é} usenix
4 THE ADVANCED

' 4

COMPUTING SYSTEMS
ASSOCIATION

One-sided RDMA-Conscious Extendible Hashing
for Disaggregated Memory

Pengfei Zuo, Jiazhao Sun, Liu Yang, and Shuangwu Zhang, Huawei Cloud;
Yu Hua, Huazhong University of Science and Technology

https://www.usenix.org/conference/atc21/presentation/zuo

This paper is included in the Proceedings of the
2021 USENIX Annual Technical Conference.
July 14-16, 2021
978-1-939133-23-6

Open access to the Proceedings of the
2021 USENIX Annual Technical Conference
is sponsored by USENIX.

I
+ » e - = =
. JEEEES o -
R W E »

One-sided RDMA-Conscious Extendible Hashing for Disaggregated Memory

Pengfei Zuo, Jiazhao Sun, Liu Yang, Shuangwu Zhang, Yu Hua®
Huawei Cloud
"Huazhong University of Science and Technology

Abstract

Memory disaggregation is a promising technique in datacen-
ters with the benefit of improving resource utilization, failure
isolation, and elasticity. Hashing indexes have been widely
used to provide fast lookup services in distributed memory
systems. However, traditional hashing indexes become ineffi-
cient for disaggregated memory since the computing power
in the memory pool is too weak to execute complex index
requests. To provide efficient indexing services in disaggregat-
ed memory scenarios, this paper proposes RACE hashing, a
one-sided RDMA-Conscious Extendible hashing index with
lock-free remote concurrency control and efficient remote
resizing. RACE hashing enables all index operations to be
efficiently executed by using only one-sided RDMA verbs
without involving any compute resource in the memory pool.
To support remote concurrent access with high performance,
RACE hashing leverages a lock-free remote concurrency con-
trol scheme to enable different clients to concurrently operate
the same hashing index in the memory pool in a lock-free
manner. To resize the hash table with low overheads, RACE
hashing leverages an extendible remote resizing scheme to
reduce extra RDMA accesses caused by extendible resizing
and allow concurrent request execution during resizing. Ex-
tensive experimental results demonstrate that RACE hashing
outperforms state-of-the-art distributed in-memory hashing
indexes by 1.4 — 13.7x in YCSB hybrid workloads.

1 Introduction

Memory disaggregation, which has attracted extensive atten-
tions from both industry, e.g., HP’s The Machine [20] and
Intel RSD [21], and academia [6, 16, 18,28,29,38], decouples
the traditional monolithic compute and memory resources
in datacenters and forms independent compute and memory
resource pools. Due to resource pooling and independent hard-
ware deployments, disaggregated memory enjoys the benefits
of improvements on resource utilization, failure isolation, and
elasticity [5,42]. In the disaggregated memory architecture,
compute blades run applications with only a small amount of
memory as cache. In contrast, the memory pool stores appli-
cation data with weak computing power. Due to not involving
the compute resources in the memory pool, fast one-sided

RDMA networks generally serve for data accesses from the
compute blades to the memory pool.

Distributed in-memory hashing indexes have become one
of the fundamental building blocks in many datacenter ap-
plications, such as databases [23, 27, 45] and key-value s-
tores [2,3,25]. With the increasing popularity of RDMA in
modern datacenters, RDMA-search-friendly (RSF) hashing
indexes have been intensively studied, e.g., FaRM hopscotch
hashing [13], Pilaf cuckoo hashing [31], and DrTM cluster
hashing [44]. These RSF indexes execute search requests
by using one-sided RDMA READs to fetch data from remote
memory without involving remote CPUs. In contrast, inser-
tion, deletion, and update (IDU) requests are sent to the remote
CPUs, which locally execute them. However, this mechanism
fails to work in the new disaggregated memory architecture,
since the computing power in the memory pool is too weak
to execute the aforesaid complex IDU requests. In fact, in
these RSF hashing indexes, IDU requests can be executed in
the compute blades by using one-sided RDMA WRITE and
ATOMIC verbs to operate on remote data. However, we observe
that executing IDU requests using one-sided RDMA verbs in
existing RSF hashing indexes incurs significant performance
degradation, due to a large number of network round-trips and
concurrent access conflicts. In a nutshell, it is non-trivial to
design an efficient hashing index for disaggregated memory
due to the following challenges:

e Many remote reads&writes for handling hash collisions.

In order to handle hash collisions, existing hashing schemes
incur significant data movement overheads to make room
for newly inserted items, e.g., hopscotch hashing [19] and
cuckoo hashing [36]. These data movements are executed by
many remote reads and writes in the disaggregated memory,
which significantly decrease the performance of hashing
indexes, since each remote read or write produces one RDMA
network round-trip.

e Concurrency control for remote access. To handle con-
flicts of concurrent accesses, lock-based techniques have been
widely used in hashing indexes [15,26]. Locks have low
overhead for local hashing indexes, due to nanosecond-level
latency for local execution. However, when using locks for
hashing indexes in disaggregated memory scenarios, remote
locking has to be implemented using RDMA ATOMIC verbs

USENIX Association

2021 USENIX Annual Technical Conference 15

with microsecond-level latency, thus incurring high overheads
and increasing the waiting delay when lock contention occurs.
Especially for the hashing indexes with excessive data move-
ment, multiple locks are acquired before moving data, which
exacerbates the lock contention.

e Tricky remote resizing of hash tables. When a hash table
is full, resizing is inevitable for increasing its size. Convention-
al full-table resizing needs to move all key-value items from
an old hash table to a new one. Extendible resizing [14,33] re-
duces the number of moved items during resizing, at the cost
of one extra RDMA READ due to the need of first accessing
the directory of the hash table. Moreover, during resizing, it
is challenging to concurrently access the hash table.

To address the above challenges, we propose RACE hash-
ing, to the best of our knowledge, the first hashing index
designed for disaggregated memory which fully relies on one-
sided RDMA verbs to efficiently execute all index requests.
To reduce the performance influence of resizing, RACE hash-
ing leverages the extendible resizing, and hence a RACE hash
table consists of multiple subtables and a directory which is
used to index subtables. The subtable structure is designed
to be one-sided RDMA-conscious (RAC), achieving that al-
I index requests (including search, insertion, deletion, and
update) can be executed using only one-sided RDMA verbs
while having a constant-scale time complexity in the worst
case, and therefore delivering high performance. To improve
the performance of remote concurrency, RACE hashing lever-
ages a lock-free remote concurrency control scheme for the
RAC hash subtable, which achieves that all index requests ex-
cept failed insertions are concurrently executed in a lock-free
manner. Moreover, to reduce the performance penalty from
extendible resizing, RACE hashing caches the directory at the
client side (a client is a CPU blade), and therefore eliminates
the RDMA access to the directory. Nevertheless, since the di-
rectory in the client cache becomes stale when the hash table
is resized, accessing the hash table via a stale directory cache
may obtain incorrect or inconsistent results. RACE hashing
presents a simple yet efficient stale-read scheme to guarantee
the correctness of accessed data and allow current request
execution during resizing.

Specifically, this paper makes the following contributions:

® One-sided RDMA-conscious table structure. We present
a RAC subtable structure that is both RDMA-search-friendly
and RDMA-IDU-friendly. All index requests are executed by
using only one-sided RDMA verbs with constant worst-case
time complexity. IDU requests do not cause any extra data
movement.

o Lock-free remote concurrency control. We design lock-
free remote concurrent algorithms for RACE hashing to en-
able all requests except failed insertions to be concurrently
executed without locking.

e Extendible remote resizing. We present a stale-read client
directory cache scheme to reduce one extra RDMA READ for
remote directory lookups and guarantee request execution

[cru]
[cru] [cru] [cru]
Cache Cache Cache
L1 [1 | [1

[Fast Network |

[T T T T T T T T 1
Memory

Pool (l Memory | | Memory | | Memory | | Memory |

,
pool | |[CCPU] Cero]| (oo

| Memory | | Memory | | Memory | | Memory |
g J

Figure 1: Architecture for disaggregated memory.

correctness when using the stale directory cache. We also
achieve concurrent access to the subtable that is being resized.

o [mplementation and evaluation. We have implemented
the RACE hashing and evaluated its performance. Extensive
experimental results demonstrate that RACE hashing outper-
forms state-of-the-art distributed in-memory hashing indexes
by up to 13.7x in YCSB [11] hybrid workloads.

2 Background and Motivation
2.1 Disaggregated Memory

In a general disaggregated memory architecture in datacenter-
s [6, 18,28,29,42], different types of resources are separated
into pools, e.g., a compute pool and a memory pool, as shown
in Figure 1. Each pool is managed and scaled independent-
ly as well as failure-isolated. The compute pool consists of
many CPU blades, each of which retains a small amount of
memory as the local cache for the memory pool. The mem-
ory pool includes many memory blades that can be DRAM
or persistent memory DIMMs, RNICs, and controllers (the
RNIC and controller can be the same entity). The RNIC
and controller have low-power processing units used only
for interconnection. The communication between compute
and memory pools leverages fast remote-access interconnec-
t techniques, such as one-sided RDMA, Omni-path [8], or
Gen-Z [1]. The interfaces that the memory pool provides for
the compute pool include READ, WRITE, ALLOC, and FREE for
variable-size memory blocks, as well as ATOMIC operations,
e.g., compare-and-swap (CAS) and fetch-and-add (FAR). We
assume ALLOC and FREE interfaces are implemented in the
RNIC:s or controllers of the memory pool [1,42]. Without loss
of generality, the rest of this paper considers using one-sided
RDMA for the interconnect in the disaggregated memory ar-
chitecture, i.e., compute blades access the memory pool using
RDMA READ, WRITE, and ATOMIC verbs.

