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ABSTRACT
Data encoding methods have been proposed to alleviate the high
write energy and limited write endurance disadvantages of Non-
Volatile Memories (NVMs). Encoding methods are proved to be
effective through theoretical analysis. Under the data patterns of
workloads, existing encoding methods could become inefficient.
We observe that the new cache line and the old cache line have
many redundant (or unmodified) words. This makes the utilization
ratio of the tag bits of data encoding methods become very low,
and the efficiency of data encoding method decreases. To fully
exploit the tag bits to reduce the bit flips of NVMs, we propose
REdundant word Aware Data encoding (READ). The key idea of
READ is to share the tag bits among all the words of the cache line
and dynamically assign the tag bits to the modified words. The high
utilization ratio of the tag bits in READ leads to heavy bit flips of the
tag bits. To reduce the bit flips of the tag bits in READ, we further
propose Sequential flips Aware Encoding (SAE). SAE is designed
based on the observation that many sequential bits of the new data
and the old data are opposite. For those writes, the bit flips of the
tag bits will increase with the number of tag bits. SAE dynamically
selects the encoding granularity which causes the minimum bit flips
instead of using the minimum encoding granularity. Experimental
results show that our schemes can reduce the energy consumption
by 20.3%, decrease the bit flips by 25.0%, and improve the lifetime
by 52.1%.

1 INTRODUCTION
The development of big data and in-memory computing has raised
the requirement of large capacity of main memory. Typical capacity
of DRAM chip is only 8Gb, 16Gb or 32Gb because the feature size of
traditional DRAMhas reached its limit. Besides, the dynamic energy
of DRAM caused by the refresh operation increases significantly
when the feature size reduces. Emerging non-volatile memories
such as Phase Change Memory (PCM) and Resistive RAM (RRAM),
which have the advantages of high density and non-volatility [2,
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14, 17, 26], can compensate the shortcomings of DRAM and are
promising to replace DRAM.

The design of NVM-based main memory also faces challenges.
Main memory necessarily has unlimited write endurance (> 1016)
to tolerate the heavywrites. However, thewrite endurance of emerg-
ing NVMs is limited (< 1010) [14, 19, 25]. The NVM cells may get
stuck at “0” or “1” [16] and the main memory system will fail after
certain cells endure the number of 1010 writes. NVMs also suffer
from high write energy [8]. They will consume significant write
energy if they are used as main memory directly. The limited write
endurance and high write energy of NVMs are main obstacles and
must be tackled if we want to build large and reliable main memory
with NVMs.

Data encoding techniques have been proposed to alleviate the
disadvantages of high write energy and limited write endurance
of NVMs. Encoding methods transform the data into the vectors
which have the minimum bit flips (i.e., the writes of “1” → “0” and
“0”→ “1”). Flip-N-Write [4, 7, 9, 11] reduces the bit flips by flipping
the new data. The new data are divided into 8-bit, 16-bit or 32-bit
block. Each block has a tag bit to indicate whether the bits should be
flipped or not. Other encoding methods [6, 18, 21] map the data bits
into a set of vectors and select the vector which has the minimum
bit flips. Theoretical analysis shows that data encoding methods
can significantly reduce the bit flips, and they can reduce more
bit flips with smaller encoding granularity (i.e., fewer data bits are
given one tag bit) [4, 6].

The efficiency of encoding schemes are verified in theory with
random input data. However, encoding methods may become inef-
ficient when considering the data patterns and characteristics of
workloads. Existing works [2, 22] show that the dirty cache lines
written into the main memory have a large number of clean (or
unmodified) words. The tag bits assigned for the clean words are ac-
tually unused because the clean words need not to be encoded. Our
experimental results show that 42.8% of the tag bits are wasted on
average. The detailed is discussed in Section 3.1.1. To fully exploit
the tag bits for reducing bit flips, we propose to adaptively assign
the tag bits to the dirty (or modified) words only. The encoding
granularity reduces and the bit flips/write energy decrease due to
the fine-grained encoding. The high utilization ratio of READ also
causes heavy bit flips of the tag bits. We further propose Sequential
flips Aware Encoding (SAE) to reduce bit flips of the tag bits. SAE
is designed based on the observation that sometimes each bit of
the new data is opposite to the corresponding bit of the old data,
e.g., the new data are “0xFFFF” and the old data are “0x0000”. There
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are 16 “Sequential flips” when writing the new data. Theoretical
analysis of encoding methods shows that smaller encoding granu-
larity can reduce more bit flips. However, in the case of “Sequential
flips”, smaller encoding granularity leads to more bit flips of tag
bits. SAE calculates the bit flips of different encoding granulari-
ties and dynamically select the encoding granularity which causes
the minimum bit flips. The main contributions of this work are as
follows:

