

YCSB-4 25 75 0

YCSB-5 0 95 5

Conclusion and future work
n Cuckoo hashing is cost-efficient to offer O(1) query

performance.
n We address the problem of potential endless loops in item

insertion.
n SmartCuckoo helps improve predictable performance in

storage systems.

n To-do-list:
n SmartCuckoo in hash tables with more than two hash functions;
n The use of multiple slots in each bucket.

31

Thanks and questions?

Open-source code: https://github.com/syy804123097/SmartCuckoo

32

