Mitigating Asymmetric Read and Write Costs in
Cuckoo Hashing for Storage Systems

Yuanyuan Sun, Yu Hua, Zhangyu Chen, Yuncheng Guo
Huazhong University of Science and Technology

USENIX ATC 2019

Query Services in Cloud Storage Systems

» Large amounts of data
* 300 new profiles and more than 208 thousand photos per minute [September

2018@Facebook]

C—
CH—
L
|

[

U4

Query Services in Cloud Storage Systems

» Large amounts of data
* 300 new profiles and more than 208 thousand photos per minute [September

2018@Facebook]
E)
CH—
I

Demanding the support of low-latency and high-throughput queries

000 - g |

v’ Constant-scale read performance
e Widely used in key-value stores and relational databases

&P redis .

monetdb) A HyPer

v’ Constant-scale read performance
e Widely used in key-value stores and relational databases

&P redis .

monetdb) A HyPer

x High latency for handling hash collisions

Cuckoo Hashing

» Multi-choice hashing
» Handling hash collisions: kick-out operations

[n] [k

/

d

A

[m]

T1

| ||
12 | ||

[b]

Cuckoo Hashing

» Multi-choice hashing
» Handling hash collisions: kick-out operations

Insert(x)

Cuckoo Hashing

» Multi-choice hashing
» Handling hash collisions: kick-out operations

Cuckoo Hashing

» Multi-choice hashing
» Handling hash collisions: kick-out operations

xxxxxx

» For reads, only limited positions are probed => O(1) time complexity (an)

Cuckoo Hashing

» Multi-choice hashing
» Handling hash collisions: kick-out operations
» For reads, only limited positions are probed => O(1) time complexity LN

Cuckoo Hashing

» Multi-choice hashing
» Handling hash collisions: kick-out operations

xxxxxx

» For reads, only limited positions are probed => O(1) time complexity (% \;
> For writes, endless loops may occur! => slow-write performance /\

Ti[f] fa] [n] k|

/\

12| |m] Jcf [b]

11

Cuckoo Hashing

» Multi-choice hashing
» Handling hash collisions: kick-out operations

xxxxxx

» For reads, only limited positions are probed => O(1) time complexity (% \;
> For writes, endless loops may occur! => slow-write performance /\

Insert(x)

‘ 12

Cuckoo Hashing

» Multi-choice hashing
» Handling hash collisions: kick-out operations

> For reads, only limited positions are probed => O(1) time complexity (%\
» For writes, endless loops may occur! => slow-write performance /\

Insert(x)

‘ 13

Cuckoo Hashing

» Multi-choice hashing
» Handling hash collisions: kick-out operations

. —~
» For reads, only limited positions are probed => O(1) time complexity (%\}
» For writes, endless loops may occur! => slow-write performance m

Insert(x)

An endless loop occurs! 14

Cuckoo Hashing

» Multi-choice hashing
» Handling hash collisions: kick-out operations

» For reads, only limited positions are probed => O(1) time complexity %
» For writes, endless loops may occur! => slow-write performance A\
Insert(x)

i (L LD e "

Bottleneck: Asymmetric reads and writes!

e 14 [X \,
12 (mp fe| |b] [| m
— An endless loop occurs! 15

Concurrency in Multi-core Systems

» Existing concurrency strategy for cuckoo hashing
e Lock two buckets before each kick-out operation (libcuckoo@EuroSys’14)

16

Concurrency in Multi-core Systems

» Existing concurrency strategy for cuckoo hashing
e Lock two buckets before each kick-out operation (libcuckoo@EuroSys’14)

» Challenges:
e |nefficient insertion performance
e Limited scalability

17

Concurrency in Multi-core Systems

» Existing concurrency strategy for cuckoo hashing
e Lock two buckets before each kick-out operation (libcuckoo@EuroSys’14)

» Challenges:
e |nefficient insertion performance
e Limited scalability

» Design goal:
e A high-throughput and concurrency-friendly cuckoo hash table

18

Our Approach: CoCuckoo

» Pseudoforests to predetermine endless loops
» Efficient concurrency strategy
* A graph-grained locking mechanism

