
FastCDC: a Fast and Efficient Content-Defined Chunking Approach for
Data Deduplication

Wen Xia†, ‡, Yukun Zhou†, Hong Jiang§, Dan Feng¶, †,∗, Yu Hua¶, †, Yuchong Hu†, Yucheng Zhang†, Qing Liu†

†
School of Computer, Huazhong University of Science and Technology

‡
Sangfor Technologies Co., Ltd.

§
University of Texas at Arlington

¶
WNLO, Huazhong University of Science and Technology

Abstract
Content-Defined Chunking (CDC) has been playing a
key role in data deduplication systems in the past 15
years or so due to its high redundancy detection abil-
ity. However, existing CDC-based approaches introduce
heavy CPU overhead because they declare the chunk cut-
points by computing and judging the rolling hashes of
the data stream byte by byte. In this paper, we pro-
pose FastCDC, a Fast and efficient CDC approach, that
builds and improves on the latest Gear-based CDC ap-
proach, one of the fastest CDC methods to our knowl-
edge. The key idea behind FastCDC is the combined use
of three key techniques, namely, simplifying and enhanc-
ing the hash judgment to address our observed challenges
facing Gear-based CDC, skipping sub-minimum chunk
cut-point to further speed up CDC, and normalizing the
chunk-size distribution in a small specified region to ad-
dress the problem of the decreased deduplication ratio
stemming from the cut-point skipping. Our evaluation
results show that, by using a combination of the three
techniques, FastCDC is about 10× faster than the best
of open-source Rabin-based CDC, and about 3× faster
than the state-of-the-art Gear- and AE-based CDC, while
achieving nearly the same deduplication ratio as the clas-
sic Rabin-based approach.

1 Introduction
Data deduplication, an efficient approach to data reduc-
tion, has gained increasing attention and popularity in
large-scale storage systems due to the explosive growth
of digital data. It eliminates redundant data at the file-
or chunk-level and identifies duplicate contents by their
cryptographically secure hash signatures (e.g., SHA1 fin-
gerprint). According to deduplication studies conducted
by Microsoft [12, 23] and EMC [30, 33], about 50%
and 85% of the data in their production primary and sec-
ondary storage systems, respectively, are redundant and
could be removed by the deduplication technology.

In general, chunk-level deduplication is more popular
than file-level deduplication because it identifies and re-

∗Corresponding author: dfeng@hust.edu.cn.

moves redundancy at a finer granularity. For chunk-level
deduplication, the simplest chunking approach is to cut
the file or data stream into equal, fixed-size chunks, re-
ferred to as Fixed-Size Chunking (FSC) [27]. Content-
Defined Chunking (CDC) based approaches are pro-
posed to address the boundary-shift problem facing the
FSC approach [25]. Specifically, CDC declares chunk
boundaries based on the byte contents of the data stream
instead of on the byte offset, as in FSC, and thus helps
detect more redundancy for deduplication. According to
some recent studies [12, 22, 23, 26], CDC-based dedupli-
cation approaches are able to detect about 10-20% more
redundancy than the FSC approach.

Currently, the most popular CDC approaches deter-
mine chunk boundaries based on the Rabin fingerprints
of the content, which we refer to as Rabin-based CDC [8,
11, 25, 28]. Rabin-based CDC is highly effective in du-
plicate detection but time-consuming, because it com-
putes and judges (against a condition value) the Rabin
fingerprints of the data stream byte by byte [11]. A recent
study, called QuickSync [9], suggests that CDC is com-
putationally expensive for deduplication based synchro-
nization in mobile cloud storage. In order to speed up
the CDC process, other hash algorithms have been pro-
posed to replace the Rabin algorithm for CDC, such as
SampeByte [1], Gear [38], and AE [40]. Meanwhile, the
abundance of computation resources afforded by multi-
core and manycore processors [20, 37] or GPU proces-
sors [2, 5, 15] has been leveraged for acceleration.

Generally, CDC consists of two distinctive and se-
quential stages: (1) hashing in which fingerprints of the
data contents are generated and (2) hash judgment in
which fingerprints are compared against a given value
to identify and declare chunk cut-points. Our previous
study of delta compression, Ddelta [38], suggests that the
Gear hash (i.e., fp=(fp<<1)+G(b), see Section 3) is very
efficient as a rolling hash for CDC. To the best of our
knowledge, Gear appears to be one of the fastest rolling
hash algorithms for CDC at present. However, accord-
ing to our first observation from empirical and analyti-
cal studies, the Gear-based CDC has the potential prob-
lem of low deduplication ratio (i.e., the percentage of re-

dundant data reduced) stemming from its hash judgment
stage where the sliding window size is very small. Mean-
while, our second observation indicates that the hash
judgment stage becomes the new performance bottleneck
during CDC after the fast Gear [38] is used in the hashing
stage, because the accelerated hashing stage by Gear, has
shifted the bottleneck to the hash judgment stage. Moti-
vated by these two observations and the need to further
accelerate the CDC process, we use an approach of en-
hancing and simplifying the hash judgment to further re-
duce the CPU operations during CDC.

Our third observation suggests that the predefined
minimum chunk size used to avoid generating the very
small-sized chunks (e.g., LBFS [25] employs the mini-
mum chunk size of 2KB for Rabin-based CDC) can be
employed for cut-point skipping during CDC, i.e., judi-
ciously skipping some identified cut-points to eliminate
the CDC operations in this region. Enlarging this mini-
mum chunk size can further speed up the chunking pro-
cess but at the cost of decreasing the deduplication ra-
tio. This is because many chunks with skipped cut-points
are not divided truly according to the data contents (i.e.,
content-defined). Thus, we propose a novel normalized
Content-Defined Chunking scheme, called normalized
chunking, that normalizes the chunk-size distribution to
a specified region that is guaranteed to be larger than the
minimum chunk size to effectively address the problem
facing the cut-point skipping approach.

Therefore, motivated by the above observations, we
proposed FastCDC, a Fast and efficient CDC approach
that combines the following three key techniques.

• Simplified but enhanced hash judgment: By
padding several zero bits into the mask value for
the hash-judging statement of the CDC algorithm to
enlarge the sliding window size while using the fast
Gear hash, FastCDC is able to achieve nearly the
same deduplication ratio as the Rabin-based CDC;
By further simplifying and optimizing the hash-
judging statement, FastCDC minimizes the CPU
overhead for the hash judgment stage in CDC.

• Sub-minimum chunk cut-point skipping: Our
large scale study suggests that skipping the prede-
fined minimum chunk size (used for avoiding small-
sized chunks) increases the chunking speed but de-
creases the deduplication ratio (about 15% decline
in the worst case). This motivates us to further en-
large the minimum chunk size to maximize chunk-
ing speed while developing a counter measure for
the decreased deduplication ratio in the following
normalized chunking approach.

• Normalized chunking: By selectively changing
the number of mask bits ‘1’ in the hash-judging
statement of CDC, FastCDC normalizes the chunk-
size distribution to a small specified region (e.g.,

8KB∼16KB), i.e., the vast majority of the gener-
ated chunks fall into this size range, and thus min-
imizes the number of chunks of either too small
or large in size. The benefits are twofold. First,
it increases the deduplication ratio by reducing the
number of large-sized chunks. Second, it reduces
the number of small-sized chunks, which makes
it possible to combine with the cut-point skipping
technique above to maximize the CDC speed while
without sacrificing the deduplication ratio.

Our evaluation results from a large-scale empirical
study of CDC, based on seven datasets, demonstrate that
FastCDC is about 10× faster than the Rabin-based CDC,
and 3× faster than the state-of-the-art Gear- and AE-
based CDC, while ensuring a high deduplication ratio.

The rest of the paper is organized as follows. Section
2 presents the necessary background for this research.
Section 3 discusses our key observations that motivate
the design of FastCDC. Section 4 describes the three key
approaches used in FastCDC. Section 5 presents and dis-
cusses our experimental evaluation of FastCDC. Section
6 draws conclusions and outlines our future work.

2 Background
Chunking is the first critical step in the operational path
of data deduplication, in which a file or data stream is
divided into small chunks so that each can be duplicate-
identified. Fixed-Size Chunking (FSC) [27] is simple
and fast but may face the problem of low deduplica-
tion ratio that stems from the boundary-shift problem
[25, 40]. For example, if one or several bytes are in-
serted at the beginning of a file, all current chunk cut-
points (i.e., boundaries) declared by FSC will be shifted
and no duplicate chunks will be detected.

Content-Defined Chunking (CDC) is proposed to
solve the boundary-shift problem. CDC uses a sliding-
window technique on the content of files and computes a
hash value (e.g., Rabin fingerprint [25, 28]) of the win-
dow. A chunk cut-point is declared if the hash value sat-
isfies some pre-defined condition. As shown in Figure 1,
to chunk a file V2 that is modified from the file V1, the
CDC algorithm can still identify the correct boundary of
chunks C1, C3, and C4, whose contents have not been
modified. As a result, CDC outperforms FSC in terms of
deduplication ratio and has been widely used in backup
[33, 42] and primary [12, 23] storage systems.