• We observe that a large number of clean words exist in the
dirty cache lines, and this leads to low utilization ratio of
the tag bits and inefficiency of encoding methods. To fully
exploit the tag bits for reducing bit flips, we propose to share
the tag bits among all the words of the cache line and assign
the tag bits to the dirty words only.

• We observe that main memory could be written into the
opposite data, and smaller encoding granularity results in
more bit flips of the tag bits under the circumstance. To
reduce the bit flips of the tag bits, we propose to dynamically
select the encoding granularity which causes the minimum
bit flips.

• Experimental results show that our schemes can reduce the
energy consumption by 20.3%, decrease the bit flips by 25.0%,
and improve the lifetime by 52.1%.

The rest of this paper is organized as follows. Section 2 describes
the background and related Work. Section 3 introduces the ob-
servations and techniques proposed. Section 4 and 5 present the
experiments and conclusion.

2 BACKGROUND AND RELATEDWORK
2.1 Background
Emerging Non-Volatile Memories (NVMs) such as Phase Change
Memory (PCM) and Resistive RAM (RRAM) have advantages in
low leakage power, non-volatility and high density [8, 20]. They
are promising replacements of DRAM and can be used to build
large-size main memory. However, they also face the challenges of
high write energy and limited write endurance. The write energy
of PCM and RRAM are ten times more than DRAM [4, 22]. NVMs
will consume significant write energy if they are used without
optimization. Besides, the write endurance of NVM is 108 ∼ 1010,
which is six orders of magnitude fewer than DRAM. The NVM
cells may fail after they endure a certain amount of writes, and
the failure may result in the breakdown of the computer system
[14, 16].

2.2 Related Work
Data encoding techniques have been proposed to alleviate the lim-
ited lifetime and high write energy problems of NVMs. Data Com-
parison Write (DCW) [23] reads the old data out and eliminates the
writes to the redundant bits. Recently manufactured NVM [10] even
integrates the DCW function into the chip. Flip-N-Write [4] gives
every N data bits one tag bit. If the number of bit flips of writing
the N -bit data with its tag bit exceeds (N + 1)/2, the data bits will
be flipped and the tag bit will be set. CAFO [9] rearranges each
N -bit data into an n ×m matrix, where N = n ×m. Flip-N-Write is
applied in all the rows and columns. FlipMin [6] and Pres-Random

Word 7 Word 6 Word 5 Word 4Tag Tag Tag Tag Word 3Tag Word 2Tag Word 1Tag Word 0Tag

64-bit4 Clean Dirty

Unused

Figure 1: The dirty cache line has four clean words and half
of the tag bits are unused.
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Figure 2: The number of dirty words and the utilization ra-
tios of the tag bits in different benchmarks.

Encoding [18] are designed based on coset coding. FlipMin [6] maps
the data bits into a set of vectors and selects the vector which causes
the minimum bit flips. Pres-Random Encoding [18] also maps the
data bits into vectors, but it can increase the randomness of the
vectors generated. Other works [7, 11, 21] combine Flip-N-Write
or coset coding with compression and access locality. AFNW [11]
compresses the words first, and then adapts the tag bits to the
compressed words. Captopril [7] can reduce the bit flips of the hot
locations. COE [21] stores the tag bits of the data encoding methods
in the space saved by compression. The encoding methods are all
theoretically efficient with random data. The accesses of workloads
exhibit many characteristics. Considering the features of the data,
existing encoding methods become inefficient.

3 OBSERVATIONS AND TECHNIQUES
We observe that the utilization ratio of the tag bits is low due
to the large number of clean words. To fully exploit the tag bits
for reducing bit flips, we propose REdundant word Aware Data
encoding (READ). Since READ leads to increased bit flips of the
tag bits, we also propose Sequential flips Aware Encoding (SAE) to
reduce the bit flips of the tag bits.

