
This paper is included in the Proceedings of the
2020 USENIX Annual Technical Conference.

July 15–17, 2020
978-1-939133-14-4

Open access to the Proceedings of the
2020 USENIX Annual Technical Conference

is sponsored by USENIX.

Lock-free Concurrent Level Hashing
for Persistent Memory

Zhangyu Chen, Yu Hua, Bo Ding, and Pengfei Zuo,
Huazhong University of Science and Technology

https://www.usenix.org/conference/atc20/presentation/chen

Lock-free Concurrent Level Hashing for Persistent Memory

Zhangyu Chen, Yu Hua, Bo Ding, Pengfei Zuo
Wuhan National Laboratory for Optoelectronics, School of Computer

Huazhong University of Science and Technology
Corresponding Author: Yu Hua (csyhua@hust.edu.cn)

Abstract
With high memory density, non-volatility, and DRAM-

scale latency, persistent memory (PM) is promising to im-
prove the storage system performance. Hashing-based index
structures have been widely used in storage systems to provide
fast query services. Recent research proposes crash-consistent
and write-efficient hashing indexes for PM. However, existing
PM hashing schemes suffer from limited scalability due
to expensive lock-based concurrency control, thus making
multi-core parallel programing inefficient in PM. The coarse-
grained locks used in hash table resizing and queries (i.e.,
search/insertion/update/deletion) exacerbate the contention.
Moreover, the cache line flushes and memory fences for crash
consistency in the critical path increase the latency. In order to
address the lock contention for concurrent hashing indexes in
PM, we propose clevel hashing, a lock-free concurrent level
hashing, to deliver high performance with crash consistency.
In the clevel hashing, we design a multi-level structure for
concurrent resizing and queries. Resizing operations are
performed by background threads without blocking concur-
rent queries. For concurrency control, atomic primitives are
leveraged to enable lock-free search/insertion/update/deletion.
We further propose context-aware schemes to guarantee the
correctness of interleaved queries. Using real Intel Optane DC
PMM, experimental results with real-world YCSB workloads
show that clevel hashing obtains up to 4.2× speedup than the
state-of-the-art PM hashing index.

1 Introduction

Non-volatile memory (NVM) deployed as persistent memory
(PM) offers the salient features of large capacity, low latency,
and real time crash recovery for storage systems [12, 30,
38]. Recently, Intel Optane DC persistent memory module
(PMM) [2], the first commercial product of PM, is available on
the market. Compared with DRAM, PM has 3× read latency
and similar write latency [23,24,36]. In the meantime, the read
and write bandwidths of PM achieve 1/3 and 1/6 of those

of DRAM [23, 24, 27, 36]. PM delivers higher performance
than SSD and the maximal 512 GB capacity for a single PM
module is attractive for in-memory applications [23].

Building high-performance index structures for PM is
important for large-scale storage systems to provide fast query
services. Recent schemes propose some crash-consistent tree-
based indexes, including NV-Tree [37], wB+-Tree [14], FP-
Tree [32], WORT [26], FAST&FAIR [22] and BzTree [9].
However, traversing through pointers in hierarchical trees
hinders fast queries. Unlike tree-based schemes, hashing-
based index structures leverage hash functions to locate
data in flat space, thus enabling constant-scale point query
performance. As a result, hash tables are widely used in many
in-memory applications, e.g., redis [7] and memcached [4].

Existing hashing-based indexes for PM put many efforts
in crash consistency and write optimizations but with little
consideration for non-blocking resizing (also called rehash-
ing) [27, 30, 40]. A hash function maps different keys into
the same location, called hash collisions. In general, when
the hash collisions can’t be addressed or the load factor (the
number of inserted items divided by the capacity) of a hash
table approaches the predefined thresholds, the table needs
to be expanded to increase the capacity. Traditional resizing
operations acquire global locks and move all items from the
old hash table to the new one. Level hashing [40] is a two-
level write-optimized PM hashing index with cost-efficient
resizing. The expansion of level hashing only rehashes items
in the smaller level to a new level, which only migrates items
in 1/3 buckets. However, the resizing operation in the level
hashing is single-threaded and still requires a global lock to
ensure correct concurrent executions. P-CLHT [27] is a crash
consistent variant of Cache-Line Hash Table (CLHT) [17]
converted by RECIPE [27]. The search operation in P-
CLHT is lock-free, while the writes into stale buckets (all
stored items have been rehashed) would be blocked until
the full-table resizing completes. Hence, both schemes suffer
from limited resizing performance, since the global lock for
resizing blocks queries in other threads. Cacheline-Conscious
Extendible Hashing (CCEH) [30], a persistent extendible

USENIX Association 2020 USENIX Annual Technical Conference 799

hashing scheme, supports concurrent lock-based dynamic
resizing, however coarse-grained locks for shared resources
significantly increase the latency. Specifically, CCEH splits
a segment, an array of 1024 slots by default, to increase
the capacity, which requires the writer lock for the whole
segment. Moreover, when the directory needs to be doubled,
the global writer lock for directory is needed before doubling
the directory. The Copy-on-Write (CoW) version of CCEH
avoids the segment locks with the cost of extra writes due
to the migration of inserted items. Hence, the insertion
performance of CCEH with CoW is poorer than the default
version with lazy deletion [30]. The concurrent_hash_map
(cmap) in pmemkv [6] leverages lazy rehashing by amortizing
data migration over future queries. However, the deferred
rehashing may aggregate to a recursive execution in the
critical path of queries, thus leading to non-deterministic
query performance. Hence, current PM hashing indexes suffer
from poor concurrency and scalability during resizing.

A scalable PM hashing index with concurrent queries is
important to exploit the hardware resources and provide high
throughput with low latency. Nowadays, a server node is
able to provide tens of or even hundreds of threads, which
enables the wide use of concurrent index structures. Existing
hashing-based schemes for PM [27, 30, 40] leverage locks
for inter-thread synchronization. However, coarse-grained
exclusive locks in a critical path increase the query latency
and decrease the concurrent throughput. Moreover, in terms
of PM, the persist operations (e.g., logging, cache line flushes,
and memory fences), when holding locks, further increase the
waiting time of other threads. Fine-grained locks decrease the
critical path but may generate frequent locking and unlocking
for multiple shared resources. Moreover, the correctness
guarantee is harder than coarse-grained locks.

In summary, in addition to crash consistency, we need to
address the following challenges to build a high performance
concurrent hashing index for PM.

1) Performance Degradation during Resizing. For con-
current hash tables, resizing operations need to be concur-
rently executed without blocking other threads. However,
the resizing operation accesses and modifies the shared
hash tables and metadata. Coarse-grained locks for global
data ensure thread safety, but lead to high contention and
significant performance degradation when the hash table starts
resizing.

2) Poor Scalability for Lock-based Concurrency Control.
Locking techniques have been widely used to control con-
current accesses to shared resources. The coarse-grained
locks protect the hash table, but they also prevent concurrent
accesses and limit the scalability. Moreover, the updates of
shared data are often followed by flushing data into PM,
which exacerbates lock contention. An efficient concurrent
hashing scheme for PM needs to have low contention for high
scalability while guarantee the concurrency correctness.

In order to address the above challenges, we propose

clevel hashing, a crash-consistent and lock-free concurrent
hash table for PM. Motivated by our level hashing [40], we
further explore write-efficient open-addressing techniques
to enable write-friendly and memory-efficient properties for
PM in the context of concurrency. Different from the level
hashing, our proposed clevel hashing aims to provide scalable
performance and guarantee the correctness for concurrent
executions. Unlike existing schemes [27, 30] that convert
concurrent DRAM indexes to persistent ones, we propose
a new and efficient way to enable persistent indexes to
be concurrent with small overheads and high performance.
Hence, the clevel hashing bridges the gap between scalability
and PM efficiency.

To alleviate the performance degradation for resizing,
we propose a dynamic multi-level index structure with
asynchronous rehashing. Levels are dynamically added for
resizing and removed when all stored items are migrated
to a new level. The rehashing of items is offloaded into
background threads, thus never blocking foreground queries.
Background threads migrate the items from the last level to the
first level via rehashing until there are two remaining levels.
The two levels ensure a maximal load factor over 80% and
the limited accesses to buckets for queries. Therefore, when
rehashing is not running (the usual case for most workloads),
the time complexity for search/insertion/update/deletion is
constant-scale.