Although the widely used Rabin-based CDC helps ob-
tain a high deduplication ratio, it incurs heavy CPU over-
head [2, 5, 9, 37]. Specifically, in Rabin-based CDC, the
Rabin hash for a sliding window containing the byte se-
quence B1,B2,...,Bα is defined as a polynomial A(p):

Rabin(B1, B2, ..., Bα)=A(p)={
α∑

x=1

Bxp
α−x}mod D (1)

2

 C1 C2 C3 C4

fp mod D r fp mod D = r

File V1

 C1 C7 C3 C4

File V2 Modified

Figure 1: The sliding window technique for the CDC
algorithm. The hash value of the sliding window, fp, is
computed via the Rabin algorithm (this is the hashing
stage of CDC). If the lowest log2D bits of the hash value
matches a threshold value r, i.e., fp mod D = r, this offset
(i.e., the current position) is marked as a chunk cut-point
(this is the hash-judging stage of CDC).

where D is the average chunk size and α is the num-
ber of bytes in the sliding window. Rabin hash is a rolling
hash algorithm since it is able to compute the hash in an
iterative fashion, i.e., the current hash can be incremen-
tally computed from the previous value as follows:
Rabin(B2, B3, ..., Bα+1) =

{[Rabin(B1, ..., Bα)−B1P
α−1]p+Bα+1}modS

(2)

However, Rabin-based CDC is time-consuming be-
cause it computes and judges the hashes of the data
stream byte by byte, which renders the chunking pro-
cess a performance bottleneck in deduplication systems.
There are many approaches to accelerating the CDC pro-
cess for deduplication systems and they can be broadly
classified as either algorithmic oriented or hardware ori-
ented. We summarize below some of these approaches
that represent the state of the art.

Algorithmic-oriented CDC Optimizations. Since
the frequent computations of Rabin fingerprints for CDC
are time-consuming, many alternatives to Rabin have
been proposed to accelerate the CDC process [1, 38, 40].
SampleByte [1] is designed for providing fast chunking
for fine-grained network redundancy elimination, usually
eliminating duplicate chunks as small as 32-64 bytes. It
uses one byte to declare a fingerprint for chunking, in
contrast to Rabin that uses a sliding window, and skips
1
2 of the expected chunk size before chunking to avoid
generating extremely small-sized strings or chunks (they
called “avoid oversampling”). Gear [38] uses fewer oper-
ations to generate rolling hashes by means of a small ran-
dom integer table to map the values of the byte contents,
so as to achieve higher chunking throughput. AE [40] is a
non-rolling-hash-based chunking algorithm that employs
an asymmetric sliding window to identify extremums of
data stream as cut-points, which reduces the computa-
tional overhead for CDC. Yu et al. [39] adjust the func-
tion for selecting chunk boundaries such that if weak
conditions are not met, the sliding window can jump for-
ward, avoiding unnecessary calculation steps.

Hardware-oriented CDC Optimizations. StoreGPU
[2, 15] and Shredder [5] make full use of GPGPU’s

computational power to accelerate popular compute-
intensive primitives (i.e., chunking and fingerprinting) in
data deduplication. P-Dedupe [37] pipelines deduplica-
tion tasks and then further parallelizes the sub-tasks of
chunking and fingerprinting with multiple threads and
thus achieves higher throughput.

It is noteworthy that there are other chunking ap-
proaches trying to achieve a higher deduplication ratio
but introduce more computation overhead on top of the
conventional CDC approach. TTTD [13] and Regression
chunking [12] introduces one or more additional thresh-
olds for chunking judgment, which leads to a higher
probability of finding chunk boundaries and decreases
the chunk size variance. MAXP [3, 7, 32] treats the ex-
treme values in a fixed-size region as cut-points, which
also results in smaller chunk size variance. In addition,
Bimodal chunking [17], Subchunk [29], and FBC [21]
re-chunk the non-duplicate chunks into smaller ones to
detect more redundancy.

For completeness and self-containment we briefly dis-
cuss other relevant deduplication issues here. A typi-
cal data deduplication system follows the workflow of
chunking, fingerprinting, indexing, and storage man-
agement [14, 19, 34, 42]. The fingerprinting process
computes the cryptographically secure hash signatures
(e.g., SHA1) of data chunks, which is also a compute-
intensive task but can be accelerated by certain pipelin-
ing or parallelizing techniques [16, 36, 37]. Indexing
refers the process of identifying the identical fingerprints
for checking duplicate chunks in large-scale storage sys-
tems, which has been well explored in many previous
studies [10, 14, 35, 42]. Storage management refers to
the storage and possible post-deduplication processing
of the non-duplicate chunks and their metadata, includ-
ing such processes as related to further compression [38],
defragmentation [18], reliability [4], security [41], etc. In
this paper, we focus on designing a very fast and efficient
chunking approach for data deduplication.

3 Observation and Motivation
In this section, we elaborate on and analyze the most
relevant state-of-the-art CDC approaches to gain useful
insights and observations. Table 1 shows a compari-
son among the three rolling hash algorithms for CDC,
namely, Rabin, Adler, and Gear, which suggests Gear
uses far fewer calculation operations than Rabin and
Adler, thus being a good rolling hash candidate for CDC.

A good hash function must have a uniform distribu-
tion of hash values regardless of the hashed content. As
shown in Figure 2, Gear-based CDC achieves this in two
key ways: (1) It employs an array of 256 random 64-bit
integers to map the values of the byte contents in the slid-
ing window (i.e., the calculated bytes, whose size is the

3

Name Pseudocode Speed
Rabin fp = ((fp∧U(a)) << 8)|b∧T [fp >> N] Slow
Adler S1+=A(b);S2+=S1; fp=(S2<<16)|S1 Slow
Gear fp = (fp << 1) +G(b) Fast

Table 1: The hashing stage of the Rabin-, Adler-, and
Gear-based CDC. Here ‘a’ and ‘b’ denote contents of the
first and last byte of the sliding window respectively, ‘N’
is the length of the content-defined sliding window, and
‘U’, ‘T’, ‘A’, ‘G’ denote the predefined arrays [11, 25,
38]. ‘fp’ represents the fingerprint of the sliding window.

2D 9E 5B 91 23 7E 2D 79 C8 20 8F 72 34 48

G[2D]=0x342ad348

G[9E]=0x75239a8c

(){ }

n-1

i i+n-1

i-1 i+n-2 i+n-1

i+n-1-j n

n

fp(B ,...,B) G[]*2 mod 2

= fp(B ,...,B) 1 G[B] mod 2

i

j i
jB

+

=

=

<<

å

Data Streamfp bit width = n

Gear Hash:

i i+1 i+n-1i+2

Figure 2: A schematic diagram of the Gear hash.

bit-width of the fp); and (2) The addition (“+”) opera-
tion adds the new byte in the sliding window into Gear
hashes while the left-shift (“<<”) operation helps strip
away the last byte of the last sliding window (e.g., Bi−1

in Figure 2). This is because, after the “<<” and mod-
ulo operations, the last byte Bi−1 will be calculated into
the fp as the (G[Bi−1] << n) mod 2n, which will be
equal to zero. As a result, Gear generates uniformly dis-
tributed hash values by using only three operations (i.e.,
“+”, “<<”, and an array lookup), enabling it to move
quickly through the data content for the purpose of CDC.
Note that the modulo operation is used in the hashing-
judging stage as discussed later.

Gear-based CDC is first employed by Ddelta [38] for
delta compression, which helps provide a higher delta
encoding speed. However, according to our experimental
analysis, there are still challenges facing the Gear-based
CDC. We elaborate on these issues as follows.

Limited sliding window size. The traditional hash
judgment for the Rabin-based CDC, as shown in Figure 1
(i.e., “fp mod D==r”), is also used by the Gear-based
CDC [38]. But this results in a smaller sized sliding win-
dow used by Gear-based CDC since it uses Gear hash for
chunking. For example, as shown in Figure 5, the sliding
window size of the Gear-based CDC will be equal to the
number of the bits used by the mask value. Therefore,
when using a mask value of 213 for the expected chunk
size of 8KB, the sliding window for the Gear-based CDC
would be 13 bytes while that of the Rabin-based CDC
would be 48 bytes [25]. The smaller sliding window size
of the Gear-based CDC can lead to more chunking posi-
tion collisions (i.e., randomly marking the different po-
sitions as the chunk cut-points), resulting in the decrease
in deduplication ratio (see Section 5.2).

The time-consuming hash judgment. Our implemen-

SRC VMS
0

200

400

600

800

1000

1200

Ch
un

kin
g

sp
ee

d
(M

B/
s)

Workloads

 MIN-0KB MIN-8KB
 MIN-2KB MIN-12KB
 MIN-4KB MIN-16KB

(a) Chunking speed

SRC VMS
80%

85%

90%

95%

100%

No
rm

ali
ze

d
de

du
p

ra
tio

Workloads

 MIN-0KB MIN-8KB
 MIN-2KB MIN-12KB
 MIN-4KB MIN-16KB

(b) Deduplication ratio

Figure 3: Rabin-based CDC performance as a function
of the minimum chunk size used for cut-points skipping
before chunking. Here we use the average chunk size of
8KB, Intel i7-4770 processor, and the best open-source
Rabin algorithm we have access to for the speed test.

tation and in-depth analysis of the Gear-based CDC sug-
gest that its hash-judging stage accounts for more than
60% of its CPU overhead during CDC after the fast Gear
hash is used for fingerprinting. Thus, there is a lot of
room for the optimization of the hash judging stage to
further accelerate the CDC process.

Speed up chunking by skipping. Another observa-
tion is that the minimum chunk size used for avoiding
extremely small-sized chunks, can be also employed to
speed up CDC by the cut-point skipping, i.e., elimi-
nating the chunking computation in the skipped region.
Figure 3 shows our experimental observation of Rabin-
based CDC with two typical workloads of deduplication
whose workload characteristics are detailed in Table 2
in Section 5.1. Figure 3 (a) indicates that setting the
minimum chunk size for cut-point skipping at 1

4×∼2×
of the expected chunk size can effectively accelerate the
CDC process. But this approach decreases the deduplica-
tion ratio by about 2∼15% (see Figure 3 (b)) since many
chunks are not divided truly according to the data con-
tents, i.e., not really content-defined.