* Concurrency optimization to reduce the length of critical path

» Higher throughput than state-of-the-art scheme, i.e., libcuckoo

19

Pseudoforest

» Vertex: a bucket
» Edge: an inserted item from the storage vertex to its backup vertex

» ldentify endless loops: #Vertices = #Edges (called maximal)
Insert(y)

TL[f] [a] Il
|

b

20

Pseudoforest

» Vertex: a bucket
» Edge: an inserted item from the storage vertex to its backup vertex

» ldentify endless loops: #Vertices = #Edges (called maximal)
Insert(y)

Pseudoforest

» Vertex: a bucket
» Edge: an inserted item from the storage vertex to its backup vertex

» ldentify endless loops: #Vertices = #Edges (called maximal)
Insert(y)

Maximal

Pseudoforest

» Vertex: a bucket
» Edge: an inserted item from the storage vertex to its backup vertex

» ldentify endless loops: #Vertices = #Edges (called maximal)
Insert(y)

Maximal Non-maximal |

&;

-

Vacancy (.

#

Pseudoforest

» Vertex: a bucket
» Edge: an inserted item from the storage vertex to its backup vertex

» ldentify endless loops: #Vertices = #Edges (called maximal)
Insert(y)

rF-="==-=-="-="-="--="-="="="=="=-®==-®=®=mw= |
Maximal Non-maximal |

@\ (K

-

Vacancy (.

Pseudoforest

» Vertex: a bucket
» Edge: an inserted item from the storage vertex to its backup vertex
» ldentify endless loops: #Vertices = #Edges (called maximal)

T[f] [a] [n] [b] |

~

3
o
<
—

Al
/

Graph-grained Locking

» EMPTY subgraph: buckets not represented in pseudoforest

T|f] [a] [n] [k]

WA

T2 [m] |c| [b

/ AW
@,\

Graph-grained Locking

» EMPTY subgraph: buckets not represented in pseudoforest

S (2O ()

/ AW
@,\

T2 Do Do]

Graph-grained Locking

» EMPTY subgraph: buckets not represented in pseudoforest

» Classify insertions into 3 cases, which include 6 subcases O EmpTY

O Non-maximal

‘ Maximal

28

Graph-grained Locking

» EMPTY subgraph: buckets not represented in pseudoforest

» Classify insertions into 3 cases, which include 6 subcases O EmpTY

O Non-maximal

TwoEmpty OO ‘ Maximal

According to the number of OneEmpt
corresponding EMPTY subgraphs Pty O D / O .

ZeroEmpty

29

Graph-grained Locking

» EMPTY subgraph: buckets not represented in pseudoforest

» Classify insertions into 3 cases, which include 6 subcases O EmpTY

O Non-maximal

TwoEmpty OO ‘ Maximal

According to the number of OneEmbpt
corresponding EMPTY subgraphs PHY O D / O ‘
ZeroEmpty s~ Diff_non_non @ ©

Same_non
According to the states - D
and the number of subgraphs Diff _non_max D ‘

TwoEmpty

» Two EMPTY subgraphs

TwoEmpty

» Two EMPTY subgraphs () With graph-grained lock(s)
v~ Out of the critical path

» Insertion algorithm:
. Atomically assign allocated subgraph number to two buckets

critical

_ Insert item
path

. Mark the subgraph as non-maximal

Tl‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Before insertion OO

32

TwoEmpty

» Two EMPTY subgraphs () With graph-grained lock(s)
v~ Out of the critical path

» Insertion algorithm:
. Atomically assign allocated subgraph number to two buckets

critical

_ Insert item
path

. Mark the subgraph as non-maximal

Tl‘f‘ ‘a‘ ‘ ‘ ‘k‘ ‘ Before insertion OO

!

After insertion
AREEEEEEE 2

33

OneEmpty

» One EMPTY subgraph (the other is non-maximal/maximal)

HEE

\\\‘\

]

:

Before insertion OD / O.

-

T1
T2

OneEmpty

» One EMPTY subgraph (the other is non-maximal/maximal)

» Insertion algorithm:
v’ Two atomic operations without locks
= Assign the existing subgraph number to the new vertex
= Insert the item into the new vertex

[n] [k

L[

Before insertion OD / O.

