
Reducing Bit Writes in Non-volatile Main Memory
by Similarity-aware Compression

Zhangyu Chen, Yu Hua, Pengfei Zuo, Yuanyuan Sun, Yuncheng Guo
Huazhong University of Science and Technology

Corresponding Author: Yu Hua (csyhua@hust.edu.cn)

Abstract—Various applications use image bitmaps (data con-
taining pixels) in main memory for fast accesses, thereby leading
to lots of memory consumption. Unlike legacy DRAM, non-
volatile memories (NVMs) have larger capacity. However, NVM
writes consume higher energy and latency compared with reads.
Existing data compression schemes leverage precise general-
purpose data patterns or precision scaling to reduce data sizes,
which suffer from limited compression performance for bitmaps
due to large variance or serious quality loss. By exploiting the
pixel-level similarity due to the analogous contents in adjacent
pixels, we propose SimCom, an approximate Similarity-aware
Compression scheme, to compress the write accesses to bitmaps
in NVMs, thus efficiently improving the memory performance
for image/video applications. SimCom reduces the data size by
compressing data into base words and runs. The storage costs for
small runs are further mitigated by reusing the least significant
bits of base words. The adaptive compression scheme handles
various data formats without user annotations on data types.
Our experimental results with real-world image/video workloads
demonstrate the efficacy and efficiency of SimCom.

I. INTRODUCTION

Various applications (e.g., image/video processing, com-
puter vision, and machine learning) operate on pixels and
require images to be stored as bitmaps in main memory for
fast accesses [1], which demand a large amount of memo-
ry in DRAM. Compressing bitmaps via conventional image
compression algorithms (e.g., JPEG) is not applicable, since
these image-based applications need to access raw images
for computation. Compressed images are still required to be
restored into bitmaps in memory for application uses.

Non-volatile memories (NVMs), such as PCM and ReRAM,
offer high density with near-zero leakage power and are ideal
for bitmaps, but the required energy and latency for writes are
much higher than that of DRAM. The write process in NVMs
requires high power to modify the physical states [2]. Due to
the maximal current constraint during programing, the write
process involves multiple write units [3]. Therefore, NVMs
suffer from high write energy and latency [4]–[6].

Existing schemes propose lossless data compression inside
the NVM module controller with general-purpose data patterns
to reduce the bit writes and improve the memory perfor-
mance [5], [6]. However, for write accesses of bitmaps, the
partitioned words of data to be written are hard to match
the general data patterns due to the large variance, which
results in limited compression performance (§II-D). For ex-
ample, frequent patterns used in frequent pattern compression
(FPC) [6] are collected from general applications and do not

fit the contents in bitmaps. Base-Delta-Immediate (BDI) [5]
compresses data into base words with small deltas. However,
for bitmaps, the word sizes in BDI (8/4/2 bytes) mismatch
typical pixel sizes (e.g., 3 bytes for RGB images), which
leads to large variance. Moreover, image bitmaps have various
formats. Data compression designed for one format may fail
in others due to the significant changes in data patterns.

Due to the error-tolerance in some workloads, e.g., machine
learning, recent approximate storage leverages the precision
scaling with data type annotations to reduce data sizes [4].
However, simple precision scaling for image bitmaps decreases
the color depth and output quality. Bidirectional precision
scaling (BiScaling) [4] partitions data using annotated word
sizes and conducts precision scaling for error-tolerant data.
Specifically, it truncates the most significant bits (MSB) and
least significant bits (LSB) of data. However, pixel contents
in bitmaps are often stored using the smallest data type,
in which identical MSBs are usually unavailable. Moreover,
indiscriminately truncating LSBs reduces the color depth and
causes noticeable quality degradation.