3.1 Improving the utilization ratio of tag bits
In this subsection, we propose READ based on the observation that
the utilization ratio of the tag bits is very low.

3.1.1 Observation. Prior works [2, 22] have already shown that a
large number of words in the dirty cache lines are clean. A large
number of clean words are generated owing to two reasons. On
the one hand, the write granularity of the CPU is word. Even if
only one word of the cache line is written, the entire cache line
will be marked as dirty and evicted into the next-level memory.
On the other hand, CPU may write the same data. For example,
the 64-bit data “0x0000000000000000” are very common and may
be written twice. Although the same data are written, the cache
line will be marked as dirty. The clean words result in the low
utilization ratio of the tag bits. If we give every 64-bit word four
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tag bits, the clean words need not to be encoded and the tag bits
will actually be wasted in the clean words. For a dirty cache line
with four clean words, only half of the tag bits are actually used, as
shown in Figure 1. We also analyze the utilization ratios of the tag
bits in the benchmarks selected from SPEC CPU 2006 [5] through
experiments. The word size and cache line size are 64 and 512 bits,
respectively. The number of dirty words and utilization ratios of
the tag bits in different benchmarks are shown in Figure 2. In some
benchmarks such as bwaves and sjeng, the cache lines with fewer
dirty words dominate all the cache lines. Therefore, the utilization
ratios of the tag bits in the two benchmarks are very low. About
60% of the cache lines in bwaves have zero modified word and
the utilization ratio of the tag bits in bwaves is only 8.0%. In the
xalancbmk benchmark, 90% of all the cache lines have seven or
eight modified words and the utilization ratio of the tag bits in
xalancbmk is the highest (93.0%). The average utilization ratio of
the tag bits in the benchmarks is 57.2%. About half of the tag bits
are unused.

3.1.2 REdundant word Aware Data encoding. To fully exploit the
tag bits for reducing the bit flips and write energy, we propose
REdundant word Aware Data encoding (READ). In the prior encod-
ing techniques [4, 6, 9], each word has a constant N -bit tag. The
tag bits of the clean words are wasted and cannot be used by the
dirty words. Different from them, we globally assign the tag bits to
the entire cache line. If the word of the cache line is clean, no tag
bit will be assigned. Meanwhile, the saved tag bits are assigned to
the dirty words. Through sharing the tag bits among all the words
and assigning the tag bits to the dirty words only, the dirty words
can have smaller encoding granularity. On the other hand, data
encoding techniques [4, 6, 21] reduce more bit flips with smaller
encoding granularity. Figure 3 shows the relationship between the
encoding granularity and bit flip reduction in Flip-N-Write. The
bit flip reduction of every four data bits one tag bit is 21.9%. The
reduction decreases to 14.6% if every sixteen data bits are given
one tag bit. READ can reduce the encoding granularity, thereby
reducing more bit flips.

Figure 4 illustrates an example of READ. The total number of
bits of the tag bits is 32. We assume that four of the eight words in
the cache line are dirty. The eight words of a cache line share the
32-bit tag in READ. For the clean words, READ does not assign tag
bits to them because they need not to be encoded. Each of the four
dirty words now has 8-bit tag. One tag bit indicates whether the
8-bit data needs to be flipped. The encoding granularity decreases
from 16 to 8, and therefore the efficiency of the encoding increases.
To indicate whether the word is clean or dirty, we give each word
one dirty flag.
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Figure 3: The relationship between the encoding granularity
and bit flip reduction.
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Figure 4: REdundant word Aware Encoding (READ) globally
assigns the tag bits to the dirty words.

3.2 Reducing bit flips of the tag bits
The high utilization ratio of tag bits in READ leads to serious bit
flips of the tag bits. The bit flips of the tag bits increase by 145.7%
through our experiments. The detailed experimental results are
shown in Section 4.2.3. Based on the observation of “Sequential
flips”, we propose Sequential flips Aware Encoding (SAE) to reduce
the bit flips of the tag bits.