1 |

TL{f] |a |
‘b‘ ‘ After insertion D / .

hw

35

ZeroEmpty (Diff_non_non)

» Two different non-maximal subgraphs Before insertion @) @

» Insertion algorithm:
=1 Kick-out (with item insertion)
) Merge two subgraphs

Insert(c)

36

ZeroEmpty (Diff_non_non)

» Two different non-maximal subgraphs

» Insertion algorithm:
=1 Kick-out (with item insertion)
) Merge two subgraphs

Insert(c)

37

ZeroEmpty (Diff_non_non)

» Two different non-maximal subgraphs Before insertion @) @

» Insertion algorithm:
=1 Kick-out (with item insertion)
) Merge two subgraphs

Insert(c)

/
‘ n/r ‘ " ‘ ‘ N m -maximal

A TR

[b]

38

ZeroEmpty (Diff_non_non)

» Two different non-maximal subgraphs

» Insertion algorithm:
=1 Kick-out (with item insertion)
) Merge two subgraphs

ZeroEmpty (Diff_non_non)

» Two different non-maximal subgraphs Before insertion D D
» Insertion algorithm:
= Kick-out (with item insertion) 1

=1 Merge two subgraphs After insertion D

Non-maximal

NV,

40

ZeroEmpty (Same_non)

. . . .
» The same non-maximal subgraph efore insertion @)

» Insertion algorithm:
) Mark as maximal

v’ Kick-out (with item insertion)
Insert(m)

44
T f] (apAn]| [k

A

|
el [b]

ZeroEmpty (Same_non)

. . . .
» The same non-maximal subgraph efore insertion @)

» Insertion algorithm:
) Mark as maximal

v’ Kick-out (with item insertion)
Insert(m)

42

ZeroEmpty (Same_non)

Before insertion D

» The same non-maximal subgraph

» Insertion algorithm:
) Mark as maximal
v’ Kick-out (with item insertion)

Insert(m) ﬂ Non-maximal

43

ZeroEmpty (Same_non)

. . . .
» The same non-maximal subgraph efore insertion @)

» Insertion algorithm:
) Mark as maximal

v’ Kick-out (with item insertion)
Insert(m)

T2 lc| [b]

44

ZeroEmpty (Same_non)

. . . .
» The same non-maximal subgraph efore insertion @)

» Insertion algorithm:
) Mark as maximal

v’ Kick-out (with item insertion)
Insert(m)

45

ZeroEmpty (Same_non)

. . . .
» The same non-maximal subgraph efore insertion @)

» Insertion algorithm:
) Mark as maximal

After insertion
v’ Kick-out (with item insertion)

To|f| fa] [n] [k]

YA

2] [m] Jc| |b]

ZeroEmpty (Diff_non_max)

0®

» One non-maximal subgraph and one maximal subgraph

» Insertion algorithm (similar to same_non):
1 Mark as maximal
v’ Kick-out (with item insertion)
4 Merge two subgraphs

Insert(y)

47

ZeroEmpty (Diff_non_max)

» One non-maximal subgraph and one maximal subgraph
» Insertion algorithm (similar to same_non):

1 Mark as maximal

v’ Kick-out (with item insertion)

4 Merge two subgraphs

Insert(y)

0®

48

ZeroEmpty (Diff_non_max)

0®

» One non-maximal subgraph and one maximal subgraph

» Insertion algorithm (similar to same_non):
1 Mark as maximal
v’ Kick-out (with item insertion)
4 Merge two subgraphs

Insert(y)

Maximal maX|maI

49

ZeroEmpty (Diff_non_max)

0®

» One non-maximal subgraph and one maximal subgraph

» Insertion algorithm (similar to same_non):
1 Mark as maximal
v’ Kick-out (with item insertion)
4 Merge two subgraphs

Insert(y)

Maximal |

50

ZeroEmpty (Diff_non_max)

0®

» One non-maximal subgraph and one maximal subgraph

» Insertion algorithm (similar to same_non):
1 Mark as maximal
v’ Kick-out (with item insertion)
4 Merge two subgraphs

Insert(y)

Maximal

51

ZeroEmpty (Diff_non_max)