To provide high scalability with low latency, we design
write-optimal insertion and lock-free concurrency control for
search/insertion/update/deletion. The new items are inserted
into empty slots without any data movements, hence ensuring
write efficiency. For concurrent modifications to the hash
table, clevel hashing exploits the atomicity of pointers and
uses Compare-And-Swap (CAS) primitives for lock-free in-
sertion, update, and deletion. Guaranteeing the correctness for
lock-free queries with simultaneous resizing is challenging,
since interleaved operations can be executed in any order and
lead to failures and duplicate items. In the clevel hashing, we
propose context-aware algorithms by detecting the metadata
information changes to avoid inconsistencies for insertion,
update, and deletion. The duplicate items are detected and
properly fixed before modifying the hash table. In summary,
we have made the following contributions in the clevel
hashing.

• Concurrent Resizing. In order to address the bottleneck
of resizing, we propose a dynamic multi-level structure
and concurrent resizing without blocking other threads.

• Lock-free Concurrency Control. We design lock-
free algorithms for all queries in the clevel hashing.
The correctness for lock-free concurrency control is
guaranteed with low overheads.

• System Implementation. We have implemented the
clevel hashing using PMDK [5] and compared our
proposed clevel hashing with state-of-the-art schemes on

800 2020 USENIX Annual Technical Conference USENIX Association

real Intel Optane PM hardware. The evaluation results
using YCSB workloads show the efficacy and efficiency
of the clevel hashing. We have released the open-source
code for public use.1

2 Background

2.1 Crash Consistency in Persistent Memory

Persistent memory (PM) provides the non-volatility for data
stored in main memory, thus requiring crash consistency
for data in PM. For store instructions, the typical maximal
atomic CPU write size is 8 bytes. Therefore, when data size
is larger than 8 bytes, system failures during sequential writes
of data may lead to partial updates and inconsistency. In
the meantime, the persist order of data in write-back caches
is different from the issue order of store instructions, thus
demanding memory barriers to enforce the consistency. To
guarantee consistency, recent CPUs provide instructions for
cache line flushes (e.g., clflush, clflushopt, and clwb) and
memory barriers (e.g., sfence, lfence, and mfence) [1]. With
these instructions, users can use logging or CoW to guarantee
crash consistency for data larger than 8 bytes [27, 38].
However, logging and CoW generate extra writes causing the
overheads for PM applications [30,40]. In our implementation,
we use the interface provided by PMDK [5], which issues
clwb and sfence instructions in our machine, to persist the
data into PM.

2.2 Lock-free Concurrency Control

Compare-And-Swap (CAS) primitives and CoW have been
widely used in existing lock-free algorithms for atomicity. The
CAS primitive compares the stored contents with the expected
contents. If the contents match, the stored contents are
swapped with new values. Otherwise, the expected contents
are updated with the stored contents (or just do nothing).
The execution of CAS primitives is guaranteed to be atomic,
thus avoiding the use of locks. CAS primitives are used in
concurrent index structures to provide high scalability [21,34].
However, CAS primitives don’t support data sizes larger
than the CPU write unit size (e.g., 8 bytes). CoW is used
to atomically update data larger than 8 bytes [30]. CoW first
copies the data to be modified and performs in-place update in
the copied data. Then the pointer is atomically updated with
the pointer to new data using a CAS primitive. The drawback
of CoW is the extra writes for the copy of unchanged contents.
In PM, frequent use of CoW causes severe performance
degradation [30, 40]. In our clevel hashing, we design the
lock-free algorithms using CAS primitives for most writes
and lightweight CoW for infrequent metadata updates, thus
achieving high scalability with limited extra PM writes.

1https://github.com/chenzhangyu/Clevel-Hashing

2.3 Basic Hash Tables

Unlike tree-based index structures, hashing-based indexes
store the inserted items in flat structures, e.g., an array, thus
obtaining O(1) point query performance. Some hashing
schemes, e.g., CLHT [17], store key-value items in the hash
table, which mitigates the cache line accesses. However, such
design doesn’t support the storage of variable-length key-
value items. Reserving large space in hash tables causes heavy
space overheads, since most key-value pairs in real-world
scenarios are smaller than a few hundreds of bytes [10, 18].
In order to efficiently support variable-length key-value
items, many open-source key-value stores (e.g., redis [7],
memcached [4], libcuckoo [28], and the cmap engine in
pmemkv [6]) store pointers in hash tables and actual key-
value items out of the table. In our clevel hashing, we store
pointers in hash tables to support variable-length key-value
items.

A typical hash table leverages hash functions to calculate
the index of a key-value item. Different key-value items can
be indexed to the same storage position, called hash collisions.
Existing hashing schemes leverage some techniques to
address hash collisions, e.g., linear probing [30], multi-slot
buckets [18, 28, 30, 40], linked list [6, 16, 27, 29], and data
relocation [18, 28, 34, 40]. If hash collisions cannot be
addressed, the hash table needs to be resized to increase the
capacity. Typical resizing operations consist of three steps:
(1) Allocate a new hash table with 2× as many buckets as
the old table. (2) Rehash items from the old table to the new
table. (3) When all items in the old table have been rehashed,
switch to the new table. The resizing in conventional hashing
schemes involves intensive data movements [40] and blocks
concurrent queries [30].

2.4 Hashing-based Index Structures for PM

Recently, researchers have proposed several hashing-based
indexes for PM [6,16,30,40]. Different from DRAM indexes,
PM indexes need to remain consistent after system failures.
However, the write bandwidth of PM is one sixth as much as
DRAM [23, 24, 36], which indicates the significance of write
efficiency for concurrent PM hashing indexes.

2.4.1 The Level Hashing Scheme

Our clevel hashing is based on the level hashing index
structure [40]. Level hashing has three goals: low-overhead
crash consistency, write efficiency, and resizing efficiency.
Below, we briefly introduce the relevant components in level
hashing.

Level hashing has two levels and the top level has twice
the buckets of the bottom level. Each level is an array of
4-slot buckets. Besides the 4 slots, a bucket has 4 tokens
and each token is one bit corresponding to one slot for crash

USENIX Association 2020 USENIX Annual Technical Conference 801

Table 1: The Comparisons of Our Clevel Hashing with State-of-the-art Concurrent Resizable Hashing Indexes for PM. (For
abbreviation, “LEVEL” is the level hashing, “CCEH” is the default CCEH version using the MSB segment index and lazy
deletion. “CMAP” is the concurrent_hash_map in pmemkv, and “CLEVEL” is our clevel hashing. For the memory efficiency
and crash consistency, “3” and “-” indicate good and moderate performance, respectively.)

Concurrency Control Correctness Guarantee Memory
Efficiency

Crash
ConsistencySearch Insertion/Update/Deletion Resizing Duplication Missing

LEVEL Slot lock Slot lock Global metadata lock No No 3 3

CCEH Segment reader lock Segment writer lock Global directory lock No Yes - 3

CMAP Bucket reader lock Bucket writer lock Bucket writer lock + lazy rehashing Yes Yes 3 3

P-CLHT Lock-free Bucket lock Global metadata lock Yes Yes 3 3

CLEVEL Lock-free Lock-free Asynchronous Yes Yes 3 3

...

...Top level

Bottom level

0 1 2N-2 2N-1

0 N-1

key
H1(key) H2(key)

One-step movement

KV1 KV2 KV3 KV4

SlotsTokens

A bucket

Figure 1: The level hashing index structure

consistency. The overview of level hashing index structure is
shown in Figure 1.

By using two independent hash functions, each item has
two candidate buckets in one level for storage (16 slots in
total for two levels). When the two buckets are full, level
hashing tries to perform one-step movement to obtain an
empty slot for the item to be inserted. For example, the key in
Figure 1 has two candidate buckets in the top level: the first
bucket and the second to last bucket. If the two buckets are
full and one stored item in the first bucket has empty slots in
its alternative candidate bucket (e.g., the second bucket), the
stored item is moved to the second bucket so that the key can
be inserted to the first bucket. The one-step movement in level
hashing improves the maximal load factor before resizing by
10% [40].

For resizing, level hashing creates a new level with 2× (e.g.,
4N in Figure 1) as many buckets as the top level and migrates
stored items in the bottom level to the new level. The items in
the top level are reused without rehashing.