2.2 RDMA-search-friendly Hashing Index

In this subsection, we first present existing RDMA-search-
friendly (RSF) hashing indexes and then analyze their perfor-
mance on disaggregated memory.

2.2.1 Existing Hashing Schemes

With the wide use of RDMA in modern datacenters, RSF
hashing indexes have been intensively studied [13,31,44]. All

16 2021 USENIX Annual Technical Conference

USENIX Association

these RSF hashing indexes are designed for the datacenter
architecture with monolithic servers. Clients execute search
requests by using RDMA READs to fetch data from remote
memory without involving remote CPUs. In contrast, IDU
requests are sent to the remote servers and executed using the
remote CPUs. We review each of these hashing indexes in
detail as follows.

Pilaf Cuckoo Hashing: Pilaf [31] proposes a 3-way cuck-
00 hashing that uses 3 orthogonal hash functions to compute
3 different hash buckets for each key. When executing a key
Search, the client first reads one of its 3 corresponding hash
buckets using an RDMA READ. If the key does not exist in
the first bucket, the client then reads the second hash bucket.
Upon not finding the key in the second bucket, the client read-
s the third hash bucket. For Insertion requests, the client
sends them to the server and the server CPUs handle them
locally. An insertion may iteratively evict existing key-value
items in the cuckoo hash table to their alternate locations.
This mechanism incurs an inconsistency problem in which a
search request executed by the client may miss the key when
the server is handling its eviction. To address this problem,
the server first calculates all affected buckets (called a cuckoo
path [26]) before moving keys. The server then moves each
key to its alternate location starting from the last affected
bucket in the cuckoo path.

FaRM Hopscotch Hashing: FaRM [13] proposes a
chained associative hopscotch hashing in which each buck-
et has a neighborhood that includes the bucket itself and its
following bucket. Each bucket has multiple slots and each
key is stored in the neighborhood of the bucket that the key
is hashed to. For an Insertion that is also handled at the
server side, the hopscotch hashing tries to find an empty slot
in the neighborhood of the key’s hash bucket. If found, the
empty slot stores the item. Otherwise, the hopscotch hashing
continues to find an empty slot forward by executing a linear
probe. If finding an empty slot, the hopscotch hashing tries
to iteratively displace items to move the empty slot towards
the neighborhood. If there is no empty slot or the movement
fails, the hopscotch hashing stores the item in the bucket list
linked to the key’s hash bucket. When executing a Search,
the client reads the neighborhood of the key’s hash bucket,
i.e., two adjacent buckets, using an RDMA READ. Upon not
finding the key, the client further traverses the linked buckets.
Note that traversing each bucket needs an RDMA READ.

DrTM Cluster Hashing: Cluster hashing proposed in DrT-
M [44] is a chained hashing with associativity, in which
reading and writing key-value items use RDMA READs and
WRITEs and insertions and deletions to the hash table are
shipped to the server for local execution. To insert a new
key, the cluster hashing tries to find an empty slot in the key’s
hash bucket and the bucket list linked to the key’s hash bucket.
If there is no empty slot, the cluster hashing adds a new bucket
in the bucket list to store the inserted key-value item. For a
Search request, the client reads the key’s hash bucket using

an RDMA READ. Upon not finding the key, the client further
traverses the linked buckets one by one.

2.2.2 Performance on Disaggregated Memory

To the best of our knowledge, there is no existing hashing
index specifically designed for disaggregated memory. As a
first step, we analyze the performance of using the above RSF
hashing indexes in disaggregated memory. Due to the absence
of computing power in the memory pool to execute their IDU
requests, we consider implementing the IDU requests with
one-sided RDMA verbs.

For Pilaf cuckoo hashing [31], to insert a key-value item,
the client needs to execute eviction operations when the hash
table is in a high load factor. Specifically, based on the state-of-
the-art concurrent cuckoo hashing algorithm [26], the client
first calculates a cuckoo path and locks all buckets in the path
using RDMA CASes. The client then uses RDMA WRITES to
iteratively evict key-value items in the cuckoo path. A cuckoo
path may include tens or hundreds of buckets [15]. Thus an
insertion is executed by using a large number of RDMA CASes
and WRITEs, delivering poor insertion performance and also
decreasing the performance of other search requests due to
the use of a large number of locks.

For FaRM hopscotch hashing [13], to insert a key-value
item, the client needs to linearly probe buckets in the hash
table using RDMA READs until finding an empty slot. When
the hash table is in a high load factor, inserting a key may
need to read the entire hash table to the client until finding
an empty slot. After finding an empty slot, moving the empty
slot toward the neighborhood of the inserted key is also com-
plex and expensive, due to locking multiple buckets in the
movement path and using multiple RDMA WRITES to move
items. Moreover, if there is no empty slot or the movement
fails, the operation of adding linked buckets is also expensive.

For DrTM cluster hashing [44], to insert a key-value item,
the client needs to traverse buckets in its corresponding buck-
et list one by one until finding an empty slot. Traversing each
bucket needs an RDMA READ. If there is an empty slot in
these buckets, the client inserts the item using an RDMA
WRITE. Otherwise, the client adds a new overflow bucket to
the bucket list. Before modifying the bucket list, the client
needs to lock the bucket list to prevent other clients from
inserting duplicate keys or freeing buckets. Thus an inser-
tion executes operations including traversing the bucket list,
locking/unlocking, allocating memory for a new bucket and
the new item, linking the new bucket, and writing the new
item, resulting in many RDMA READs, WRITEs, and CASes.
The operations of allocating overflow buckets in the cluster
hashing are more frequent than in FaRM hopscotch hashing,
since the cluster hashing has a weaker ability to deal with
hash collisions in the main hash table. Moreover, the deletion
requests are also complex in the structure of linked bucket list-
s, due to the need of moving items from buckets at the list tail
towards ones at the list head to fill empty slots and recycling

USENIX Association

2021 USENIX Annual Technical Conference 17

tail buckets for higher performance and space utilization [13].
In summary, these RDMA-search-friendly hashing indexes
become RDMA-IDU-unfriendly for disaggregated memory
since IDU requests incur a large number of RDMA operations
to deal with hash collisions and concurrency control. Our
paper proposes RACE hashing which is both RDMA-search-
friendly and RDMA-IDU-friendly while efficiently dealing
with hash collisions and concurrency control as presented in
Section 3. The performance is also verified in Section 4.

2.3 Resizing Hash Tables

When a hash table is full, i.e., an insertion failure occurs or
its load factor reaches a threshold, the hash table needs to be
resized by expanding its capacity. In general, there are two
kinds of resizing mechanisms including full-table resizing
and extendible resizing [14,33].

To expand a hash table, the full-table resizing mechanism
allocates a new hash table whose size is larger than the old
one, e.g., double the size, and then iteratively moves each
key-value item from the old hash table to the new one. The
full-table resizing is expensive due to moving all items.

In the extendible resizing, a resizing operation only needs
to move partial items. Specifically, the hash table using ex-
tendible resizing includes multiple subtables and there is a
directory to index these subtables as shown in Figure 2a. For a
64-bit hash value, M bits are used by the directory to locate a
subtable (we use the last M bits as an example, i.e., suffix) and
the remaining (64 — M) bits are used to locate target buckets
within the subtable. The number of suffix bits currently used
by the directory is called global depth (GD) (GD < M). Thus
the directory has 2¢ entries that correspond to at most 2¢°
subtables. Each subtable has a local depth (LD) (LD < GD)
that indicates the number of suffix bits used by the subtable.

When a subtable is full, we split the subtable into two by
adding a new subtable. As shown in Figures 2a and 2b, when
the subtable with the suffix “1” is full, it is split into Subta-
bles “01” and “11”. The resizing mechanism moves the key
with suffix “11” from Subtable “01” to Subtable “11” and
changes their LDs to 2. When a subtable is full and its LD
is equal to the GD, we grow the directory by doubling its
size, as shown in Figures 2b and 2c. The full subtable is split
into two ones. Except for the directory entry that the added
new subtable corresponds to, other new directory entries point
to their corresponding original subtables. After resizing the
directory, search requests use the new GD to locate their cor-
responding subtables. In summary, by performing extendible
resizing, when a subtable is full, we only need to resize this
single subtable without affecting key-value items in other sub-
tables.Therefore, RACE hashing uses the extendible resizing.

