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Abstract—Node failures often occur in large-scale data cen-
ters today. Erasure coded storage system provides high data
reliability via data reconstruction. Existing work can improve
reconstruction performance, while considering the transmission
of recovery data as the main source of reconstruction overheads.
Transmission costs are highly related with network topology,
which is unfortunately overlooked. An ideal connected topology
assumes that two nodes in a data center has a direct link. The
unmatching design between the network model and the practical
topology may lead to an underestimated transmission costs. In
this paper, we propose an erasure coded storage system for data
reconstruction, which uses the practical network topology to min-
imize the reconstruction transmission costs. First, we identify the
aggregation feature of erasure coding reconstruction and propose
Aggregation Decoding, which splits the decoding process into
several sub-decoding operations during reconstruction routing
to reduce overall recovery data to be transmitted. We further
improve Aggrecode to construct efficient route basing on the
location of participating nodes to exploit the aggregation feature
of Aggregation Decoding. We formulate this routing problem as
a relaxed Steiner Tree problem. We design two heuristic routing
algorithms based on ant-colony optimization specialized for two
failure recovery cases, e.g., node recovery and degraded read.
Our analytical results demonstrate the important properties of
Aggrecode. These properties are evaluated by extensive experi-
ments deployed on popular data center topologies, such as Torus,
Fat-tree, DCell and BCube. The results show that Aggrecode can
reduce data transmission costs by at least 37.12% for all settings.

I. INTRODUCTION

Erasure coding for large scale data storage systems is
becoming a promising technology due to its superiority on
achieving much higher storage efficiency while ensuring data
reliability. Compared with traditional replica solutions, erasure
coding can achieve higher storage efficiency at the expense of
slight extra coding and decoding overheads in data recovery.
When failures occur, original data can be recovered from
a subset of the surviving coded fragments as long as the
amount of failures is smaller than a given upper bound. This
process is called data reconstruction. During reconstruction,
the corresponding surviving fragments, called participating
fragments, are transmitted to an end node, called target node,
to decode and recover the lost data fragments.

In the big data era, component failures in large scale
clusters often occur [1]. Hence the reconstruction overhead is
a significant consideration in erasure coded storage systems.

(a) Logical (b) Physical

Fig. 1: Network topology for erasure-coded storage systems

Normally, the reconstruction overhead is mainly reflected
in transmission traffic costs. According to erasure coding
mechanism, reconstruction process generates a burst of traffic
in some specific links. On one hand, as data centers usually
host lots of applications and services at one time [2], the
transmission costs introduced by reconstruction will consume
substantial bandwidth from other systems in the same cluster,
especially when the load is heavy. On the other hand, from
the view of “green” computing, the more traffic it generates,
the more energy is consumed for transmitting these data [3].

Currently, more and more erasure coding schemes have been
applied to the real world systems, including Facebook HDFS
storage system [4] and Microsoft Windows Azure Storage [5].
Recent studies begin to consider reconstruction performance
in practical scenarios, but most of them overlook the factors
of practical network topology in reconstruction. Instead, they
usually take the ideal connected graph as the logical topology,
in which there is a directed path between every two vertexes,
so that the distance between any two nodes is ideally one
hop. Most current large-scale storage systems are deployed
on a data center with specific network topology such as Torus
[6], Fat-tree [7], DCell [8] and BCube [9]. The traffic patterns
during reconstruction highly depend on the physical topology
of the network infrastructure. The distance between target node
and the host nodes of participating fragments in the practical
reconstruction, therefore, is not ideally one hop. The frequently
used ideal connected graph might have some mismatching in
evaluating data transmission costs during reconstruction.

For example, a typical reconstruction data transmission in
the ideal connected graph topology is shown as Figure 1(a).
Assuming the practical network is a tree-based topology shown
as Figure 1(b), we can observe that the logical topology cannot978-1-4799-3360-0/14/$31.00 c© 2014 IEEE



demonstrate the data transmission traffic pattern such as the
congestion and the varying distances of different paths. The
gap between logical and practical network topologies will lead
to significant reconstruction performance degeneration in real
systems compare with the the results of theoretical analysis.

Reconstruction with practical network topology introduces
many challenges to system designers. To minimize the traffic
bandwidth consumption, the optimal reconstruction routing
should exploit the specific topology feature while carrying out
the erasure coding mechanism, which is difficult for large-
scale data centers. The various data center topologies make
the routing problem even more challenging.