Level hashing uses slot-grained locks for concurrent
queries. A fine-grained slot lock is acquired before accessing
the corresponding slot and released after completing the
access. For resizing, level hashing rehashes items using one
thread and blocks concurrent queries of other threads. The
concurrency control in level hashing has two correctness
problems:

1) Duplicate items. An insertion thread with a single slot
lock for an item cannot prevent other threads from inserting
items with the same key into other candidate positions, since
one item has 16 slots (2 candidate buckets for each level)
for storage. Duplicate items in the hash table violate the
correctness for updates and deletions: one thread updates
or deletes one item while future queries may access the
duplicate items that are unmodified.
2) Missing items. Items in level hashing are movable due to
one-step movement and rehashing, while a slot lock cannot
stop the movements. As a result, one query with a slot lock
may miss inserted items due to concurrent moving of other
threads.

2.4.2 Concurrent Hashing Indexes for PM

Recent schemes design some crash-consistent PM hashing
indexes with lock-based concurrency control. CCEH [30]
organizes 1024 slots as a segment for dynamic hashing. For
concurrent execution, the segment splitting during insertion
requires an exclusive writer lock for the segment. Moreover,
when the number of segments reaches a predefined threshold,
a global directory of segments needs to be doubled with a glob-
al directory lock. In pmemkv [6], there is a concurrent linked-
list based hashing engine for PM, called cmap, which uses
bucket-grained reader-writer locks for concurrency control.
The cmap leverages lazy rehashing to amortize data migration
in future queries. However, the aggregation of rehashing in
the critical path of queries leads to uncertainty and increases
the tail latency. P-CLHT [27] is a crash-consistent version
of CLHT [17], a cache-efficient hash table with lock-free
search. However, when P-CLHT starts resizing, concurrent
insertions to the stale buckets (i.e., buckets whose items have
been rehashed) have to wait until the resizing completes.

As shown in Table 1, we summarize state-of-the-art con-
current hashing-based index structures with resizing support
for PM and compare our clevel hashing with them. All
comparable schemes are the open-source versions with default
parameter settings. For concurrent queries, CCEH uses coarse
segment reader-writer locks, while level hashing and cmap
adopt fine-grained locks. P-CLHT leverages bucket-grained

802 2020 USENIX Annual Technical Conference USENIX Association

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1

Rehashing

keyH1(key) H2(key)
Le

ve
l l

ist

KV_PTR1

Slots (each 8 bytes)

A bucket
KV_PTR8...

last_level
first_level
is_resizing

Context

Global context ptr.

2

3

4

5

(a) The index structure shared by all threads.
Rehashing threads

...
Worker threads

...Thread-local
context ptr.

A thread

1

(b) The local context for each thread.

Figure 2: The clevel hashing index overview.

locks for insertion/update/deletion and provides lock-free
search. In terms of resizing, level hashing, CCEH, and P-
CLHT suffer from the global locks. Though cmap avoids
expensive global locks for resizing, the lazy rehashing is in
the critical path of queries and affects the scalability. For
concurrency correctness, as discussed in §2.4.1, level hashing
suffers from duplicate items and missing inserted items. Since
CCEH doesn’t check if a key to be inserted is present in the
hash table, CCEH also has the problem of duplicate items. For
memory efficiency, CCEH sets a short linear probing distance
(16 slots) by default to trade storage utilization for query
performance. Unlike existing schemes, our clevel hashing
achieves lock-free queries with asynchronous background
resizing while guarantees the concurrency correctness and
memory efficiency.

3 The Clevel Hashing Design

Our proposed clevel hashing leverages flexible data structures
and lock-free concurrency control mechanism to mitigate
the competition for the shared resources and improve the
scalability. The design of clevel hashing aims to address
the three problems in hashing index structures for PM:
(1) How to support concurrent resizing operations without
blocking the queries in other threads? (2) How to avoid lock
contention in concurrent execution? (3) How to guarantee
crash consistency with low overheads? In this Section,
we first illustrate the dynamic multi-level structure (§3.1),
which provides high memory efficiency and supports the
low-cost resizing operation. We further present the lock-free
concurrency control and correctness guarantee in the clevel
hashing (§3.2), i.e., lock-free search/insertion/update/deletion.
We finally discuss crash recovery (§3.3).

1 2 3 4 5 6 7 8
50%

60%

70%

80%

90%

100%

Lo
ad

 fa
ct

or

The resizings during insertions

 LEVEL-4-slot LEVEL-8-slot
 CLEVEL-4-slot CLEVEL-8-slot

Figure 3: The load factors of level hashing and clevel hashing
with different slots per bucket when the resizing occurs.

3.1 The Clevel Hashing Index Structure

3.1.1 Dynamic Multi-level Structure

The global index structure of clevel hashing shared by all
threads is shown in Figure 2(a). The hash table in the clevel
hashing consists of several levels and each level is an array of
buckets. All these levels are organized by a linked list, called
level list. For two adjacent levels, the upper level has 2× as
many buckets as the lower one. The first level is interpreted
as the level with the most buckets while the last level is
interpreted as the level with the least buckets. Each key-value
item is mapped to two candidate buckets in each level via two
hash functions. To guarantee high storage utilization, clevel
hashing maintains at least two levels [40]. Unlike the 4-slot
bucket in the level hashing [40], each bucket in clevel hashing
has 8 slots. Each slot consists of 8 bytes and stores a pointer to
a key-value item. The actual key-value item is stored outside
of the table via dynamic memory allocation. Hence, the 8-
slot bucket is 64 bytes and fits the cache line size. By only
storing the pointers to key-value items in slots, clevel hashing
supports variable-length key-value items. Hence, the content
in each slot can be modified using atomic primitives. The
atomic visibility of pointers is one of the building blocks for
lock-free concurrency control (§3.2) in our clevel hashing.

Different from the level hashing, our clevel hashing index
structure is write-optimal for insertion while maintaining
high storage utilization. The level hashing tries to perform
one movement (one-step movement) for inserted items by
copying them into their second candidate bucket in the
same level, which causes one extra write for PM. For clevel
hashing, the one-step movement is skipped, which decreases
the storage utilization. Figure 3 shows the load factors of level
hashing and clevel hashing with different slot numbers when
successive resizings occur during insertion. Compared with
level hashing having the same number of slots per bucket,
the load factor of clevel hashing becomes lower due to the
lack of one-step movement. However, 8-slot buckets in clevel
hashing increase the number of candidate slots for a key in
one level, thus achieving a comparable load factor (80%) than
the level hashing with 4-slot buckets (default configuration).
The number of slots per bucket also affects the throughput,
which is discussed in §4.2.

USENIX Association 2020 USENIX Annual Technical Conference 803

3.1.2 The Support for Concurrent Resizing

Clevel hashing leverages the dynamic multi-level design and
context to support concurrent resizing operations. The number
of levels in clevel hashing is dynamic: levels are added for
resizing and removed when rehashing completes. The context
in clevel hashing is interpreted as an object containing two
level list nodes and the is_resizing flag. The two nodes
point to the first and last levels while the flag denotes if the
table is being resized. There is a global pointer to the context
(Figure 2(a)) and each thread maintains a thread-local copy of
the context pointer (Figure 2(b)). Hence, the context can be
atomically updated using CoW + CAS. Since the context size
is 17 bytes (i.e., two pointers and one Boolean flag) and the
context changes only when we add/remove a level, the CoW
overheads of context are negligible for PM.