To efficiently reduce the bit writes of bitmaps in NVM sys-
tems, we propose SimCom, an approximate Similarity-aware
Compression scheme leveraging the pixel-level similarity for
various data formats without user annotations for data types
and accesses to other data blocks. By exploiting the pixel-level
similarity, SimCom identifies similar words according to our
similarity model and compresses multiple similar words into a
base word (the representative word for similar words) with a
run (the number of similar words), thus eliminating the writes
of similar words with minor quality loss. The storage costs for
small runs are optimized by reusing the LSBs of base words
without significant accuracy loss. To handle different data
formats, SimCom executes compression modes in parallel and
adaptively selects a mode for efficient compression. In addition
to images, our approximate compression scheme is also appli-
cable to other error-tolerant data, as long as these data consist
of fixed-size data units and the similarity exists in adjacent
units. Our results with image/video-based workloads show
18.3%/22.2%/21.1% energy savings and 17.3%/24.9%/28.8%
write latency reduction than FPC/BDI/BiScaling.

II. BACKGROUND AND MOTIVATION

A. Bit-write Reduction in NVMs

Due to the higher programming power and time compared
with reads, some schemes are proposed to reduce the number

978-1-7281-1085-1/20/$31.00 ©2020 IEEE

of bits to be written in NVMs, including data compression [5],
[6] and data encoding [7]. Specifically, data compression is
interpreted as the compaction process inside NVM module
controllers. The data to be written (from CPU caches or
DRAM) to NVMs are compressed into small sizes. FPC [6]
compresses static frequent data patterns into short prefix bits.
BDI [5] leverages the characteristics of narrow values in
arrays to encode each word using the bases with small deltas.
However, the data patterns of NVM writes in image-based
applications depend on the visual contents and are hard to
match the static patterns in existing schemes (e.g., FPC and
BDI), thereby leading to limited compression performance
(§II-D). In the meantime, data encoding techniques, e.g., Flip-
N-Write (FNW) [7], reduce the bit flips by comparing old and
new data, which are applicable after data compression. Hence,
we focus on data compression in this paper.

B. Image Bitmap Structures

Image bitmaps are widely used as in-memory data storage
for images due to fast accesses to pixels [1]. An image bitmap
is a pixel storage structure containing the bits for all pixel
colors. The pixel color consists of multiple primary colors. The
values of one primary color for all pixels comprise a channel.
For example, a RGB-based color image has 3 channels, i.e.,
red, green, and blue channels. For each pixel, the number of
bits per channel is often 8 (16 for high quality image). In this
paper, we use channel count (CC) to denote the number of
channels in an image bitmap and bits per channel (BPC) to
denote the number of bits per channel for each pixel.

C. Approximate Storage

For data tolerating minor errors, e.g., images and videos, the
accuracy is possible to be relaxed to improve the efficiency for
storage systems [8]. In the context of this paper, approximable
data (or error-tolerant data) denote the image bitmaps and
video frames. Biased MLC write schemes are proposed to
improve the storage density of compressed images [9] or
videos [10]. However, these schemes are established based on
the significant entropy differences in encoded images/videos,
which do not exist in raw bitmaps and frames. Recent
scheme [1] exploits inter-block similarity, i.e., the similarity
across different cache blocks, to reduce image sizes. However,
searching similar data across blocks during each write access
to NVMs incurs extra memory accesses and hardware over-
heads. Moreover, the inter-block similarity is orthogonal to the
pixel-level (intra-block) similarity of our work. Biscaling [4]
is proposed to compress the data to be written to DRAM.
However, indiscriminately reducing the precision of all data
significantly decreases the output quality. In the meantime,
Biscaling requires user annotations on data types. Unlike them,
our SimCom leverages pixel-level similarity without accesses
to other data blocks and adaptively selects efficient modes for
different data formats without data type annotations.

D. Motivation

To quantitatively evaluate the performance of existing pre-
cise compression schemes, we implement FPC [6] and BDI [5]

jpeg sobel kmeans 2dconv debayer histeq
0.0

0.2

0.4

0.6

0.8

1.0

C
om

pr
es

si
on

 R
at

io

 FPC BDI

Fig. 1. The compression ratios (compressed data size relative to uncompressed
data size) of NVM writes containing image bitmaps using FPC and BDI.

jpeg sobel kmeans 2dconv debayer histeq
0

20

40

60

80

100

R
at

io
 o

f C
on

tin
uo

us

Si
m

ila
r W

or
ds

 (%
) 0% 1% 3% 5%

Fig. 2. The ratios of continuous similar words in approximable data with
different error thresholds. (The ratio is interpreted as all continuous similar
words divided by total approximable data in bytes.)

in NVMain [11] and measure the compression ratios of NVM
writes in six image-based workloads. More details about
the experimental setup are available in §IV-A. As shown in
Figure 1, the average compression ratios of FPC and BDI
are 94.2% and 99.8%, which means general patterns often
mismatch image bitmaps so that the compression performance
of most approximable data is poor.