Nevertheless, there are two challenges when using ex-
tendible resizing in disaggregated memory. First, compared
with the full-table resizing, the extendible resizing incurs one
extra memory access for each search request, due to the need
of first querying the directory to obtain the address of the tar-

00 01 10 11 00 01 10 11 000 001 010 011 100 101 110 111

Directory:

Subtable:

Local Depth: 2 1 2 2 2 2 2

(a) A hash table
(global depth = 2)

2 2 3 2 3

(b) Subtable resizing (c) Directory resizing
(global depth = 2) (global depth = 3)

Figure 2: A hash table with extendible resizing.

get subtable before accessing the subtable. One extra memory
access has little impact on the performance of a local hash
table, due to fast local memory access. However, in the disag-
gregated memory, the one extra memory access produces one
more RDMA round-trip, significantly decreasing the search
performance. Second, as there is no powerful compute re-
source in the disaggregated memory to execute the complex
resizing, the resizing has to be triggered and executed by a
remote client, i.e., a CPU blade, which is different from the
traditional resizing mechanism that is always executed by
local CPUs. When a client is performing the resizing, oth-
er clients do not know about its occurrence. Therefore, we
have to deal with concurrent access to the hash table during
resizing.

3 RACE Hashing

3.1 Overview

Figure 3 shows the overall architecture of RACE hashing for
disaggregated memory. The RACE hash table is stored in
the memory pool. Clients in the compute pool operate the
hash table using one-sided RDMA verbs. To alleviate the
performance influence of resizing, RACE hashing leverages
the extendible resizing and hence the hash table consists of
multiple subtables and a directory. In order to reduce the ex-
tra RDMA READ for accessing the remote directory, RACE
hashing leverages a directory cache' in the client. Each clien-
t maintains a local cache to store only the directory of the
RACE hash table. Thus a client can access the directory using
a local memory access rather than a remote RDMA READ, and
use RDMA verbs to access only the subtable. We present the
design of an RDMA-conscious (RAC) hash subtable structure
in Section 3.2, i.e., the RAC hash subtable, in which all in-
dex requests are executed by using only one-sided RDMA
verbs while having constant worst-case time complexity. We
then present a lock-free remote concurrency control scheme
in Section 3.3 for the RAC hash subtable, achieving that index
requests including search, insertion, deletion, and update are
concurrently executed in a lock-free way. Moreover, caching
the directory in clients causes data inconsistency issues be-
tween the directories in the memory pool and client caches.

The memory overhead of the cache is small since the directory generally
has at most hundreds of entries and each entry has only several bytes.

18 2021 USENIX Annual Technical Conference

USENIX Association

Compute Pool Memory Pool

— Client 0 — RACE Hash Table
00 01 10 11

Directory:

00 01 10 11
Directory
Cache

Subtable:

— Client 1

00 01 10 11
Directory
Cache
Local
Depth: 2 1 2

1
1
1
1
1
1
1
1
1
1
1

x
=
(=]
3

2
1]

2
1
1
1
1
1
1

Figure 3: The overall architecture of RACE hashing in dis-
aggregated memory. (The entire RACE hash table is stored
in the memory pool. Clients in the compute pool store the
directory of the hash table in their local caches and access
subtables only using one-sided RDMA verbs.)

Therefore, we finally present a client directory cache with
stale reads scheme in Section 3.4 to address the inconsistency
issue at low overhead.

3.2 The RAC Hash Subtable Structure

In disaggregated memory scenarios, the challenge of design-
ing a RAC hash subtable structure stems from minimizing the
number of remote RDMA operations for IDU requests while
keeping high memory efficiency and Search performance. To
achieve this goal, we design the RAC hash subtable that does
not allow any movement operations, evictions, or bucket chain-
ing to handle hash collisions, since these operations incur a
large number of remote writes as presented in Section 2.2. In-
stead, the RAC hash subtable uses three major design choices,
including associativity, two choices, and overflow colocation,
for addressing hash collisions and thus achieves a constant
worst-case time complexity for all index requests.

1) Associativity. With associativity, each bucket has multi-
ple slots, being capable of storing multiple key-value items.
K-way associativity means that each bucket has K slots. As-
sociativity is friendly for one-sided RDMA operations since
multiple items within one bucket can be read together in one
RDMA READ. Figure 4 shows a RAC hash subtable with
4-way associativity.

2) Two Choices. Based on the theory of “the power of t-
wo choices” [32], enabling each key to have two choices for
its storage location can achieve a good load balance among
buckets, effectively handling hash collisions. Hence, the RAC
subtable uses two independent hash functions, /() and Ay (),
to compute two hash locations for each key, as shown in Fig-
ure 4. By efficiently combining associativity with two choic-
es, the RAC subtable inserts a new item into the less-loaded
bucket between its two hash locations. Note that, according
to Mitzenmacher’s observations [32], two choices achieve ex-
ponential improvements over one choice for the efficiency of
load balancing, while three choices only have a constant fac-
tor improvement than two choices. In disaggregated memory,
three choices incur one more bucket access (i.e., one more

[} 112 3:4 516 7

RAC | —F

Subtable: ——1 —
TN_ANL) Ly] =

Sharing & colocation RDMA read with_domﬁéll batching

2
-
2

L

P

\

’

{ ABucket Group: Header Slot
i = o
LT TP
|
H
H

Main bucket 0 Overflow bucket = Main bucket 1

S ——

%, Combined bucket 0 Combined bucket 1

\,
.

Figure 4: The RAC hash subtable structure (4-way associa-
tivity as an example).

RDMA READ) than two choices. Therefore, unlike Pilaf [31],
which uses three choices, we use two choices in our design.

3) Overflow Colocation. The overflow sharing tech-
nique [46] enables an overflow bucket (or called standby
bucket) to be shared by the other two main buckets to store
conflicting items for better load balancing. However, overflow
buckets are discrete from their main buckets [46], incurring
extra bucket accesses, which performs worse for disaggre-
gated memory, due to extra RDMA READs. To address this
problem, we propose an overflow colocation scheme to store
the overflow buckets adjoining with their main buckets. As
shown in Figure 4, three continuous buckets are considered as
a group, in which the first and last buckets are main buckets
that can be addressable by the hash functions. The middle
bucket is an overflow bucket that cannot be addressable by
the hash functions and is shared by the first and last buckets to
store their conflicting items. By doing so, one RDMA READ
can fetch one main bucket and its overflow bucket together,
thus reducing the number of RDMA READs.

Putting it all together, the structure of a RAC hash table is
shown in Figure 4. A RAC hash subtable is a one-dimensional
bucket array stored in a continuous memory space. Each buck-
etis K-way associative and a bucket group includes three con-
tinuous buckets, i.e., two main buckets and a shared overflow
bucket. The combination of a main bucket and its overflow
bucket is called a combined bucket. For each key, we compute
two hash locations that are respectively in two different buck-
et groups. The structure of the RAC hash subtable is simple
yet efficient for disaggregated memory, having the following
strengths:

o RDMA-IDU friendly: As each key only involves two
combined buckets, IDU requests only need to operate with-
in the two combined buckets without moving/evicting items
from/to other buckets or linking new buckets, having constant
worst-case time complexity while being RDMA-friendly.

® RDMA-search friendly: A search request only issues two
RDMA READs, each of which fetches one combined buck-
et. More importantly, the two RDMA READs can be issued
in parallel to reduce the request latency, unlike cluster hash-
ing [44] in which issuing the next RDMA READ has to wait for
the return of the previous one to traverse the linked buckets.

USENIX Association

2021 USENIX Annual Technical Conference 19

—=="
P

KV Block: JKen|Vien] Key | Value |crc]

Figure 5: The structure of a bucket.

Moreover, by using doorbell batching [22] that is an RDMA-
optimized technique to read multiple disjoint memory regions
within one RDMA round-trip time (RTT), we package the
two RDMA READ operations into one. Therefore, the search
latency in the RAC subtable is one RTT rather than two ones.

e High memory efficiency: By combining associativity, t-
wo choices, and overflow colocation, the RAC hash subtable
enables items to be more evenly distributed among buckets
and thus efficiently handles hash collisions to achieve a good
load balance. It hence achieves a high load factor of up to
90% (with 7-way associativity) as evaluated in Section 4.2.1.

3.3 Lock-free Remote Concurrency Control

Lock-based techniques have been widely used in existing
hashing indexes within a single machine for concurrency
control [15,26]. Nevertheless, for disaggregated memory, all
requests are executed by using one-sided RDMA verbs, which
results in non-trivial challenges for handling concurrent ac-
cess conflicts. This is because remote locking implemented
by using microsecond-level-latency RDMA CAS incurs much
higher overheads, compared with nanosecond-level-latency lo-
cal locking, and each locking or unlocking operation requires
an RDMA round-trip. In order to deliver high concurrent per-
formance, we propose a lock-free remote concurrency control
scheme for RACE hashing which achieves that all index re-
quests, except failed insertions, become lock-free. A failed
insertion triggers a subtable resizing and needs to acquire the
resizing lock as presented in Section 3.4.2.