Transmission costs and latency are two fundamental con-
cerns in reconstruction. Generally, reducing transmission costs
contributes to latency decrease. But the aggregation feature
that we demonstrate in the following analysis has a potential
possibility of making a contradictory effect on these two
factors. The tradeoff between these two concerns requires
careful design.

In this paper, we explore a practical network topology-
awared data reconstruction design for general erasure coded
storage system. To the best of our knowledge, this is the first
work to use practical network topology in erasure coded stor-
age system recovery. Our goal is to minimize the reconstruc-
tion data transmission overhead in any data center network
topology. We discover the aggregation feature in the practical
reconstruction of erasure coded storage systems. Decoding
process can be split into several sub-decoding operations.
Based on this observation, we can perform an aggregation-
based decoding on intermediate nodes rather than sending all
to the target node, where the decoding can be executed. As
a result, reconstruction routing could be carefully designed in
data center network by exploiting this aggregation feature.

To address these issues, we propose Aggrecode, a novel
design for erasure coded storage reconstruction. The main
contributions of this paper are summarized below:

(i) Aggregation Decoding: To the best of our knowledge,
Aggrecode is the first work to use topology-awared ap-
proach in reconstruction of erasure coded storage system-
s. We exploit the aggregation feature in the reconstruction
process and propose Aggregation Decoding that splits the
final decoding operation into sub-decodings on the route,
which can reduce entire transmission costs.

(ii) Reconstruction Routing: We formulate the minimized
Aggregating Reconstruction Tree problem as a Steiner
Tree problem, which is NP-complete. We provide two
heuristic algorithms based on ant-colony optimization
for node recovery and degraded read. The approximation
ratio of our algorithms can reach nearly 1.01, which is
significantly better than classic solutions without the loss
of computation complexity.

(iii) Transmission Costs Saving: We propose Aggrecode, an
reconstruction approach for erasure coded storage system
in large-scale data centers. We analyze and evaluate the
performance and overhead on most promising practical
network topologies including Torus, Fat-tree, DCell and

BCube. Aggrecode can save transmission costs by more
than 37.12% for all settings.

The rest of the paper is organized as follows. Section
II introduces the background and motivation of our work.
Section III formulates the problem. Section IV illustrates the
Aggrecode design. Section V analyzes the performance and
overhead. Section VI shows the evaluations and experiments.
Section VII discusses the related work. We conclude the paper
in Section VIII.

II. BACKGROUND AND MOTIVATION

A. Background

We mainly focus on the large scale erasure coded storage
systems deployed on data centers. Considering that erasure
codes are mostly used for storing large block-size append-
only data and providing permanent storage services such as
archiving and backup, our design should have a good per-
formance in these scenarios. We consider systematic erasure
coding and focus on two typical reconstruction cases, node
recovery and degraded read. Node recovery occurs when a
server crash leads to the permanent lost of all the data stored
on it. Then the system restarts the server and recovers all
the lost data by surviving erasure coded redundant data. In
this case, bandwidth costs are more critical than latency.
Degraded read occurs when a request arrives at a current
unavailable server, the system reconstruct the required data
fragment on an available server and reply to the client. In this
case, both bandwidth costs and latency should be concerned.
On the network topology side, most of the data center net-
works can be classified into several typical topologies such as
tree-based topology, recursively-defined topology, and torus-
based topology. The aggregating reconstruction approach we
provide should be broadly useful for most data center network
topologies.

For a (n, k) MDS systematic erasure code scheme, the input
data is split into k fragments first and then n − k coded
fragments are generated based on the k original fragments.
The entire n fragments are stored on n nodes to tolerate up to
arbitrary n− k failures. The ability of fault tolerance depends
on the specific erasure coding scheme and can be flexibly
scaled by adjusting the ratio of redundancy. In reconstruction,
k surviving data fragments are sent from k surviving partic-
ipating nodes to the target node where decoding performed.
The general decoding equation can be described by a matrix-
vector product as shown in equation 1. From d1 to dk are
the k original fragments. From r1 to rk are the k fragments
that selected to participate in the reconstruction. The decoding
matrix is a k× k matrix that derived from the coding matrix,
and all the arithmetics are performed in Galois Field. In this
way, the original data can be reconstructed.
⎡
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Fig. 2: Aggregation Decoding