In these image-based workloads, we observe that the data in
an NVM write access often show similarities due to the similar
contents in the adjacent pixels, called pixel-level similarity.
In order to verify the existence of pixel-level similarity in
NVM writes, we record the continuous similar words in each
write access. Specifically, we partition the approximable data
at pixel boundaries and determine if two words are similar
using Equation 1: if the result of Equation 1 is smaller than
the provided error threshold, two words are similar; otherwise,
they are not similar words. Figure 2 shows the percentage of
continuous similar words in approximable data with different
error thresholds. When we increase the error threshold, the
ratio of continuous similar words increases up to 82.8% on
average. It is worth noting that even when the error threshold
is 0% (i.e., two identical words), the ratio of continuous similar
words is still more than 4.5% and up to 46.5%. The substantial
similarity in images motivates us to exploit the pixel-level
similarity for bit-write reduction in NVMs.

III. THE SIMCOM DESIGN

Figure 3 shows the architecture overview of SimCom.
The compression and decompression workflows of SimCom
are respectively implemented in the Adaptive Approximate
Compression Logic and Decompression Logic. Since NVM
module controllers cannot determine whether data are approx-
imable, SimCom requires users to annotate some metadata
about image bitmaps (i.e., start and end addresses, error
thresholds). These metadata are delivered through memory-
mapped registers and stored in the on-chip LRU cache, called
Quality Table [1], [4]. The quality table contains only a few
entries (e.g., 64) so that the hardware overheads are negligible.

Quality

Table

Decompression

Logic

Memory ControllerCPU

NVM module
controller

Write Buffer Read Buffer

NVM module

NVM Array

Adaptive Approximate

Compression Logic

Fig. 3. The architecture overview of SimCom.

A. Similarity Model

In order to quantitatively measure the pixel-level similarity,
we propose a model to determine if two words are similar.
When a write access arrives at the NVM module controller, the
data block (usually 64 bytes) is partitioned at the granularity
of pixel size to conserve the pixel-level similarity. Though the
ideal partition points are pixel boundaries, it’s too complicated
to find the boundaries at runtime. We observe that the data
form an approximate periodic cycle of the pixel size due to
the pixel-level similarity. Therefore, instead of pixel bound-
aries, we propose to partition the data block at the positions
whose indexes are multiples of the pixel size. For example,
Figure 4(a) shows a 16-byte data block with the pixel size
of 3 bytes and Figure 4(b) presents the partitioned words of
the pixel size, among which the similarity still exists. The last
byte is left as a partial word.

In our similarity model, we use normalized difference to
quantify the similarity between two partitioned words. The
normalized difference is interpreted as the maximal absolute
difference in different channels normalized to the maximal
value of a primary color (called maxValue). maxValue is a
constant determined by BPC. When BPC is 8, maxValue is
255. The normalized difference between words p and q is
calculated using Equation 1. The p[i] and q[i] correspond
to primary colors in the same channel. If one of the two
words is a partial word, “CC” is substituted by the number of
channels in the partial word. When the normalized difference
is smaller than the error threshold provided by users, two
words are similar. The idea behind our similarity model is that
primary colors are close if they correspond to similar pixels.
By calculating the normalized maximal absolute difference of
primary colors, we can get a quantitative estimation of the
similarity between words for future compression.

normDiff =
max{|p[i]− q[i]|}

maxV alue
, i ∈ [0, CC) (1)

B. Similarity-aware Compression for NVMs

Compression for NVM writes: If the addresses of data
to be written are within the regions stored in the quality
table, the data are error-tolerant (i.e., approximable data) and
compressed using SimCom in the following steps: (1) after
data partition, the first word is taken as the initial base word