0®

» One non-maximal subgraph and one maximal subgraph

y

» Insertion algorithm (similar to same_non): 1
) Mark as maximal
v’ Kick-out (with item insertion) ‘
4 Merge two subgraphs
Maximal
T1 | f\wz | n] ’7 ||

2] |m] |cj

52

ZeroEmpty (Max)

» Two maximal subgraphs or the same maximal subgraph
» Always walking into a loop and predetermined to be a failure

» Insertion algorithm:
v Do nothing

Insert(x)

1 [f \a\?w |
|

53

ZeroEmpty (Max)

» Two maximal subgraphs or the same maximal subgraph
» Always walking into a loop and predetermined to be a failure

» Insertion algorithm:
v Do nothing

Insert(x)

54

ZeroEmpty (Max)

» Two maximal subgraphs or the same maximal subgraph
» Always walking into a loop and predetermined to be a failure

» Insertion algorithm:
v Do nothing

Insert(x) Maximal

55

Lock Granularity

» Most subgraphs are small ‘ the granularity of graph-grained locks
is acceptable

e Only constraining a very small number of buckets
e 3 vertices (44.25% subgraphs)
* No more than 10 vertices (99% subgraphs)

8 50%
f'_a\ 7 MR L B frequency-— 45%
= 40% @
58 6 W\ o
= —e—percentage 5% S
se2sE N 30% 5
R B N — 25% &
FRSE BN AN 202
0
200 B N 15%2
= a0 10%
= . B e S~ 049 O 03% 5%
0 0%

3 4 5 6 [7,10] [11,50] >50
The size of subgraphs

56

Subgraph Management

» Subgraph number allocation
e Subgraph number: identifying a unique subgraph
e Unique without the need of continuity

» Subgraph number generator: a simple modular function
e Modulus: the total number of threads p
e Remainder: the number of each thread r
e n = kp+r, e.q., 8-thread CoCuckoo, Thread 2, n=2,10,18,...

57

Performance Evaluation

» Comparison:
e libcuckoo@EuroSys’14
e Slot numbers: 1, 2,4, 8, 16
» Workloads:
e YCSB: https://github.com/brianfrankcooper/YCSB @SOCC’11
e 2 million key-value pairs per workload

» Threads: 1, 4, 8, 12, 16 Workload Insert | Lookup
. Insert-only (INS) 100% 0%

» Metrics: Insert-heavy (IH) 75% | 25%
Insert-lookup balance (ILB) 50% 50%

° ThroughPUt Lookup-heavy (LH) 25% 75%

e Predetermination for insertion Lookup-only (LO) 0% | 100%

e Extra space overhead -

https://github.com/brianfrankcooper/YCSB

Average Insertion Throughput

(an) "5"‘25 l-way libeuck libeuck
= 2 -way libcuckoo 2-way libcuckoo
- : 20 = 4-way libcuckoo m 8-way libcuckoo
=)
S B35 [16-way libcuckoo m CoCuckoo
o &
E — 5.87 6.34
g .
== 5 3.03 IEI I
- 0.89 0.54 0.51
= 0 0.41 0.56, |g,6g @Iﬁl E}
p—
1 4 8 12 16
Number of threads

» CoCuckoo significantly increases average throughputs.
» 75%-150% improvements compared to 2-way libcuckoo.

59

Predetermination for Insertion

Workloads TwoEmpty | OneEmpty | Same_non Max Diff non.non | Diff non_max
Insert-only 25.673% 37.9628% 0.0003% 13.9802% 13.1447% 9.239%
Insert-heavy 32.9343% | 40.4907% 0.0004% 3.5921% 16.7513% 6.2312%
Insert-lookup balance 44.675% 39.6011% 0.0002% 0% 15.7235% 0.0002%
Lookup-heavy 64.4448% | 30.1658% 0% 0% 5.3894% 0%

60

Predetermination for Insertion

Workloads TwoEmpty | OneEmpty ||Same_non Max Diff non.non | Diff non_max
Insert-only 25.673% 37.9628% 0.0003% 13.9802% 13.1447% 9.239%
Insert-heavy 32.9343% | 40.4907% 0.0004% 3.5921% 16.7513% 6.2312%
Insert-lookup balance 44.675% 39.6011% 0.0002% 0% 15.7235% 0.0002%
Lookup-heavy 64.4448% | 30.1658% 0% 0% 5.3894% 0%