Bucket Structure. In RACE hashing, to support variable-
length keys and values, full key-value items are stored outside
the hash table like existing hashing indexes [10,31,44]. The
pointers to full key-value items are stored inside the hash table.
The structure of each bucket in the RAC hash subtable is
shown in Figure 5. A bucket consists of a header and multiple
slots. The header is used for hash table resizing and will be
introduced in Section 3.4.1. Each slot corresponds to a key-
value item. To support lock-free remote concurrent access,
a slot is 8B, i.e., the maximum size of an RDMA CAS, and
composed of a fingerprint (8 bits), a key-value length (8 bits),
and a pointer (48 bits). A fingerprint (Fp) is the 8-bit hash
of a key. Based on the analysis of existing work [15], an 8-bit
fingerprint is enough to achieve a very low false positive (a
false positive means that different keys in a bucket have the
same fingerprint). Moreover, before reading a full key-value
item using an RDMA READ, we need to know the size of
the item. Therefore, we store the length (Len) of the key-

Read combined Read combined Write the Re-read combined
buckets buckets KV pointer buckets

A Client A Client

¥

Mem Pool Mem Pool -
Read Write
(a) Search (b) Insertion
Read combined Set the slot Read combined Update the
buckets to null buckets KV point:
A Client \/\/ K A Client == B poin fr
Mem Pool - Mem Pool ~ X
Read Write the Read the
KV new KV old KV
(c) Deletion (d) Update

Figure 6: The main workflows of lock-free search, insertion,
deletion and update. (The blue lines mean accessing the hash
table and the red lines mean accessing the key-value blocks.
The solid lines mean RDMA READ round-trips and the dotted
lines mean RDMA WRITE/ATOMIC round-trips.)

value block in the slot. The length is 8-bit and the length
unit is 64B”. Thus the length of a key-value block is always
multiple of 64B and the maximum length of a key-value
block is 28 x 64B = 16KB, which covers most application
scenarios for current key-value stores since small key-values
dominate in them [7]. When a key-value item is larger than
16KB, which in fact rarely occurs, we store the remaining
item content beyond 16KB in the second key-value block and
link the second block to the first one. The respective lengths
of the key and value (i.e., K., and V,,) are stored in the head
of the key-value block. The pointer in a slot consumes 48
bits like the x86_64 system [10,34,43]. A null pointer means
the slot is empty. Based on the bucket structure, we present
lock-free search/insertion/deletion/update operations below.
Lock-free Insertion. To insert a key-value item, the client
uses doorbell batching to read two combined buckets that the
key corresponds to. At the same time, the client writes the key-
value block” in the memory pool. Therefore, reading buckets
and writing the key-value block are executed in parallel, as
shown in Figure 6b. Once receiving the combined buckets,
the client looks for an empty slot in the order of main buckets
first and overflow buckets second, as presented in Section 3.2.
If an empty slot is found, the client uses an RDMA CAS to
write the pointer of the key-value block into it. Otherwise, the
hash table resizing is triggered, as presented in Section 3.4.
In rare cases, clients may concurrently insert duplicate keys
into the hash table, since RDMA ATOMIC verbs only ensure
the 8B atomicity. For example, Client 1 and Client 2 try to
insert the same key K. As each key corresponds to two com-
bined buckets in RACE hashing, it may occur that Client 1
selects one empty slot in Combined Bucket 0 to insert K and
Client 2 selects one empty slot in Combined Bucket 1 to insert
K. In this case, two duplicate keys K exist in the hash table. To
address the issue of duplicate keys, after writing the pointer in

2The length unit can be changed as needed.
3The memory of the key-value block can be pre-allocated to reduce the
latency of memory allocation in the critical path of insertion.

20 2021 USENIX Annual Technical Conference

USENIX Association

a bucket for an insertion, the client re-reads the two combined
buckets to check duplicate keys, as shown in Figure 6b. On
finding duplicate keys, the client only keeps one valid key and
removes the remaining duplicate keys. Different clients have
to determine the same key-value item as the valid key when
finding duplicate keys in order to guarantee the consistency
of a concurrent access. To guarantee this, we hence make an
agreement in the algorithm to determine the only valid key
for different clients. For example, within the two combined
buckets, the agreement considers the key stored in the slot
with the minimal bucket number and the minimal slot number
to be the only valid one.

Lock-free Deletion. To delete a key-value item, the client
first executes a search to find the target key. If the target key
is found, the client sets its corresponding slot to be null by
using an RDMA CAS, as shown in Figure 6c. Once the RDMA
CAS is done successfully, the deletion request is returned. The
client then sets the key-value block to full-zero and frees the
key-value block in background. The zero-setting operation
can be avoided if the RNIC can automatically set the freed
memory to full-zero for data security, i.e., avoiding the old
data to be observed by other clients.

Lock-free Update. To update a key-value item, the client
searches the target key. At the same time, the client writes
the new key-value item into the memory pool, as shown in
Figure 6d. Once finding the target key exists, the client uses
an RDMA CAS to change the content of the slot to point
to the new key-value item. If the RDMA CAS is executed
successfully, the update request is returned. The client finally
frees the old key-value block in background.

Lock-free Search. As shown in Figure 64, to search a key,
the client reads its corresponding two combined buckets. If the
fingerprint matches one of the slots, the client reads the key-
value block that the slot points to. The client then compares
the full key. If the full key matches, the value is returned.

Since all modifications on buckets are atomic and update
requests do not modify the old key-value item in place, the
only inconsistency case for a search is that the key-value
block is freed or re-allocated before a search request reads
the key-value block (after obtaining the pointer of the key-
value). However, this inconsistency case can be easily ob-
served by comparing the length and content of the key stored
in the block with those of the search key. This is because
once the key-value block is freed/re-allocated, its content is
full-zero/changed, rendering the comparison mismatched. N-
evertheless, there still exists a special case that another client
re-allocates the key-value block and issues an RDMA WRITE
to write the same key, key length, and value length as those of
the old key-value block. As an RDMA WRITE is not atomic,
it may write the key and key length completely but be writing
the value. At this time, if reading the key-value block, a client
can find the key is matched. But the value is broken, which
cannot be observed by the client. To address this problem, we
add a 64-bit checksum in each key-value block to enhance the

self-verification and check the integrity of a key-value block
like Pilaf [31], as shown in Figure 5. Pilaf also shows that a
64-bit checksum is sufficient for verification.

Moreover, for insertion, deletion, and update requests, the
operation of CASing a slot may fail, which means the slot is
changed by another client before the CAS. In this case, RACE
hashing re-searches the target key and then re-executes the
failed insertion, deletion, or update request.

3.4 Extendible Remote Resizing

Using extendible resizing for disaggregated memory incurs
two challenges, i.e., one extra remote access to read the di-
rectory for each index request and concurrent access during
resizing, as presented in Section 2.3. In this subsection, we
present a stale-read client directory cache scheme and a con-
current access scheme during resizing to address the two
challenges respectively.

3.4.1 Client Directory Cache with Stale Reads

In order to reduce the extra RDMA READ for accessing the
directory, we use a client directory cache for RACE hashing.
However, caching the directory in clients incurs the data in-
consistency issue between the directories in the memory pool
and client caches. For example, when a client triggers a sub-
table resizing or directory resizing, the content of the directory
in the memory pool is modified and thus the directories in
the caches of other clients become stale. If other clients still
query the hash table using their stale directories, they may
locate an incorrect subtable and obtain incorrect data.

To address the inconsistency problem between client
caches and the memory pool, in a baseline solution [17], and
upon a client triggers a resizing operation, the client broad-
casts a notification message to all other clients to invalidate
their respective directory caches and does not start modify-
ing the directory in the memory pool until receiving acks
of all other clients. Obviously, the baseline solution incurs
high performance overhead for resizing due to broadcasting
messages and waiting for all acks. The second solution pro-
posed by Pilaf [31] is to close the RDMA connections of all
other clients to prevent these clients from performing RDMA
READs once a resizing is triggered. Clients then re-connects
the memory server to obtain the new table root after the re-
sizing is completed. Pilaf addresses the problem of incorrect
access but incurs high performance penalty due to blocking
RDMA READs of clients. Therefore, both the solutions incur
significant performance overheads.

In order to efficiently address this inconsistency prob-
lem, we propose a stale-read client directory (SRCD) cache
scheme that does not need to broadcast messages or close the
connections of other clients to the memory pool when trig-
gering a resizing. Instead, by using the SRCD cache scheme,
clients query the hash table still using the stale directories in
their caches, but can verify whether the obtained data is correc-
t. To achieve this, we add a header in each bucket of the RAC

USENIX Association

2021 USENIX Annual Technical Conference 21

Client Memory Pool

— Hash Table

Directory Cache
00 01 10 11

00 01 10 11

Local
Depth: 2 1 2

Different cases of stale reads:

Key Bucket Correct?
@ xx00 Yes
© xxo1 [2]01 Yes
® xxa1 [2]01] No

Figure 7: The stale-read client directory scheme. (Three cases
when comparing the key with the fetched bucket header.)

hash subtable, as shown in Figure 5. The bucket header stores
the local depth (LD)and suffix bits (Suffix) of the sub-
table that the bucket belongs to. The bucket header is not mod-
ified in IDU requests and is modified only when the subtable
is created and resized. The local depth and suffix bits
in the bucket header are used to verify whether the bucket is
correct when executing search/insertion/deletion/update.