Uncompressed Data

Partitioned Data

Compressed Data
with LSB reuse

Decompressed Data 82 81 6F 82 81 6F 82 81 6F 82 81 6F768E 82 81

76 82 81 6F8E2

Pixel xi-1

Saved Space

8 B

82

83 81 6F 82 81 70 82 81 70 83 84 6C768E 85 82

83 5

base0 base1

run100001010
base1's

original LSB

Pixel xi Pixel xi+1 Pixel xi+2

76 82 81 6F8E22 Saved Space83 5

Compressed Data
with 3C1B mode

(no BPC & CC annotations)

LSB is 0

=> run0 is 1

76 828E2 Saved Space

base0

1 81 6F 82 5

base1 7 B
run0 run1

Compressed Data
using base words & runs

with BPC & CC annotations

(a)

(b)

(c)

(d)

(e)

(f)

Encode the mode index in the 3 leading bits

83768E 81 6F 82 81 70 82 81 70 83 84 6C 85

LSB is 1

=> run1 exists

Fig. 4. An example of SimCom compression and decompression for 16-byte
data. (Pixel xi−1-xi+2 are four adjacent pixels. basei denotes a base word.
“xCyB” denotes a compression mode for data with “x” channels and “y”
bytes for each channel. The threshold for normalized difference is 0.05.)

and the run is set to 1. (2) If the next word is similar to current
base word according to our similarity model, the run increases
by 1; otherwise, take the word as a new base word and reset
the run to 1. (3) When a partial word exists and is not similar
to current base word, record the partial word in compressed
data; otherwise, just increase the run by 1. The number of
base words is recorded in the first byte of the compressed
data. Figure 4(c) shows the compressed data from 5 continuous
similar words (including the partial word).

The above approximate compression workflow is a variant
of run-length encoding: the base word is a representative word
for near-duplicate words and the run denotes the repeated
time. The compression scheme is efficient for data when the
run is large, since multiple similar words are replaced by a
base word with a run. However, the storage overheads for
runs become high when the runs are small. For example,
due to the first run in Figure 4(c), the compressed data for
the first partitioned word is one byte larger than the original
word. To mitigate the metadata overheads of small runs, we
propose to reuse the LSBs of base words to encode small
runs. Specifically, the LSB of a base word is used to indicate
whether its corresponding run exists. If the LSB of the base
word is 1, the run exists in compressed data and we further
reuse the MSB of the run to store the original LSB of its
corresponding base word (e.g., in Figure 4(d), the original
LSB of base1 is stored in the MSB of run1); otherwise, the
run is 1 and not stored (e.g., base0 in Figure 4(d)). As a result,
only LSBs of words not similar to adjacent ones (e.g., base0 in
Figure 4(d)) are affected and the accuracy loss is limited. Base
words with runs larger than 1 are not affected by LSB reuse,
since the original LSB is stored in the MSB of corresponding
runs (e.g., base1 in Figure 4(d)). According to our evaluation
results, the worst quality degradation of reusing 1 LSB (i.e.,
indiscriminately truncating 1 LSB of all base words) is 1.35%
when BPC is 8. Reusing 2 bits leads to nonnegligible quality
loss of 2.62%, since the typical output quality constraint for
images is 3% [4]. Hence, SimCom only reuses 1 LSB of base
words.

If the data are not approximable, the data are compressed
using existing precise data compression schemes, e.g., FPC.

Uncompressed Data

1C1B 3C1B 4C1B 1C2B 3C2B 4C2B

Mode Selector

Compressed Data

Mean difference &
compressed data

Compressed data

Quality

Table

#0 #1 #2 #3 #4 #5

Fig. 5. Adaptive compression scheme overview. (“#n” indicates the index
for the compression mode.)

Decompression for NVM reads: For read accesses to
approximable data, which fall within the annotated regions
stored in the quality table, the data are restored in the reverse
order of approximate compression. Specifically, the base words
are used to fill the read buffer, as shown in Figure 4(f). If the
base words are not enough to fill up the buffer, which means
a partial word not similar to its previous base word is stored
in the compressed data, read the encoded partial word and fill
the buffer. If the read accesses are for precise data, these data
are decompressed using corresponding precise decompression
schemes (e.g., FPC).

