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 Large amounts of data

• 300 new profiles and more than 208 thousand photos per minute [September
2018@Facebook]

Query Services in Cloud Storage Systems

…
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 Large amounts of data

• 300 new profiles and more than 208 thousand photos per minute [September
2018@Facebook]

Query Services in Cloud Storage Systems

Demanding the support of low-latency and high-throughput queries

…
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 Constant-scale read performance

• Widely used in key-value stores and relational databases

Hash structures
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 Constant-scale read performance

• Widely used in key-value stores and relational databases

ꭗ High latency for handling hash collisions

Hash structures

5



 Multi-choice hashing

 Handling hash collisions: kick-out operations

Cuckoo Hashing
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 Multi-choice hashing

 Handling hash collisions: kick-out operations

 For reads, only limited positions are probed => O(1) time complexity 

 For writes, endless loops may occur! => slow-write performance

Cuckoo Hashing

a n k

b

T1

T2

f

m c

a nf

m c
11



 Multi-choice hashing

 Handling hash collisions: kick-out operations

 For reads, only limited positions are probed => O(1) time complexity 

 For writes, endless loops may occur! => slow-write performance

Cuckoo Hashing

a n k

b

T1

T2

f

m c

Insert(x)

a nf

m c
12



 Multi-choice hashing

 Handling hash collisions: kick-out operations

 For reads, only limited positions are probed => O(1) time complexity 

 For writes, endless loops may occur! => slow-write performance

Cuckoo Hashing

a n k

b

T1

T2

f

m c

Insert(x)

a nf

m c
13



 Multi-choice hashing

 Handling hash collisions: kick-out operations

 For reads, only limited positions are probed => O(1) time complexity 

 For writes, endless loops may occur! => slow-write performance

Cuckoo Hashing

a

n
k

b

T1

T2

f

m

c

Insert(x)

a nf

m c

x

An endless loop occurs! 14



 Multi-choice hashing

 Handling hash collisions: kick-out operations

 For reads, only limited positions are probed => O(1) time complexity 

 For writes, endless loops may occur! => slow-write performance

Cuckoo Hashing
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An endless loop occurs!

Bottleneck: Asymmetric reads and writes!
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 Existing concurrency strategy for cuckoo hashing

• Lock two buckets before each kick-out operation (libcuckoo@EuroSys’14)

Concurrency in Multi-core Systems
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 Existing concurrency strategy for cuckoo hashing

• Lock two buckets before each kick-out operation (libcuckoo@EuroSys’14)

 Challenges:

• Inefficient insertion performance 

• Limited scalability

Design goal:

• A high-throughput and concurrency-friendly cuckoo hash table

Concurrency in Multi-core Systems
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 Pseudoforests to predetermine endless loops

 Efficient concurrency strategy

• A graph-grained locking mechanism

• Concurrency optimization to reduce the length of critical path

Higher throughput than state-of-the-art scheme, i.e., libcuckoo

Our Approach: CoCuckoo
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Vertex: a bucket

 Edge: an inserted item from the storage vertex to its backup vertex

 Identify endless loops: #Vertices = #Edges (called maximal)
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 EMPTY subgraph: buckets not represented in pseudoforest

Graph-grained Locking
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 EMPTY subgraph: buckets not represented in pseudoforest

 Classify insertions into 3 cases, which include 6 subcases
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 Two EMPTY subgraphs

 Insertion algorithm:

Atomically assign allocated subgraph number to two buckets
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One EMPTY subgraph (the other is non-maximal/maximal)
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One EMPTY subgraph (the other is non-maximal/maximal)

 Insertion algorithm:

 Two atomic operations without locks

 Assign the existing subgraph number to the new vertex

 Insert the item into the new vertex
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 Two different non-maximal subgraphs

 Insertion algorithm:

Kick-out (with item insertion)

Merge two subgraphs
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 The same non-maximal subgraph

 Insertion algorithm:

Mark as maximal

 Kick-out (with item insertion)
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One non-maximal subgraph and one maximal subgraph

 Insertion algorithm (similar to same_non):
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 Two maximal subgraphs or the same maximal subgraph

Always walking into a loop and predetermined to be a failure

 Insertion algorithm:

 Do nothing
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Most subgraphs are small the granularity of graph-grained locks
is acceptable

• Only constraining a very small number of buckets

• 3 vertices (44.25% subgraphs)

• No more than 10 vertices (99% subgraphs)

Lock Granularity
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 Subgraph number allocation

• Subgraph number: identifying a unique subgraph

• Unique without the need of continuity

 Subgraph number generator: a simple modular function

• Modulus: the total number of threads p

• Remainder: the number of each thread r

• n = kp+r , e.g., 8-thread CoCuckoo, Thread 2, n=2,10,18,…

Subgraph Management
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 Comparison:

• libcuckoo@EuroSys’14

• Slot numbers: 1, 2, 4, 8, 16

Workloads:

• YCSB: https://github.com/brianfrankcooper/YCSB @SOCC’11

• 2 million key-value pairs per workload

 Threads: 1, 4, 8, 12, 16

Metrics:

• Throughput

• Predetermination for insertion 

• Extra space overhead 

Performance Evaluation
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 CoCuckoo significantly increases average throughputs.

 75%-150% improvements compared to 2-way libcuckoo.

Average Insertion Throughput 
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Predetermination for Insertion
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 TwoEmpty and OneEmpty account for a large proportion

• Short-term or no locks for the shared buckets

Predetermination for Insertion
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 TwoEmpty and OneEmpty account for a large proportion

• Short-term or no locks for the shared buckets

 Max:

• Predetermine insertion failures and release locks without any kick-out operations

Predetermination for Insertion
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Extra Space Overhead
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 The same space available for both libcuckoo and CoCuckoo

• CoCuckoo increases the throughput over 2-way libcuckoo by 73% - 159%.

• CoCuckoo significantly decreases the average execution time per request.

Extra Space Overhead
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 The same space available for both libcuckoo and CoCuckoo

• CoCuckoo increases the throughput over 2-way libcuckoo by 73% - 159%.

• CoCuckoo significantly decreases the average execution time per request.

 The extra space overhead is small

Extra Space Overhead
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 CoCuckoo mitigates the asymmetric read and write costs in cuckoo 
hashing via

• A pseudoforest to predetermine and avoid occurrence of endless 
loops

• Graph-grained locking mechanism and concurrency optimization

 CoCuckoo achieves 75%-150% write throughput improvements 
compared with 2-way libcuckoo.

Conclusion

66



Q&A

https://csunyy.github.io/Homepage:: 
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