The observation suggested in Figure 3 motivates us
to consider a new CDC approach that (1) keeps all the
chunk cut-points that generate chunks larger than a pre-
defined minimum chunk size and (2) enables the chunk-
size distribution to be normalized to a relatively small
specified region, an approach we refer to as normalized
chunking in this paper, as described in Section 4.4.

In summary, the analysis and observation of the Gear-
based CDC motivate us to propose FastCDC, a faster
CDC approach with a higher deduplication ratio than the
Gear-based CDC. The implementation of FastCDC will
be detailed in the next section and its effectiveness and
efficiency will be demonstrated in Section 5.

4 FastCDC Design and Implementation
4.1 FastCDC Overview
FastCDC is implemented on top of the Gear-based CDC,
and aims to provide high performance CDC. Generally,

4

Optimizing Hash Judgment

Cut-points Skipping

Normalized Chunking

FastCDC

HDR: High Deduplication Ratio

HCS: High Chunking Speed

LCS: Large Avg. Chunk Size

HCS, HDR

HCS, LCS

HDR, HCS

High Performance

Figure 4: The three key techniques used in FastCDC and
their corresponding benefits for high performance CDC.

there are three metrics for evaluating CDC performance,
namely, deduplication ratio, chunking speed, and the av-
erage generated chunk size. Note that the average gen-
erated chunk size may be nearly equal to or larger than
the predefined expected chunk size (e.g., 8KB) due to
factors such as the detailed CDC methods and datasets.
This is also an important CDC performance metric be-
cause it reflects the metadata overhead for deduplication
indexing, i.e., the larger the generated chunk size is, the
fewer the number of chunks and thus the less metadata
will be processed by data deduplication. However, it is
difficult, if not impossible, to improve these three perfor-
mance metrics simultaneously because they can be con-
flicting goals. For example, a smaller average generated
chunk size leads to a higher deduplication ratio, but at the
cost of lower chunking speed and high metadata over-
heads. Thus, FastCDC is designed to strike a sensible
tradeoff among these three metrics so as to strive for high
performance CDC, by using a combination of the three
techniques with their complementary features as shown
in Figure 4.

• Optimizing hash judgment: using a zero-padding
scheme and a simplified hash-judging statement to
speed up CDC without compromising the dedupli-
cation ratio, as detailed in Section 4.2.

• Sub-minimum chunk cut-point skipping: enlarging
the predefined minimum chunk size and skipping
cut-points for chunks smaller than that to provide a
higher chunking speed and a larger average gener-
ated chunk size, as detailed in Section 4.3.

• Normalized chunking: selectively changing the
number of mask ‘1’ bits for the hash judgment to ap-
proximately normalize the chunk-size distribution
to a small specified region that is just larger than
the predefined minimum chunk size, ensuring both
a higher deduplication ratio and higher chunking
speed, as detailed in Section 4.4.

In general, the key idea behind FastCDC is the com-
bined use of the above three key techniques on top
of Gear-based CDC, especially employing normalized
chunking to address the problem of decreased deduplica-
tion ratio facing the cut-point skipping, and thus achieve
high performance CDC on the three key metrics.

0 0 1 1 0 1 1 0
 0 0 1 1 0 1 1 1

1 0 1 0 1 0 1 0
1 1 0 1 0 1 0 1

0 1 1 1 0 1 0 0

Gear[Bi-4]

(3) The sliding window
covers 5-byte contents

Gear[Bi]

1 1 1 1 1

(2) Hash judgment: fp & 0x001f == r?

(Mask value)

Sliding forward

(1) Hashing stage:

 fp =(fp<<1)+Gear[Bi]

Figure 5: An example of the sliding window technique
used in the Gear-based CDC. Here CDC consists of two
stages: hashing and hash judgment. The size of the slid-
ing window used for hash judgment is only 5 bytes be-
cause of the computation principles of the Gear hash.

Gear[Bi-4]

(3) The sliding window
covers 10-byte contents

Gear[Bi]

1 0 1 1 1 1 0 0 0 0

0 0 1 1 0 1 1 0
 0 0 1 1 0 1 1 1

1 0 1 0 1 0 1 0
1 1 0 1 0 1 0 1

0 1 1 1 0 1 0 0

0 0 1 1 0 1 1 0
 0 0 1 1 0 1 1 1

1 0 1 0 1 0 1 0
1 1 0 1 0 1 0 1

0 1 1 1 0 1 0 0

Gear[Bi-9]

(2) Hash judgment: fp & 0x02f0 == r ?

(1) Hashing stage:

 fp =(fp<<1)+Gear[Bi]

(Mask value is padded

with 5 zero bits)

Sliding forward

Figure 6: An example of the sliding window technique
proposed for FastCDC. By padding y zero bits into the
mask value for hash judgment, the size of the sliding
window used in FastCDC is enlarged to about 5+y bytes,
where y=5 in this example.

4.2 Optimizing Hash Judgment

In this subsection, we propose an enhanced but simpli-
fied hash-judging statement to accelerate the hash judg-
ment stage of FastCDC to further accelerate the chunk-
ing process on top of the Gear-based CDC and increase
the deduplication ratio to reach that of the Rabin-based
CDC. More specifically, FastCDC incorporates two main
optimizations as elaborated below.

Enlarging the sliding window size by zero padding.
As discussed in Section 3, the Gear-based CDC employs
the same conventional hash judgment used in the Rabin-
based CDC, where a certain number of the lowest bits
of the fingerprint are used to declare the chunk cut-point,
leading to a shortened sliding window for the Gear-based
CDC (see Figure 5) because of the unique feature of the
Gear hash. To address this problem, FastCDC enlarges
the sliding window size by padding a number of zero
bits into the mask value. As illustrated by the example
of Figure 6, FastCDC pads five zero bits into the mask
value and changes the hash judgment statement to “fp &
mask == r”. If the masked bits of fp match a threshold
value r, the current position will be declared as a chunk
cut-point. Since Gear hash uses one left-shift and one
addition operation to compute the rolling hash, this zero-
padding scheme enables 10 bytes (i.e., Bi, ... , Bi+9), in-
stead of the original five bytes, to be involved in the final

5

0 10 20 30 40 50 60
0%

2%

4%

6%

8%

10%

12%

10 12 14 16 18 20

1.0

1.5

2.0

2.5

3.0

3.5

4.0

12 14 16 18 20
1.0

1.5

2.0

2.5

3.0

12 14 16 18 20
1.0%

1.5%

2.0%

2.5%

3.0%

Pe
rc

en
ta

ge
 o

f c
hu

nk
s

Chunk Size (KB)

 Math
 Rabin

Figure 7: Chunk-size distribution of the Rabin-based
CDC approach with average chunk size of 8KB and
without the maximum and minimum chunk size require-
ments. “Rabin” and “Math” denote respectively our
experimental observation and theoretical analysis (i.e.,
Equation (3)) of post-chunking chunk-size distribution,
where they are shown to be nearly identical.

hash judgment by the five masked one bits (as the red box
shown in Figure 6) and thus makes the sliding window
size equal or similar to that of the Rabin-based CDC [25],
minimizing the probability of the chunking position col-
lision. As a result, FastCDC is able to achieve a dedupli-
cation ratio as high as that by the Rabin-based CDC.

Simplifying the hash judgment to accelerate CDC.
The conventional hash judgment process, as used in
the Rabin-based CDC, is expressed in the programming
statement of “fp mod D==r” [25, 38]. For example, the
Rabin-based CDC usually defines D and r as 0x02000
and 0x78, according to the known open source project
LBFS [25], to obtain the expected average chunk size
of 8KB. In FastCDC, when combined with the zero-
padding scheme introduced above and shown in Fig-
ure 6, the hash judgment statement can be optimized to
“fp & Mask==0”, which is equivalent to “!fp & Mask”.
Therefore, FastCDC’s hash judgment statement reduces
the register space for storing the threshold value r and
avoids the unnecessary comparison operation that com-
pares “fp & Mask” and r, thus further speeds up the CDC
process as verified in Section 5.2.

4.3 Cut-point Skipping
Most of CDC-based deduplication systems impose a
limit of the maximum and minimum chunk sizes, to
avoid the pathological cases of generating many ex-
tremely large- or small-sized chunks by CDC [17, 19,
23–25, 29]. A common configuration of the average,
minimum, and maximum parameters follows that used
by LBFS [25], i.e., 8KB, 2KB, and 64KB. Our ex-
perimental observation and mathematical analysis sug-
gest that the cumulative distribution of chunk size X in
Rabin-based CDC approaches with an expected chunk
size of 8 KB (without the maximum and minimum chunk

size requirements) follows an exponential distribution as
follows:

P (X ≤ x) = F (x) = (1− e−
x

8192), x ≥ 0. (3)
Note that this theoretical exponential distribution in

Equation 3 is based on the assumption that the data con-
tent and Rabin hashes of contents (recall Equation 1 and
Figure 1 for CDC) follow a uniform distribution. Equa-
tion 3 suggests that the value of the expected chunk size
will be 8KB according to the exponential distribution.