Figure 7 shows an illustration of using the SRCD cache
scheme to verify the correctness of buckets. The client current-
ly caches the directory of the hash table shown in Figure 2a,
in which the directory entries “01” and “11” point to the same
subtable. In the memory pool, the hash table is resized to be a
new hash table shown in Figure 2b, in which a new subtable
is created and the directory entries “01” and “11” point to
different subtables. To search a key, the client first locates
a subtable using the SRCD cache with stale reads and then
fetches the buckets in this subtable via RDMA READs. Af-
ter receiving a bucket, the client respectively compares the
local depth and suffix bits stored in the bucket head-
er with the local depth of the directory entry in the SRCD
cache and the suffix bits of the key. The client can observe
three cases as follows.

1) Both local depth and suffix bits match. If the local depth
and suffix bits in the bucket header are respectively the same
as the local depth of the directory entry in the cache and suffix
bits of the key, the client can verify that the subtable is not
resized and the fetched bucket is correct. For example, the
key is “XX00” that corresponds to the directory entry “00”,
i.e., Case @ in Figure 7.

2) Local depth mismatches and suffix bits matches. If the
local depth in the bucket header is the same as that of the
directory entry in the cache, the client knows the accessed
subtable was resized in the memory pool. The client further
computes the suffix bits of the key using the local depth stored
in the bucket header and finds that the suffix bits of the key
and those stored in the bucket header are matched. In this
case, the client can verify the bucket is also correct although
the subtable was resized. For example, the key is “XX01” but
Subtable “01” was resized in the memory pool, i.e., Case @ in
Figure 7. During the resizing, the keys with “11” are moved
out Subtable “01” while the keys with “01” still remain in
Subtable “01”. Therefore, when locating Subtable “01” to

Used area Unused area Used area Unused area
— —_—
GD 00 01 10 11 100 101 GD 00 o1 10 11 100 101
Llgly L T T T |2|r|r []
N

8blt 3blt 48blt

Fixed ".‘
addr B An entry A.

Mavement
(a) Before the directory resizing (b) After the directory resizing

Figure 8: The resizing of the directory. (The gobal depth (GD)
increases. The used area is not changed and new directory
entries are written into the unused area.)

search the key with “01”, the client can obtain the correct
key-value item.

3) Both local depth and suffix bits mismatch. If the local
depth and suffix bits in the bucket header mismatch, the client
can verify the subtable is resized and the searched key should
be stored in the new subtable. For example, the key is “XX11”
that corresponds to the directory entry “01” in the cache but
Subtable “01” is resized in the memory pool and the key
“XX11” is moved to the new Subtable “11”, i.e., Case @ in
Figure 7. In this case, the client fetches the new directory
entries from the memory pool and re-executes the search.

In summary, only in Case “3) Both local depth and suffix
bits mismatch”, the client needs to fetch new directory entries
and update the local directory cache. In other cases, the client
can locate correct buckets via stale reads.

3.4.2 Concurrent Access during Resizing

When an insertion failure occurs, a subtable resizing is trig-
gered. During a resizing, we need to move slots from the
resized subtable to the new one. Due to the slot movement, it
is challenging to guarantee the correct execution of concur-
rent search, insertion, deletion, and update requests upon the
subtable that is being resized. To address this challenge, we
design the workflow of concurrent resizing as below.

To support concurrent access during resizing, the start-
ing address of the directory in the memory pool cannot be
changed. Otherwise, clients fail to find the new hash table af-
ter resizing. Therefore, we reserve a large enough contiguous
memory space” used for the future resizing of the directory.
As shown in Figure 8, the directory includes a used area and
an unused area. Clients only cache the used area. To resize
the directory, e.g., increasing the GD from 1 to 2, the used
area is not changed and the new directory entries are written
into the unused area.

To resize a subtable, the client first locks the directory
entry of the subtable in the memory pool. The lock only
prevents other clients from resizing the same subtable but
does not prevent other clients from executing search and IDU
requests in the subtable. The client creates a new subtable
and initializes the header of each bucket in the new subtable.

“4For example, if we use at most 16 suffix bits for the directory, the memory
space of 210 directory entries is reserved.

22 2021 USENIX Annual Technical Conference

USENIX Association

The client further writes the pointer of the new subtable to the
directory and locks the directory entry at the same time. The
client then starts to move items. Figure 8b shows an example.
The client moves items with Suffix “11” from Subtable “01”
to Subtable “11”. The movement includes three steps for each
bucket in Subtable “01”: @ updating the suffix bits in the
bucket header from “1” to “2” (one RDMA CAS); @ inserting
all items with Suffix “11” in this bucket into Subtable “11”
(one or multiple RDMA CASes); @ deleting all items with
Suffix “11” in this bucket (one or multiple RDMA CASes).
By guaranteeing the order of executing the three steps, we
support concurrent access to the subtable that is being resized.
In the following, we discuss how to deal with the corner cases
caused by the concurrent resizing below.

e Concurrent search: When executing a search, if finding
that both local depth and suffix bits mismatch, the client can
perceive the occurrence of the resizing in Subtable “01”. In
this case, the movement may be before Step ® or after Step ©.
If the target key is found in the read bucket, it means the
movement is before Step . Otherwise, the movement is after
Step ® or the key does not exist. The client further reads the
bucket in Subtable “11” to lookup the target key.

e Concurrent insertion: During an insertion, the client re-
reads the buckets to check duplicate keys, as shown in Fig-
ure 6b. To support concurrent insertion during resizing, we
also check the bucket header after re-reading the bucket that
the key is inserted to. If the bucket header is not changed,
the insertion is successful. Otherwise, the client knows that
a resizing occurs in the bucket. The client then compares
suffix bits in the new bucket header with those of the inserted
key. If the suffix bits match, the insertion is also successful.
Otherwise, the client removes the pointer from Subtable “01”
and re-inserts the key into Subtable “11”. Moreover, during
a subtable resizing, an insertion may fail, i.e., not finding an
empty slot in the subtable. In this case, the failed insertion
triggers the next resizing. The next resizing will be blocked
until the previous resizing releases the directory entry lock.

e Concurrent deletion/update: When executing a dele-
tion/update, if finding that both local depth and suffix bits
mismatch, the client waits for the completion of the move-
ment and then deletes/updates the key from the new subtable.
If the suffix bits match and Step @ occurs before the RDMA
CAS operation of the deletion/update, there are two corner
cases. First, if the RDMA CAS of the deletion/update fail-
s, it means the item has been moved into the new subtable.
The client will redo the deletion/update request in the new
subtable. Second, the RDMA CAS of the deletion/update suc-
ceeds. But the client performing resizing operation fails to
delete one item in Step ®, which means that another client
deleted/updated the item. The client performing resizing fur-
ther cleans the pointer of the item in the new subtable and
re-executes the item movement.

In summary, during a subtable resizing, all search/update/
deletion and most insertion requests to the subtable are concur-

rently executed in a lock-free way. Only the failed insertions
to the subtable are blocked due to triggering the next resizing.

4 Performance Evaluation
4.1 Experimental Setup

Testbed. We run all experiments on 5 machines, each with
two 26-core Intel Xeon Gold 6278C CPUs, 384 GiB DRAM,
and one 100Gbps Mellanox ConnectX-5 IB RNIC. Each R-
NIC is connected to a 100Gbps Mellanox IB switch. One
machine is used for emulating the memory pool. To emulate
the weak compute power, CPUs in the memory pool are only
used for registering memory to RNICs during the initialization
stage and do not involve in any requests of hashing indexes.
The memory is registered with huge pages to reduce the page
translation cache misses of RNICs [13]. The other machine
is used for building the compute pool in which each CPU
core serves as a client. Since current RNIC hardware does
not support remote memory allocation in real time, we enable
clients to pre-allocate all memory that future insertion and
update requests require, which can also reduce the memory
allocation latency in the critical path of request execution.

Workloads. We use YCSB [11] to evaluate the perfor-
mance of different hashing indexes. We use the default Zip-
fian request distribution (6 = 0.99) for all YCSB workloads.
For most experiments, we use 16-byte keys and 32-byte val-
ues that are representative in real workloads of key-value
stores [7, 15,35]. We also evaluate the impact of different
key-value sizes on the performance.

Comparisons. We compare RACE hashing with three
state-of-the-art RDMA-search-friendly hashing indexes, i.e.,
Pilaf cuckoo hashing [31], FaRM hopscotch hashing [13], and
DrTM cluster hashing [44]. Based on the optimal configura-
tions presented in their papers, we use 3-way hashing and one
slot per bucket in Pilaf cuckoo hashing, 4 slots per main buck-
et, 2 neighborhood, and 2 slots per overflow bucket in FaRM
hopscotch hashing, and 8 slots per main or overflow bucket
in DrTM cluster hashing. Moreover, since the disaggregated
memory pool without CPUs cannot execute two-sided RDMA
verbs, we implement these hashing indexes using only one-
sided RDMA verbs as presented in Section 2.3 to facilitate a
fair comparison. All key-value items are stored outside of the
hash table to support variable-length keys and values. Each
hash table is sized to store 100 million items.