B. Observation on Aggregation Decoding

In this part, we will illustrate some aggregation properties
that we discover in the reconstruction decoding process, which
shed light on our latter design. For simplicity, consider a (6,
4) erasure coding reconstruction in Figure 2. The nodes ri on
the left are participating nodes, node t is the target node, and
the other nodes in the middle are intermediate nodes mi. The
reconstruction data transmission flow can be seen as a tree
that consists of the routings from participating nodes to target
node.
Property 1: The traditional decoding process can be split into
several Aggregation Decoding operations.
Proof: In most reconstruction scenarios, it is not necessary to
reconstruct all the k fragments, but only need to decode and
recover the lost fragment at target node. Therefore, based on
matrix multiplication rules, we derive a single data fragment
reconstruction decoding equation from equation 1 as follows:

dl =
k∑

i=1

(Bli × ri), (2)

where dl is the fragment we try to recover. For clarity,
we define each Bli × ri operation as a basic unit denoted
by Ui. The summation of arbitrary multiple basic units is
defined as an Aggregation Decoding operation denoted by
ADp. Based on the commutation rule, the result of one
Aggregation Decoding can also participate in the following
one, and the order of the operations will not influence the
result of equation 2. Figure 2 is a simple example. Aggregation
Decoding is executed in intermediate node m1 and m3, and the
lost data dl can be finally recovered. The entire Aggregation
Decoding reconstruction process is shown as equation 3

AD1 = U1 + U2,

AD2 = AD1 + U3,

dl = AD2 + U4.

(3)

Property 2: The data size of the result of an Aggregation
Decoding is smaller than its input.
Proof: Galois Field is a finite field that has a limited number
of elements. Results of any operations performed in Galois
Field still lie in the field. All the elements in Galois Field

have the same length. Given the size of an element m, since
the original elements in equation 1 are in Galois Field, all the
intermediate elements are also in Galois Field and have size
of m. Therefore, from equation 3 we can see that the size of
result of Aggregation Decoding is always m, which is smaller
than the amount of inputs. See equation 4

Size(ADp) = Size(Ui). (4)

In other words, the entire amount of participating fragments
is reduced after every Aggregation Decoding operation.

C. Motivation

In most current erasure coded storage systems (even in
some named practical designs), the reconstruction costs are
simply measured by the quantity of data that participate
in the reconstruction. This is because data center network
topology is overlooked and the distances between participating
fragments and target node are ideally assumed to be one-
hop. But under a practical data center network topology, the
different transmission paths of participating fragments may
highly influence the actual reconstruction costs. For example,
in Figure 1(a), the reconstruction costs to recover m size data
are 4m, measured by the existing strategy. But in real network
topology as Figure 1(b), the actual costs are 20m.

In this paper, we propose Aggrecode to optimize the recon-
struction costs, which use Aggregation Decoding and match
the reconstruction tree with the practical network topology.
If the aggregating reconstruction we proposed is employed,
according to the Property 1, we can perform Aggregation
Decoding when more than one participating fragments pass
by the same node, such as m1 and m3 in Figure 2. Based
on Property 2, the size of the result of each Aggregation De-
coding is consistently as large as one participating fragment;
hence the entire bandwidth consumed is lower than existing
schemes. Therefore, if we take good use of the aggregating
reconstruction and perfectly match the reconstruction tree to
the topology, the entire transmission costs can be further saved.

III. PROBLEM FORMULATION

In this section, we formulate the aggregating reconstruction
routing problem. Given a practical (n, k) erasure coded storage
system, we model its network topology as an undirected graph
G = (V,E). All the storage nodes compose the node set V in
the graph. The edges between nodes compose the undirected
edge set E. Each edge is assigned a weight to represent the
bandwidth consumption. t ∈ V is the target node of the
reconstruction operation, D ∈ V is the set of nodes that has
the surviving fragments that correspond to the lost fragment.
In other words, D is the set of nodes that are available for
participating in reconstruction, called alternative node set, and
obviously, k ≤ |D| < n. As mentioned in section II, the
reconstruction flow can be seen as an aggregation tree, thus the
reconstruction transmission costs can be measured as the entire
weight of the tree. The aggregating reconstruction routing
problem can be formulated as follows:
Given: A (n, k) erasure coded storage deploy on a topology



G = (V,E) with weight W for each edge; target node t ∈ V ;
corresponding group D.
Objective: To find a minimized aggregating reconstruction
tree T that rooted at t, and spans k out of all the nodes in D
such that the entire weight of the tree is minimized.