Figure 7 shows a comparison between the actual
chunk-size distribution of the real-world datasets after
the Rabin-based CDC and the chunk-size distribution
obtained by the mathematical analysis based on Equa-
tion 3, which indicates that the two are almost identical.
According to Equation 3, the chunks smaller than 2KB
and larger than 64KB would account for about 22.12%
and 0.03% of the total number of chunks respectively.
This means that imposing the maximum chunk size re-
quirement only slightly hurts the deduplication ratio but
skipping cut-points before chunking to avoid generating
chunks smaller than the prescribed minimum chunk size,
or called sub-minimum chunk cut-point skipping , will
impact the deduplication ratio significantly as evidenced
in Figure 3. This is because a significant portion of the
chunks are not divided truly according to the data con-
tents, but forced by this cut-point skipping.

Given FastCDC’s goal of maximizing the chunking
speed, enlarging the minimum chunk size and skip-
ping sub-minimum chunk cut-point will help FastCDC
achieve a higher CDC speed by avoiding the operations
for the hash calculation and judgment in the skipped re-
gion. This gain in speed, however, comes at the cost of
reduced deduplication ratio. To address this problem, we
will develop a normalized chunking approach, to be in-
troduced in the next subsection.

It is worth noting that this cut-point skipping ap-
proach, by avoiding generating chunks smaller than the
minimum chunk size, also helps increase the average
generated chunk size. In fact, the average generated
chunk size exceeds the expected chunk size by an amount
equal to the minimum chunk size. This is because the
F(x) in Equation 3 is changed to (1−e−

x−MinSize
8192) after

cut-point skipping, thus the value of the expected chunk
size becomes 8KB + minimum chunk size, which will be
verified in Section 5.3. The speedup achieved by skip-
ping the sub-minimum chunk cut-point can be estimated
by 1+ the minimum chunk size

the expected chunk size . The increased chunking speed
comes from the eliminated computation on the skipped
region, which will also be verified in Section 5.3.

4.4 Normalized Chunking
In this subsection, we propose a novel chunking ap-
proach, called normalized chunking, to solve the prob-
lem of decreased deduplication ratio facing the cut-point

6

P
er

ce
nt

ag
e

of
 C

hu
nk

s

Chunk Size (KB)

Normalized ChunkingSkipped

Minimum Chunk Size Expected Chunk Size

Figure 8: A conceptual diagram of the normalized
chunking combined with the subminimum chunk cut-
point skipping. The dotted line shows a higher level of
normalized chunking.

skipping approach. As shown in Figure 8, normalized
chunking generates chunks whose sizes are normalized
to a specified region centered at the expected chunk size.
After normalized chunking, there are almost no chunks
of size smaller than the minimum chunk size, which
means that normalized chunking enables skipping cut-
points for subminimum chunks to reduce the unneces-
sary chunking computation and thus speed up CDC.

In our implementation of normalized chunking, we se-
lectively change the number of effective mask bits (i.e.,
the number of ‘1’ bits) for the hash-judging statement.
For the traditional CDC approach with expected chunk
size of 8KB (i.e., 213), 13 effective mask bits are used
for hash judgment (e.g., fp & 0x1fff==r). For normal-
ized chunking, more than 13 effective mask bits are used
for hash judgment (e.g., fp & 0x7fff==r) when the cur-
rent chunking position is smaller than 8KB, which makes
it harder to generate chunks of size smaller than 8KB.
On the other hand, fewer than 13 effective mask bits
are used for hash judgment (e.g., fp & 0x0fff==r) when
the current chunking position is larger than 8KB, which
makes it easier to generate chunks of size larger than
8KB. Therefore, by changing the number of ‘1’ bits in
FastCDC, the chunk-size distribution will be approxi-
mately normalized to a specified region always larger
than the minimum chunk size, instead of following the
exponential distribution (see Figure 7).

Generally, there are three benefits or features of nor-
malized chunking (NC):

• NC reduces the number of small-sized chunks,
which makes it possible to combine it with the cut-
point skipping approach to achieve high chunking
speed without sacrificing the deduplication ratio as
suggested in Figure 8.

• NC further improves the deduplication ratio by re-
ducing the number of large-sized chunks, which
compensates for the reduced deduplication ratio
caused by reducing the number of small-sized
chunks in FastCDC.

• The implementation of FastCDC does not add addi-
tional computing and comparing operations. It sim-

0 8 16 24 32 40 48 56 64
0K
25K
50K
75K
100K
125K
150K

Nu
me

r o
f c

hu
nk

s

Chunk size (KB)

 Unique
 Duplicates

(a) FastCDC without NC

0 8 16 24 32 40 48 56 64
0K
40K
80K
120K
160K
200K
240K
280K

Nu
me

r o
f c

hu
nk

s

Chunk size (KB)

 Unique
 Duplicates

(b) FastCDC with NC level 1

0 8 16 24 32 40 48 56 64
0K

100K
200K
300K
400K
500K
600K

Nu
me

r o
f c

hu
nk

s

Chunk size (KB)

 Unique
 Duplicates

(c) FastCDC with NC level 2

0 8 16 24 32 40 48 56 64
0K

200K
400K
600K
800K
1000K
1200K

Nu
me

r o
f c

hu
nk

s

Chunk size (KB)

 Unique
 Duplicates

(d) FastCDC with NC level 3

Figure 9: Chunk-size distribution of FastCDC with nor-
malized chunking (NC) at different normalization levels.

ply separates the hash judgment into two parts, be-
fore and after the expected chunk size.

Figure 9 shows the chunk-size distribution after nor-
malized chunking in comparison with FastCDC without
NC on the TAR dataset (whose workload characteristics
are detailed in Table 2 in Section 5.1). The normalization
levels 1, 2, 3 indicate that the normalized chunking uses
the mask bits of (14, 12), (15, 11), (16, 10), respectively,
where the first and the second integers in the parentheses
indicate the numbers of effective mask bits used in the
hash judgment before and after the expected chunk size
(or normalized chunk size) of 8KB . Figure 9 suggests
that the chunk-size distribution is a reasonably close ap-
proximation of the normal distribution centered on 8KB
at the normalization level of 2 or 3.

As shown in Figure 9, there are only a very small num-
ber of chunks smaller than 2KB or 4KB after normalized
chunking while FastCDC without NC has a large number
of chunks smaller than 2KB or 4KB (consistent with the
discussion in Section 4.3). Thus, when combining NC
with the cut-point skipping to speed up the CDC pro-
cess, only a very small portion of chunk cut-points will
be skipped in FastCDC, leading to nearly the same dedu-
plication ratio as the conventional CDC approaches with-
out the minimum chunk size requirement. In addition,
normalized chunking allows us to enlarge the minimum
chunk size to maximize the chunking speed without sac-
rificing the deduplication ratio.

It is worth noting that the chunk-size distribution
shown in Figure 9 is not truly normal distribution but
an approximation of it. Figures 9 (c) and (d) shows
a closer approximation of normal distribution of chunk
size achieved by using the normalization levels 2 and

7

Algorithm 1: FastCDC8KB
Input: data buffer, src; buffer length, n
Output: chunking breakpoint i
MaskS← 0x0003590703530000LL; // 15 ‘1’ bits
MaskA← 0x0000d90303530000LL; // 13 ‘1’ bits
MaskL← 0x0000d90003530000LL; // 11 ‘1’ bits
MinSize← 2KB; MaxSize← 64KB;
fp← 0; i← MinSize; NormalSize← 8KB;
if n ≤MinSize then

return n;

if n ≥ MaxSize then
n← MaxSize;

else if n ≤ NormalSize then
NormalSize← n;

for ; i < NormalSize; i++; do
fp = (fp << 1) +Gear[src[i]];
if ! (fp & MaskS) then

return i; //if the masked bits are all ‘0’

for ; i < n; i++; do
fp = (fp << 1) +Gear[src[i]];
if ! (fp & MaskL) then

return i; //if the masked bits are all ‘0’

return i;

3. Interestingly, the highest normalization level of NC
would be equivalent to Fixed-Size Chunking (FSC), i.e.,
all the chunk sizes are normalized to be equal to the ex-
pected chunk size. Since FSC has a very low dedupli-
cation ratio but extremely high chunking speed, it means
that there will be a “sweet spot” among the normalization
level, deduplication ratio, and chunking speed, which
will be studied and evaluated in Section 5.

4.5 Putting It All Together
To put things together and in perspective. Algorithm 1
describes FastCDC combining the three key techniques:
optimizing hash judgment, cut-point skipping, and nor-
malized chunking (with the expected chunk size of 8KB).
The data structure “Gear” is a predefined array of 256
random 64-bit integers with one-to-one mapping to the
values of byte contents for chunking [38].

As shown in Algorithm 1, FastCDC uses normalized
chunking to divide the chunking judgment into two loops
with the optimized hash judgment. Note that FastCDC
without normalized chunking is not shown here but can
be easily implemented by using the new hash-judging
statement “! fp & MaskA” where the MaskA is padded
with 35 zero bits to enlarge the sliding window size to
48 bytes as that used in the Rabin-based CDC [25]. Note
that MaskA, MaskS, and MaskL are three empirically de-
rived values where the padded zero bits are almost evenly
distributed for slightly higher deduplication ratio accord-
ing to our large scale tests.

FastCDC implements normalized chunking by using

Name Size Workload descriptions

TAR 19 GB 85 tarred files from the open source projects such
as GCC, GDB, Emacs, etc.

LNX 105 GB 260 versions of Linux source code files.

WEB 36 GB
15 days’ snapshots of the website: news.sina.com,
which are collected by crawling software wget
with a maximum retrieval depth of 3.