The resizing operation in clevel hashing updates the level
list and the context. Specifically, when hash collisions can’t
be addressed, the resizing is performed in the following steps:
(Step 1) Make a local copy of the global pointer to context.
(Step 2) Dereference the local copy of context pointer, and
append a new level with twice the buckets of the original
first level to the level list using CAS. If the CAS fails, update
the local copy of the context pointer and continue with the
next step, since other threads have successfully added a new
level. (Step 3) Use CoW + CAS to update the global context
by changing the first level to the new level (e.g., Lnew) and
setting is_resizing to true. When the CAS fails, check if
the new first level’s capacity is no smaller than Lnew and the
is_resizing is true: if so, update the local context pointer
and continue; otherwise, retry the CoW + CAS with the
is_resizing (true) and optional new level Lnew (if the first
level’s capacity is smaller than Lnew). (Step 4) Rehash each
item in the last level. The rehashing includes two steps: copy
the item’s pointer to a candidate bucket in the first level via
CAS, and delete the pointer in the last level (without CAS,
and the correctness for possible duplicate items is guaranteed
in insertion §3.2.2 and update §3.2.3). If the CAS fails, find
another empty slot. If no empty slot is found, go to step 2
to expand the table. (Step 5) When rehashing completes,
update the last level and optional is_resizing (if only two
levels remain after resizing) in the global context atomically
using CoW + CAS. If the CAS fails, try again if the last level
in current context is unmodified. The resizing workflow is
shown in Figure 2. Note that the reasons for three possible
CAS failures in resizing are different: the CAS failures in
step 2 come from the concurrent expansion of other threads,
i.e., the step 2 in other threads; the failures in steps 3 and 5
are due to the concurrent execution of these two steps (steps
3 and 5) in different threads. As a result, the strategies for
corresponding CAS failures are different as presented above.

To mitigate the insertion performance degradation due to re-
sizing, clevel hashing leverages background threads to enable
asynchronous rehashing. Specifically, we divide the resizing

into two stages, including expansion (steps 1 , 2 , and 3)
and rehashing (steps 4 and 5) stages. The time-consuming
rehashing stage is offloaded into background threads, called
rehashing threads. Rehashing threads continuously rehash
items until there are two levels left. Therefore, when the table
is not being resized, the queries in clevel hashing guarantee
constant-scale time complexity. The threads serving query
requests are called worker threads. When the hash collisions
can not be addressed by worker threads, they perform the
three steps in the expansion stage and then continue the
queries. Since the main operations for table expansion are
simple memory allocation and lightweight CoW for context
(17 bytes), the expansion overheads are low. Moreover, there
is no contention for locks during expansion. As a result, the
resizing operation no longer blocks queries.

Rehashing performance can be improved by using multiple
rehashing threads. To avoid contention for rehashing, a simple
modular function is used to partition buckets into independent
batches for rehashing threads. For example, if there are two
rehashing threads, one thread rehashes odd-number buckets
while the other rehashes even-number buckets. After both
rehashing threads finish, they update the global context
following step 5 .

3.2 Lock-free Concurrency Control

In order to mitigate the contention for shared resources,
we propose lock-free algorithms for all queries, i.e., search,
insertion, update, and deletion.

3.2.1 Search

The search operation needs to iteratively check possible
buckets to find the first key-value item that matches the key.
There are two main problems for lock-free search in the clevel
hashing: (1) High read latency for the pointer dereference
costs. Since clevel hashing only stores the pointers in hash
tables to support variable-length items, dereferencing is
needed to fetch the corresponding key, which results in high
cache miss ratios and extra PM reads. (2) Missing inserted
items due to the data movement. The concurrent resizing
moves the items in the last level, and therefore, searching
without any locks may miss inserted items.

For the pointer dereference overheads, our proposed clevel
hashing leverages a summary tag to avoid the unnecessary
reads for full keys. A tag is the summary for a full key, e.g.,
the leading two bytes of the key’s hash value. The hash
value is obtained when calculating the candidate buckets via
hash functions (e.g., the std::hash from C++ [8]). The tag
technique is inspired from MemC3 [18] and we add atomicity
for the pair of tag and pointer. For each inserted item, its tag
is stored in the table. For a search request, only when the tag
of a request matches the stored tag of an item, we fetch the
stored full key by pointer dereferencing and compare the two
keys. A false positive case for tags appears when different

804 2020 USENIX Annual Technical Conference USENIX Association

keys have the same tag. For 16-bit tags, the false positive rate
is 1/216. Since we check full-size keys when two tags match,
the false positives can be identified and will not cause any
problem of correctness. Instead of allocating additional space
for tags in MemC3, clevel hashing leverages the unused 16
highest bits in pointers to store the tags. Current pointers only
consume 48 bits on x86_64, thus leaving 16 bits unused in
64-bit pointers [31,35]. The reuse of reserved bits enables the
atomic updates of pointers and tags.

To address the problem of missing inserted items, we
propose to search from the last level to the first level, called
bottom-to-top (b2t) search strategy. The intuition behind b2t
searching is to follow the direction of bottom-to-top data
movement in hash table expansion, which moves items from
the last level to the first level. However, a rare case for missing
is: after a search operation starts, other threads add a new level
through expansion and rehashing threads move the item that
matches the key of the search to the new level. To fix this
missing, clevel hashing leverages the atomicity of context.
Specifically, when no matched item is found after b2t search,
clevel hashing checks the global context pointer with the
previous local copy. If the two pointers are different, redo
the search. The overheads for the re-execution of search are
low, since changes of the context pointer are rare, occurring
only when a level is added to or removed from the level
list. Therefore, the correctness for the lock-free search is
guaranteed with low costs.

3.2.2 Insertion

For insertion, a key-value item is inserted if the key does not
exist in the table. The insertion first executes lock-free b2t
search (§3.2.1) to determine if an item with the same key
exists. If none exists, the pointer (with its summary tag) to
the key-value item is atomically inserted into a less-loaded
candidate bucket. When there is no empty slot, we resize
the table by adding a new level with background rehashing
(§3.1.2) and redo the insertion. However, lock-free insertion
leads to two correctness problems: (1) Duplicate items from
concurrent insertions. Without locks, concurrent threads may
insert items with the same key into different slots, which
results in failures for update and deletion. (2) Loss of new
items inserted to the last level. When new items are inserted
into the buckets in the last level that have been processed
by rehashing threads, these inserted items are lost after we
reclaim the last level.

For concurrent insertions to different slots, it is challenging
to avoid the duplication in a lock-free manner, since atomic
primitives only guarantee the atomicity of 8 bytes. However,
each one of the duplicate items is correct. Hence, we fix the
duplication in future updates(§3.2.3) and deletions(§3.2.4).

In order to fix the loss of new items, we design a context-
aware insertion scheme to guarantee the correctness of
insertion. The context-aware scheme includes two strategies:
(1) Before the insertion, we check the global context and

T1

T2

t4: delete

t1: find

t2: copy

t3: update

First level

Last level

Content in slotsTimeline

p

t1

p

t4

p

p'

t3

Figure 4: The update failure. (“T1”: an update thread, “T2”:
a rehashing thread, “t1-t4”: timestamps, “p”: pointer to the
old item, “p′”: pointer to the updated item.)

do not insert items into the last level when the hash table is
resizing, i.e., when the is_resizing is true. (2) After the
insertion, if the table starts resizing and the item has been
already inserted into the last level, we redo the insertion using
the same pointer without checking duplicate items. The re-
execution of insertion leads to possible duplicate pointers
in the hash table. However, duplicate pointers don’t affect
the correctness of search, because they refer to the same key-
value items. Future updates and deletions are able to detect
and address the duplication.

3.2.3 Update

The update operation in the clevel hashing atomically updates
the pointers to the matched key-value items. Different from
the insertion, the update needs to fix duplicate items. Other-
wise, duplicate items may lead to inconsistency after being
updated. Moreover, the concurrent executions of resizing and
update may cause update failures due to the data movement
for rehashing. This section focuses on our solutions for the
two correctness problems.

1) Content-conscious Find to Fix Duplicate Items. There
are three cases for duplicate items in our clevel hashing:
concurrent insertion with the same key, the retry of the context-
aware insertion, and data movement for rehashing. Note that
re-insertion after system crash would not generate duplication
due to checking of the key before insertion. We observe
that duplication from two concurrent insertions leads to two
pointers to different items and keeping any one of the two is
acceptable. Re-insertion or rehashing generates two pointers
to the same item. In this case, we keep the pointer which is
closer to the first level, since rehashing threads may delete the
pointer in the last level. If two pointers are in the same level,
keeping either pointer is identical. With this knowledge, we
design a content-conscious Find process to handle duplication
in two steps. First, we apply b2t search to find two slots storing
the pointer to the matched key. Second, if two pointers refer
to different locations, we delete the item and the pointer that
first occurs in the b2t search. If two pointers point to the same
location, we simply delete the pointer that first occurs. By
removing duplicate items, the Find process returns at most
one item for the atomic update.