C. Adaptive Compression Scheme

Our approximate compression scheme presented in previous
section (§III-B) efficiently compresses error-tolerant data with
additional requirements for metadata annotations including CC
and BPC. These metadata need to be confirmed and annotated
manually, which leads to heavy user burdens. In this Section,
we propose an adaptive compression scheme by leveraging the
image characteristics to avoid the annotation requirements for
CC and BPC.

SimCom conducts multiple compression modes in parallel
and selects a compression mode to achieve efficient a trade-
off between image quality and memory performance. We
design six compression modes with different CCs and BPCs
for general image bitmaps. CC has three possible values:
1 for grayscale images, 3 for color images in RGB color
space, and 4 for color images with an optional alpha channel
storing transparency information. The CC configurations are
also applicable to other color space, e.g., CC = 3 is used
for the YUV color space of videos. In the meantime, BPC
has two optional values: 8 for common images and 16 for
high-definition images. Images with other BPCs are supposed
to be downscaled in color space to fit predefined compres-
sion modes. Such scaling in error-tolerant color images is
acceptable, since the common RGB color images (BPC = 8)
represent more than 16 million colors while the number of
colors discriminated by the human eye is up to 10 million [12].

With multiple compression modes, how to select a com-
pression mode with limited accuracy loss and small com-
pressed data size becomes a new challenge. A straightforward
approach is to sample some write accesses for an efficient
compression mode to be applied on later write accesses.
However, sampling doesn’t work for random access patterns
generated by applications using different bitmap formats when
they are running in the same system. During our experiments,

we observe that the compression mode matching the bitmap
format often has small normalized difference between adjacent
words due to the pixel-level similarity. Hence, we propose
to select the compression mode with the smallest average
normalized difference between words and corresponding base
words, called mean difference. The mean difference is calculat-
ed following Equation 2, in which w[i] denotes the i-th word
in a data block, n denotes the number of words including
the possible partial word, and w[base(i)] denotes the base
word for w[i]. Noting that the calculation of mean difference
reuses the intermediate normalized difference generated during
the compression progress. Therefore, the calculation of mean
difference only consists of one summation and one division.

meanDiff =
1

n

∑
n−1
i=0 normDiff(w[i], w[base(i)]) (2)

The overview of our adaptive compression scheme is shown
in Figure 5. The Mode Selector first selects the compression
mode with the smallest mean difference. Hence, our SimCom
tends to select the compression mode that matches current
bitmap format, thus leading to limited accuracy loss. If mul-
tiple modes have the smallest mean difference, the one with
minimal compressed data size is selected for high compression
performance. After selecting a compression mode, the mode
index is encoded into the first 3 bits of the compressed data.
Figure 4(e) shows the compressed data encoded with the index
of 3C1B mode (CC = 3, BPC = 8).

There are two classes of metadata in SimCom. The first-
class metadata include the number of base words and the
choice of compression mode. We encoded the two variables
into 1 byte for all compression modes except for 1C1B.
Specifically, for 1C1B, the first 3 bits of the first byte store
the compression mode index and the second byte stores the
number of base words. For other five compression modes, the
mode index is encoded like 1C1B. However, unlike 1C1B, the
number of base words is encoded in the rest 5 bits of the first
byte. The reason is that, for these five compression modes, the
pixel size is at least 2 bytes and the number of base words
for a compressed data block is less than 32 (data block size is
64 bytes), which is possible to be encoded using 5 bits. The
second-class metadata is one bit to indicate whether a data
block is compressed or not. The bit is also used in existing
data compression schemes [5], [6] and stored in a separate
region in NVMs.

D. Software Interface

SimCom adopts the following software interface to trans-
fer user annotated approximable data regions ([s_addr,
e_addr]) and error thresholds of normalized difference (TH)
to NVM module controllers via memory-mapped registers [4].
A practical way to determine the threshold is to search a
suitable value using small canary inputs to be applied on full
size inputs [13], [14].

setApproxRegion(s_addr, e_addr, TH)

TABLE I
SYSTEM CONFIGURATIONS.