VMA 117 GB 75 virtual machine images of different OS release
versions, including CentOS, Fedora, Debian, etc.

VMB 1.9 TB 125 backups of an Ubuntu 12.04 virtual machine
image in use by a research group.

RDB 1.1 TB 200 backups of the redis key-value store database.

SYN 1.4 TB 200 synthetic backups. The backup is simulated
by the file create/delete/modify operations [31].

Table 2: Workload characteristics of the seven datasets
used in the performance evaluation.

mask value MaskS and MaskL to make the chunking
judgment harder or easier (to generate chunks smaller or
larger than the expected chunk size) when the current po-
sition is smaller or larger than the expected chunk size,
respectively. And the number of ‘1’ bits in MaskS and
MaskL can be changed for different normalization lev-
els. The minimum chunk size used in Algorithm 1 is
2KB, which can be enlarged to 4KB or 8KB to further
speed up the CDC process while combining with nor-
malized chunking. Tuning the parameters of minimum
chunk size and normalization level will be studied and
evaluated in the next Section.

5 Performance Evaluation
5.1 Experimental Setup
Experimental Platform. To evaluate FastCDC, we im-
plement a prototype of the data deduplication system on
the Ubuntu 12.04.2 operating system running on a quad-
core Intel i7-4770 processor at 3.4GHz, with a 16GB
RAM. To better evaluate the chunking speed, another
quad-core Intel i7-930 processor at 2.8GHz is also used
for comparison.
Configurations for CDC and deduplication. Three
CDC approaches, Rabin-, Gear-, and AE-based CDC,
are used as the baselines for evaluating FastCDC. Rabin-
based CDC is implemented based on the open-source
project LBFS [25] (also used in many published stud-
ies [14, 22] or project [6]), where the sliding window size
is configured to be 48 bytes. The Gear- and AE-based
CDC schemes are implemented according to the algo-
rithms described in their papers [38, 40], and we obtain
performance results similar to and consistent with those
reported in these papers. Here all the CDC approaches
are configured with the maximum and minimum chunk
sizes of 8× and 1

4× of the expected chunk size, the same
as configured in LBFS [25]. The deduplication prototype
consists of approximately 3000 lines of C code, which is
compiled by GCC 4.7.3 with the “-O3” compiler option.
Performance Metrics of Interest. Chunking speed

8

Dataset CDC Expected Chunk Size of 4K (B) Expected Chunk Size of 8K (B) Expected Chunk Size of 16K (B)
Dedup Ratio Avg. Chunk Size Dedup Ratio Avg. Chunk Size Dedup Ratio Avg. Chunk Size

TAR
RC 54.81% 5561 47.58% 11873 41.23% 24067
GC 51.68% (-5.71%) 6094 (+9.58%) 44.90% (–5.64%) 12651 (+6.55%) 38.05% (–7.71%) 28743 (+19.4%)
FC 54.14% (-1.22%) 5722 (+2.90%) 47.64% (+0.13%) 12192 (+2.69%) 41.26% (+0.08%) 24462 (+1.64%)

LNX
RC 97.69% 3828 97.25% 5978 96.80% 8188
GC 97.78% (+0.09%) 3473 (–9.27%) 97.33% (+0.09%) 5644 (-5.59%) 96.88% (+0.08%) 7932 (-3.13%)
FC 97.69% (+0.00%) 3845 (+0.44%) 97.26% (+0.01%) 5969 (-0.15%) 96.82% (+0.01%) 8176 (-0.15%)

WEB
RC 96.50% 5011 95.09% 9985 93.59% 19154
GC 95.68% (-0.85%) 7091 (+41.5%) 94.09% (-1.13%) 17069 (+70.9%) 92.92% (-0.72%) 24960 (+30.3%)
FC 96.14% (-0.38%) 5330 (+6.37%) 94.02% (-1.43%) 10725 (+7.41%) 93.21% (-0.40%) 19740 (+3.06%)

VMA
RC 42.99% 6367 38.23% 12743 32.97% 25485
GC 42.60% (-0.91%) 5798 (-8.94%) 37.57% (-1.73%) 12069 (–5.29%) 32.23% (-2.13%) 24177 (–5.37%)
FC 42.97% (-0.04%) 6293 (-1.16%) 37.96% (-0.72%) 12787 (+0.35%) 32.79% (-0.55%) 25620 (+0.53%)

VMB
RC 96.41% 5958 96.13% 11937 95.76% 24100
GC 96.41% (+0.00%) 5662 (–4.96%) 96.06% (-0.07%) 11477 (–3.86%) 95.66% (-0.10%) 23260 (–3.49%)
FC 96.39% (–0.02%) 6021 (+1.05%) 96.09% (-0.04%) 12138 (+1.68%) 95.70% (-0.06%) 24384 (+0.01%)

RDB
RC 97.36% 5116 95.53% 10232 92.05% 20479
GC 97.20% (-0.16%) 5463 (+6.78%) 95.21% (-0.33%) 10923 (+6.75%) 91.49% (-0.60%) 21820 (+6.55%)
FC 97.35% (-0.02%) 5118 (+0.04%) 95.50% (-0.03%) 10238 (+0.06%) 92.01% (-0.02%) 20479 (+0.00%)

SYN
RC 95.64% 5479 93.64% 10954 90.72% 21927
GC 96.03% (+0.41%) 5338 (-2.57%) 94.30% (+0.70%) 10675 (-2.55%) 91.43% (+0.68%) 21325 (-2.75%)
FC 95.65% (+0.01%) 5473 (-0.11%) 93.67% (+0.03%) 10945 (-0.08%) 90.73% (+0.02%) 21924 (-0.01%)

Table 3: A comparison among the Rabin-based CDC (RC), Gear-based CDC (GC), and FastCDC (FC) approaches in
terms of the deduplication ratio and the average size of generated chunks, as a function of the expected chunk size.

is measured by the in-memory processing speed of the
evaluated CDC approaches and obtained by the average
speed of five runs. Deduplication ratio is measured in
terms of the percentage of duplicates detected after CDC,
i.e., The size of duplicate data detected

Total data size before deduplication . Average chunk
size is Total data size

Number of chunks after CDC, which reflects the
metadata overhead for deduplication indexing.
Evaluated Datasets. Seven datasets with a total size of
about 5 TB are used for evaluation as shown in Table 2.
These datasets consist of the various typical workloads
of deduplication, including the source code files, virtual
machine images, database snapshots, etc., whose dedu-
plication ratios vary from 40% to 97%.

5.2 A Study of Optimizing Hash Judgment
This subsection discusses an empirical study of FastCDC
using the optimized hash judgment. Figure 10 shows the
chunking speed of the five CDC approaches running on
the RDB dataset, as a function of the expected chunk
size and all using the minimum chunk size of 1

4× of that
for cut-point skipping. The Rabin-optimized approach
employs the technique of simplifying the hash judgment
proposed in Section 4.2 but only achieves a little acceler-
ation, this is because the hashing stage is the main bottle-
neck for Rabin-based CDC. In general, the Rabin-based
CDC has the lowest speed, and the AE- and Gear-based
CDC are about 3× faster than Rabin. For the AE-based
CDC, its chunking speed is similar to that of the Gear-
based CDC when the expected chunk size ranges from
2∼16 KB but is much lower than that of Gear when the
expected chunk size is smaller than 1 KB. FastCDC is
about 5× faster than Rabin and 1.5× faster than Gear

64
B
12
8B

25
6B

51
2B 1K

B
2K
B

4K
B

8K
B
16
KB

32
KB

0

300

600

900

1200

1500

C
hu

nk
in

g
sp

ee
d

(M
B

/s
)

Expected chunk size

 FastCDC
 Gear-based
 AE-based
 Rabin-optimized
 Rabin-based

(a) Intel i7-930

64
B
12
8B

25
6B

51
2B 1K

B
2K
B

4K
B

8K
B
16
KB

32
KB

0

500

1000

1500

2000

2500

3000

C
hu

nk
in

g
sp

ee
d

(M
B

/s
)

Expected chunk size

 FastCDC
 Gear-based
 AE-based
 Rabin-optimized
 Rabin-based

(b) Intel i7-4770

Figure 10: Chunking speed, as a function of the expected
chunk size, of Rabin-, Rabin (optimized)- Gear-, and
AE-based CDC, and FastCDC on two CPU processors.

and AE regardless of the speed of the CPU processor
and the expected chunk size. The high chunking speed of
FastCDC stems from its simplification of the hash judg-
ment after the fast Gear hash is used for chunking as de-
scribed in Section 4.2.

Table 3 shows the deduplication ratio and the average
size of generated chunks (post-chunking) achieved by
the three CDC approaches. We compare the Gear-based
CDC (GC), and FastCDC (FC) approaches against the
classic Rabin-based CDC (i.e., the baseline) and record
the percentage differences (in parentheses). AE-based
CDC has nearly the same deduplication ratio as Rabin,

9

thus is not shown in this table due to space limit.
In general, FastCDC achieves nearly the same dedu-

plication ratio as the Rabin-based CDC regardless of the
expected chunk size and workload, and the difference be-
tween them is only about ±0.1∼1.4% as shown in the
3rd, 5th, 7th columns in Table 3. On the other hand, the
Gear-based CDC has a much lower deduplication ratio
on the datasets TAR, WEB, and VMA due to its limited
sliding window size as discussed in Section 3.