3.2.1 Observation. Theoretical analysis shows that data encoding
methods can reduce more bit flips with more capacity overhead. As
shown in Figure 3, Flip-N-Write reduces more bit flips with smaller
encoding granularity. Considering the data patterns of workloads,
smaller encoding granularity may lead to more bit flips of the tag
bits rather than reduce the bit flips. Both the 32-bit data “0x00000000”
and “0xFFFFFFFF” are frequent values [1, 12]. If the new data and
the old data are 32-bit “0xFFFFFFFF” and 32-bit “0x00000000” re-
spectively, each bit of the new data and the old data will exactly
be the opposite. There are 32 sequential bit flips when writing the
new data. Since the new data and old data are the opposite, actually
only one tag bit is required to indicate that the all new data bits are
flipped. If we give one tag bit for the 32-bit new data, the tag bit will
incur one additional bit flip. If more tag bits are used, the bit flips of
the tag bits will be higher and the total number of the bit flips will
increase rather than decrease. Figure 5 illustrates an example which
shows the bit flips of the tag bits can be more serious with smaller
encoding granularity. If the number of the tag bits is sixteen (every
four data bits have one tag bit), the bit flips of the data bits and
the tag bits will be zero and sixteen respectively. For the sequential
flips, the total number of bit flips is subject to the tag bits, and fewer
tag bits can reduce more bit flips. We evaluate the frequency of
sequential flips at the granularity of byte. About 11.7% of the writes
are sequential flips in the “sjeng” benchmark.

Old data
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0x0000

16-bit

0x0000000000000000

0xFFFFFFFFFFFFFFFF New data

0xFFFF0x0000000000000000 Encoded

0x00

0xFF

8-bit

0x0

1-bit

0x1

16 bit flips 8 bit flips 1 bit flip0 bit flip

Tag bits

Option 1 Option 2 Option 3

Figure 5: Smaller encoding granularity leads tomore bit flips
in the case of “Sequential flips”.

3.2.2 Sequential flips Aware Encoding. To reduce the bit flips of the
tag bits, we propose Sequential flips Aware Encoding (SAE). SAE
dynamically selects the encoding granularity which leads to the
minimum bit flips, instead of fixedly using the most fine-grained
encoding. We use a 2-bit granularity flag to indicate the encoding
granularity. To reduce the capacity overhead of the granularity
flag, the 2-bit granularity flag is used for the entire cache line. We
generate four alternative encoding granularities by setting the value
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of the granularity flag. Initially, each word has an N -bit tag and
the granularity flag is “00”. We reduce the number of the tag bits to
N /2, N /4 or N /8when the granularity flag is “01”, “10” or “11”. The
new cache line is encoded with the four encoding granularities in
parallel, as described in Figure 6. After calculating the bit flips of the
four different choices, the encoding granularity which causes the
minimum bit flips is selected. Due to the selective encoding, SAE
can reduce the total number of bit flips. At the same time, the bit
flips of the tag bits reduce due to the coarse-grained encoding. Note
that SAE aims to reduce the bit flips rather than balance the wear
rate, since many efficient wear-leveling schemes [14, 15, 19, 24]
have already been proposed.

N tag bits per 

word

N/2 tag bits per 

word

N/4 tag bits per 

word

N/8 tag bits per 

word

Granularity 

flag=00

Granularity 

flag=01

Granularity 

flag=10

Granularity 

flag=11

Bitflips3 Bitflips2 Bitflips1 Bitflips0

Calculate the number of bit flips

Encoded cache line

Select the granularity which causes the minimum bit flips

Figure 6: Sequential flips Aware Encoding (SAE) dynami-
cally selects the encoding granularity which leads to the
minimum bit flips.

3.3 Putting together
READ and SAE aim to reduce the total number of bit flips and the
bit flips of the tag bits respectively. The two proposed techniques
can work together. For the write operations, we first use the READ
scheme to improve the utilization ratio of the tag bits. Then, we
use SAE to reduce the bit flips of the tag bits. An example is shown
in Figure 7. We give each word one dirty flag, and the cache line
has an 8-bit dirty flag. To find the dirty words, we read the old data
out and compare the old data with the new data at the granularity
of word. The ith bit of the dirty flag is set if the ith word is dirty.
We use M and N to represent the number of the dirty words and
the number of the tag bits. The minimum encoding granularity is
everyM × 64/N data bits one tag bit. We generate the other three
options of the encoding granularity according to the granularity
flag. The encoding granularity can be obtained according to Table
1. Then, we calculate the bit flips of the four different encoding
schemes. The encoded cache line which has the minimum bit flips
is selected.