Processor
CPU 1 core, x86-64 processor, 2 GHz

L1 I/D cache 32 KB, 2 ways, LRU
L2 cache 1024 KB, 8 ways, LRU

Cache block size 64 B
Main Memory using PCM

Memory controller FCFRFS
Read/Write latency 120 ns/150 ns

Memory organization 4 GB, 8 B write unit size

IV. PERFORMANCE EVALUATION

A. Experimental Setup

We implement SimCom in GEM5 [15] with NVMain [11].
The system configurations are listed in Table I. The memory
read/write latency comes from the default PCM configurations
provided in NVMain. Since GEM5 is too slow to run video-
based workloads, we leverage zsim [16], a fast pin-based
x86-64 simulator, to measure the performance for videos.
We evaluate the performance with six image-based workloads
(jpeg, sobel, and kmeans from AxBench [17] and 2dconv,
debayer, and histeq from PERFECT [18]) and one video-based
workload (x264 from PARSEC [19]). These workloads are
selected for various domains (jpeg, sobel, 2dconv, debayer,
and histeq for image processing, kmeans for machine learning,
and x264 for video processing) and color spaces (x264 for
YUV and others for RGB). As suggested in [17], we use root-
mean-square error (RMSE) to measure the output errors of
images. The input images come from Kodak dataset [20] and
we report the average RMSE of 6 images. Structural similarity
(SSIM) [21] is used to quantify the output errors of videos by
1-SSIM . The output error constraints are set to 3% following
BiScaling [4] and 5% for aggressive approximation.

We have evaluated the following compression schemes
(FNW [7] is used to further reduce bit flips in all schemes):
• FPC [6]: We enhance this scheme by adding approximation.

Specifically, if a word is able to match a data pattern by
flipping few bits, this pattern is used to compress the word.

• BDI [5]: This scheme is enhanced by relaxing the narrow
value constraints.

• BiScaling [4]: This scheme uses bidirectional precision
scaling to approximately compress the data to be written.

• ApproxCom: This is our proposed scheme that requires
additional annotations for BPC and CC.

• SimCom: This is our proposed adaptive compression
scheme, which eliminates the annotations on data formats
used in BiScaling and ApproxCom.

Since BiScaling, ApproxCom, and SimCom focus on approx-
imate compression on approximable data, we use precise FPC
to compress precise data in these schemes. For fairness, we
tune the approximation degrees in different schemes (e.g., the
number of truncated bits for BiScaling, normalized difference
thresholds for ApproxCom/SimCom) to achieve same output
error constraints and compare the memory performance.

B. Bit-write Reduction

Figure 6 shows the bit-write ratios using different schemes.
The bit-write ratio denotes the percentage of bit flips af-
ter data compression and FNW. A lower bit-write ratio

 SimCom

Fig. 6. Bit-write ratio in NVM writes. (The number after “Avg.” denotes the
output error constraint.)

 SimCom

Fig. 7. Write latency normalized to FNW.

implies a higher NVM performance improvement. Due to
the efficiency of pixel-level similarity, our SimCom achieves
32.3%/37.8%/30.7% lower bit-write ratios compared with F-
PC/BDI/BiScaling when the output error constraint is 3%.
When the output error constraint is relaxed to 5%, the benefits
of SimCom increase. An interesting point is that SimCom
obtains slightly lower bit-write ratio than ApproxCom. The
reason is that the adaptive compression scheme in SimCom
optimizes the compression of grayscale images which are
stored in color image formats. For example, if a grayscale pixel
is stored in the RGB color space, the bits for each channel are
the same. When the mean differences generated by 1C1B and
3C1B are identical (e.g., 0), 1C1B obtains smaller compressed
data size than 3C1B. SimCom prefers the modes with small
compressed data sizes (e.g., 1C1B), thus leading to more bit-
write reduction than ApproxCom (e.g., 3C1B).

C. Write Latency

Figure 7 shows the normalized write latency. Though BiS-
caling truncates few bits for each word, the benefits in write
latency are limited due to the large compressed data sizes.
SimCom avoids the writes for similar words, thus efficiently
decreasing the data sizes and reducing the time to complete
write accesses. As a result, the average write latency of
SimCom is 17.3%/24.9%/28.8% (18.0%/26.2%/28.8%) shorter
than FPC/BDI/BiScaling when the output error constraint is
3% (5%).