For the metric of the average size of generated
chunks, the difference between the Rabin-based CDC
and FastCDC is smaller than ±0.1% on most of the
datasets. For the datasets TAR and WEB, FastCDC has
1∼7% larger average chunk size than Rabin-based CDC,
which is acceptable since the larger average chunk size
means fewer chunks and fingerprints for indexing in a
deduplication system (without sacrificing deduplication
ratio) [33]. But for the Gear-based CDC, the average
chunk size differs significantly in some datasets while its
deduplication ratio is still a bit lower than other CDC ap-
proaches due to its smaller sliding window size.

In summary, FastCDC achieves a chunking speed that
is 5× higher than the Rabin-based CDC while satisfacto-
rily solving the problem of low deduplication ratio facing
the Gear-based CDC, as shown in Figure 10 and Table 3.

5.3 Evaluation of Cut-point Skipping
This subsection discusses the evaluation results of cut-
point skipping technique. Figures 11 (a) and (b) show the
impact of applying different minimum chunk sizes on the
chunking speed of FastCDC. Since the chunking speed is
not so sensitive to the workloads, we only show the three
typical workloads in Figure 11. In general, cut-point
skipping greatly accelerates the CDC process since the
skipped region will not be hash-processed by CDC. The
speedup of the FastCDC applying the minimum chunk
sizes of 4KB and 2KB over the FastCDC without the
constraint of the minimum chunk size (i.e., Min-0KB)
is about 1.25× and 1.50× respectively, which is consis-
tent with the equation 1+ the minimum chunk size

the expected chunk size as discussed
in Section 4.3.

Figures 11 (c) and (d) show the impact of applying dif-
ferent minimum chunk sizes on the deduplication ratio
and average generated chunk size of FastCDC. In gen-
eral, deduplication ratio declines with the increase of
the minimum chunk size applied in FastCDC, but not
proportionally. For the metric of the average generated
chunk size in FastCDC, it is approximately equal to the
summation of the expected chunk size and the applied
minimum chunk size. This means that the MIN-4KB so-
lution has the average chunk size of 8+4=12 KB, leading
to fewer chunks for fingerprints indexing in deduplica-
tion systems. Note that the increased portion of the aver-
age generated chunk size is not always equal to the size

SRC VMS RDB
0

500

1000

1500

2000

2500

3000

3500

Ch
un

kin
g s

pe
ed

 (M
B/

s)

Workloads

 MIN-0KB MIN-8KB
 MIN-2KB MIN-12KB
 MIN-4KB MIN-16KB

(a) Speed on intel i7-930

SRC VMS RDB
0

1000

2000

3000

4000

5000

6000

7000

Ch
un

kin
g s

pe
ed

 (M
B/

s)

Workloads

 MIN-0KB MIN-8KB
 MIN-2KB MIN-12KB
 MIN-4KB MIN-16KB

(b) Speed on intel i7-4770

TAR LNX WEB VMA VMB RDB SYN
80%

85%

90%

95%

100%

N
or

m
al

iz
ed

 d
ed

up
 ra

tio

Datasets

 MIN-0KB
 MIN-2KB
 MIN-4KB
 MIN-8KB
 MIN-12KB
 MIN-16KB

(c) Deduplication ratio

TAR LNX WEB VMA VMB RDB SYN
0KB
4KB
8KB
12KB
16KB
20KB
24KB
28KB

Av
er

ag
e

ch
un

k
si

ze

Datasets

 MIN-0KB
 MIN-2KB
 MIN-4KB
 MIN-8KB
 MIN-12KB
 MIN-16KB

(d) Average chunk size
Figure 11: Chunking performance of FastCDC with
the expected chunk size of 8KB but different minimum
chunk sizes on two different CPU processors.

of the applied minimum chunk size, because the Rabin
hashes of contents may not strictly follow the uniform
distribution (as described in Equation 3 in Section 4.3)
on some datasets.

In summary, the results shown in Figure 11 suggest
that cut-point skipping helps obtain higher chunking
speed and increase the average chunk size but at the cost
of decreased deduplication ratio. The decreased dedupli-
cation ratio will be addressed by normalized chunking as
evaluated in the next two subsections.

5.4 Evaluation of Normalized Chunking
In this subsection, we conduct a sensitivity study of nor-
malized chunking (NC) on the TAR dataset, as shown
in Figure 12. Here the expected chunk size of FastCDC
without NC is 8KB and the normalized chunk size of
FastCDC with NC is configured as the 4KB + minimum
chunk size. The normalization levels 1, 2, 3 refer to the
three pairs of numbers of effective mask bits (14, 12),
(15, 11), (16, 10) respectively that normalized chunking
applies when the chunking position is smaller or larger
than the normalized (or expected) chunk size, as dis-
cussed in Section 4.4.

Figures 12 (a) and (b) suggest that normalized chunk-

10

4KB 8KB 12KB 16KB
35%

40%

45%

50%

55%
De

du
pli

ca
tio

n r
ati

o

Minimum chunk size

 FC w/o NC
 FC w/ NC-1
 FC w/ NC-2
 FC w/ NC-3

(a) Deduplication ratio

4KB 8KB 12KB 16KB
0KB

5KB

10KB

15KB

20KB

25KB

30KB

Av
er

ag
e c

hu
nk

 si
ze

Minimum chunk size

 FC w/o NC
 FC w/ NC-1
 FC w/ NC-2
 FC w/ NC-3

(b) Average chunk size

4KB 8KB 12KB 16KB
0

1000

2000

3000

4000

5000

Ch
un

kin
g s

pe
ed

 (M
B/

s)

Minimum chunk size

 FC w/o NC
 FC w/ NC-1
 FC w/ NC-2
 FC w/ NC-3

(c) Speed on intel i7-930

4KB 8KB 12KB 16KB
0

2000

4000

6000

8000

10000
Ch

un
kin

g s
pe

ed
 (M

B/
s)

Minimum chunk size

 FC w/o NC
 FC w/ NC-1
 FC w/ NC-2
 FC w/ NC-3

(d) Speed on intel i7-4770

Figure 12: Evaluation of comprehensive performance of
normalized chunking with different normalization levels.

ing (NC) detects more duplicates when the minimum
chunk size is about 4KB and 8KB but slightly reduces
the average generated chunk size, in comparison with
FastCDC without NC. This is because NC reduces the
number of large-sized chunks as shown in Figure 9 and
discussed in Section 4.4. The results also suggest that
NC touches the “sweet spot” of deduplication ratio at the
normalization level of 2 when the minimum chunk size
is 4KB or 8KB. This is because the very high normaliza-
tion levels tend to have a similar chunk-size distribution
to the Fixed-Size Chunking as shown in Figure 9 in Sec-
tion 4.4, which fails to address the boundary-shift prob-
lem and thus detects fewer duplicates. Figures 12 (c) and
(d) suggest that NC, when combined with the approach
of enlarging the minimum chunk size for cut-point skip-
ping, greatly increases the chunking speed on the two
tested processors. In addition, the average chunk sizes of
datasets WEB and LNX are smaller than the minimum
chunk size, which results from the many very small files
whose sizes are much smaller than the minimum chunk
size in the two datasets.

In general, considering the three metrics of chunking
speed, average generated chunk size, and deduplication
ratio as a whole, as shown in Figure 12, NC-2 with Min-
Size of 8KB maximizes the chunking speed without sac-
rificing the deduplication ratio. NC-2 with MinSize of
4KB achieves the highest deduplication ratio but with
only a small acceleration of the chunking speed .

5.5 Comprehensive Evaluation of FastCDC
In this subsection, we comprehensively evaluate the per-
formance of FastCDC with the combined capability of
the three key techniques: optimizing hash judgment, cut-

Dataset RC w/ FC w/ FC-NC w/ FC-NC w/ XC w/
Min2KB Min2KB Min4KB Min8KB 10KB

TAR 47.58% 47.64% 50.19% 47.18 % 12.21%
LNX 97.25% 97.26% 97.35% 97.10% 96.51%
WEB 95.09% 94.02% 95.47% 94.44% 93.19%
VMA 38.23% 37.96% 40.31% 38.15% 18.26%
VMB 96.13% 96.09% 96.24% 96.11% 95.68%
RDB 95.53% 95.50% 96.71% 95.70% 9.80%
SYN 93.64% 93.67% 94.09% 92.62% 75.06%

Table 4: Comparison of deduplication ratio achieved by
the five chunking approaches. Note that “FC”and “FC-
NC” refer to the full FastCDC without and with normal-
ized chunking respectively, in this subsection.

Dataset RC w/ FC w/ FC-NC w/ FC-NC w/ XC w/
Min2KB Min2KB Min4KB Min8KB 10KB

TAR 11873 12192 10347 14076 10240
LNX 5978 5969 6288 7585 6477
WEB 9985 10725 9327 12862 9513
VMA 12743 12787 11161 15031 10239
VMB 11937 12138 10850 15148 10239
RDB 10232 10238 9751 13846 10240
SYN 10954 10945 10318 14123 10240

Table 5: Average chunk size generated by the five chunk-
ing approaches on the seven datasets.

point skipping, and normalized chunking (using NC-2 as
suggested by the last subsection). Four approaches are
tested for evaluation: RC with Min2KB (or RC-MIN-
2KB) is Rabin-based CDC used in LBFS [25]; FC with
Min2KB (or FC-MIN-2KB) uses the techniques of opti-
mizing hash judgment and cut-point skipping with a min-
imum chunk size of 2KB; FC-NC with Min4KB and FC-
NC with Min8KB refer to FastCDC using all the three
techniques with a minimum chunk size of 4KB and 8KB,
respectively. To better evaluate the deduplication ratio,
Fixed-Size Chunking (XC) is also tested using the aver-
age chunk size of 10KB.