Table 1: Encoding granularities of READ+SAE

Granularity flag Tag bits (per
cache line)

Encoding
granularity

00 N 64 ×M/N
01 N/2 128 ×M/N
10 N/4 256 ×M/N
11 N/8 512 ×M/N

For the read operations, the encoded cache line is decoded be-
fore forwarding. An example of the decoding process is illustrated
in Figure 8. We first identify the dirty words of the cache line ac-
cording to the dirty flag. The encoding granularity is determined
according to the granularity flag and the number of dirty words. In
the example shown in Figure 8, the number of the tag bits is “32”

Word 7 Word 6 Word 5

Word 4

Word 3 Word 2

Word 1 Word 0

8 tag bits per word 4 tag bits per word

Granularity=00 Granularity=01

Bitflips3 Bitflips2

Calculate the number of bit flips respectively

Encoded cache line

Tag 10010011 Granularity

64-bit 32-bit 8-bit 2-bit

Word 7

Dirty flag

Word 4 Word 1 Word 0

Read and compare to find the dirty words

Assign the tag bits to the dirty words

10010011 Granularity

……

Tag
Step 1: READ

Step 2: SAE

Select and encode the cache line

Figure 7: Encoding process of READ+SAE.

and the granularity flag is “11”. Four (32/8) tag bits are used. The
dirty flag is “10010011”. Therefore, four words (i.e., Word 7, Word
4, Word 1 and Word 0) need to be decoded by Flip-N-Write. The
encoding granularity is every 64 data bits 1 tag bit according to
Table 1. We use the decoding process of Flip-N-Write to decode the
dirty words. After decoding, the decoded words are merged with
the clean words.

Word 7 Word 6 Word 5 Word 3 Word 2 Tag 10010011 11

64-bit 32-bit 8-bit 2-bit

Dirty flag

Word 4 Word 1 Word 0

Separate the dirty words and clean words

Word 6 Word 5 Word 3 Word 2

Decoding of Flip-N-Write

Word 7 Word 4 Word 1 Word 0

Merge the decoded words 

and the clean words

Granularity flag

Word 7 Word 4 Word 1 Word 0 Tag Word 6 Word 5 Word 3 Word 2

Word 7 Word 4 Word 1 Word 0

Dirty

Clean

Figure 8: Decoding process of READ+SAE.

3.4 Overhead
We discuss the overhead of our schemes in this subsection.

3.4.1 Capacity overhead. The 512-bit cache line shares the 32-bit
encoding tag. Besides, we have an 8-bit dirty flag to indicate whether
the word is clean or not. Another 2-bit granularity flag is used to
indicate the percentage of the tag bits used. The total number of
bits of the additional space is 32+ 8+ 2 = 42bits per cache line. The
estimated capacity overhead is 42/512=8.2%.

3.4.2 Latency/logic overhead. The decoding and encoding pro-
cesses of our schemes incur latency and logic overhead. The de-
coding process of our scheme is similar to Flip-N-Write, and the
latency/logic overhead of decoding is negligible. To estimate the
encoding overhead, we use Verilog hardware description language
to implement the encoding process. Then, we synthesize the logic
in Synopsys Design Compiler based on 90nm technology size. The
estimated logic overhead is about 171K gates. Assuming that the
size of a logic gate is the same as an NVM cell, the logic overhead
is only 0.004% of a 4GB main memory. The energy consumption of
encoding is 81.65p J . Since the write energy of a PCM cell is about
20p J [8], the energy consumption of encoding is less than 1% of
the write energy of a cache line. We scale the encoding latency
down to 22nm technology size. The estimated encoding latency is
3.47ns . The system performance is mainly determined by the read
performance. Since our schemes have negligible decoding latency
and hardly increase the read latency, the performance degradation
is negligible.
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4 EVALUATION
4.1 Experimental configuration
We use the cycle-accurate system simulator Gem5 [3] to evaluate
the efficiency of our schemes. For the simulation of main memory,
we use the NVMain simulator [13], which is capable of simulating
emerging NVMs at the architectural level. We also modify the main
memory model of NVMain to support our schemes. The system
configuration is shown in Table 2. The four-core system consists
of three levels of caches. The main memory is based on 4GB PCM.
Twelve memory-intensive benchmarks selected from SPEC CPU
2006 [5] are used in our experiments. To verify the efficiency of our
schemes, we evaluate the following seven different schemes.