D. Energy Consumption

The energy consumption of NVMs is shown in Figure 8.
x264 workload is not measured as zsim doesn’t support
energy modeling. Since the power consumption mainly comes
from the data programming during write operations [7], the
low bit-write ratio of SimCom leads to more energy sav-
ings than other schemes. In summary, compared with F-
PC/BDI/BiScaling, SimCom reduces the consumed energy by
18.3%/22.2%/21.1% and 21.4%/25.6%/23.3% within 3% and
5% output error constraints, respectively.

 SimCom

Fig. 8. Energy consumption normalized to FNW.

(1
, 8

)

(3
, 8

)

(4
, 8

)

(1
, 1

6)

(3
, 1

6)

(4
, 1

6)

(1
, 8

)

(3
, 8

)

(4
, 8

)

(1
, 1

6)

(3
, 1

6)

(4
, 1

6)

0

4

8

12

16

20

Output Error < 5%

Bi
t-w

rit
e

R
at

io
 (%

)

 ApproxCom SimCom

Output Error < 3%

Fig. 9. The bit-write ratio in jpeg with bitmaps of different formats. (The two
integers in bitmap formats denote CC and BPC, respectively.)

E. Sensitivity to Data Formats
SimCom leverages an adaptive compression scheme without

the needs of user annotations on data formats. In order to
verify the adaptability of SimCom, we feed the jpeg workload
with images of different formats. As shown in Figure 9,
SimCom achieves comparable bit-write ratios to those of
ApproxCom (within 1%). We further record the selection
of compression modes in SimCom (output error < 3%).
Table II shows SimCom is able to select the compression
mode matching the data formats in most cases (the numbers in
boldface). However, when the data have 3 channels, SimCom
may select the mode in which CC is 1. The reason is that
the jpeg workload converts a color image into grayscale
and the channels for a pixel have the same value. Hence,
the compression mode with 1 channel often compresses the
data with small mean difference due to the fine granularity.
Moreover, when the similarity among words is high, using 1
channel is able to obtain smaller compressed data size than
3 channels. As a result, due to the adaptive compression
scheme, SimCom achieves slightly higher performance than
ApproxCom in some workloads (e.g., jpeg and sobel).

V. CONCLUSION

The writes in NVM lead to high energy consumption and
latency for storage systems. SimCom leverages the pixel-
level similarity in bitmaps to efficiently reduce the writes of
similar words for NVM-based main memory, thus improving
the memory performance in terms of energy efficiency and
write latency. By exploiting adaptive approximate compres-
sion, SimCom mitigates the programmer annotations used for
compression. Experiments show that compared with state-of-
the-art FPC and BDI, SimCom decreases 18.3%, 22.2% energy
and 17.3%, 24.9% write latency with slight quality loss of 3%.

ACKNOWLEDGMENTS

This work was supported by National Key Research and De-
velopment Program of China under Grant 2016YFB1000202,
and National Natural Science Foundation of China (NSFC)
under Grant No. 61772212 and No. 61821003.

TABLE II
THE RATIOS OF COMPRESSION MODES IN SIMCOM. (A bitmap format of

“(m, n)” indicates CC = m and BPC = n.)

Mode Ratio (%) Bitmap Formats
(1, 8) (3, 8) (4, 8) (1, 16) (3, 16) (4, 16)

1C1B 82.4 47.2 0.6 0.2 0.2 0.2
3C1B 0.2 34.1 0 0 0 0
4C1B 0.1 0.4 96.9 0 0 0
1C2B 15.3 7.4 0 98.5 58.3 1.0
3C2B 0 7.1 0 0.2 38.5 0
4C2B 0.1 0.1 2.2 0.6 1.6 97.9

Incompressible 1.9 3.7 0.3 0.5 1.4 0.9

REFERENCES
[1] H. Zhao, L. Xue, P. Chi, and J. Zhao. 2017. Approximate Image Storage

with Multi-level Cell STT-MRAM Main Memory. In Proc. ICCAD.
[2] J. Xu, D. Feng, Y. Hua, W. Tong, J. Liu, C. Li, G. Xu, and Y. Chen.

