
Mitigating Asymmetric Read and Write Costs in 
Cuckoo Hashing for Storage Systems

Yuanyuan Sun, Yu Hua, Zhangyu Chen, Yuncheng Guo

Huazhong University of Science and Technology

USENIX ATC 2019



 Large amounts of data

• 300 new profiles and more than 208 thousand photos per minute [September
2018@Facebook]

Query Services in Cloud Storage Systems

…

2



 Large amounts of data

• 300 new profiles and more than 208 thousand photos per minute [September
2018@Facebook]

Query Services in Cloud Storage Systems

Demanding the support of low-latency and high-throughput queries

…

3



 Constant-scale read performance

• Widely used in key-value stores and relational databases

Hash structures

4



 Constant-scale read performance

• Widely used in key-value stores and relational databases

ꭗ High latency for handling hash collisions

Hash structures

5



 Multi-choice hashing

 Handling hash collisions: kick-out operations

Cuckoo Hashing

a n k

m b

T1

T2
6



 Multi-choice hashing

 Handling hash collisions: kick-out operations

Cuckoo Hashing

Insert(x)

a n k

m b

T1

T2
7



 Multi-choice hashing

 Handling hash collisions: kick-out operations

Cuckoo Hashing

a

n km

b

T1

T2 x
8



 Multi-choice hashing

 Handling hash collisions: kick-out operations

 For reads, only limited positions are probed => O(1) time complexity 

Cuckoo Hashing

a n k

b

T1

T2

f

m c
9



 Multi-choice hashing

 Handling hash collisions: kick-out operations

 For reads, only limited positions are probed => O(1) time complexity 

Cuckoo Hashing

a n k

b

T1

T2

f

m c

Find(c)

10



 Multi-choice hashing

 Handling hash collisions: kick-out operations

 For reads, only limited positions are probed => O(1) time complexity 

 For writes, endless loops may occur! => slow-write performance

Cuckoo Hashing

a n k

b

T1

T2

f

m c

a nf

m c
11



 Multi-choice hashing

 Handling hash collisions: kick-out operations

 For reads, only limited positions are probed => O(1) time complexity 

 For writes, endless loops may occur! => slow-write performance

Cuckoo Hashing

a n k

b

T1

T2

f

m c

Insert(x)

a nf

m c
12



 Multi-choice hashing

 Handling hash collisions: kick-out operations

 For reads, only limited positions are probed => O(1) time complexity 

 For writes, endless loops may occur! => slow-write performance

Cuckoo Hashing

a n k

b

T1

T2

f

m c

Insert(x)

a nf

m c
13



 Multi-choice hashing

 Handling hash collisions: kick-out operations

 For reads, only limited positions are probed => O(1) time complexity 

 For writes, endless loops may occur! => slow-write performance

Cuckoo Hashing

a

n
k

b

T1

T2

f

m

c

Insert(x)

a nf

m c

x

An endless loop occurs! 14



 Multi-choice hashing

 Handling hash collisions: kick-out operations

 For reads, only limited positions are probed => O(1) time complexity 

 For writes, endless loops may occur! => slow-write performance

Cuckoo Hashing

a

n
k

b

T1

T2

f

m

c

Insert(x)

a nf

m c

x

An endless loop occurs!

Bottleneck: Asymmetric reads and writes!

15



 Existing concurrency strategy for cuckoo hashing

• Lock two buckets before each kick-out operation (libcuckoo@EuroSys’14)

Concurrency in Multi-core Systems

16



 Existing concurrency strategy for cuckoo hashing

• Lock two buckets before each kick-out operation (libcuckoo@EuroSys’14)

 Challenges:

• Inefficient insertion performance 

• Limited scalability

Concurrency in Multi-core Systems

17



 Existing concurrency strategy for cuckoo hashing

• Lock two buckets before each kick-out operation (libcuckoo@EuroSys’14)

 Challenges:

• Inefficient insertion performance 

• Limited scalability

Design goal:

• A high-throughput and concurrency-friendly cuckoo hash table

Concurrency in Multi-core Systems

18



 Pseudoforests to predetermine endless loops

 Efficient concurrency strategy

• A graph-grained locking mechanism

• Concurrency optimization to reduce the length of critical path

Higher throughput than state-of-the-art scheme, i.e., libcuckoo

Our Approach: CoCuckoo

19



Vertex: a bucket

 Edge: an inserted item from the storage vertex to its backup vertex

 Identify endless loops: #Vertices = #Edges (called maximal)

Pseudoforest

a n k

b

T1

T2

f

m c

Insert(y)

a n k

b

f

m c

20



Vertex: a bucket

 Edge: an inserted item from the storage vertex to its backup vertex

 Identify endless loops: #Vertices = #Edges (called maximal)

Pseudoforest

a

nk

b

T1

T2

f

m

c

Insert(y)

a n k

b

f

m c

21



Vertex: a bucket

 Edge: an inserted item from the storage vertex to its backup vertex

 Identify endless loops: #Vertices = #Edges (called maximal)

Pseudoforest

a

nk

b

T1

T2

f

m

c

Insert(y)

a n k

b

f

m c

Maximal

22



Vertex: a bucket

 Edge: an inserted item from the storage vertex to its backup vertex

 Identify endless loops: #Vertices = #Edges (called maximal)

Pseudoforest

a

n

k

b
T1

T2

f

m

c

Insert(y)

a n k

b

f

m c
Vacancy

Maximal Non-maximal

23



Vertex: a bucket

 Edge: an inserted item from the storage vertex to its backup vertex

 Identify endless loops: #Vertices = #Edges (called maximal)

Pseudoforest

a

n

k

b
T1

T2

f

m

c

Insert(y)

a n k

b

f

m c

Maximal Non-maximal

Vacancy

y

y

24



Vertex: a bucket

 Edge: an inserted item from the storage vertex to its backup vertex

 Identify endless loops: #Vertices = #Edges (called maximal)

Pseudoforest

a

n

k

b

T1

T2

f

m

c

a n

k

bf

m c y

y

Maximal

25



 EMPTY subgraph: buckets not represented in pseudoforest

Graph-grained Locking

a n k

b

T1

T2

f

m c

a n k

b

f

m c

a

n

k

b

f

m

c

26



 EMPTY subgraph: buckets not represented in pseudoforest

Graph-grained Locking

a n k

b

T1

T2

f

m c

a n k

b

f

m c

a

n

k

b

f

m

c

27



 EMPTY subgraph: buckets not represented in pseudoforest

 Classify insertions into 3 cases, which include 6 subcases

Graph-grained Locking

EMPTY

Non-maximal

Maximal

28



 EMPTY subgraph: buckets not represented in pseudoforest

 Classify insertions into 3 cases, which include 6 subcases

Graph-grained Locking

TwoEmpty

OneEmpty

ZeroEmpty

According to the number of 
corresponding EMPTY subgraphs 

/

EMPTY

Non-maximal

Maximal

29



 EMPTY subgraph: buckets not represented in pseudoforest

 Classify insertions into 3 cases, which include 6 subcases

Graph-grained Locking

TwoEmpty

OneEmpty

ZeroEmpty Diff_non_non

Same_non

Diff_non_max

Max

According to the number of 
corresponding EMPTY subgraphs 

According to the states 
and the number of subgraphs 

/

/

EMPTY

Non-maximal

Maximal

30



 Two EMPTY subgraphs

TwoEmpty

T1

T2

Before insertion

31



 Two EMPTY subgraphs

 Insertion algorithm:

Atomically assign allocated subgraph number to two buckets

Insert item

Mark the subgraph as non-maximal

TwoEmpty

T1

T2

Before insertion

critical
path

With graph-grained lock(s)

Out of the critical path


32



 Two EMPTY subgraphs

 Insertion algorithm:

Atomically assign allocated subgraph number to two buckets

Insert item

Mark the subgraph as non-maximal

TwoEmpty

a kT1

T2

f Before insertion

After insertion

critical
path

With graph-grained lock(s)

Out of the critical path


33



One EMPTY subgraph (the other is non-maximal/maximal)

OneEmpty /

a kT1

T2

f /Before insertion

34



One EMPTY subgraph (the other is non-maximal/maximal)

 Insertion algorithm:

 Two atomic operations without locks

 Assign the existing subgraph number to the new vertex

 Insert the item into the new vertex

OneEmpty /

a n k

b

T1

T2

f /

/

Before insertion

After insertion

35



 Two different non-maximal subgraphs

 Insertion algorithm:

Kick-out (with item insertion)

Merge two subgraphs

ZeroEmpty (Diff_non_non)

a n k

b

T1

T2

f

Insert(c)

a nf

Before insertion

36



 Two different non-maximal subgraphs

 Insertion algorithm:

Kick-out (with item insertion)

Merge two subgraphs

ZeroEmpty (Diff_non_non)

a n
k

b

T1

T2

f

Insert(c)

a nf

Before insertion

37



 Two different non-maximal subgraphs

 Insertion algorithm:

Kick-out (with item insertion)

Merge two subgraphs

ZeroEmpty (Diff_non_non)

a n
k

b

T1

T2

f

Insert(c)

a nf Non-maximal
Non-maximal

Before insertion

38



 Two different non-maximal subgraphs

 Insertion algorithm:

Kick-out (with item insertion)

Merge two subgraphs

ZeroEmpty (Diff_non_non)

a n
k

b

T1

T2

f

c c

a nf
Non-maximal

Before insertion

39



 Two different non-maximal subgraphs

 Insertion algorithm:

Kick-out (with item insertion)

Merge two subgraphs

ZeroEmpty (Diff_non_non)

a n
k

b

T1

T2

f

c c

a nf
Non-maximal

Before insertion

After insertion

40



 The same non-maximal subgraph

 Insertion algorithm:

Mark as maximal

 Kick-out (with item insertion)

ZeroEmpty (Same_non)

a n k

b

T1

T2

f

c

Insert(m)

a nf

c

Before insertion

41



 The same non-maximal subgraph

 Insertion algorithm:

Mark as maximal

 Kick-out (with item insertion)

ZeroEmpty (Same_non)

a

n
k

b

T1

T2

f

c

Insert(m)

a nf

c

Before insertion

42



 The same non-maximal subgraph

 Insertion algorithm:

Mark as maximal

 Kick-out (with item insertion)

ZeroEmpty (Same_non)

a

n
k

b

T1

T2

f

c

Insert(m) Non-maximal

a nf

c

Before insertion

43



 The same non-maximal subgraph

 Insertion algorithm:

Mark as maximal

 Kick-out (with item insertion)

ZeroEmpty (Same_non)

a

n
k

b

T1

T2

f

c

Insert(m) Maximal

a nf

c

Before insertion

44



 The same non-maximal subgraph

 Insertion algorithm:

Mark as maximal

 Kick-out (with item insertion)

ZeroEmpty (Same_non)

a

n
k

b

T1

T2

f

c

Insert(m) Maximal

a nf

c

Before insertion

45



 The same non-maximal subgraph

 Insertion algorithm:

Mark as maximal

 Kick-out (with item insertion)

ZeroEmpty (Same_non)

a

n
k

b

T1

T2

f

c

m m

Maximal

a nf

c

Before insertion

After insertion

46



One non-maximal subgraph and one maximal subgraph

 Insertion algorithm (similar to same_non):

Mark as maximal

 Kick-out (with item insertion)

Merge two subgraphs

ZeroEmpty (Diff_non_max)

a n k

b

T1

T2

f

m c

a n k

b

f

m c

Insert(y)

47



One non-maximal subgraph and one maximal subgraph

 Insertion algorithm (similar to same_non):

Mark as maximal

 Kick-out (with item insertion)

Merge two subgraphs

ZeroEmpty (Diff_non_max)

a

n

k

bT1

T2

f

m

c
a n k

b

f

m c

Insert(y)

48



One non-maximal subgraph and one maximal subgraph

 Insertion algorithm (similar to same_non):

Mark as maximal

 Kick-out (with item insertion)

Merge two subgraphs

ZeroEmpty (Diff_non_max)

a

n

k

bT1

T2

f

m

c

Maximal Non-maximal

a n k

b

f

m c

Insert(y)

49



One non-maximal subgraph and one maximal subgraph

 Insertion algorithm (similar to same_non):

Mark as maximal

 Kick-out (with item insertion)