As mentioned in section II, based on property 2, the result of
every Aggregation Decoding has the same size of a fragment.
Therefore we assume the weight for every branch in T is
consistent. Then the objective can be further simplified as |ET |
is minimized, where ET is the edge set of T . The k nodes
that spanned by T are the participating nodes. We define the
set of the k nodes as P , called participating node set, P ∈ D
and |P | = k. We summarize the notations which will be used
through this paper in Table I.

TABLE I: Parameter Notation

Notations Descriptions
G Undirected graph modeled from network topology
V Node set
E Undirected edge set
t Target node
D Alternative node set, the set of surviving nodes that belongs

to t’s corresponding group
P Participating node set, k nodes that spanned by T
T Minimized aggregating reconstruction tree

ET Edge set of T

IV. AGGRECODE DESIGN

In this section, we introduce the framework of our Ag-
grecode, including the data placement and the procedure
of reconstruction. We propose the advanced MPH algorithm
for node recovery routing and the advanced ADH algorithm
for degraded read routing based on the ant-colony weighing
algorithm.

A. Overview

We design the framework based on the most popular erasure
coded storage architecture for general purpose, where there
is a center master server for metadata maintain and system
management. Assume the file is coded into n fragments and
stored respectively into n nodes in the cluster, called a group.
The same coding matrix is used for all files [5]. A group is
only related to the current file. When a new file arrives, a
new group will be chosen to store it. Since the nodes are not
bounded to a group, a node can belong to different groups for
different files.

The main idea of Aggrecode is to construct an optimal
routing to minimize the transmission costs. According to
the properties of Aggregation Decoding, when participating
fragments intersect together during reconstruction, an Ag-
gregation Decoding operation can be applied and a certain
transmission costs can be saved. Therefore, the key problem is
to construct an optimal routing that maximize the intersections
of reconstruction data flow and make them occur as early as
possible. We will introduce two heuristic algorithms in this
section later.

In our design, for balancing the computing workload in-
troduced by the aggregating reconstruction routing, we dy-
namically designate a temporary coordinator for reconstruction
every time. Considering that lots of storage systems place data
depending on applications’ policy, our design does not add
any extra requirement on group selection, so that preserving
the data locality of the application can be maintained.

The reconstruction for node recovery includes several steps
as follows. First, the master server designates the new restart
node as the coordinator, and then sends it the metadata
that is related to the data stored on it such as the data
fragments list and the corresponding group for each fragment.
Next the coordinator executes the aggregating reconstruction
routing algorithm and obtains the Aggregation Decoding route.
Finally, the participating fragments are sent to the target
node following the route, and the Aggregation Decoding is
performed.

Degraded read occurs when the node that hosts the read re-
quest is currently unavailable. The master server will designate
a coordinator from the unavailable fragment’s corresponding
group. Then the coordinator runs aggregating reconstruction
routing algorithm to choose an optimal node from the group
as the target node and obtain the Aggregation Decoding route.
The remaining part of the reconstruction is as same as the node
recovery.

Aggregating reconstruction routing is the key part of Aggre-
code. The main idea can be reduced to a Steiner Tree problem
[10], which is a NP-complete problem. But due to the special
features of our scenario, the classic Steiner Tree solutions
become inefficient and even unavailable for our problem. Next,
we propose an advanced ant-colony-based heuristic routing
algorithm for our Aggregating Reconstruction Tree problem.

B. MPH Routing Algorithm for Node Recovery

Because of the particular properties of erasure coding re-
construction and the special characters of practical network
topology, the classic solutions for Steiner Tree problem can
not be used in erasure coding reconstruction routing directly.
In the Steiner Tree problem, the set of objective nodes that are
spanned by the tree is given and fixed. But in our Aggregating
Reconstruction Tree problem, due to the properties of erasure
coding, the objective set P is composed by choosing optimal
k nodes out of D. Moreover, from the property 2 in section
III, the transmission costs on each edge are consistently as
large as one fragment, which makes all the edge weights
become the same. As a result, the classic heuristic algorithms
may have a high possibility of taking suboptimal edges which
dramatically pull down the performance. On the other hand,
the data center network topologies usually have much more
redundant routings due to its specific geometrical features,
which further raise the possibility of taking suboptimal edges
in classic heuristic algorithms.