2) Rehashing-aware Scheme to Avoid Update Failures.
As the example shown in Figure 4, even with the Find process,
the interleaved execution of update and rehashing is possible

USENIX Association 2020 USENIX Annual Technical Conference 805

to lose the updated values. The updated item referred by p′ is
deleted by the rehashing thread. A straightforward solution
is to issue another Find process after the update. However,
frequent two-round Find increases the update latency. To
decrease the frequency, we design a rehashing-aware scheme
by checking the rehashing progress. Specifically, before the
first Find process, we record the bucket index (e.g., RBidx)
being rehashed by one rehashing thread. After the atomic
update, we read the rehashing progress again (e.g., RB′idx).
If the global context doesn’t change, an additional Find is
triggered only when meeting the following constraints: (1)
the table is during resizing; (2) the updated bucket is in the
last level; (3) the updated bucket index Bidx satisfies RBidx ≤
Bidx ≤ RB′idx for all rehashing threads. Since it’s a rare
case that three constraints are simultaneously satisfied, our
rehashing-aware update scheme guarantees the correctness
with low overheads.

3.2.4 Deletion

For deletion, clevel hashing atomically deletes the pointers
and matched items. Like the update, the deletion also needs
to remove duplicate items. Compared with the update, we
optimize the scheme to handle duplication in deletion. Briefly
speaking, clevel hashing deletes all the matched items through
the b2t search. The lock-free deletion also has failures like
the lock-free update. Hence, we use the rehashing-aware
scheme presented in lock-free update(§3.2.3) to guarantee
the correctness.

3.3 Recovery
The fast recovery requires the guarantee for crash consistency,
which is nontrivial for PM. Recent studies [16, 35] show
that a crash-consistent lock-free PM index needs to persist
after stores and not modify PM until all dependent contents
are persisted. The crash consistency guarantee in clevel
hashing follows this methodology. Specifically, clevel hashing
adds cache line flushes and memory fences after each store
and persists dependent metadata, e.g., the global context
pointer, after the load in insertion/update/deletion. The persist
overheads for crash consistency can be further optimized by
persisting in batches [16].

For the crash consistency in rehashing, clevel hashing
records the index of bucket (e.g., RBidx) in PM after suc-
cessfully rehashing the items in the bucket. To recover
from failures, rehashing threads read the context and bucket
index and continue the rehashing with the next bucket (e.g.,
RBidx + n, n is the number of rehashing threads). A crash
during the data movement of rehashing may lead to duplicate
items, which are fixed in future update (§3.2.3) and deletion
(§3.2.4).

To avoid permanent memory leakage [16], we leverage
existing PM atomic allocators from PMDK [5] and design
lock-free persistent buffers for secure and efficient memory

management. The PM atomic allocators atomically allocate
and reclaim memory to avoid expensive transactional memory
management [5]. A persistent buffer is a global array of
persistent pointers (used by the PM allocators for atomic and
durable memory management) attached to the root object (an
anchor) of the persistent memory pool. The array size is equal
to the thread number. Each thread uses the persistent pointer
corresponding to its thread ID. Hence, there is no contention
for the persistent buffers. When recovering from failures, we
scan the persistent buffers and release the unused memory.

4 Performance Evaluation

4.1 Experimental Setup

Our experiments run on a server equipped with six Intel
Optane DC PMM (1.5 TB in total), 128 GB DRAM, and
24.75 MB L3 cache. The Optane DC PMMs are configured
in the App Direct mode and mounted with ext4-DAX file
system. There are 2 CPU sockets (i.e., NUMA nodes) in the
server and each socket has 36 threads. For a processor in one
NUMA node, the latency of accessing local memory (attached
to the NUMA node) is lower than non-local memory [13,
25, 33]. Conducting experiments across multiple NUMA
nodes introduces the disturbance of non-uniform memory
latencies. To avoid the impact of NUMA architectures, we
perform all the experiments on one CPU socket by pinning
threads to an NUMA node for all schemes, like RECIPE [27].
Existing NUMA optimizations, e.g., Node-Replication [13]
to maintain per-node replicas of hash tables and synchronize
these replicas through a shared log, are possible to improve
the scalability with more NUMA nodes.

In our evaluation, we compare the following concurrent
hashing-based index structures for PM:

• LEVEL: This is the original concurrent level hashing [40]
with consistency support. The level hashing uses slot-
grained reader-writer lock for queries and a global resizing
lock for resizing.

• CCEH: CCEH [30] organizes an array of slots as a segment
(e.g., 1024 slots) and uses a directory as an address table.
Linear probing (e.g., 16 slots) is used to improve the load
factor. CCEH supports dynamic resizing through segment
splitting and possible directory doubling. We adopt the
default lazy deletion version since it has higher insertion
throughput than the CoW version. CCEH uses reader-writer
locks for segments and the directory.

• CMAP: The concurrent_hash_map storage engine in
pmemkv [6] is a linked list based concurrent hashing
scheme for PM. It uses reader-writer locks for concurrent
accesses to buckets and supports lazy rehashing (rehash the
buckets in a linked list when accessing).

806 2020 USENIX Annual Technical Conference USENIX Association

Table 2: Workloads from YCSB for macro-benchmarks.

Workload Read ratio (%) Write ratio (%)
Load A 0 100

A 50 50
B 95 5
C 100 0

• P-CLHT: P-CLHT [27] is a linked list based cache-
efficient hash table. Each bucket has 3 slots. P-CLHT
supports lock-free search while the bucket-grained lock is
needed for insertion and deletion. The resizing in P-CLHT
requires a global lock. When one thread starts rehashing,
another helper thread (one helper at most) is allowed to
perform concurrent rehashing, which is called helping
resizing. The helping resizing mechanism is enabled by
default.

• CLEVEL: This is our proposed scheme, clevel hashing,
which provides asynchronous resizing and lock-free concur-
rency control for all queries with high memory efficiency.

Since open-source cmap is implemented using PMDK with
C++ bindings [5], we implement our clevel hashing with
PMDK (version 1.6) and port level hashing, CCEH, and P-
CLHT to the same platform for fair comparisons. Like cmap
and clevel hashing, we optimize level hashing, CCEH, and
P-CLHT to support variable-length items by storing pointers
in the hash table. For level hashing and CCEH, we use the
same type of reader/writer locks from cmap to avoid the
disturbance of lock implementations. During the porting,
in addition to the reported bugs of the inconsistencies in
directory metadata [27], we observe a concurrent bug for
the directory in original CCEH: a thread performing search
can access a directory deleted by other threads that are
doubling the directory. As a result, failures may occur in
search when accessing the reclaimed directory via pointer
dereferencing. To ensure the correctness and avoid such
failures in experiments, we add the missing reader lock for
the directory. The hash functions for all schemes are the same:
the std::hash from the C++ Standard Template Library
(STL) [8]. In addition to conventional locks, we also evaluate
the performance of level hashing, CCEH, and cmap with
the spinlocks from Intel TBB library [3]. For abbreviation,
LEVEL-TBB, CCEH-TBB, and CMAP-TBB are TBB-enabled.

We use YCSB [15] to generate micro-benchmarks in zipfi-
an distribution with default 0.99 skewness [40] to evaluate the
throughput of different slot numbers and latencies of different
queries. The results using uniformly distributed workloads
are similar due to the randomness of hash functions [30].
Different queries are executed in the micro-benchmarks:
insertion (unique keys), positive search (queried keys exist),
negative search (queried keys not exist), update, and deletion.
The items to be updated or deleted are present in the table.
To evaluate the concurrent throughput, we leverage the
real-world workloads from YCSB as macro-benchmarks,

Insertion Search (P) Search (N) Update Delete
0.0

0.5

1.0

1.5

Th
ro

ug
hp

ut
 ra

tio
 w

rt
8-

sl
ot 4-slot 8-slot 16-slot

Figure 5: The normalized concurrent throughput of clevel
hashing with different slots per bucket. (“Search (P)” is
positive search and “Search (N)” is negative search.)

following RECIPE [27]. The workload patterns are described
in Table 2. We initialize all indexes with similar capacity
(64 thousand for micro-benchmarks and 256 thousand for
macro-benchmarks) and use 15-byte keys and 15-byte values
for all experiments. The experiment with YCSB workloads
consists of two phases: load and run phases. In the load phase,
indexes are populated with 16 million and 64 million items
for micro- and macro-benchmarks, respectively. In the run
phase, there are 16 million queries for micro-benchmarks and
64 million for macro-benchmarks. For concurrent execution,
each scheme has the same number of threads in total.
During our evaluation of clevel hashing, we observe that one
rehashing thread for 35 insertion threads can guarantee the
number of levels is under 4. Hence, we set one thread as
the rehashing thread by default. The reported latency and
throughput are the average values of 5 runs.