Merge two subgraphs

ZeroEmpty (Diff_non_max)

a

n

k

bT1

T2

f

m

c
a n k

b

f

m c

Maximal
Insert(y)

50



One non-maximal subgraph and one maximal subgraph

 Insertion algorithm (similar to same_non):

Mark as maximal

 Kick-out (with item insertion)

Merge two subgraphs

ZeroEmpty (Diff_non_max)

a

n

k

bT1

T2

f

m

c
a n k

b

f

m c

Maximal
Insert(y)

51



One non-maximal subgraph and one maximal subgraph

 Insertion algorithm (similar to same_non):

Mark as maximal

 Kick-out (with item insertion)

Merge two subgraphs

ZeroEmpty (Diff_non_max)

a

n

k

b

T1

T2

f

m

c
a nf

m c

Maximal

y

y

b

k 52



 Two maximal subgraphs or the same maximal subgraph

Always walking into a loop and predetermined to be a failure

 Insertion algorithm:

 Do nothing

ZeroEmpty (Max) /

a n k

b

T1

T2

f

m c

Insert(x)

a nf

m c
53



 Two maximal subgraphs or the same maximal subgraph

Always walking into a loop and predetermined to be a failure

 Insertion algorithm:

 Do nothing

ZeroEmpty (Max) /

a

n
k

b

T1

T2

f

m

c

Insert(x)

a nf

m c

x

Maximal

54



 Two maximal subgraphs or the same maximal subgraph

Always walking into a loop and predetermined to be a failure

 Insertion algorithm:

 Do nothing

ZeroEmpty (Max) /

a

n
k

b

T1

T2

f

m

c

Insert(x)

a nf

m c

x

Maximal

55



Most subgraphs are small the granularity of graph-grained locks
is acceptable

• Only constraining a very small number of buckets

• 3 vertices (44.25% subgraphs)

• No more than 10 vertices (99% subgraphs)

Lock Granularity

56



 Subgraph number allocation

• Subgraph number: identifying a unique subgraph

• Unique without the need of continuity

 Subgraph number generator: a simple modular function

• Modulus: the total number of threads p

• Remainder: the number of each thread r

• n = kp+r , e.g., 8-thread CoCuckoo, Thread 2, n=2,10,18,…

Subgraph Management

57



 Comparison:

• libcuckoo@EuroSys’14

• Slot numbers: 1, 2, 4, 8, 16

Workloads:

• YCSB: https://github.com/brianfrankcooper/YCSB @SOCC’11

• 2 million key-value pairs per workload

 Threads: 1, 4, 8, 12, 16

Metrics:

• Throughput

• Predetermination for insertion 

• Extra space overhead 

Performance Evaluation

58

https://github.com/brianfrankcooper/YCSB


 CoCuckoo significantly increases average throughputs.

 75%-150% improvements compared to 2-way libcuckoo.

Average Insertion Throughput 

59



Predetermination for Insertion

60



 TwoEmpty and OneEmpty account for a large proportion

• Short-term or no locks for the shared buckets

Predetermination for Insertion

61



 TwoEmpty and OneEmpty account for a large proportion

• Short-term or no locks for the shared buckets

 Max:

• Predetermine insertion failures and release locks without any kick-out operations

Predetermination for Insertion

62



Extra Space Overhead

63



 The same space available for both libcuckoo and CoCuckoo

• CoCuckoo increases the throughput over 2-way libcuckoo by 73% - 159%.

• CoCuckoo significantly decreases the average execution time per request.

Extra Space Overhead

64



 The same space available for both libcuckoo and CoCuckoo

• CoCuckoo increases the throughput over 2-way libcuckoo by 73% - 159%.

• CoCuckoo significantly decreases the average execution time per request.

 The extra space overhead is small

Extra Space Overhead

65



 CoCuckoo mitigates the asymmetric read and write costs in cuckoo 
hashing via

• A pseudoforest to predetermine and avoid occurrence of endless 
loops

• Graph-grained locking mechanism and concurrency optimization

 CoCuckoo achieves 75%-150% write throughput improvements 
compared with 2-way libcuckoo.

Conclusion

66



Q&A

https://csunyy.github.io/Homepage:: 

67

https://csunyy.github.io/