We propose an advanced heuristic algorithm for this Aggre-
gating Reconstruction Tree problem for node recovery, MPH
Routing Algorithm for Node Recovery(MPH-NR). Minimum
cost path heuristic (MPH) algorithm [11] is a basic heuristic



solution for Steiner Tree problem which has a balanced
computation complexity and performance. In order to face the
challenges in our scenario that edge weights are consistent,
we propose an ant-colony-weighting algorithm to give the
edges extra weight information to improve the heuristic routing
algorithm’s approximation rate.

Ant-colony optimization takes inspiration from the foraging
behavior of some ant species, and use the pheromone deposited
by these ants to find the favorable path [12] [13]. The basic
idea of our ant-colony weighting algorithm is that, we simulate
a number of artificial ants moving on the graph from the
alternative node set D to the target node t, and use the presence
of pheromone to express the potential value of an edge. The
value of an edge represents the transmission costs saving if
that edge is finally selected in the aggregating reconstruction
routing tree. Each ant’s route represents a potential solution
for its corresponding alternative node. When an ant passes by
an edge, it deposits pheromone on that edge. The more ants
an edge be passed by, the more pheromone the edge present,
which means the more it tend to be selected in the aggregating
reconstruction routing tree.

In order to reduce the computation costs, we make some
improvements based on the special features of our scenario.
Taking advantage of data center topology is given, we calculate
all the redundant shortest paths from every alternative node to
target node first, and then use these paths as the ants’ solutions
(routes) instead of iteratively randomly generating the ant’s
solutions. Under these improvements, our algorithm is able
to obtain an acceptable result with a significant saving on
computation time. Also, we use an improved Shortest Path
Faster (SPFA) algorithm for our scenario to calculate all the
redundant shortest paths from alternative nodes to target node.

After weighting, we continue with an advanced MPH algo-
rithm to calculate the final aggregating reconstruction routing
tree, see Algorithm 1. The basic idea of our advanced MPH
algorithm is, start the spanning tree T ′ from the target node
t as root, for each iteration, pick up that node from D which
closest to T ′ built so far, until T ′ spans k nodes out of D.

C. ADH Routing Algorithm for Degraded Read

The reconstruction routing for degraded read is even more
challenging because the target node is not given. The exciting
methods do not consider the choosing of target node. But our
experiments show that a carefully choosing of target node
may significantly save the transmission costs and even the
latency. Therefore, we use the strategy deriving from Average
Distance Heuristic (ADH) algorithm [14] [15] and propose
ADH Routing Algorithm for Degraded Read (ADH-DR).

First, we scale our improved SPFA to calculate all the
redundant shortest paths between every two nodes in D. Then,
instead of choosing the closest node to insert into the spanning
tree T ′ in MPH, we initialize D as a forest and choose two
sub-trees which have the lowest weighted distance to merger
together in every iteration. When T ′ spans k nodes out of D,
the aggregating reconstruction routing tree is created. After
this, target node selection is performed to select a node located

Algorithm 1: MPH Routing Algorithm for Node Recovery
Input: G = (V s, V c, E), n, k, target node t, alternative

node set D
Output: aggregating reconstruction routing tree T
R ← SPFA(D, t) //R is the redundant shortest paths set
from D to t;
for q ← 1 to |D| do

//for every node in D ;
Set up ant[q], move through all the paths in R that
between D[q] and t, insert the edge passed by in
phrmq;

end
for every edge(i,j) do

for q ← 1 to |D| do
if edge(i, j) ∈ phrmq;
Weight(i, j)++;

end
end
Weight(i, j) = |g + 1−Weight′(i, j)|;
T ′ ← t //Insert t into the initial spanning tree and set up;
while |T ′| < k + 1 do

for ci ∈ D + t− T ′ do
//for every node in D that has not been inserted
into the spanning tree;
Dist[i] ← weighted distance from node ci to T ′;
Path[i] ← lowest weighted path from node ci to
T ′;

end
Choose node ci such that Dist[i] is the lowest;
Insert ci and the nodes on Path[i] into the initial
spanning tree T ′;

end
T ← T ′;

in the center of the tree as root. The other parts use the similar
technologies as MPH-NR.