Evaluation results in Table 4 suggest that FC with
Min2KB achieves nearly the same deduplication ra-
tio as Rabin-based approach. FC-NC with Min4KB
achieves the highest deduplication ratio among the five
approaches while Fixed-Size Chunking (XC) has the
lowest deduplication ratio. Note that XC works well
on the LNX, WEB, VMB datasets, because LNX and
WEB datasets have many files smaller than the fixed-size
chunk of 10KB (and thus the average generated chunk
size also smaller than 10KB) and VMB has many struc-
tured backup data (and thus VMB is suitable for XC).

Table 5 shows that RC and FC with Min2KB and XC
generate similar average chunk size while FC-NC with
Min4KB has a slightly small average chunk size. But the
approach of FC-NC with Min8KB has a much smaller
average chunk size, which means that it generates fewer
chunks and thus less metadata for deduplication process-
ing. Meanwhile, FC-NC with Min8KB still achieves a
comparable deduplication ratio, slightly lower than RC
as shown in Table 4, while providing a much higher

11

SRC VMS RDB
0

500

1000

1500

2000

2500

Ch
un

kin
g s

pe
ed

 (M
B/

s)

Workloads

 RC-MIN-2KB FC-NC-MIN-4KB
 FC-MIN-2KB FC-NC-MIN-8KB

(a) Speed on intel i7-930

SRC VMS RDB
0

1000

2000

3000

4000

5000

6000

Ch
un

kin
g s

pe
ed

 (M
B/

s)

Workloads

 RC-MIN-2KB FC-NC-MIN-4KB
 FC-MIN-2KB FC-NC-MIN-8KB

(b) Speed on intel i7-4770
Figure 13: Chunking speed of the four CDC approaches.

Approaches Instructions IPC CPU cycles
RC-MIN-2KB 38, 829, 037 2.35 16, 537, 973
FC-MIN-2KB 15, 074, 950 4.37 3, 452, 146

FC-NC-MIN-4KB 11, 008, 372 4.82 2, 284, 453
FC-NC-MIN-8KB 7, 750, 124 4.82 1, 608, 033

Table 6: Number of instructions, instructions per cycle
(IPC), and CPU cycles required to chunk 1MB data by
the four CDC approaches on the Intel i7-4770 processor.

chunking speed as discussed later.
Figure 13 suggests that FC-NC with Min8KB has

the highest chunking speed, about 10× faster than the
Rabin-based approach, about 2× faster than FC with
Min2KB. This is because FC-NC with Min8KB is the fi-
nal FastCDC using all the three techniques to speed up
the CDC process. In addition, FC-NC with Min4KB
is also a good CDC candidate since it has the highest
deduplication ratio while also working well on the other
two metrics of chunking speed and the average gener-
ated chunk size. Note that XC is not shown here because
it has almost no computation overhead for chunking.

Table 6 further studies the CPU overhead among the
four CDC approaches. The CPU overhead is averaged on
1000 test runs by the Linux tool “Perf”. The results sug-
gest that FC-NC-MIN-8KB has the fewest instructions
for CDC computation, the highest IPC (instructions per
cycle), and thus the least CPU time overhead, i.e., CPU
cycles. Generally, FastCDC greatly reduces the num-
ber of instructions for CDC computation by using the
techniques of Gear-based hashing and optimizing hash
judgment (i.e., “FC-MIN-2KB”), and then minimizes
the number of computation instructions by enlarging the
minimum chunk size for cut-point skipping and combin-
ing normalized chunking (i.e., “FC-NC-MIN-8KB”). In
addition, FastCDC increases the IPC for the CDC com-
putation by well pipelining the instructions of hashing
and hash-judging tasks in up-to-date processors. There-
fore, these results explain why FastCDC is about 10×
faster than Rabin-based CDC is that the former not only
reduces the number of instructions, but also increases the
IPC for the CDC process.

In summary, as shown in Tables 4, 5, 6 and Fig-
ure 13, FastCDC (i.e., FC-NC-MIN-8KB) significantly
speeds up the chunking process and achieves a compa-

rable deduplication ratio while reducing the number of
generated chunks by using a combination of the three
key techniques proposed in Section 4.

6 Conclusion and Future Work
In this paper, we propose FastCDC, a much faster CDC
approach for data deduplication than the state-of-the-art
CDC approaches while achieving a comparable dedu-
plication ratio. The main idea behind FastCDC is the
combined use of three key techniques, namely, optimiz-
ing the hash judgment for chunking, subminimum chunk
cut-point skipping, and normalized chunking. Our exper-
imental evaluation demonstrates that FastCDC obtains a
chunking speed that is about 10× higher than that of the
Rabin-based CDC and about 3× that of the Gear- and
AE-based CDC while achieving nearly the same dedu-
plication ratio as the Rabin-based CDC.

In our future work, we plan to incorporate FastCDC
in some other deduplication systems that are sensitive to
the CPU overhead of content-defined chunking, such as
QuickSync [9], to further explore the potentials and ben-
efits of FastCDC. We also plan to release the FastCDC
source code to be shared with the deduplication and stor-
age systems research community.

Acknowledgments
We are grateful to our shepherd Scott Rixner and the
anonymous reviewers for their insightful comments and
feedback. The work was partly supported by NSFC No.
61502190, 61502191, 61232004, and 61402061; 863
Project 2013AA013203; State Key Laboratory of Com-
puter Architecture, No. CARCH201505; Fundamental
Research Funds for the Central Universities, HUST, un-
der Grant No. 2015MS073; US NSF under Grants CNS-
111660 and CNS-1016609, Key Laboratory of Informa-
tion Storage System, Ministry of Education, China, and
Sangfor Technologies Co., Ltd.

References

[1] AGGARWAL, B., AKELLA, A., ANAND, A., ET AL. En-
dRE: an end-system redundancy elimination service for
enterprises. In Proceedings of the 7th USENIX confer-
ence on Networked Systems Design and Implementation
(NSDI’10) (San Jose, CA, USA, April 2010), USENIX
Association, pp. 14–28.

[2] AL-KISWANY, S., GHARAIBEH, A., SANTOS-NETO,
E., ET AL. StoreGPU: exploiting graphics process-
ing units to accelerate distributed storage systems. In
Proceedings of the 17th international symposium on
High Performance Distributed Computing (HPDC’08)
(Boston, MA, USA, June 2008), ACM Association,
pp. 165–174.

[3] ANAND, A., MUTHUKRISHNAN, C., AKELLA, A., AND

RAMJEE, R. Redundancy in network traffic: findings and

12

implications. In Proceedings of the 11th international
Joint Conference on Measurement and Modeling of Com-
puter Systems (SIGMETRICS-Performance 2009) (Seat-
tle, WA, USA, June 2009), ACM Association, pp. 37–48.

[4] BHAGWAT, D., POLLACK, K., LONG, D. D.,
SCHWARZ, T., MILLER, E. L., AND PÂRIS, J.-F. Pro-
viding high reliability in a minimum redundancy archival
storage system. In Proceedings of The 14th IEEE Inter-
national Symposium on Modeling, Analysis, and Simula-
tion of Computer and Telecommunication Systems (MAS-
COTS’06) (Monterey, CA, USA, September 2006), IEEE
Computer Society Press, pp. 413–421.

[5] BHATOTIA, P., RODRIGUES, R., AND VERMA, A.
Shredder: GPU-accelerated incremental storage and com-
putation. In Proceedings of the 10th USENIX Conference
on File and Storage Technologies (FAST’12) (San Jose,
CA, USA, February 2012), USENIX Association, pp. 1–
15.

[6] BIENIA, C., KUMAR, S., SINGH, J. P., AND LI, K. The
parsec benchmark suite: Characterization and architec-
tural implications. In Proceedings of the 17th interna-
tional conference on Parallel architectures and compi-
lation techniques (PACT’08) (Toronto, Canada, October
2008), ACM, pp. 72–81.

[7] BJØRNER, N., BLASS, A., AND GUREVICH, Y.
Content-dependent chunking for differential compres-
sion, the local maximum approach. Journal of Computer
and System Sciences 76, 3 (2010), 154–203.

[8] BRODER, A. Some applications of Rabin’s fingerprint-
ing method. Sequences II: Methods in Communications,
Security, and Computer Science (1993), 1–10.

[9] CUI, Y., LAI, Z., WANG, X., DAI, N., AND MIAO,
C. QuickSync: Improving Synchronization Efficiency for
Mobile Cloud Storage Services. In Proceedings of the
21st Annual International Conference on Mobile Com-
puting and Networking (Paris, France, Sept. 2015), ACM,
pp. 592–603.

[10] DEBNATH, B., SENGUPTA, S., AND LI, J. ChunkStash:
speeding up inline storage deduplication using flash
memory. In Proceedings of the 2010 USENIX conference
on USENIX annual technical conference (USENIX’10)
(Boston, MA, USA, June 2010), USENIX Association,
pp. 1–14.

[11] DUBNICKI, C., KRUUS, E., LICHOTA, K., AND UN-
GUREANU, C. Methods and systems for data manage-
ment using multiple selection criteria, Dec. 1 2006. US
Patent App. 11/566,122.

[12] EL-SHIMI, A., KALACH, R., KUMAR, A., ET AL.
Primary data deduplication–large scale study and sys-
tem design. In Proceedings of the 2012 conference
on USENIX Annual Technical Conference (USENIX’12)
(Boston, MA, USA, June 2012), USENIX Association,
pp. 1–12.