• DCW [23]: DCW reads the old data and compares them
with the new data before writing. Only the modified bits are
written.

• Flip-N-Write [4]: Every eight data bits have one tag bit. The
capacity overhead of Flip-N-Write is 12.5%.

• AFNW [11]: The new data are compressed before writing.
The tag bits are assigned to the compressed data. We give
each 64-bit word four tag bits.

• COEF [21]: The space saved by compression are exploited
to store the tag bits of data encoding methods. The capacity
overhead is 0.2%.

• CAFO [9]: The 512-bit cache line is rearranged into a 32× 16
matrix. Both rows and columns of each matrix have one tag
bit. The capacity overhead of CAFO is 9.4% (48/512).

• READ: The 512-bit cache line shares 32-bit tag. The 32-bit
tag is assigned only to the dirty words. The cache line has
8-bit dirty flag. The capacity overhead is 7.8%.

• READ+SAE: Besides the working of READ, the encoding
granularity is adaptive and the granularity which yields the
minimum bit flips is used to encode the data. The capacity
overhead is 8.2%.

Table 2: System configuration

Cores 4-Core, 3.2GHz, out-of-order

L1 I/D cache private, 32KB/core, 2-way, 2-cycle latency
L2 Cache private, 1MB/core, 8-way, 20-cycle latency
L3 Cache shared, 16MB, 16-way, 50-cycle latency

Memory Organization 4GB PCM, Read 100ns, Write 150ns

4.2 Experimental results
The seven different schemes are evaluated in terms of the total
number of bit flips, energy consumption, bit flips of the tag bits and
lifetime. DCW is used as the baseline.

4.2.1 Total number of bit flips. The calculation of bit flips includes
the flips of the data bits, tag bits and other additional flags (e.g.,
compression tag of AFNW, dirty flag of READ and granularity flag
of SAE). The bit flips comparison of the seven different schemes
is shown in Figure 9. Compared with the baseline (DCW), Flip-N-
Write, AFNW, COEF, CAFO, READ and READ+SAE can reduce the
bit flips by 15.1%, 5.1%, 12.5%, 17.8%, 23.2% and 25.0% respectively.
Experimental results confirm that our schemes are the most effi-
cient among all the seven schemes. READ can fully exploit the tag
bits to encode the cache line, and therefore READ reduces 9.9%

more bit flips than Flip-N-Write. READ+SAE reduces more bit flips
than READ, because READ+SAE generates four different encoding
choices and selects the encoding granularity which leads to the
minimum bit flips. AFNW is less efficient than FNW because com-
pression results in more bit flips than DCW. COEF exploits both
Flip-N-Write and FlipMin to encode the compressed and gets the
similar result to Flip-N-Write. CAFO is more efficient than Flip-N-
Write because it encodes both the rows and columns of the cache
lines.
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Figure 9: Comparison of bit flips.

4.2.2 Energy consumption. The energy consumption mainly in-
cludes the read energy andwrite energy of data bits, tag bits and flag
bits. The encoding energy consumption is also considered in READ
and READ+SAE. AFNW, COEF, CAFO, READ and READ+SAE can
reduce the energy consumption by 12.4%, 3.6%, 9.2%, 16.6%, 19.2%
and 20.3% compared with DCW, as described in Figure 10. The
reduction of energy consumption exhibits the same tendency as bit
flips because the write energy (caused by bit flips) dominates the
total energy consumption. The energy consumption of other opera-
tions such as reads is the same in all the seven schemes. Hence, the
reduction of energy consumption is less than the reduction of bit
flips. READ and READ+SAE reduce the most energy consumption
among all the schemes due to their efficiency in reducing bit flips.
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Figure 10: Comparison of energy consumption.