V. THEORETICAL ANALYSIS

In this section, we give a detailed analysis of performance
and costs of Aggrecode including reliability, transmission costs
saving, latency and computation overhead.

The reliability our design provides is based on the erasure
code scheme of the storage system. We can flexibly adjust the
parameters n and k of the (n, k) erasure code to achieve a
desired reliability. In other words, our Aggrecode design will
not have any negative influence on the reliability of the original
erasure coded storage system.

Now we analyze the expectative transmission costs saving.
Assuming in a (n, k) erasure coded storage system, the entire
transmission costs without Aggrecode are

C = C1 + C2 + · · ·+ Ck, (5)

where Cx is the transmission costs from the xth node spanned
by T to the target node. In our design, the basic strategy



is to span the closest node from the existing aggregating
reconstruction tree. When the tree spans a new node x, the
entire transmission costs of the tree increases by dx. So the
transmission costs with Aggrecode are

CA = C1 + (d2 + d3 + · · ·+ dk). (6)

Because of C1 is the closest node to the target node, trans-
mission costs of xth new spanning node can be descried as
follows:

Cx = C1 + ex, ex ≥ 0. (7)

Then the transmission costs without Aggrecode can be de-
scribed as:

C = C1 + (C1 + e2) + (C1 + e3) + · · ·+ (C1 + ek)

= k × C1 + (e2 + e3 + · · ·+ ek). (8)

Therefore the expectative transmission costs saving S is

S = 1− CA

C

= 1− C1 + (d2 + d3 + · · ·+ dk)

k × C1 + (e2 + e3 + · · ·+ ek)
. (9)

Based on equation 9 we can see:
(1) S increases as k increases. k expresses the reliability of the

system. Hence, our scheme has better performance when
in high-reliability-required systems.

(2) S increases as C1 increases. C1 indirectly reflects the scale
of the topology. So our scheme has better performance for
large scale systems.

The reconstruction latency is very important for degraded
read, but not for node recovery. Node recovery usually not
occurs right after the failures. Instead, it waits until the amount
of failed nodes in the system reach a preset upper limit or the
waiting time over a preset bound, and then recover the failed
nodes by batch to reduce overhead. Obviously, the latency
from reconstruction process is insignificant comparing to the
waiting time, which means the latency is not very critical in
node recovery. But the latency is critical for degraded read
since the clients are waiting for response online.

In aggregating reconstruction, the latency mainly depends
on the farthest participating node, in another word, the depth of
the reconstruction routing tree. The Stainer Tree algorithm has
a possibility of growing deeper for achieving minimized tree.
To trade off the transmission costs and latency in our Aggre-
code, in the weighting part, we find out the redundant shortest
paths to the target node, and increase the value of the edges
that belong to those paths. Another point may lead to latency
is the extra computation costs that introduced by Aggrecode,
which mainly comes from two parts, Aggregation Decoding
and aggregating reconstruction routing. In Aggregation Decod-
ing, all the decoding operations we perform can be reduced to
linear combinations and matrix inversions. From equation 2
we can see, comparing to general erasure coding schemes,
our Aggregation Decoding does not increase the amount of
operations. Furthermore, the Aggregation Decoding can be

performed in parallel, which may reduce the computation time
and avoid hot spot. Therefore, our design does not introduce
extra computation costs in Aggregation Decoding part.

For the computation costs of routing algorithm we do not
worry about the MPH-NR because (1) as we explained before,
latency is not very critical in node recovery; (2) coordinator
is new restarted node, which has no current jobs and can
afford full load computation for routing algorithm. Moreover,
the computation costs of ADH-DR are higher than MPH-
NR because of the target node selection part. So we mainly
analyze ADH-DR. We will show an evaluation result in the
next section.