4.2 Experimental Results and Analysis
4.2.1 Maximum Load Factor

The maximum load factor is defined as the ratio of the maxi-
mum number of stored items to the total number of slots in
a hash table (including slots in main and overflow buckets),
which is an important metric that affects the memory efficien-
cy of a hash table. We insert unique keys into RACE, Pilaf
cuckoo, FaRM hopscotch, DrTM cluster hash tables until an
insertion failure occurs to evaluate their maximum load fac-
tors. Specifically, Pilaf cuckoo hashing reaches the maximum

USENIX Association

2021 USENIX Annual Technical Conference 23

Max. Load Factor

Max. Load Factor

75%

4 5 6 7 8 10 12 14 16
The Number of Slots per Bucket

(a) RACE hashing

The Max. Number of Evictions

(b) Pilaf cuckoo hashing

50 100 200 400 600 800 1000 1200

93% _ 95%
S 92% £ 90%
g > g 90%
& 9% S a5y |
= 90% 3
S 0% g 80%
% 88% 375%
= 70% £
65%

= 87% |
86% s s s s s

1/7 1/6 1/5 1/4 1/3 1/2 1
The Overflow-to-main-bucket Ratio

(c) FaRM hopscotch hashing

14 12 1 2 3 4 5
The Overflow-to-main-bucket Ratio

(d) DrTM cluster hashing

Figure 9: Maximum load factors of different hash tables. (In FaRM hopscotch hashing and DrTM cluster hashing, overflow
buckets indicate the buckets linked in conflicting lists. The load factor indicates the ratio of the number of occupied slots to that
of all slots in both overflow and main buckets. The overflow-to-main-bucket ratio means the ratio of the number of overflow

buckets to that of main buckets.)

load factor when an insertion fails to lookup an empty slot
after X cuckoo evictions. X means the maximum number of
cuckoo evictions for an insertion and we evaluate maximum
load factors of Pilaf cuckoo hashing under different X values.
FaRM hopscotch hashing and DrTM cluster hashing reach
their maximum load factors when running out of overflow
buckets. As the ratio of the number of overflow buckets to that
of main buckets (called overflow-to-main-bucket ratio) affects
their maximum load factors, we evaluate their maximum load
factors under different overflow-to-main-bucket ratios. For
RACE hashing, since associativity (i.e., the number of slots
per bucket) affects its maximum load factor, we evaluate its
maximum load factors under different associativity.

As shown in Figure 9, the maximum load factor of RACE
hashing increases with the increase of associativity. The max-
imum load factor of Pilaf cuckoo hashing increases with the
increase of X. The maximum load factors of FaRM hopscotch
hashing and DrTM cluster hashing increase with the increase
of their overflow-to-main-bucket ratios.

To facilitate a fair comparison, we configure these hash
tables to approach the same maximum load factor of 90% for
the following experiments. RACE hashing reaches 90% when
the associativity is 7. With 7 slots and one header, each bucket
in RACE hashing is a cache-line size, i.e., 64B. Pilaf cuckoo
hashing approaches 90% when X = 1000. FaRM hopscotch
hashing and DrTM cluster hashing approach 90% when their
overflow-to-main-bucket ratios are 1/4 and 3 respectively.

4.2.2 Execution Latency

To investigate request latencies of different hashing indexes,
we respectively execute 1 million search, update, deletion, and
insertion requests using one thread when these hash tables
are in different load factors and evaluate average latencies
of different requests, as shown in Figure 10. The items for
search, update, and deletion are recently inserted [11].
Figure 10a shows the average insertion latencies of differ-
ent hash tables. With the increase of load factors, the insertion
latency of Pilaf cuckoo hashing exponentially increases due to
causing more and more eviction operations and thus produc-
ing a large number of RDMA WRITEs and locks; the insertion
latency of FaRM hopscotch hashing dramatically increases
due to linearly probing more buckets to find empty slots and

linking overflow buckets; the insertion latency of DrTM clus-
ter hashing increases due to traversing longer bucket lists and
linking new overflow buckets. The insertion latency of RACE
hashing does not increase with the increase of load factors
due to not causing any extra RDMA operations in which an
insertion has 3 round-trip times (RTTs). When the hash ta-
bles are at the load factor of 90%, RACE hashing reduces the
insertion latency by 1.9x, 8.8, and 57.4 x compared with
DrTM cluster hashing, FaRM hopscotch hashing, and Pilaf
cuckoo hashing respectively.

Figure 10b shows the average search latencies of different
hash tables and all search requests are lock-free. A search in
Pilaf cuckoo hashing needs 1.6 RTTs on average to serially
read buckets and 1 RTT to read key-value block. A search in
FaRM hopscotch hashing needs only 2 RTTs (one reads the
neighborhood and the other reads the key-value block) at a
low load factor and its latency increases in a high load factor
due to traversing linked buckets. The search latency of DrTM
cluster hashing sharply increases with the increase of the load
factor since the bucket list becomes longer. When the hash
tables are at the load factor of 90%, RACE hashing reduces
the search latency by 2.3x, 1.2x, and 1.4x compared with
DrTM cluster hashing, FaRM hopscotch hashing, and Pilaf
cuckoo hashing respectively.

Figures 10c and 10d show the average deletion and up-
date latencies of different hash tables, which deliver similar
characteristics to those of search latencies. But deletion and
update latencies of DrTM cluster hashing, FaRM hopscotch
hashing, and Pilaf cuckoo hashing are much higher than their
search latencies due to the needs of locking, unlocking, modi-
fying slots, and unlinking buckets. The deletion and update
latencies of RACE hashing are only higher than its search
latency by 1-RTT latency. When the hash tables are at the
load factor of 90%, RACE hashing reduces the deletion and
update latencies by 1.8 —2.3x and 1.6 — 2.2 respectively.

4.2.3 Concurrent Throughput

To investigate the concurrent request throughput of differ-
ent hashing indexes, we first load 100 million items into a
hash table and then successively execute 10 million searches,
updates, deletions, and insertions to evaluate the concurrent
throughput of different requests. We also vary the numbers of

24 2021 USENIX Annual Technical Conference

USENIX Association

1000 A

- -r-Cuckoo Hopscotch = “4-Cuckoo Hopscotch

3 3

> ©-Cluster >¢RACE \5 20 ©-Cluster >RACE

c c

2 2

& 100 815

§ @_eﬁ#ﬁ‘;—e—é* g

= s
10 2T, [
04 05 06 07 08 09 04 05 0.6 0.7 08 09

Load Factor

(b) Search

Load Factor

(a) Insertion

N
o
B
o

--Cuckoo
©-Cluster

Hopscotch
>¢RACE

#A-Cuckoo
©-Cluster

Hopscotch
>¢RACE

«
w
«

o

w
o
©

=]
N
o

Deletion Latency (us)

- N N w w
w

Update Latency (us)
N
wv

«
T

-

«

=
o
=
o

0.5 0.6 0.7 0.8 0.9
Load Factor

(d) Update

0.4 0.5 0.6 0.7 0.8 0.9
Load Factor

(c) Deletion

o
>

Figure 10: Average latencies of different requests when hash tables are in different load factors.

14
12

o

--Cuckoo

--Cuckoo

«

Hopscotch Hopscotch

-©-Cluster
>¢RACE

©-Cluster
>¢RACE

)

2R NN W
o

S)

Throughput (M reqs/s)
Throughput (M reqs/s)

o wu

S "\

1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
The Number of Client Processes The Number of Client Processes

(a) Insertion (b) Search

20

2 18 -A-Cuckoo g #-Cuckoo

& 16

g 14 Hopscotch g Hopscotch
212 ©-Cluster S 210 ©-Cluster

>¢RACE

Throughput
Throughput (!

=
oON B O®O

1 2 4 8
The Number of Client Processes

16 32 64 128 1 2 4 8 16 32 64 128
The Number of Client Processes

(c) Deletion (d) Update

Figure 11: Concurrent throughput of different requests when using different numbers of client processes.

client processes to investigate the change of the throughput
with the increase of clients, as shown in Figure 11. When the
number of clients is not larger than 32, they are run in one
client machine. When the number of clients is 64 and 128,
they are run in 2 and 4 client machines respectively.

Figure 11a shows the concurrent throughput of insertion re-
quests. The insertion throughputs of Pilaf cuckoo hashing and
FaRM hopscotch hashing are much less than that of RACE
hashing, of which reasons are the same as those of their high
execution latencies. The insertion throughput of RACE hash-
ingis 16.9x, 5.3, and 1.4x on average higher than those of
Pilaf cuckoo hashing, FaRM hopscotch hashing, and Dr'TM
cluster hashing respectively.

Figure 11b shows the concurrent throughput of search re-
quests. Pilaf cuckoo hashing, FaRM hopscotch hashing, and
RACE hashing have a similar search throughput which is
higher than that of Dr'TM cluster hashing. This is because
DrTM cluster hashing needs to traverse linked bucket lists.
The search throughput of RACE hashing is 1.7x on average
higher than that of DrTM cluster hashing.

Figures 11c and 11d show the concurrent throughput of
deletion and update requests respectively. The deletion and
update throughput of RACE hashing is 1.7 —2.1x and 1.5 —
1.9x higher than other hashing schemes due to the benefits
of locking-free concurrency and RAC index structure.