4.2.3 Bit flips of the tag bits. Figure 11 illustrates the bit flips of
the tag bits of Flip-N-Write, AFNW, CAFO, READ and READ+SAE.
DCW has no tag bit and COEF only uses 1-bit tag. Therefore, DCW
and COEF are not shown in the figure. The bit flips of tag bits of
AFNW, CAFO, READ and READ+SAE increases by 23.4%, -32.4%,
145.7% and 113.9% compared with Flip-N-Write. All the tag bits are
used to encode the cache line in READ, and therefore the number
of the bit flips of the tag bits is the largest. Compared with READ,
READ+SAE can reduce the bit flips of the tag bits by 21.8%. The
reason is SAE dynamically selects the granularity which causes the
minimum bit flips instead of always using all the tag bits. Although
the bit flips of the tag bits increase significantly, the total number
of bit flips is reduced, and we can use the existing wear-leveling
techniques such as Security Refresh [15], Start-Gap [14] and HWL
[24] to balance the wear rate.
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Figure 11: Comparison of the bit flips of the tag bits.

4.2.4 Lifetime. The total number of bit flips that the main memory
can endure is limited. Our schemes can reduce the bit flips, and thus
the lifetime is improved. Although different cells may suffer from
non-uniform writes, wear-leveling techniques [14, 15, 19, 24] can
balance the wear rate. For example, HWL [24] can obtain nearly
the same lifetime as perfect wear leveling. We assume that wear-
leveling techniques are applied, and the lifetime improvements are
proportional to the bit flip reduction. The lifetime improvements
of Flip-N-Write, AFNW, COEF, CAFO, READ and READ+SAE com-
pared with DCW are 34.3%, 15.3%, 17.9%, 35.1%, 46.2% and 52.1%, as
shown in Figure 12. The improvement of READ+SAE is the most
since its bit flip reduction is the most.
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Figure 12: Comparison of lifetime.

5 CONCLUSION
Emerging NVMs have disadvantages of limited write endurance and
high write energy. We observe that a large number of words in dirty
cache lines are clean, and the new data and old data are opposite in
some cases. These characteristics lead to the low utilization ratio
and increased bit flips of the tag bits. To improve the utilization
of tag bits, we propose READ to share the tag bits among all the
words of the cache line and assign the tag bits to the modified
words. To reduce the bit flips of tag bits, we propose SAE, which
selects the encoding granularity which causes the minimum bit
flips. Experimental results show that our schemes can reduce the
energy consumption by 20.3%, improve the lifetime by 52.1% and
decrease the bit flips by 25.0%.

ACKNOWLEDGMENTS
This work was supported in part by the National Natural Science
Foundation of China under Grant 61821003, Grant 61832007, Grant
61772222, Grant U1705261 and Grant 61772212, in part by the Na-
tional High Technology Research and Development Program under
Grant 2015AA015301, and in part by the Shenzhen Research Fund-
ing of Science and Technology under Grant JCYJ20170307172447622.
This work was also supported by Key Laboratory of Information
Storage System, Ministry of Education, China.

REFERENCES
[1] Angelos Arelakis, Fredrik Dahlgren, and Per Stenstrom. 2015. HyComp: A Hybrid

Cache Compression Method for Selection of Data-type-specific Compression
Methods. In Proceedings of MICRO (MICRO-48). ACM, New York, NY, USA, 38–49.

[2] Mohammad Arjomand, Mahmut T Kandemir, Anand Sivasubramaniam, and
Chita R Das. 2016. Boosting access parallelism to PCM-based main memory. In
Proceedings of ISCA. 695–706.

[3] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH Computer Architecture
News 39, 2 (2011), 1–7.

[4] Sangyeun Cho and Hyunjin Lee. 2009. Flip-N-Write: A simple deterministic tech-
nique to improve PRAMwrite performance, energy and endurance. In Proceedings
of MICRO. IEEE, 347–357.

[5] John L Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News 34, 4 (2006), 1–17.

[6] Adam N Jacobvitz, Robert Calderbank, and Daniel J Sorin. 2013. Coset coding to
extend the lifetime of memory. In Proceedings of HPCA. IEEE, 222–233.

[7] Majid Jalili and Hamid Sarbazi-Azad. 2016. Captopril: Reducing the pressure of
bit flips on hot locations in non-volatile main memories. In Proceedings of DATE.
IEEE, 1116–1119.

[8] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting
Phase Change Memory As a Scalable Dram Alternative. In Proceedings of ISCA.

[9] Rakan Maddah, Seyed Mohammad Seyedzadeh, and Rami Melhem. 2015. CAFO:
Cost aware flip optimization for asymmetric memories. In Proceedings of HPCA.
IEEE, 320–330.