Computation complexity is also very important here because
our design should fit the large scale systems. The Computation
complexity of MPH-NR is O(NM), N is the cluster scale,
M is the edges number. The Computation complexity of
ADH-DR is O(N3). Comparing to classic MPH and ADH
algorithm respectively, our two algorithms do not increase the
computation complexity.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance and overhead of
Aggrecode including transmission costs saving, approximation
ratio, latency, computation costs and scalability, and compare
it with existing solutions. We also evaluate Aggrecode on
different network topologies including Torus, Fat-tree, DCell
and BCube. All results in our experiments are averaged over
1000 runs.

For the most evaluations below we choose Torus-based
topology as the host topology for three reasons. First, Torus-
based topology is one of the most promising topology in future
data center design especially for large scale clusters due to its
high multiple paths, resilient in server failures and efficient
wiring. Second, Torus-based topology has a very successful
and mature prototype cluster design, Camcube [16] [17], that
expose the physical topology directly to the services. Camcube
support flexible physical topology based custom self-defining
routing service, which gives a natural interface to Aggrecode.
So the torus-based topology is most likely to be the first
beneficiary of Aggrecode in industrial circles. Third, torus-
based topology has a strong and stable geometrical regulation
when the server number in the cluster increases, which can
show the relationship between performance and system scale
more clearly. Moreover, we also evaluate Aggrecode on other
different network topologies.

A. Transmission Costs

Figure 3(a) compares the transmission costs saving of
MPH-NR with classic MPH and optimal algorithm in node
recovery when k increases from 4 to 12 in a 27 nodes cluster.
Apparently, optimal algorithm has the best performance but
cannot be solved in polynomial time; classic MPH Algorithm
is not very efficient in this scenario. Our MPH-NR performs
a dramatic efficiency grow than classic MPH with polynomial
time computation complexity and almost has the same per-
formance as optimal algorithm. The transmission costs saving
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Fig. 3: Transmission saving

increases with k because more participating nodes offer more
optional routing combinations during Aggregation Decoding.
Figure 3(b) illustrates the transmission costs with different
parity number, and our MPH-NR can save more transmission
costs when p is larger. Figure 3(c) shows the transmission costs
saving in degraded read. “Random” means randomly pick k
nodes as participating nodes and one node as target node, and
then build an optimal reconstruction route. The result shows
that our ADH-DR has the best performance.

In order to further demonstrate the superiority of Aggre-
code, we evaluate the approximation ratio in Figure 4. The
approximation ratio r here is obtained by:

r =
transmission costs of objective algorithm
transmission costs of optimal algorithm

(10)

From Figure 4(a) we can see, in node recovery, MPH-
NR’s approximation ratio is close to 1, which is significantly
better than classic MPH. Parameter k is related to the stor-
age overhead of the erasure coded storage system. When k
increases, the classic MPH has some performance gain due
to the rising possibility of choosing the right k participating
nodes out of k + p− 1 alternative nodes. However for MPH-
NR, because the participating nodes selection function has
already integrated in, no further gain can be obtained from
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the increasing of k. The slightly performance fall on MPH-NR
comes from the interference of other alternative nodes during
the weighting of MPH-NR, and it is marginal comparing to
the gained performance.

Figure 4(b) shows the approximation ratio in degraded read.
Obviously, ADH-DR has overwhelming performance gain
compare with other existing algorithms. The algorithm without
target node selection function has the worst performance.
Parameter p is the number of parity nodes, which is related to
the reliability of the erasure coded storage system. We notice
that the gap between ADH-DR and other two algorithms is
increasing when p increase, since the options for target node
choosing is growing, makes the effect of target node selection
in ADH-DR more significant.

B. Latency and Computation Costs

We simulate reconstruction on a Torus-based cluster with
64 nodes and 1Gb net work port. We evaluate the latency in
different network environments and the computation overhead.

First, we deploy proper background workload on the cluster
that average RTT(Round-Trip Time) is from 0.01 ms to 10ms
[18] [19]. We perform degraded read on 64MB fragment
data set with (6, 3) Erasure code. As shown in Table II,
when the workload is light, Aggrecode is not very efficient
comparing to existing solutions because the computation and
synchronization overhead take a higher proportion out of the
overall response time. But when the workload turns to heavy,
Aggrecode’s advantage becomes more significant. That is be-
cause Aggrecode saves transmission traffic, which reduces the
congestion on heavy workload links. Column “computation”
expresses the proportion of computation time of ADH-DR,



TABLE II: Average response time for degraded read

RTT(ms) Baseline(s) Aggrecode(s) Computation
0.01 1.142 1.215 4.42%
0.1 2.656 2.221 2.42%
1 25.463 20.916 0.26%
10 253.647 207.864 0.03%
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which is obtained from the ratio of ADH-DR execution time
and overall response time of degraded read. The result from
experiments demonstrates our analysis in section IV that the
computation costs are insignificant comparing to transmission
latency. Since the computation time is not raising with the
workload increase, the computation overhead is even more
insignificant in heavy workload network environment.

