
Mitigating Asymmetric Read and Write Costs in 
Cuckoo Hashing for Storage Systems

Yuanyuan Sun, Yu Hua, Zhangyu Chen, Yuncheng Guo

Huazhong University of Science and Technology

USENIX ATC 2019



 Large amounts of data

• 300 new profiles and more than 208 thousand photos per minute [September
2018@Facebook]

Query Services in Cloud Storage Systems

…

2



 Large amounts of data

• 300 new profiles and more than 208 thousand photos per minute [September
2018@Facebook]

Query Services in Cloud Storage Systems

Demanding the support of low-latency and high-throughput queries

…

3



 Constant-scale read performance

• Widely used in key-value stores and relational databases

Hash structures

4



 Constant-scale read performance

• Widely used in key-value stores and relational databases

ꭗ High latency for handling hash collisions

Hash structures

5



 Multi-choice hashing

 Handling hash collisions: kick-out operations

Cuckoo Hashing

a n k

m b

T1

T2
6



 Multi-choice hashing

 Handling hash collisions: kick-out operations

Cuckoo Hashing

Insert(x)

a n k

m b

T1

T2
7



 Multi-choice hashing

 Handling hash collisions: kick-out operations

Cuckoo Hashing

a

n km

b

T1

T2 x
8



 Multi-choice hashing

 Handling hash collisions: kick-out operations

 For reads, only limited positions are probed => O(1) time complexity 

Cuckoo Hashing

a n k

b

T1

T2

f

m c
9



 Multi-choice hashing

 Handling hash collisions: kick-out operations

 For reads, only limited positions are probed => O(1) time complexity 

Cuckoo Hashing

a n k

b

T1

T2

f

m c

Find(c)

10



 Multi-choice hashing

 Handling hash collisions: kick-out operations

 For reads, only limited positions are probed => O(1) time complexity 

 For writes, endless loops may occur! => slow-write performance

Cuckoo Hashing

a n k

b

T1

T2

f

m c

a nf

m c
11



 Multi-choice hashing

 Handling hash collisions: kick-out operations

 For reads, only limited positions are probed => O(1) time complexity 

 For writes, endless loops may occur! => slow-write performance

Cuckoo Hashing

a n k

b

T1

T2

f

m c

Insert(x)

a nf

m c
12



 Multi-choice hashing

 Handling hash collisions: kick-out operations

 For reads, only limited positions are probed => O(1) time complexity 

 For writes, endless loops may occur! => slow-write performance

Cuckoo Hashing

a n k

b

T1

T2

f

m c

Insert(x)

a nf

m c
13



 Multi-choice hashing

 Handling hash collisions: kick-out operations

 For reads, only limited positions are probed => O(1) time complexity 

 For writes, endless loops may occur! => slow-write performance

Cuckoo Hashing

a

n
k

b

T1

T2

f

m

c

Insert(x)

a nf

m c

x

An endless loop occurs! 14



 Multi-choice hashing

 Handling hash collisions: kick-out operations

 For reads, only limited positions are probed => O(1) time complexity 

 For writes, endless loops may occur! => slow-write performance

Cuckoo Hashing

a

n
k

b

T1

T2

f

m

c

Insert(x)

a nf

m c

x

An endless loop occurs!

Bottleneck: Asymmetric reads and writes!

15



 Existing concurrency strategy for cuckoo hashing

• Lock two buckets before each kick-out operation (libcuckoo@EuroSys’14)

Concurrency in Multi-core Systems

16



 Existing concurrency strategy for cuckoo hashing

• Lock two buckets before each kick-out operation (libcuckoo@EuroSys’14)

 Challenges:

• Inefficient insertion performance 

• Limited scalability

Concurrency in Multi-core Systems

17



 Existing concurrency strategy for cuckoo hashing

• Lock two buckets before each kick-out operation (libcuckoo@EuroSys’14)

 Challenges:

• Inefficient insertion performance 

• Limited scalability

Design goal:

• A high-throughput and concurrency-friendly cuckoo hash table

Concurrency in Multi-core Systems

18



 Pseudoforests to predetermine endless loops

 Efficient concurrency strategy

• A graph-grained locking mechanism

• Concurrency optimization to reduce the length of critical path

Higher throughput than state-of-the-art scheme, i.e., libcuckoo

Our Approach: CoCuckoo

19



Vertex: a bucket

 Edge: an inserted item from the storage vertex to its backup vertex

 Identify endless loops: #Vertices = #Edges (called maximal)

Pseudoforest

a n k

b

T1

T2

f

m c

Insert(y)

a n k

b

f

m c

20



Vertex: a bucket

 Edge: an inserted item from the storage vertex to its backup vertex

 Identify endless loops: #Vertices = #Edges (called maximal)

Pseudoforest

a

nk

b

T1

T2

f

m

c

Insert(y)

a n k

b

f

m c

21



Vertex: a bucket

 Edge: an inserted item from the storage vertex to its backup vertex

 Identify endless loops: #Vertices = #Edges (called maximal)

Pseudoforest

a

nk

b

T1

T2

f

m

c

Insert(y)

a n k

b

f

m c

Maximal

22



Vertex: a bucket

 Edge: an inserted item from the storage vertex to its backup vertex

 Identify endless loops: #Vertices = #Edges (called maximal)

Pseudoforest

a

n

k

b
T1

T2

f

m

c

Insert(y)

a n k

b

f

m c
Vacancy

Maximal Non-maximal

23



Vertex: a bucket

 Edge: an inserted item from the storage vertex to its backup vertex

 Identify endless loops: #Vertices = #Edges (called maximal)

Pseudoforest

a

n

k

b
T1

T2

f

m

c

Insert(y)

a n k

b

f

m c

Maximal Non-maximal

Vacancy

y

y

24



Vertex: a bucket

 Edge: an inserted item from the storage vertex to its backup vertex

 Identify endless loops: #Vertices = #Edges (called maximal)

Pseudoforest

a

n

k

b

T1

T2

f

m

c

a n

k

bf

m c y

y

Maximal

25



 EMPTY subgraph: buckets not represented in pseudoforest

Graph-grained Locking

a n k

b

T1

T2

f

m c

a n k

b

f

m c

a

n

k

b

f

m

c

26



 EMPTY subgraph: buckets not represented in pseudoforest

Graph-grained Locking

a n k

b

T1

T2

f

m c

a n k

b

f

m c

a

n

k

b

f

m

c

27



 EMPTY subgraph: buckets not represented in pseudoforest

 Classify insertions into 3 cases, which include 6 subcases

Graph-grained Locking

EMPTY

Non-maximal

Maximal

28



 EMPTY subgraph: buckets not represented in pseudoforest

 Classify insertions into 3 cases, which include 6 subcases

Graph-grained Locking

TwoEmpty

OneEmpty

ZeroEmpty

According to the number of 
corresponding EMPTY subgraphs 

/

EMPTY

Non-maximal

Maximal

29



 EMPTY subgraph: buckets not represented in pseudoforest

 Classify insertions into 3 cases, which include 6 subcases

Graph-grained Locking

TwoEmpty

OneEmpty

ZeroEmpty Diff_non_non

Same_non

Diff_non_max

Max

According to the number of 
corresponding EMPTY subgraphs 

According to the states 
and the number of subgraphs 

/

/

EMPTY

Non-maximal

Maximal

30



 Two EMPTY subgraphs

TwoEmpty

T1

T2

Before insertion

31



 Two EMPTY subgraphs

 Insertion algorithm:

Atomically assign allocated subgraph number to two buckets

Insert item

Mark the subgraph as non-maximal

TwoEmpty

T1

T2

Before insertion

critical
path

With graph-grained lock(s)

Out of the critical path


32



 Two EMPTY subgraphs

 Insertion algorithm:

Atomically assign allocated subgraph number to two buckets

Insert item

Mark the subgraph as non-maximal

TwoEmpty

a kT1

T2

f Before insertion

After insertion

critical
path

With graph-grained lock(s)

Out of the critical path


33



One EMPTY subgraph (the other is non-maximal/maximal)

OneEmpty /

a kT1

T2

f /Before insertion

34



One EMPTY subgraph (the other is non-maximal/maximal)

 Insertion algorithm:

 Two atomic operations without locks

 Assign the existing subgraph number to the new vertex

 Insert the item into the new vertex

OneEmpty /

a n k

b

T1

T2

f /

/

Before insertion

After insertion

35



 Two different non-maximal subgraphs

 Insertion algorithm:

Kick-out (with item insertion)

Merge two subgraphs

ZeroEmpty (Diff_non_non)

a n k

b

T1

T2

f

Insert(c)

a nf

Before insertion

36



 Two different non-maximal subgraphs

 Insertion algorithm:

Kick-out (with item insertion)

Merge two subgraphs

ZeroEmpty (Diff_non_non)

a n
k

b

T1

T2

f

Insert(c)

a nf

Before insertion

37



 Two different non-maximal subgraphs

 Insertion algorithm:

Kick-out (with item insertion)

Merge two subgraphs

ZeroEmpty (Diff_non_non)

a n
k

b

T1

T2

f

Insert(c)

a nf Non-maximal
Non-maximal

Before insertion

38



 Two different non-maximal subgraphs

 Insertion algorithm:

Kick-out (with item insertion)

Merge two subgraphs

ZeroEmpty (Diff_non_non)

a n
k

b

T1

T2

f

c c

a nf
Non-maximal

Before insertion

39



 Two different non-maximal subgraphs

 Insertion algorithm:

Kick-out (with item insertion)

Merge two subgraphs

ZeroEmpty (Diff_non_non)

a n
k

b

T1

T2

f

c c

a nf
Non-maximal

Before insertion

After insertion

40



 The same non-maximal subgraph

 Insertion algorithm:

Mark as maximal

 Kick-out (with item insertion)

ZeroEmpty (Same_non)

a n k

b

T1

T2

f

c

Insert(m)

a nf

c

Before insertion

41



 The same non-maximal subgraph

 Insertion algorithm:

Mark as maximal

 Kick-out (with item insertion)

ZeroEmpty (Same_non)

a

n
k

b

T1

T2

f

c

Insert(m)

a nf

c

Before insertion

42



 The same non-maximal subgraph

 Insertion algorithm:

Mark as maximal

 Kick-out (with item insertion)

ZeroEmpty (Same_non)

a

n
k

b

T1

T2

f

c

Insert(m) Non-maximal

a nf

c

Before insertion

43



 The same non-maximal subgraph

 Insertion algorithm:

Mark as maximal

 Kick-out (with item insertion)

ZeroEmpty (Same_non)

a

n
k

b

T1

T2

f

c

Insert(m) Maximal

a nf

c

Before insertion

44



 The same non-maximal subgraph

 Insertion algorithm:

Mark as maximal

 Kick-out (with item insertion)

ZeroEmpty (Same_non)

a

n
k

b

T1

T2

f

c

Insert(m) Maximal

a nf

c

Before insertion

45



 The same non-maximal subgraph

 Insertion algorithm:

Mark as maximal

 Kick-out (with item insertion)

ZeroEmpty (Same_non)

a

n
k

b

T1

T2

f

c

m m

Maximal

a nf

c

Before insertion

After insertion

46



One non-maximal subgraph and one maximal subgraph

 Insertion algorithm (similar to same_non):

Mark as maximal

 Kick-out (with item insertion)

Merge two subgraphs

ZeroEmpty (Diff_non_max)

a n k

b

T1

T2

f

m c

a n k

b

f

m c

Insert(y)

47



One non-maximal subgraph and one maximal subgraph

 Insertion algorithm (similar to same_non):

Mark as maximal

 Kick-out (with item insertion)

Merge two subgraphs

ZeroEmpty (Diff_non_max)

a

n

k

bT1

T2

f

m

c
a n k

b

f

m c

Insert(y)

48



One non-maximal subgraph and one maximal subgraph

 Insertion algorithm (similar to same_non):

Mark as maximal

 Kick-out (with item insertion)

Merge two subgraphs

ZeroEmpty (Diff_non_max)

a

n

k

bT1

T2

f

m

c

Maximal Non-maximal

a n k

b

f

m c

Insert(y)

49



One non-maximal subgraph and one maximal subgraph

 Insertion algorithm (similar to same_non):

Mark as maximal

 Kick-out (with item insertion)