[10] H. Noguchi et al. 2016. 7.2 4Mb STT-MRAM-based cache with memory-access-
aware power optimization and write-verify-write / read-modify-write scheme.
In Proceedings of ISSCC.

[11] Poovaiah M Palangappa and Kartik Mohanram. 2015. Flip-Mirror-Rotate: An
architecture for bit-write reduction and wear leveling in non-volatile memories.
In Proceedings of GLSVLSI. ACM, 221–224.

[12] Poovaiah M. Palangappa and Kartik Mohanram. 2017. CompEx++: Compression-
Expansion Coding for Energy, Latency, and Lifetime Improvements in MLC/TLC
NVMs. ACM Trans. Archit. Code Optim. 14, 1 (April 2017).

[13] Matthew Poremba, Tao Zhang, and Yuan Xie. 2015. Nvmain 2.0: A user-friendly
memory simulator to model (non-) volatile memory systems. IEEE Computer
Architecture Letters 14, 2 (2015), 140–143.

[14] Moinuddin K Qureshi, John Karidis, Michele Franceschini, Vijayalakshmi Srini-
vasan, Luis Lastras, and Bulent Abali. 2009. Enhancing lifetime and security of
PCM-based main memory with start-gap wear leveling. In Proceedings of MICRO.
ACM, 14–23.

[15] Nak Hee Seong, Dong Hyuk Woo, and Hsien-Hsin S. Lee. 2010. Security Refresh:
Prevent Malicious Wear-out and Increase Durability for Phase-change Memory
with Dynamically Randomized Address Mapping. In Proceedings of ISCA (ISCA
’10). 383–394.

[16] Nak Hee Seong, Dong Hyuk Woo, Vijayalakshmi Srinivasan, Jude A. Rivers, and
Hsien-Hsin S. Lee. 2010. SAFER: Stuck-At-Fault Error Recovery for Memories. In
Proceedings of MICRO. 115–124.

[17] S. Seyedzadeh, A. Jones, and R. Melhem. 2018. Enabling Fine-Grain Restricted
Coset Coding Through Word-Level Compression for PCM. In Proceedings of
HPCA. 350–361.

[18] Seyed Mohammad Seyedzadeh, Rakan Maddah, Alex Jones, and Rami Melhem.
2015. PRES: Pseudo-random Encoding Scheme to Increase the Bit Flip Reduction
in the Memory. In Proceedings of DAC. 23:1–23:6.

[19] Wen Wen, Youtao Zhang, and Jun Yang. 2018. Wear Leveling for Crossbar
Resistive Memory. In Proceedings of DAC (DAC ’18). 58:1–58:6.

[20] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang, S. Yu, and Y.
Xie. 2015. Overcoming the challenges of crossbar resistive memory architectures.
In Proceedings of HPCA. 476–488.

[21] J. Xu, D. Feng, Y. Hua, W. Tong, J. Liu, and C. Li. 2018. Extending the lifetime of
NVMs with compression. In Proceedings of DATE. 1604–1609.

[22] J. Xu, D. Feng, Y. Hua, W. Tong, J. Liu, C. Li, and Z. Li. 2018. An efficient PCM-
based main memory system via exploiting fine-grained dirtiness of cachelines.
In Proceedings of DATE. 1616–1621.

[23] Byung-Do Yang, Jae-Eun Lee, Jang-Su Kim, Junghyun Cho, Seung-Yun Lee, and
Byoung-Gon Yu. 2007. A low power phase-change random access memory using
a data-comparison write scheme. In Proceedings of ISCAS. IEEE, 3014–3017.

[24] Vinson Young, Prashant J. Nair, and Moinuddin K. Qureshi. 2015. DEUCE: Write-
Efficient Encryption for Non-Volatile Memories. In Proceedings of ASPLOS (ASP-
LOS ’15).

[25] L. Zhang, B. Neely, D. Franklin, D. Strukov, Y. Xie, and F. T. Chong. 2016. Mellow
Writes: Extending Lifetime in Resistive Memories through Selective Slow Write
Backs. In Proceedings of ISCA. 519–531.

[26] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. 2009. A durable and energy
efficient main memory using phase change memory technology. In Proceedings
of ISCA. ACM, 14–23.