4.2.4 YCSB Hybrid Workloads

To evaluate the throughput of different hashing indexes under
YCSB hybrid workloads, we first load 90 million items into a
hash table and then respectively run hybrid search/insertion
workloads with different ratios. All tests use 128 client pro-
cesses. The experimental results are shown in Figure 12. We
observe that the throughput of all hashing indexes increases
with the increase of search/insertion ratios, and RACE hashing

performs the best for all search/insertion ratios due to having
both high search and insertion performance. Compared with
DrTM cluster hashing, FaARM hopscotch hashing, and Pilaf
cuckoo hashing, RACE hashing improves the performance
of hybrid workloads by 1.4, 4.9, and 13.7x respectively
when the search/insertion ratio is 10%/90%.

4.2.5 Variable-length Values

We increase the size of the key-value (KV) block from 64B
to 8KB to evaluate the impact of variable-length KV sizes on
the performance of RACE hashing, as shown in Figure 13.
With the increase of the KV size, the latencies of insertion,
deletion, update, and search requests increase due to reading
and writing larger data. When the KV size is no larger than
512B, the increase of latencies is slight.

4.2.6 Extendible Remote Resizing

To support extendible remote resizing, we propose two tech-
niques, i.e., the SRCD cache and concurrent access during
resizing as presented in Section 3.4. We investigate the impact
of the two techniques on the performance of RACE hashing.

Figure 14 shows the performance of RACE hashing with
and without the SRCD cache. We observe that using the
SRCD cache reduces 23%, 32%, 24%, and 23% of insertion,
search, deletion, and update latencies respectively. This is
because using the SRCD cache reduces one extra RDMA
READ for accessing the directory.

To investigate concurrent access during resizing, we run
two clients of which one executes insertions to trigger mul-
tiple resizings (the GD increases from 2 to 5) and the other
executes random searches at the same time. We evaluate the
average search latencies of RACE hashing with and with-
out concurrent access during resizing as shown in Figure 15.

USENIX Association

2021 USENIX Annual Technical Conference 25

~
o
N
o

—#A—Cuckoo Hopscotch

F —©-Cluster ——RACE
W)
0 F—ﬂ——ﬂ”ﬂ’ﬂ/ﬂ/ﬂ/ﬂ/é

10/90 30/70 50/50 70/30 90/10 64 128 512 2K 8K
Search/Insertion Ratio (%) Key-value Block Size (Bytes)

Figure 12: Hybrid workloads. Figure 13: Variable KV sizes.

—&-Insertion Search
-©-Deletion —%-Update

[
<3

=

o

&

=Y

g

Latency (us)
B e
I

N
5]
N

«

=

S)
T

Throughput (M reqs/s)

o

Without the concurrent access, the average search latency dur-
ing the resizing significantly increases since the searches stall
until a resizing is completed. With the concurrent access, the
average search latency during the resizing does not signifi-
cantly increase and thus is about two orders lower than that
without concurrent access.

5 Discussion

Concurrency Correctness. RACE hashing follows the
concurrency correctness condition of no lost keys [30]: “a
get(K) operation must return a correct value for K, regardless
of concurrent writers”. Specifically, when a search and an
update run concurrently, the search can return either the new
or the old value, while both of them should be unbroken and
atomic. When a search and a deletion run concurrently, the
search can return no key or the value that will be deleted.

Resizing Execution. In our current implementation, the
client triggering the resizing itself performs the resizing. To
improve the implementation, the client can create a back-
ground client/thread to perform the resizing.

Hardware Failure. Handling hardware failures including
network failure, memory failure, and client CPU failure in
the disaggregated memory architecture is complicated and
tough. For example, after locking a directory entry, the client
fails. To handle this failure, we need to enable other clients to
perceive the failed client and release the lock directory entry
or use the lease-based lock [44]. Our paper mainly focuses
on the design of hashing index for disaggregated memory
and plan to extend RACE hashing to support the handle of
hardware failures in the future work.

6 Related Work

Memory Disaggregation. Memory disaggregation has re-
cently received widespread attentions due to providing sig-
nificant benefits for datacenters on resource utilization and
scaling. Existing work studies various components in data-
centers to support memory disaggregation including operat-
ing systems [38], hardware architectures [28, 29], memory
managements [4,37,40-42], networks [1,9, 12,39], and new
requirements [5, 18]. RACE hashing focuses on the design
of index structures in the disaggregated memory which is
orthogonal to these works.

Hashing Indexes on RDMA. With the wide use of RD-
MA in modern datacenters, RDMA-search-friendly hashing
indexes have been intensively studied [13,31,44]. These hash-
ing indexes are designed for traditional monolithic servers,

21 10000

18
15
12

—W/o concurrent access
[—W/ concurrent access

O W/o SRCD Cache B W/ SRCD Cache

1000

(u

=
o
S

=
o

Latenc

Search Latency (us)

[

o w o v

Insertion Search Deletion Update Time (s)

Figure 14: The SRCD cache. Figure 15: Concurrent access.

which however fails to efficiently work on the new disaggre-
gated memory architecture, due to producing a large number
of RDMA operations when executing IDU requests. RACE
hashing is the first hashing index designed for disaggregated
memory, in which all index requests can be efficiently exe-
cuted by using only one-sided RDMA operations. Moreover,
KV-direct [24] leverages programmable NICs with FPGA to
offload hashing index operations, which is orthogonal to our
paper that does not reply on FPGA.

Concurrent Hashing Indexes. Different concurrent hash-
ing indexes are proposed to deliver high access through-
put. MemC3 [15] uses a global lock to multi-reader and
single-writer concurrency for concurrent cuckoo hashing.
Libcukoo [26] leverages fine-grained locking to achieve multi-
reader and multi-writer concurrent cuckoo hashing. Existing
work [10,33,46] also proposes concurrent hashing indexes
for persistent memory. However, all these existing schemes
focus on concurrent access to local memory. Unlike them,
our RACE hashing addresses the challenge of concurrent ac-
cess to remote memory in hash indexes and enables all index
requests to be executed in a lock-free manner.

7 Conclusion

This paper proposes RACE hashing, a one-sided RDMA-
conscious extendible hashing index for disaggregated mem-
ory with lock-free remote concurrency control and efficient
remote resizing. The hash table structure is designed to be
one-sided RDMA-conscious, achieving that all index requests
can be executed using only one-sided RDMA verbs while de-
livering high performance with constant-scale worst-case time
complexity. Moreover, RACE hashing leverages a lock-free
remote concurrency control scheme to enable index request-
s to be concurrently executed in a lock-free manner, and a
stale-read client directory cache scheme to reduce one extra
RDMA read for accessing the directory while guaranteeing
the correctness of stale cache reads. We also achieve concur-
rent access to the subtable that is being resized. Experimental
results show that RACE hashing outperforms state-of-the-art
distributed in-memory hashing indexes by up to 13.7x in
YCSB hybrid workloads.

Acknowledgements

We sincerely think our shepherd Roberto Palmieri and the
anonymous reviewers for their insightful comments and sug-
gestions.

26 2021 USENIX Annual Technical Conference

USENIX Association

References

(1]
(2]

(3]
(4]

(5]

(6]

[7

[—

(8]

(9]

[10]

[11]

Gen-Z technology. https://genzconsortium.org/.

Memcached - a distributed memory object caching sys-
tem. https://memcached.org/.

Redis. https://redis.io/.

Marcos K Aguilera, Nadav Amit, Irina Calciu, Xavier
Deguillard, Jayneel Gandhi, Stanko Novakovic, Arun
Ramanathan, Pratap Subrahmanyam, Lalith Suresh, Ki-
ran Tati, Rajesh Venkatasubramanian, and Michael Wei.
Remote regions: a simple abstraction for remote mem-
ory. In 2018 USENIX Annual Technical Conference
(USENIX ATC’18), pages 775787, 2018.

Marcos K Aguilera, Kimberly Keeton, Stanko No-
vakovic, and Sharad Singhal. Designing far memory
data structures: Think outside the box. In Proceedings
of the Workshop on Hot Topics in Operating Systems
(HotOS’19), pages 120-126, 2019.

Krste Asanovi¢ and David Patterson. FireBox: A hard-
ware building block for 2020 warehouse-scale comput-
ers. In Keynote of USENIX Conference on File and
Storage Technologies (FAST’14), 2014.

Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a large-
scale key-value store. In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE joint international con-
ference on Measurement and Modeling of Computer
Systems (SIGMETRICS’12), pages 53-64, 2012.

Mark S Birrittella, Mark Debbage, Ram Huggahalli,
James Kunz, Tom Lovett, Todd Rimmer, Keith D Under-
wood, and Robert C Zak. Intel(®) omni-path architecture:
Enabling scalable, high performance fabrics. In 2015
IEEE 23rd Annual Symposium on High-Performance
Interconnects (HOTI'15), pages 1-9. IEEE, 2015.

Amanda Carbonari and Ivan Beschasnikh. Tolerating
faults in disaggregated datacenters. In Proceedings of
the 16th ACM Workshop on Hot Topics in Networks
(HotNets’17), pages 164—170, 2017.

Zhangyu Chen, Yu Hua, Bo Ding, and Pengfei Zuo.
Lock-free concurrent level hashing for persistent mem-
ory. In 2020 USENIX Annual Technical Conference
(USENIX ATC’20), pages 799-812, 2020.

Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the st
ACM symposium on Cloud computing (SoCC’10), pages
143-154, 2010.