Merge two subgraphs

ZeroEmpty (Diff_non_max)

a

n

k

bT1

T2

f

m

c
a n k

b

f

m c

Maximal
Insert(y)

50



One non-maximal subgraph and one maximal subgraph

 Insertion algorithm (similar to same_non):

Mark as maximal

 Kick-out (with item insertion)

Merge two subgraphs

ZeroEmpty (Diff_non_max)

a

n

k

bT1

T2

f

m

c
a n k

b

f

m c

Maximal
Insert(y)

51



One non-maximal subgraph and one maximal subgraph

 Insertion algorithm (similar to same_non):

Mark as maximal

 Kick-out (with item insertion)

Merge two subgraphs

ZeroEmpty (Diff_non_max)

a

n

k

b

T1

T2

f

m

c
a nf

m c

Maximal

y

y

b

k 52



 Two maximal subgraphs or the same maximal subgraph

Always walking into a loop and predetermined to be a failure

 Insertion algorithm:

 Do nothing

ZeroEmpty (Max) /

a n k

b

T1

T2

f

m c

Insert(x)

a nf

m c
53



 Two maximal subgraphs or the same maximal subgraph

Always walking into a loop and predetermined to be a failure

 Insertion algorithm:

 Do nothing

ZeroEmpty (Max) /

a

n
k

b

T1

T2

f

m

c

Insert(x)

a nf

m c

x

Maximal

54



 Two maximal subgraphs or the same maximal subgraph

Always walking into a loop and predetermined to be a failure

 Insertion algorithm:

 Do nothing

ZeroEmpty (Max) /

a

n
k

b

T1

T2

f

m

c

Insert(x)

a nf

m c

x

Maximal

55



Most subgraphs are small the granularity of graph-grained locks
is acceptable

• Only constraining a very small number of buckets

• 3 vertices (44.25% subgraphs)

• No more than 10 vertices (99% subgraphs)

Lock Granularity

56



 Subgraph number allocation

• Subgraph number: identifying a unique subgraph

• Unique without the need of continuity

 Subgraph number generator: a simple modular function

• Modulus: the total number of threads p

• Remainder: the number of each thread r

• n = kp+r , e.g., 8-thread CoCuckoo, Thread 2, n=2,10,18,…

Subgraph Management

57



 Comparison:

• libcuckoo@EuroSys’14

• Slot numbers: 1, 2, 4, 8, 16

Workloads:

• YCSB: https://github.com/brianfrankcooper/YCSB @SOCC’11

• 2 million key-value pairs per workload

 Threads: 1, 4, 8, 12, 16

Metrics:

• Throughput

• Predetermination for insertion 

• Extra space overhead 

Performance Evaluation

58

https://github.com/brianfrankcooper/YCSB


 CoCuckoo significantly increases average throughputs.

 75%-150% improvements compared to 2-way libcuckoo.

Average Insertion Throughput 

59



Predetermination for Insertion

60



 TwoEmpty and OneEmpty account for a large proportion

• Short-term or no locks for the shared buckets

Predetermination for Insertion

61



 TwoEmpty and OneEmpty account for a large proportion

• Short-term or no locks for the shared buckets

 Max:

• Predetermine insertion failures and release locks without any kick-out operations

Predetermination for Insertion

62



Extra Space Overhead

63



 The same space available for both libcuckoo and CoCuckoo

• CoCuckoo increases the throughput over 2-way libcuckoo by 73% - 159%.

• CoCuckoo significantly decreases the average execution time per request.

Extra Space Overhead

64



 The same space available for both libcuckoo and CoCuckoo

• CoCuckoo increases the throughput over 2-way libcuckoo by 73% - 159%.

• CoCuckoo significantly decreases the average execution time per request.

 The extra space overhead is small

Extra Space Overhead

65



 CoCuckoo mitigates the asymmetric read and write costs in cuckoo 
hashing via

• A pseudoforest to predetermine and avoid occurrence of endless 
loops

• Graph-grained locking mechanism and concurrency optimization

 CoCuckoo achieves 75%-150% write throughput improvements 
compared with 2-way libcuckoo.

Conclusion

66



Q&A

https://csunyy.github.io/Homepage:: 

67

https://csunyy.github.io/

