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Query Services in Cloud Storage Systems

» Large amounts of data
* 300 new profiles and more than 208 thousand photos per minute [September
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Demanding the support of low-latency and high-throughput queries
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v’ Constant-scale read performance
e Widely used in key-value stores and relational databases
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x High latency for handling hash collisions




Cuckoo Hashing

» Multi-choice hashing
» Handling hash collisions: kick-out operations
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Cuckoo Hashing

» Multi-choice hashing
» Handling hash collisions: kick-out operations

» For reads, only limited positions are probed => O(1) time complexity %
» For writes, endless loops may occur! => slow-write performance A\
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Concurrency in Multi-core Systems

» Existing concurrency strategy for cuckoo hashing
e Lock two buckets before each kick-out operation (libcuckoo@EuroSys’14)
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Concurrency in Multi-core Systems

» Existing concurrency strategy for cuckoo hashing
e Lock two buckets before each kick-out operation (libcuckoo@EuroSys’14)

» Challenges:
e |nefficient insertion performance
e Limited scalability

» Design goal:
e A high-throughput and concurrency-friendly cuckoo hash table
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Our Approach: CoCuckoo

» Pseudoforests to predetermine endless loops
» Efficient concurrency strategy
* A graph-grained locking mechanism

* Concurrency optimization to reduce the length of critical path

» Higher throughput than state-of-the-art scheme, i.e., libcuckoo
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Pseudoforest

» Vertex: a bucket
» Edge: an inserted item from the storage vertex to its backup vertex

» ldentify endless loops: #Vertices = #Edges (called maximal)
Insert(y)
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Pseudoforest

» Vertex: a bucket
» Edge: an inserted item from the storage vertex to its backup vertex
» ldentify endless loops: #Vertices = #Edges (called maximal)
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Graph-grained Locking

» EMPTY subgraph: buckets not represented in pseudoforest
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Graph-grained Locking

» EMPTY subgraph: buckets not represented in pseudoforest

» Classify insertions into 3 cases, which include 6 subcases O EmpTY
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» Two EMPTY subgraphs () With graph-grained lock(s)
v~ Out of the critical path
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TwoEmpty

» Two EMPTY subgraphs () With graph-grained lock(s)
v~ Out of the critical path

» Insertion algorithm:
. Atomically assign allocated subgraph number to two buckets
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OneEmpty

» One EMPTY subgraph (the other is non-maximal/maximal)
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OneEmpty

» One EMPTY subgraph (the other is non-maximal/maximal)

» Insertion algorithm:
v’ Two atomic operations without locks
= Assign the existing subgraph number to the new vertex
= Insert the item into the new vertex
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ZeroEmpty (Diff_non_non)

» Two different non-maximal subgraphs Before insertion @) @

» Insertion algorithm:
=1 Kick-out (with item insertion)
) Merge two subgraphs

Insert(c)
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ZeroEmpty (Diff_non_non)

» Two different non-maximal subgraphs Before insertion @) @

» Insertion algorithm:
=1 Kick-out (with item insertion)
) Merge two subgraphs

Insert(c)

/
‘ n/r ‘ " ‘ ‘ N m -maximal

A TR

[b]

38



ZeroEmpty (Diff_non_non)

» Two different non-maximal subgraphs

» Insertion algorithm:
=1 Kick-out (with item insertion)
) Merge two subgraphs




ZeroEmpty (Diff_non_non)

» Two different non-maximal subgraphs Before insertion D D
» Insertion algorithm:
= Kick-out (with item insertion) 1

=1 Merge two subgraphs After insertion D

Non-maximal

NV,

40



ZeroEmpty (Same_non)

. . . .
» The same non-maximal subgraph efore insertion @)

» Insertion algorithm:
) Mark as maximal

v’ Kick-out (with item insertion)
Insert(m)
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ZeroEmpty (Diff_non_max)
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» One non-maximal subgraph and one maximal subgraph

» Insertion algorithm (similar to same_non):
1 Mark as maximal
v’ Kick-out (with item insertion)
4 Merge two subgraphs

Insert(y)

47




ZeroEmpty (Diff_non_max)

» One non-maximal subgraph and one maximal subgraph
» Insertion algorithm (similar to same_non):

1 Mark as maximal

v’ Kick-out (with item insertion)