We try to find out which part of our algorithm contributes
most latency. Figure 5 shows the proportion of computation
overhead of different parts in ADH-DR. “ADH-DR” is the
overall computation time of the algorithm; “SPFA” represents
the redundant shortest paths calculation part; “TS” is the
time costs of the tree spanning part. Figure 5 illustrates that
the main contributor of computation costs is the redundant
shortest paths calculation by SPFA. Therefore, an alternative
improvement can be made by pre-executing SPFA and store
the redundant shortest paths on data nodes, which trades off
storage overhead for response time.

C. Scalability

Here we define scalability at two dimensions: the elasticity
of performance when the cluster scales out and the generality
that how our approach applies on different network topologies.

Figure 6(a) shows the transmission saving when cluster
scale out from 27 nodes to 1000 nodes. Basically, the per-
formance gain is stable between 40% and 50%. In order to
demonstrate the generality of Aggrecode, Figure 6(b) illus-
trates the performance in Fat-tree, DCell and BCube, all of
which are most promising data center topologies. We can see
that Aggrecode can broadly fit these topologies very well and
even has better performance than Torus.

VII. RELATED WORK

Erasure coded storage systems have been widely studied,
especially on reconstruction performance. Most of the existing
work focus on reducing the amount of data that take partic-
ipate in reconstruction. The intuitive think is to retrieval less
fragments. Pyramid code proposed by Huang et al. allows
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flexible reconstruction efficiency in the trade-off of storage
space [20]. LRC also proposed by Huang et al. exploits non-
uniform parity degrees, where some fragments retrieval less
participating parities in reconstruction than others, to optimize
the most occurred recovery cases in Windows Azure Storage
[5]. Duminuco et al. propose Hierarchical code, that organizes
the fragments as different groups hierarchically, and the parity
degrees for each group are different, which is more efficient
when reconstruction occurs on lower level groups [21]. On the
other hand, instead of retrievaling from fewer fragments, some
other solutions retrieval more fragments but less data from
each. Regenerating code introduces network coding to code the
data into smaller fragments and retrieval more fragments but
less data totally [22] [23]. Huang et al. exploit Regenerating
code’s strategy on Hierarchical code to reduce the amount of
participating data [24].

Another strategy arises recently is to improve the recon-
struction process base on the practical system behaviors and
I/O patterns. Khan et al. propose Rotated Reed-Solomon code
for RAID in cloud file systems, which consider the read pat-
terns and make the parities split across adjacent rows to reduce
the unnecessary penalty during most reconstruction cases [25].
Li et al. proposes a cooperative pipelined regeneration process
that reconstructs multiple data losses cooperatively [26]. A
single pipelined regeneration process is also proposed for a
single failure for Minimum-Storage Regenerating codes [27].

The interesting of recent work is moving from reducing
the participating data by theoretical study to optimizing re-
construction process considering practical system behaviors.
However, so far, none of the existing work consider the



practical network topology for reconstruction performance.
Therefore, to the best of our knowledge, our work is the first
to use practical network topology in erasure-coded storage
system data reconstruction.

VIII. CONCLUSION

We propose Aggrecode, an erasure coded storage system
reconstruction approach that provides efficient data recovery
with low transmission costs. We discover Aggregation De-
coding that performs decoding in disperse and parallel to
reduce overall recovery data transmitting. Aggrecode considers
the practical network topology to construct efficient route
for best exploiting Aggregation Decoding. We formulate the
Aggregating Reconstruction Tree problem and propose two
ant-colony-based heuristic routing algorithms MPH-NR and
ADH-DR. Aggrecode can be deployed on most data center
network topologies such as Trous, Fat-tree, DCell and BCube,
and achieve a significant transmission costs saving.
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