» TwoEmpty and OneEmpty account for a large proportion
e Short-term or no locks for the shared buckets

61

Predetermination for Insertion

Workloads TwoEmpty | OneEmpty ||Same_non Max Diff non.non | Diff non_max
Insert-only 25.673% 37.9628% 0.0003% 13.9802% 13.1447% 9.239%
Insert-heavy 32.9343% | 40.4907% 0.0004% 3.5921% 16.7513% 6.2312%
Insert-lookup balance 44.675% 39.6011% 0.0002% 0% 15.7235% 0.0002%
Lookup-heavy 64.4448% | 30.1658% 0% 0% 5.3894% 0%

» TwoEmpty and OneEmpty account for a large proportion
e Short-term or no locks for the shared buckets

> Max:

e Predetermine insertion failures and release locks without any kick-out operations

62

Extra Space Overhead

2

>
(million reqs per sec)

Y
/«
f

Throughput

(W]
n

()
-

[N
N

[S—
-

wn

-

4-way libcuckoo

i 16-way libcuckoo

1-way libcuckoo

2-way libcuckoo p
=P]
B 8-way libcuckoo :
B CoCuckoo g
<P
g
7.64

561 6.47 gﬂ
2.93 N &
3 Nl [z %] p =]

; N [# \| [N [& AA
047 7] 0_50 " 045 EE 041 4 (\?E

Number of threads

1-way libcuckoo
4-way libcuckoo
B 16-way libcuckoo

2-way libcuckoo 37.11

® 8-way libcuckoo

B CoCuckoo
25.58

13.68

8 12 16
Number of threads

63

Extra Space Overhead

G 25 40 : : 3711
\ —) | 1-way libcuckoo 2-way libcuckoo = I-way libcuckoo 2-way libcuckoo %
A 20 _ . . o 35 N4-way libcuckoo ~ ®8-way libcuckoo
,E z EH4-way libcuckoo M 8-way libcuckoo . 30 | B16-way libcuckoo ®CoCuckoo
-g- =1 15 E16-way libcuckoo ~ ®CoCuckoo g 75 25.58
o = = 220
S o— =
= g 10 7.64 I 13.68
=S 5.61 647 S0
= 5 = 10
£ @ 5
~ -
o L0 2] I N'&/%) [l e ioers | e
1 4 8 12 16 1 4 8 12 16
Number of threads Number of threads

» The same space available for both libcuckoo and CoCuckoo
e CoCuckoo increases the throughput over 2-way libcuckoo by 73% - 159%.
e CoCuckoo significantly decreases the average execution time per request.

64

Extra Space Overhead

(an) . . : : 3701
%]) 1-way libcuckoo 2-way libcuckoo = L-way l}bCUCkOO 2-way l}bCUCkOO
- 2 20 _ _ , 2 35 N4-way libcuckoo ® 8-way libcuckoo
,E z EH4-way libcuckoo M 8-way libcuckoo . 30 | B16-way libcuckoo ®CoCuckoo
-g- =1 15 E16-way libcuckoo ~ ®CoCuckoo g 75 25.58
»
5 g = 220
S o— =
= = 10 7.64 = <15 13.68
=S 5.61 647 S0
= = 10
g 5 s
~ -
0 £ o 2 o 4 o = < 0 Zl i o B] :
| 4 8 12 16 1 4 8 12 16
Number of threads Number of threads

» The same space available for both libcuckoo and CoCuckoo
e CoCuckoo increases the throughput over 2-way libcuckoo by 73% - 159%.
e CoCuckoo significantly decreases the average execution time per request.
» The extra space overhead is small

65

Conclusion

» CoCuckoo mitigates the asymmetric read and write costs in cuckoo
hashing via

e A pseudoforest to predetermine and avoid occurrence of endless
loops

e Graph-grained locking mechanism and concurrency optimization

» CoCuckoo achieves 75%-150% write throughput improvements
compared with 2-way libcuckoo.

66

Q&A

Homepage:: https://csunyy.github.io/

67

https://csunyy.github.io/