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

Paolo Costa, Hitesh Ballani, Kaveh Razavi, and Ian
Kash. R2C2: A network stack for rack-scale computers.
In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication (SIGCOMM
'15), page 551-564, 2015.

Aleksandar Dragojevi¢, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast remote memo-
ry. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’14), pages 401-414,
2014.

Ronald Fagin, Jurg Nievergelt, Nicholas Pippenger, and
H Raymond Strong. Extendible hashing—a fast ac-
cess method for dynamic files. ACM Transactions on
Database Systems (TODS), 4(3):315-344, 1979.

Bin Fan, David G Andersen, and Michael Kaminsky.
Memc3: Compact and concurrent memcache with dumb-
er caching and smarter hashing. In Presented as part
of the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’13), pages 371-384,
2013.

Paolo Faraboschi, Kimberly Keeton, Tim Marsland, and
Dejan Milojicic. Beyond processor-centric operating
systems. In 15th Workshop on Hot Topics in Operating
Systems (HotOS’15), 2015.

Michael J Franklin, Michael J Carey, and Miron Livny.
Transactional client-server cache consistency: Alterna-
tives and performance. ACM Transactions on Database
Systems (TODS), 22(3):315-363, 1997.

Peter X Gao, Akshay Narayan, Sagar Karandikar, Joao
Carreira, Sangjin Han, Rachit Agarwal, Sylvia Rat-
nasamy, and Scott Shenker. Network requirements for
resource disaggregation. In /2th USENIX Symposium
on Operating Systems Design and Implementation (OS-
DI’16), pages 249-264, 2016.

Maurice Herlihy, Nir Shavit, and Moran Tzafrir. Hop-
scotch hashing. In International Symposium on
Distributed Computing (DISC’08), pages 350-364.
Springer, 2008.

Hewlett Packard Corporation. The machine: A new kind
of computer. https://www.hpl.hp.com/research/
systems-research/themachine/.

Intel Corporation. Intel rack scale design ar-
chitecture. https://www.intel.com/content/
www/us/en/architecture-and-technology/
rack-scale-design-overview.html.

Anuj Kalia, Michael Kaminsky, and David G Ander-
sen. Design guidelines for high performance RDMA
systems. In 2016 USENIX Annual Technical Conference
(USENIX ATC’16), pages 437-450, 2016.

USENIX Association

2021 USENIX Annual Technical Conference 27

https://genzconsortium.org/
https://memcached.org/
https://redis.io/
https://www.hpl.hp.com/research/systems-research/themachine/
https://www.hpl.hp.com/research/systems-research/themachine/
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

Onur Kocberber, Boris Grot, Javier Picorel, Babak
Falsafi, Kevin Lim, and Parthasarathy Ranganathan.
Meet the walkers: Accelerating index traversals for in-
memory databases. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO’15), page 468479, 2013.

Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu,
Yongqiang Xiong, Andrew Putnam, Enhong Chen, and
Lintao Zhang. KV-Direct: high-performance in-memory
key-value store with programmable nic. In Proceedings
of the 26th Symposium on Operating Systems Principles
(SOSP’17), page 137-152, 2017.

Sheng Li, Hyeontaek Lim, Victor W. Lee, Jung Ho Ah-
n, Anuj Kalia, Michael Kaminsky, David G. Andersen,
0. Seongil, Sukhan Lee, and Pradeep Dubey. Architect-
ing to achieve a billion requests per second throughput
on a single key-value store server platform. In Proceed-
ings of the 42nd Annual International Symposium on
Computer Architecture (ISCA’15), page 476488, 2015.

Xiaozhou Li, David G Andersen, Michael Kaminsky,
and Michael J Freedman. Algorithmic improvements
for fast concurrent cuckoo hashing. In Proceedings of
the Ninth European Conference on Computer Systems
(Eurosys’14), pages 1-14, 2014.

Hyeontaek Lim, Michael Kaminsky, and David G. An-
dersen. Cicada: Dependably fast multi-core in-memory
transactions. In Proceedings of the 2017 ACM In-
ternational Conference on Management of Data (SIG-
MOD’17), page 21-35, 2017.

Kevin Lim, Jichuan Chang, Trevor Mudge,
Parthasarathy Ranganathan, Steven K. Reinhardt,
and Thomas F. Wenisch. Disaggregated memory for
expansion and sharing in blade servers. In Proceedings
of the 36th Annual International Symposium on
Computer Architecture (ISCA’09), page 267-278, 2009.

Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin
AuYoung, Jichuan Chang, Parthasarathy Ranganathan,
and Thomas F Wenisch. System-level implications of
disaggregated memory. In IEEE International Sym-
posium on High-Performance Comp Architecture (HP-
CA’12), pages 1-12. IEEE, 2012.

Yandong Mao, Eddie Kohler, and Robert Tappan Motris.
Cache craftiness for fast multicore key-value storage. In
Proceedings of the 7th ACM European Conference on
Computer Systems (Eurosys’12), page 183—-196, 2012.

Christopher Mitchell, Yifeng Geng, and Jinyang Li. Us-
ing one-sided RDMA reads to build a fast, CPU-efficient
key-value store. In 2013 USENIX Annual Technical
Conference (USENIX ATC’15), pages 103-114, 2013.

(32]

(33]

[34]

(35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

Michael Mitzenmacher. The power of two choices in
randomized load balancing. IEEE Transactions on Par-
allel and Distributed Systems, 12(10):1094-1104, 2001.

Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H
Noh, and Beomseok Nam. Write-optimized dynamic
hashing for persistent memory. In /7th USENIX Con-
ference on File and Storage Technologies (FAST’19),
pages 31-44, 2019.

Nhan Nguyen and Philippas Tsigas. Lock-free cuckoo
hashing. In 2014 IEEE 34th international conference
on distributed computing systems (ICDCS‘14), pages
627-636. IEEE, 2014.

Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc K-
wiatkowski, Herman Lee, Harry C Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, et al. Scaling
memcache at facebook. In Presented as part of the 10th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI’13), pages 385-398, 2013.

Rasmus Pagh and Flemming Friche Rodler. Cuckoo
hashing. Journal of Algorithms, 51(2):122-144, 2004.

Zhenyuan Ruan, Malte Schwarzkopf, Marcos K Aguil-
era, and Adam Belay. AIFM: High-performance,
application-integrated far memory. In /4th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI’20), pages 315-332, 2020.

Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying
Zhang. LegoOS: A disseminated, distributed OS for
hardware resource disaggregation. In /3th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI’18), pages 69—-87, 2018.

Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani, Pao-
lo Costa, Ki Suh Lee, Han Wang, Rachit Agarwal, and
Hakim Weatherspoon. Shoal: A network architecture
for disaggregated racks. In /16th USENIX Symposium
on Networked Systems Design and Implementation (NS-
DI’19), pages 255-270, 2019.

Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. Dis-
aggregating persistent memory and controlling them
remotely: An exploration of passive disaggregated key-
value stores. In 2020 USENIX Annual Technical Con-
ference (USENIX ATC’20), pages 33—48, 2020.

Shin-Yeh Tsai and Yiying Zhang. Lite kernel rdma
support for datacenter applications. In Proceedings of
the 26th Symposium on Operating Systems Principles
(SOSP’17), pages 306-324, 2017.

Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan
Ruan, Khanh Nguyen, Michael D Bond, Ravi Netraval-
i, Miryung Kim, and Guoqing Harry Xu. Semeru:

28

2021 USENIX Annual Technical Conference

USENIX Association

[43]

[44]

[45]

[46]

A memory-disaggregated managed runtime. In /4th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI’20), pages 261-280, 2020.

Tianzheng Wang, Justin Levandoski, and Per-Ake Lar-
son. Easy lock-free indexing in non-volatile memory.
In 2018 IEEE 34th International Conference on Data
Engineering (ICDE’18), pages 461-472. IEEE, 2018.

Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast in-memory transaction processing
using rdma and htm. In Proceedings of the 25th Sympo-
sium on Operating Systems Principles (SOSP’15), pages
87-104, 2015.

Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas
Devadas, and Michael Stonebraker. Staring into the
abyss: An evaluation of concurrency control with one
thousand cores. Proceedings of the VLDB Endowment,
8(3):209-220, November 2014.

Pengfei Zuo, Yu Hua, and Jie Wu. Write-optimized and
high-performance hashing index scheme for persistent
memory. In /3th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’18), pages
461-476, 2018.

USENIX Association

2021 USENIX Annual Technical Conference 29

	Introduction
	Background and Motivation
	Disaggregated Memory
	RDMA-search-friendly Hashing Index
	Existing Hashing Schemes
	 Performance on Disaggregated Memory

	Resizing Hash Tables

	RACE Hashing
	Overview
	The RAC Hash Subtable Structure
	Lock-free Remote Concurrency Control
	Extendible Remote Resizing
	Client Directory Cache with Stale Reads
	Concurrent Access during Resizing

	Performance Evaluation
	Experimental Setup
	Experimental Results and Analysis
	Maximum Load Factor
	Execution Latency
	Concurrent Throughput
	YCSB Hybrid Workloads
	Variable-length Values
	Extendible Remote Resizing

	Discussion
	Related Work
	Conclusion