4.2 Different Slot Numbers and Load Factor

In clevel hashing, the slots per bucket affects not only memory
efficiency but also concurrent performance. We run the micro-
benchmarks with different slot numbers in clevel hashing
and measure the concurrent throughput with 36 threads. The
throughput is normalized to that of an 8-slot bucket, as shown
in Figure 5. With the increase of slots, the insertion throughput
increases. The reason is that more slots per bucket indicate
more candidate positions for a key so that it’s easier to find
an empty slot without resizing. Decreasing the slots per
bucket reduces the number of slots to be checked and cache
line accesses (a 16-slot bucket requires two cache lines),
thus improving the search, update, and deletion throughputs.
According to the results shown in Figure 5, 8-slot bucket is a
trade-off between 4-slot and 16-slot buckets. Therefore, we
set the slot number to 8.

In order to evaluate the memory efficiency of different
schemes, we use an insert-only workload to record the load
factor (the number of inserted items divided by the number
of slots in the table) after every 10K insertions. Since the
slot in cmap is allocated on demand for insertions, the load
factor is always 100%. The load factors of the other schemes

USENIX Association 2020 USENIX Annual Technical Conference 807

0 200 400 600 800 1000
0

20

40

60

80

100
Lo

ad
 fa

ct
or

 (%
)

Inserted items (k)

 P-CLHT CCEH
 LEVEL CLEVEL

Figure 6: The load factor per 10K insertions. (The even
symbols are skipped for clearness.)

Positive Negative
0

5

10

15

20

25

Av
er

ag
e

la
te

nc
y

(u
s)

 P-CLHT LEVEL
 CCEH CMAP
 LEVEL-TBB CCEH-TBB
 CMAP-TBB CLEVEL

Figure 7: The average latency for concurrent search.

are shown in Figure 6. The maximal load factor of CCEH is
no more than 45%, because CCEH probes only 16 slots to
address the hash collisions. Though CCEH is able to increase
the linear probing distance for higher memory efficiency,
long probing distance leads to more memory accesses and
pointer dereferencing, thus decreasing the throughputs for
all queries. P-CLHT resizes when the number of inserted
items approaches the initial capacity of current hash table. By
using the three-slot bucket with linked list, the load factor of
P-CLHT is up to 84%. Compared with level hashing, clevel
hashing doesn’t move items in the same level. However, clevel
hashing increases the number of slots per bucket to 8. As a
result, the maximal load factor of clevel hashing is comparable
with original level hashing, i.e., 86%.

4.3 Micro-benchmarks

We use the micro-benchmarks to evaluate the average query
latencies in different PM hashing indexes. The latency of a
query is interpreted as the time for executing the query, not
including the time waiting for execution. All experiments run
with 36 threads. Note that the latencies of micro-benchmarks
for search, update, and deletion demonstrate the performance
of corresponding queries without the impact on resizing, since
there is no insertion in these workloads. For the insert-only
workload, the expansion of hash table occurs in the run phase.

For the concurrent search, we measure the average latencies
when all keys exist (positive search) or not (negative search) in
the table. As shown in Figure 7, the level hashing suffers from
frequent locking and unlocking of candidate slots, especially

85794.02261

Insertion Update Deletion
0

10

20

30

40 4610186 57

Av
er

ag
e

la
te

nc
y

(u
s) P-CLHT LEVEL

 CCEH CMAP
 LEVEL-TBB CCEH-TBB
 CMAP-TBB CLEVEL

106

Figure 8: The average latencies for concurrent insertion,
update, and deletion.

P-C
LH

T

LE
VEL

CCEH
CMAP

LE
VEL-T

BB

CCEH-TBB

CMAP-TBB

CLE
VEL

0

10

20

30

40

La
te

nc
y

(u
s)

 Median 90th

Figure 9: The median and 90th percentile latencies for
concurrent insertion.

for the negative search, i.e., 16 slot locks in total for 4
candidate 4-slot buckets. The coarse-grained segment lock
(1024 slots) in CCEH leads to high search latency. The search
in cmap only requires one bucket lock and ensures low latency.
Due to the lock-free search, P-CLHT achieves lower latency
than lock-based indexes. For clevel hashing, there are only two
levels when the table is not resizing, thus ensuring the number
of candidate buckets to be checked is at most 4. Moreover, the
lock-free search avoids the contention for buckets. Tags filter
unnecessary retrievals for keys. As a result, clevel hashing
achieves 1.2×−5.0× speedup for positive search latency and
1.4×−9.0× speedup for negative search latency, compared
with other PM hashing indexes.

The average latencies for insertion/update/deletion are
shown in Figure 8. Some bars are missing because the
corresponding schemes haven’t implemented update (i.e., P-
CLHT, cmap, and CCEH) or deletion (i.e., CCEH) in their
open-source code.
Insertion: During insertion, all schemes have to expand to
accommodate 16 million items. The resizing may block
several requests (the number depends on the resizing times
and thread numbers) and significantly increase their execution
time, thus increasing the average latencies. P-CLHT, level
hashing, and CCEH suffer from the global lock for resizing.
By amortizing the rehashing over future queries, cmap
achieves low average latency for insertions. The average
latency of clevel hashing is slightly higher than the cmap
with TBB because the expansion needs to durably allocate
a large new level via the persistent allocator from PMDK,
which is achieved by expensive undo logging [38].

Figure 9 shows the median and 90th percentile insertion

808 2020 USENIX Annual Technical Conference USENIX Association

Load A A B C
0

1

2

3

4

5

1.
32

 M
 o

p/
s

1.
81

 M
 o

p/
s

0.
45

 M
 o

p/
s

Th
ro

ug
hp

ut
 ra

tio
 w

rt
P-

C
LH

T P-CLHT LEVEL
 CCEH CMAP
 LEVEL-TBB CCEH-TBB
 CMAP-TBB CLEVEL

0.
91

 M
 o

p/
s

Figure 10: The concurrent throughput of YCSB normalized
to P-CLHT.

latencies. Unlike the average latency, median and 90th

percentile latencies demonstrate the insertion performance
without the impact of resizing. The reason is that the ratio of
insertions which encounter resizing during their executions
is less than 10%. In the meantime, the queuing time for
execution is not included in the latency. CCEH suffers from
high percentile latencies due to the coarse-grained segment
lock. Though cmap leverages fine-grained bucket locks, the
amortized rehashing in queries increases the insertion time.
Due to the context-aware insertion for correctness guarantee,
the median and 90th percentile latencies of clevel hashing are
slightly higher than level hashing and P-CLHT but lower than
CCEH and cmap.
Update: Compared with original level hashing, clevel hashing
obtains slightly lower update latency. The reason is that the
benefits of lock-free update compensate for the overheads of
correctness guarantee in the clevel hashing, e.g., additional
Find operation for duplicate items and checking for update
failures.
Deletion: The deletion latency in cmap is higher than other
schemes due to rehashing the bucket if necessary before
accessing. Level hashing has higher deletion latency than
P-CLHT and clevel hashing due to the frequent locking and
unlocking when accessing candidate slots. To fix duplication
during deletion, clevel hashing checks all candidate slots, thus
resulting in a slightly higher latency than P-CLHT.

4.4 Macro-benchmarks
Figure 10 shows the concurrent throughput normalized to
P-CLHT of different PM hashing schemes with real-world
workloads from YCSB. We run the experiment with 36
threads for all schemes. Since workload Load A is used to
populate indexes with 64 million items in the load phase, all
indexes resize multiple times (e.g., more than 10 times in
clevel hashing) from small sizes. Resizing also occurs in the
workload A.