4 Merge two subgraphs

Insert(y)

0®

48
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ZeroEmpty (Diff_non_max)
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» One non-maximal subgraph and one maximal subgraph
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ZeroEmpty (Max)

» Two maximal subgraphs or the same maximal subgraph
» Always walking into a loop and predetermined to be a failure

» Insertion algorithm:
v Do nothing

Insert(x)
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ZeroEmpty (Max)

» Two maximal subgraphs or the same maximal subgraph
» Always walking into a loop and predetermined to be a failure

» Insertion algorithm:
v Do nothing
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Lock Granularity

» Most subgraphs are small ‘ the granularity of graph-grained locks
is acceptable

e Only constraining a very small number of buckets
e 3 vertices (44.25% subgraphs)
* No more than 10 vertices (99% subgraphs)
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Subgraph Management

» Subgraph number allocation
e Subgraph number: identifying a unique subgraph
e Unique without the need of continuity

» Subgraph number generator: a simple modular function
e Modulus: the total number of threads p
e Remainder: the number of each thread r
e n = kp+r, e.q., 8-thread CoCuckoo, Thread 2, n=2,10,18,...
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Performance Evaluation

» Comparison:
e libcuckoo@EuroSys’14
e Slot numbers: 1, 2,4, 8, 16
» Workloads:
e YCSB: https://github.com/brianfrankcooper/YCSB @SOCC’11
e 2 million key-value pairs per workload

» Threads: 1, 4, 8, 12, 16 Workload Insert | Lookup
. Insert-only (INS) 100% 0%

» Metrics: Insert-heavy (IH) 75% | 25%
Insert-lookup balance (ILB) 50% 50%

° ThroughPUt Lookup-heavy (LH) 25% 75%

e Predetermination for insertion Lookup-only (LO) 0% | 100%

e Extra space overhead -


https://github.com/brianfrankcooper/YCSB

Average Insertion Throughput

(an) "5"‘25 l-way libeuck libeuck
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o &
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g .
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» CoCuckoo significantly increases average throughputs.
» 75%-150% improvements compared to 2-way libcuckoo.
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Predetermination for Insertion

Workloads TwoEmpty | OneEmpty | Same_non Max Diff non.non | Diff non_max
Insert-only 25.673% 37.9628% 0.0003% 13.9802% 13.1447% 9.239%
Insert-heavy 32.9343% | 40.4907% 0.0004% 3.5921% 16.7513% 6.2312%
Insert-lookup balance 44.675% 39.6011% 0.0002% 0% 15.7235% 0.0002%
Lookup-heavy 64.4448% | 30.1658% 0% 0% 5.3894% 0%
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Predetermination for Insertion

Workloads TwoEmpty | OneEmpty ||Same_non Max Diff non.non | Diff non_max
Insert-only 25.673% 37.9628% 0.0003% 13.9802% 13.1447% 9.239%
Insert-heavy 32.9343% | 40.4907% 0.0004% 3.5921% 16.7513% 6.2312%
Insert-lookup balance 44.675% 39.6011% 0.0002% 0% 15.7235% 0.0002%
Lookup-heavy 64.4448% | 30.1658% 0% 0% 5.3894% 0%

» TwoEmpty and OneEmpty account for a large proportion
e Short-term or no locks for the shared buckets

> Max:

e Predetermine insertion failures and release locks without any kick-out operations

62



Extra Space Overhead
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Extra Space Overhead
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» The same space available for both libcuckoo and CoCuckoo
e CoCuckoo increases the throughput over 2-way libcuckoo by 73% - 159%.
e CoCuckoo significantly decreases the average execution time per request.
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Extra Space Overhead
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» The same space available for both libcuckoo and CoCuckoo
e CoCuckoo increases the throughput over 2-way libcuckoo by 73% - 159%.
e CoCuckoo significantly decreases the average execution time per request.
» The extra space overhead is small
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Conclusion

» CoCuckoo mitigates the asymmetric read and write costs in cuckoo
hashing via

e A pseudoforest to predetermine and avoid occurrence of endless
loops

e Graph-grained locking mechanism and concurrency optimization

» CoCuckoo achieves 75%-150% write throughput improvements
compared with 2-way libcuckoo.
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Q&A

Homepage:: https://csunyy.github.io/
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