[13] ESHGHI, K., AND TANG, H. K. A framework for ana-
lyzing and improving content-based chunking algorithms.
Tech. Rep. HPL-2005-30(R.1),Hewlett Packard Laborato-
ries, Palo Alto (2005).

[14] FU, M., FENG, D., HUA, Y., HE, X., CHEN, Z., XIA,
W., ZHANG, Y., AND TAN, Y. Design tradeoffs for
data deduplication performance in backup workloads. In
Proceedings of the 13th USENIX Conference on File and
Storage Technologies (FAST’15) (Santa Clara, CA, USA,
February 2015), USENIX Association, pp. 331–344.

[15] GHARAIBEH, A., AL-KISWANY, S., GOPALAKRISH-
NAN, S., ET AL. A GPU accelerated storage system. In
Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing (HPDC’10)
(Chicago, Illinois, USA, June 2010), ACM Association,
pp. 167–178.

[16] GUO, F., AND EFSTATHOPOULOS, P. Building a high-
performance deduplication system. In Proceedings of
the 2011 USENIX conference on USENIX Annual Techni-
cal Conference (USENIX’11) (Portland, OR, USA, June
2011), USENIX Association, pp. 1–14.

[17] KRUUS, E., UNGUREANU, C., AND DUBNICKI, C. Bi-
modal content defined chunking for backup streams. In
Proceedings of the 7th USENIX Conference on File and
Storage Technologies (FAST’10) (San Jose, CA, USA,
February 2010), USENIX Association, pp. 1–14.

[18] LILLIBRIDGE, M., ESHGHI, K., AND BHAGWAT, D.
Improving restore speed for backup systems that use in-
line chunk-based deduplication. In Proceedings of the
11th USENIX Conference on File and Storage Technolo-
gies (FAST’13) (San Jose, CA, USA, February 2013),
USENIX Association, pp. 183–197.

[19] LILLIBRIDGE, M., ESHGHI, K., BHAGWAT, D., ET AL.
Sparse indexing: Large scale, inline deduplication using
sampling and locality. In Proceedings of the 7th USENIX
Conference on File and Storage Technologies (FAST’09)
(San Jose, CA, February 2009), vol. 9, USENIX Associ-
ation, pp. 111–123.

[20] LILLIBRIDGE, M. D. Parallel processing of input data
to locate landmarks for chunks, Aug. 16 2011. US Patent
8,001,273.

[21] LU, G., JIN, Y., AND DU, D. H. Frequency based
chunking for data de-duplication. In Proceedings of 2010
IEEE International Symposium on Modeling, Analysis &
Simulation of Computer and Telecommunication Systems
(MASCOTS’10) (Miami Beach, FL, USA, August 2010),
IEEE Computer Society Press, pp. 287–296.

[22] MEISTER, D., KAISER, J., BRINKMANN, A., ET AL. A
study on data deduplication in HPC storage systems. In
Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis
(SC’02) (Salt Lake City, Utah, USA, June 2012), IEEE
Computer Society Press, pp. 1–11.

13

[23] MEYER, D., AND BOLOSKY, W. A study of practical
deduplication. In Proceedings of the USENIX Confer-
ence on File and Storage Technologies (FAST’11) (San
Jose, CA, USA, February 2011), USENIX Association,
pp. 229–241.

[24] MIN, J., YOON, D., AND WON, Y. Efficient dedupli-
cation techniques for modern backup operation. IEEE
Transactions on Computers 60, 6 (2011), 824–840.

[25] MUTHITACHAROEN, A., CHEN, B., AND MAZIERES,
D. A low-bandwidth network file system. In Proceed-
ings of the ACM Symposium on Operating Systems Prin-
ciples (SOSP’01) (Banff, Canada, October 2001), ACM
Association, pp. 1–14.

[26] POLICRONIADES, C., AND PRATT, I. Alternatives for
detecting redundancy in storage systems data. In Pro-
ceedings of USENIX Annual Technical Conference, Gen-
eral Track (Boston, MA, USA, June 2004), USENIX As-
sociation, pp. 73–86.

[27] QUINLAN, S., AND DORWARD, S. Venti: a new ap-
proach to archival storage. In Proceedings of USENIX
Conference on File and Storage Technologies (FAST’02)
(Monterey, CA, USA, January 2002), USENIX Associa-
tion, pp. 1–13.

[28] RABIN, M. O. Fingerprinting by random polynomials.
Center for Research in Computing Techn., Aiken Com-
putation Laboratory, Univ., 1981.

[29] ROMAŃSKI, B., HELDT, Ł., KILIAN, W., LICHOTA, K.,
AND DUBNICKI, C. Anchor-driven subchunk deduplica-
tion. In Proceedings of The 4th Annual International Sys-
tems and Storage Conference (SYSTOR’11) (Haifa, Israel,
May 2011), ACM Association, pp. 1–13.

[30] SHILANE, P., HUANG, M., WALLACE, G., ET AL.
WAN optimized replication of backup datasets using
stream-informed delta compression. In Proceedings of
the Tenth USENIX Conference on File and Storage Tech-
nologies (FAST’12) (San Jose, CA, USA, February 2012),
USENIX Association, pp. 1–14.

[31] TARASOV, V., MUDRANKIT, A., BUIK, W., SHILANE,
P., KUENNING, G., AND ZADOK, E. Generating realis-
tic datasets for deduplication analysis. In Proceedings of
the 2012 USENIX conference on Annual Technical Con-
ference (USENIX’12) (Boston, MA, USA, June 2012),
USENIX Association, pp. 24–34.

[32] TEODOSIU, D., BJORNER, N., GUREVICH, Y., MAN-
ASSE, M., AND PORKKA, J. Optimizing file replica-
tion over limited bandwidth networks using remote dif-
ferential compression. Microsoft Research TR-2006-157
(2006).

[33] WALLACE, G., DOUGLIS, F., QIAN, H., ET AL. Char-
acteristics of backup workloads in production systems. In
Proceedings of the Tenth USENIX Conference on File and
Storage Technologies (FAST’12) (San Jose, CA, February
2012), USENIX Association, pp. 1–14.

[34] XIA, W., JIANG, H., FENG, D., AND HUA, Y. Silo: a
similarity-locality based near-exact deduplication scheme
with low ram overhead and high throughput. In Proceed-
ings of the 2011 USENIX conference on USENIX annual
technical conference (USENIX’11) (Portland, OR, USA,
June 2011), USENIX Association, pp. 285–298.

[35] XIA, W., JIANG, H., FENG, D., AND HUA, Y. Sim-
ilarity and locality based indexing for high performance
data deduplication. IEEE Transactions on Computers 64,
4 (2015), 1162–1176.

[36] XIA, W., JIANG, H., FENG, D., AND TIAN, L. Accel-
erating data deduplication by exploiting pipelining and
parallelism with multicore or manycore processors. In
Proceedings of the 10th USENIX Conference on File and
Storage Technologies (FAST’12 Poster) (San Jose, CA,
USA, February 2012), USENIX Association, pp. 1–2.

[37] XIA, W., JIANG, H., FENG, D., TIAN, L., FU, M.,
AND WANG, Z. P-dedupe: Exploiting parallelism in data
deduplication system. In Proceedings of the 7th Interna-
tional Conference onNetworking, Architecture and Stor-
age (NAS’12) (Xiamen, China, June 2012), IEEE Com-
puter Society Press, pp. 338–347.

[38] XIA, W., JIANG, H., FENG, D., TIAN, L., FU, M.,
AND ZHOU, Y. Ddelta: A deduplication-inspired fast
delta compression approach. Performance Evaluation 79
(2014), 258–272.

[39] YU, C., ZHANG, C., MAO, Y., AND LI, F. Leap-based
content defined chunking—theory and implementation.
In Proceedings of the 31th Symposium on Mass Storage
Systems and Technologies (MSST’15) (Santa Clara, CA,
USA, June 2015), IEEE, pp. 1–12.

[40] ZHANG, Y., JIANG, H., FENG, D., XIA, W., FU, M.,
HUANG, F., AND ZHOU, Y. AE: An asymmetric ex-
tremum content defined chunking algorithm for fast and
bandwidth-efficient data deduplication. In Proceedings
of IEEE INFOCOM 2015 (Hongkong, April 2015), IEEE
Computer Society Press, pp. 1337–1345.

[41] ZHOU, Y., FENG, D., XIA, W., FU, M., HUANG, F.,
ZHANG, Y., AND LI, C. SecDep: A User-Aware Efficient
Fine-Grained Secure Deduplication Scheme with Multi-
Level Key Management. In Proceedings of IEEE 31th
Symposium on Mass Storage Systems and Technologies
(MSST’15) (Santa Clara, CA, USA, June 2015), IEEE,
pp. 1–12.

[42] ZHU, B., LI, K., AND PATTERSON, R. H. Avoiding the
disk bottleneck in the Data Domain Deduplication File
System. In Proceedings of the 6th USENIX Conference
on File and Storage Technologies (FAST’08) (San Jose,
CA, USA, February 2008), vol. 8, USENIX Association,
pp. 1–14.

14

	Introduction
	Background
	Observation and Motivation
	FastCDC Design and Implementation
	FastCDC Overview
	Optimizing Hash Judgment
	Cut-point Skipping
	Normalized Chunking
	Putting It All Together

	Performance Evaluation
	Experimental Setup
	 A Study of Optimizing Hash Judgment
	Evaluation of Cut-point Skipping
	Evaluation of Normalized Chunking
	Comprehensive Evaluation of FastCDC

	Conclusion and Future Work