The locks used for concurrency control hinder the index
performance. Specifically, the global resizing lock in the level
hashing blocks all queries until the single-threaded rehashing
completes, which leads to low throughput in workload Load
A and A. The global directory lock in CCEH is only used

9 18 27 36
0.0

0.5

1.0

1.5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

 P-CLHT LEVEL CCEH CMAP
 LEVEL-TBB CCEH-TBB CMAP-TBB CLEVEL

Number of threads

Figure 11: The insertion scalability.

for directory doubling. Therefore, the insertion throughput
is much higher than level hashing. Due to the helping
mechanism in P-CLHT, there are two threads concurrently
rehashing items, which mitigates the overheads of the global
resizing lock in the load phase of YCSB (Load A). However,
when the table size increases, the two threads are not enough
to rehash all items in a short time, which accounts for
the low throughput for P-CLHT in workload A. Due to
the multiple resizing, the aggregated rehashing hinders the
throughput of cmap. Unlike these lock-based indexes, the
lock-free concurrency control in clevel hashing avoids the
lock contention during insertions. Hence, clevel hashing
obtains 1.4× speedup than cmap for insertion throughput.
In summary, our clevel hashing achieves up to 4.2× speedup
than the state-of-the-art PM hashing index (i.e., P-CLHT).

To evaluate the scalability of clevel hashing, we measure
the insertion throughput with different number of threads
using the Load A. As shown in Figure 11, with the increase
of threads, the throughput of clevel hashing increases and is
consistently higher than other schemes. This trend in search
throughput is similar.

4.5 Discussion

The reduction of hash table size. The current design of
clevel hashing doesn’t support the reduction of the hash table
size. When most stored items in the hash table are deleted, the
table may reduce the table size to improve space utilization.
Clevel hashing needs to be adapted to support the reduction.
Specifically, to reduce the table size in clevel hashing, we
need to create a new level with half of the buckets in the
last level and rehash the items from the first level to the
last level. When all the items of the first level are rehashed,
the first level is reclaimed. The migration of items for the
reduction generates data movement from the top level to the
bottom one (i.e., top-to-bottom movement), which is opposite
to expansion (i.e., bottom-to-top movement). Therefore, to
support concurrent reduction, we carry out top-down search
strategy instead of down-top search (§3.2.1) to avoid missing
inserted items. Note that all threads need to leverage the same
search strategy: either top-down searching for reduction or
down-top searching for expansion. The clevel hashing with

USENIX Association 2020 USENIX Annual Technical Conference 809

non-blocking concurrent reduction is our future work.
The isolation level. For the isolation in transactions, clevel
hashing has dirty reads, since there is no lock to isolate
data. Hence, the isolation level is read uncommitted [11].
To support higher isolation levels in a transaction, additional
locks or version control schemes are required [11, 22].
Space overhead. The metadata overhead in clevel hashing
mainly comes from the persistent buffers (§3.3), which are
the arrays of persistent pointers to the allocated memory, for
efficient management without contention. Persistent buffers
have separate entries for each thread. Therefore, the metadata
overhead is proportional to the number of threads. Clevel
hashing achieves a maximal load factor over 80% before
resizing. During resizing, hashing collisions that cannot be
addressed increase the number of levels to more than 3.
Due to the randomness of hash functions, the possibility
of continuous hash collisions for one position is very low.
Moreover, rehashing threads migrate items in the last level
until only two levels remain. Hence, the number of total levels
is usually small, which enables high storage utilization.

5 Related Work

5.1 Hashing-based Index Structures for PM
In order to optimize the hashing performance on PM, recent
work have designed some hashing-based index structures for
PM. Path hashing [39] and level hashing [40] leverage sharing-
based index structures and write-efficient open-addressing
techniques for high memory efficiency with limited extra
writes. Level hashing introduces a cost-efficient resizing
scheme by only rehashing the items in the old bottom level
to the new top level, which only account for 1/3 of total
inserted items. LF-HT [16] uses lock-free linked list for
each bucket to address hash collisions. However, these three
schemes all suffer from poor resizing performance, since
the resizing operations require exclusive global lock for
metadata. CCEH [30] is based on extendible hashing, which
dynamically expands the hash table by segment splitting
and optional directory doubling. Although the resizing in
CCEH is concurrent with other queries, the use of coarse-
grained locks for segments or even directory during resizing
causes performance degradation. The cmap storage engine
in pmemkv [6] supports concurrent lazy rehashing. The
rehashing of items in a bucket is trigger when accessing
the bucket. As a result, cmap distributes the rehashing of
items to future search/insertion/update/deletion. However,
cmap is possible to encounter recursive rehashing due to the
lazy rehashing. The rehashing in the critical path of queries
decreases the throughputs, especially for search operations.
Unlike existing schemes, clevel hashing has dynamical multi-
level structure for concurrent asynchronous resizing and
designs lock-free algorithms to improve the scalability with
low latency.

5.2 Lock-free Concurrent Hashing Indexes

Lock-free algorithms mitigate the lock contention for shared
resources and are hard to design because of the challenging
concurrency control. The lock-free linked list proposed by
Harris [21] is widely used in lock-free concurrent hashing
indexes [16, 29]. This class of schemes add a lock-free
linked list to each bucket. Though the lock-free linked list
enables lock-free insertion in these hash tables, it causes
high search overheads due to the sequential iteration over
linked lists. The lock-free cuckoo hashing [31] uses marking
techniques with helping mechanism to support lock-free
cuckoo displacements. However, the recursive data move-
ments bring lots of extra PM writes [40]. Recent work [20]
uses PSim [19] to build a wait-free resizable hash table.
The wait-free technique relies on copying the shared object
and helping mechanism, which still leads to extra writes on
PM and introduces overheads due to helping. Moreover, the
extendible hashing structures are memory inefficient as shown
in our evaluation. Different from existing lock-free hashing
schemes built on DRAM, clevel hashing designs PM friendly
and memory efficient multi-level structures with simple but
effective context-aware mechanism to guarantee correctness
and crash consistency.

6 Conclusion

Persistent memory offers opportunities to improve the per-
formance of storage systems, but suffers from the lack
of efficient and concurrent index structures. Existing PM-
friendly hashing indexes only focus on the consistency and
write reduction, which overlook the concurrency and resizing
of hash tables. In this paper, we propose clevel hashing, a
lock-free concurrent hashing scheme for PM. Clevel hashing
leverages the dynamic memory-efficient multi-level design
and asynchronous resizing to address the blocking issue due
to resizing. The lock-free concurrency control avoids the lock
contention for all queries while guarantees the correctness.
Our results using Intel Optane DC PMM demonstrate that
clevel hashing achieves higher concurrent throughput with
lower latency than state-of-the-art hashing indexes for PM.

Acknowledgments

This work was supported in part by National Key Research
and Development Program of China under Grant 2016YF-
B1000202, National Natural Science Foundation of China
(NSFC) under Grant No. 61772212 and No. 61821003, and
Key Laboratory of Information Storage System, Ministry of
Education of China. We are grateful to our shepherd, Andrea
C. Arpaci-Dusseau, and the anonymous reviewers for their
constructive comments and suggestions. We have released the
source code for public use in GitHub.

810 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Intel R© Architecture Instruction Set Extensions Pro-
gramming Reference. https://software.intel.
com/en-us/isaextensions, 2019.

[2] Intel R© OptaneTM DC persistent memory. https:
//www.intel.com/content/www/us/en/products/
memory-storage/optane-dc-persistent-memory.
html, 2019.

[3] Intel R© Threading Building Blocks. https://github.
com/intel/tbb, 2019.

[4] Memcached. https://memcached.org/, 2019.

[5] Persistent Memory Development Kit. http://pmem.
io/, 2019.

[6] pmemkv. http://pmem.io/pmemkv/index.html,
2019.

[7] Redis. https://redis.io/, 2019.

[8] The C++ Standard Template Library. http://www.
cplusplus.com/reference/functional/hash/,
2020.

[9] Joy Arulraj, Justin J. Levandoski, Umar Farooq Minhas,
and Per-Åke Larson. BzTree: A High-Performance
Latch-free Range Index for Non-Volatile Memory.
Proceedings of the VLDB Endowment (PVLDB),
11(5):553–565, 2018.

[10] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload Analysis of
a Large-Scale Key-Value Store. In ACM SIGMET-
RICS/PERFORMANCE Joint International Conference
on Measurement and Modeling of Computer Systems
(SIGMETRICS ’12), London, United Kingdom, June
2012.

[11] Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, and
Riccardo Torlone. Database Systems - Concepts,
Languages and Architectures. McGraw-Hill Book
Company, 1999.

[12] Daniel Bittman, Darrell D. E. Long, Peter Alvaro,
and Ethan L. Miller. Optimizing Systems for Byte-
Addressable NVM by Reducing Bit Flipping. In 17th
USENIX Conference on File and Storage Technologies
(FAST ’19), Boston, MA, February 2019.

[13] Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan,
and Marcos K. Aguilera. Black-box Concurrent Data
Structures for NUMA Architectures. In Proceedings
of the Twenty-Second International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’17), Xi’an, China, April
2017.

[14] Shimin Chen and Qin Jin. Persistent B+-Trees in Non-
Volatile Main Memory. Proceedings of the VLDB
Endowment (PVLDB), 8(7):786–797, 2015.

[15] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the
1st ACM Symposium on Cloud Computing (SoCC ’10),
Indianapolis, Indiana, USA, June 2010.

[16] Tudor David, Aleksandar Dragojevic, Rachid Guerraoui,
and Igor Zablotchi. Log-Free Concurrent Data
Structures. In 2018 USENIX Annual Technical
Conference (ATC ’18), Boston, MA, USA, July 2018.

[17] Tudor David, Rachid Guerraoui, and Vasileios Trig-
onakis. Asynchronized Concurrency: The Secret
to Scaling Concurrent Search Data Structures. In
Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’15), Istanbul, Turkey,
March 2015.

[18] Bin Fan, David G. Andersen, and Michael Kaminsky.
MemC3: Compact and Concurrent MemCache with
Dumber Caching and Smarter Hashing. In Proceedings
of the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’13), Lombard, IL,
USA, April 2013.

[19] Panagiota Fatourou and Nikolaos D. Kallimanis. Highly-
Efficient Wait-Free Synchronization. Theory Comput.
Syst., 55(3):475–520, 2014.

[20] Panagiota Fatourou, Nikolaos D. Kallimanis, and
Thomas Ropars. An Efficient Wait-free Resizable Hash
Table. In Proceedings of the 30th on Symposium on
Parallelism in Algorithms and Architectures (SPAA ’18),
Vienna, Austria, July 2018.

[21] Timothy L. Harris. A Pragmatic Implementation of Non-
blocking Linked-Lists. In 15th International Symposium
on Distributed Computing (DISC ’01), Lisbon, Portugal,
October 2001.

[22] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and
Beomseok Nam. Endurable Transient Inconsistency in
Byte-Addressable Persistent B+-Tree. In 16th USENIX
Conference on File and Storage Technologies (FAST
’18), Oakland, CA, USA, February 2018.

[23] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao
Liu, Amirsaman Memaripour, Yun Joon Soh, Zixuan
Wang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao, and
Steven Swanson. Basic Performance Measurements of
the Intel Optane DC Persistent Memory Module. CoRR,
abs/1903.05714, 2019.

USENIX Association 2020 USENIX Annual Technical Conference 811

https://software.intel.com/en-us/isaextensions
https://software.intel.com/en-us/isaextensions
https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html
https://github.com/intel/tbb
https://github.com/intel/tbb
https://memcached.org/
http://pmem.io/
http://pmem.io/
http://pmem.io/pmemkv/index.html
https://redis.io/
http://www.cplusplus.com/reference/functional/hash/
http://www.cplusplus.com/reference/functional/hash/

[24] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,
Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.
SplitFS: Reducing Software Overhead in File Systems
for Persistent Memory. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP
’19), Huntsville, ON, Canada, October 2019.

[25] Sanidhya Kashyap, Irina Calciu, Xiaohe Cheng, Chang-
woo Min, and Taesoo Kim. Scalable and Practical
Locking with Shuffling. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP
’19), Huntsville, ON, Canada, October 2019.

[26] Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok
Nam, and Sam H. Noh. WORT: Write Optimal Radix
Tree for Persistent Memory Storage Systems. In 15th
USENIX Conference on File and Storage Technologies
(FAST ’17), Santa Clara, CA, USA, February 2017.

[27] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap,
Taesoo Kim, and Vijay Chidambaram. RECIPE :
Converting Concurrent DRAM Indexes to Persistent-
Memory Indexes. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP
’19), Huntsville, ON, Canada, October 2019.

[28] Xiaozhou Li, David G. Andersen, Michael Kaminsky,
and Michael J. Freedman. Algorithmic Improvements
for Fast Concurrent Cuckoo Hashing. In Ninth
Eurosys Conference 2014 (EuroSys ’14), Amsterdam,
The Netherlands, April 2014.

[29] Maged M. Michael. High Performance Dynamic Lock-
Free Hash Tables and List-Based Sets. In Proceedings
of the Fourteenth Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA ’02), Winnipeg,
Manitoba, Canada, August 2002.

[30] Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H.
Noh, and Beomseok Nam. Write-Optimized Dynamic
Hashing for Persistent Memory. In 17th USENIX
Conference on File and Storage Technologies (FAST
’19), Boston, MA, February 2019.

[31] Nhan Nguyen and Philippas Tsigas. Lock-Free Cuckoo
Hashing. In IEEE 34th International Conference on
Distributed Computing Systems (ICDCS ’14), Madrid,
Spain, June 2014.

[32] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas
Willhalm, and Wolfgang Lehner. FPTree: A Hybrid

SCM-DRAM Persistent and Concurrent B-Tree for
Storage Class Memory. In Proceedings of the 2016
International Conference on Management of Data
(SIGMOD ’16), San Francisco, CA, USA, June 2016.

[33] Zoran Radovic and Erik Hagersten. Hierarchical Backof-
f Locks for Nonuniform Communication Architectures.
In Proceedings of the Ninth International Symposium
on High-Performance Computer Architecture (HPCA

’03), Anaheim, California, USA, February 2003.

[34] Yuanyuan Sun, Yu Hua, Zhangyu Chen, and Yuncheng
Guo. Mitigating Asymmetric Read and Write Costs in
Cuckoo Hashing for Storage Systems. In 2019 USENIX
Annual Technical Conference (ATC ’19), Renton, WA,
USA, July 2019.

[35] Tianzheng Wang, Justin J. Levandoski, and Per-Åke
Larson. Easy Lock-Free Indexing in Non-Volatile
Memory. In 34th IEEE International Conference on
Data Engineering (ICDE ’18), Paris, France, April 2018.

[36] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steven Swanson. An Empirical
Guide to the Behavior and Use of Scalable Persistent
Memory. In 18th USENIX Conference on File and
Storage Technologies (FAST ’20), Santa Clara, CA, USA,
February 2020.

[37] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang,
Khai Leong Yong, and Bingsheng He. NV-Tree:
Reducing Consistency Cost for NVM-based Single
Level Systems. In Proceedings of the 13th USENIX
Conference on File and Storage Technologies (FAST
’15), Santa Clara, CA, USA, February 2015.

[38] Lu Zhang and Steven Swanson. Pangolin: A Fault-
Tolerant Persistent Memory Programming Library. In
2019 USENIX Annual Technical Conference (ATC ’19),
Renton, WA, USA, July 2019.

[39] Pengfei Zuo and Yu Hua. A Write-Friendly and Cache-
Optimized Hashing Scheme for Non-Volatile Memory
Systems. IEEE Trans. Parallel Distrib. Syst., 29(5):985–
998, 2018.

[40] Pengfei Zuo, Yu Hua, and Jie Wu. Write-Optimized
and High-Performance Hashing Index Scheme for
Persistent Memory. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
’18), Carlsbad, CA, USA, October 2018.

812 2020 USENIX Annual Technical Conference USENIX Association

	Introduction
	Background
	Crash Consistency in Persistent Memory
	Lock-free Concurrency Control
	Basic Hash Tables
	Hashing-based Index Structures for PM
	The Level Hashing Scheme
	Concurrent Hashing Indexes for PM

	The Clevel Hashing Design
	The Clevel Hashing Index Structure
	Dynamic Multi-level Structure
	The Support for Concurrent Resizing

	Lock-free Concurrency Control
	Search
	Insertion
	Update
	Deletion

	Recovery

	Performance Evaluation
	Experimental Setup
	Different Slot Numbers and Load Factor
	Micro-benchmarks
	Macro-benchmarks
	Discussion

	Related Work
	Hashing-based Index Structures for PM
	Lock-free Concurrent Hashing Indexes

	Conclusion