2019. Adaptive Granularity Encoding for Energy-efficient Non-Volatile
Main Memory. In Proc. DAC.

[3] Y. Guo, Y. Hua, and P. Zuo. 2018. DFPC: A Dynamic Frequent Pattern
Compression Scheme in NVM-based Main Memory. In Proc. DATE.

[4] A. Ranjan, A. Raha, V. Raghunathan, and A. Raghunathan. 2017.
Approximate Memory Compression for Energy-efficiency. In Proc.
ISLPED.

[5] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry. 2012. Base-Delta-Immediate Compression: Practical
Data Compression for On-Chip Caches. In Proc. PACT.

[6] D. B. Dgien, P. M. Palangappa, N. A. Hunter, J. Li, and K. Mohanram.
2014. Compression Architecture for Bit-write Reduction in Non-volatile
Memory Technologies. In Proc. NANOARCH.

[7] S. Cho and H. Lee. 2009. Flip-N-Write: A Simple Deterministic Tech-
nique to Improve PRAM Write Performance, Energy and Endurance. In
Proc. MICRO.

[8] A. Sampson, J. Nelson, K. Strauss, and L. Ceze. 2013. Approximate
Storage in Solid-State Memories. In Proc. MICRO.

[9] Q. Guo, K. Strauss, L. Ceze, and H. S. Malvar. 2016. High-Density
Image Storage Using Approximate Memory Cells. In Proc. ASPLOS.

[10] D. Jevdjic, K. Strauss, L. Ceze, and H. S. Malvar. 2017. Approximate
Storage of Compressed and Encrypted Videos. In Proc. ASPLOS.

[11] M. Poremba, T. Zhang, and Y. Xie. 2015. NVMain 2.0: A User-Friendly
Memory Simulator to Model (Non-)Volatile Memory Systems. CAL, vol.
14, no. 2, pp. 140-143.

[12] D. B. Judd. 1975. Color in Business, Science and Industry. Wiley-
Interscience.

[13] M. A. Laurenzano, P. Hill, M. Samadi, S. A. Mahlke, J. Mars, and L.
Tang. 2016. Input Responsiveness: Using Canary Inputs to Dynamically
Steer Approximation. In Proc. PLDI.

[14] R. Xu, J. Koo, R. Kumar, P. Bai, S. Mitra, S. Misailovic and S.
Bagchi. 2018. VideoChef: Efficient Approximation for Streaming Video
Processing Pipelines. In Proc. ATC.

[15] N. L. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt, A. G. Saidi,
A. Basu, J. Hestness, D. Hower, T. Krishna, S. Sardashti, R. Sen, K.
Sewell, M. S. B. Altaf, N. Vaish, M. D. Hill, and D. A. Wood. 2011.
The gem5 Simulator. SIGARCH Computer Architecture News, vol. 39,
no. 2, pp. 1-7.

[16] D. Sánchez and C. Kozyrakis. 2013. ZSim: Fast and Accurate Microar-
chitectural Simulation of Thousand-Core Systems. In Proc. ISCA.

[17] A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-Kamran.
2017. AxBench: A Multiplatform Benchmark Suite for Approximate
Computing. IEEE Design & Test, vol. 34, no. 2, pp. 60-68.

[18] K. Barker, T. Benson, D. Campbell, D. Ediger, R. Gioiosa, A. Hoisie, D.
Kerbyson, J. Manzano, A. Marquez, L. Song, Nathan R. Tallent and A.
Tumeo. 2013. PERFECT (Power Efficiency Revolution For Embedded
Computing Technologies) Benchmark Suite Manual. Pacific Northwest
National Laboratory and Georgia Tech Research Institute.

[19] C. Bienia, S. Kumar, J. P. Singh, and K. Li. 2008. The PARSEC
Benchmark Suite: Characterization and Architectural Implications. Tech.
Rep. TR811-08, Princeton University.

[20] R. Franzen. Kodak Lossless True Color Image Suite.
http://r0k.us/graphics/kodak/.

[21] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004. Image
quality assessment: from error visibility to structural similarity. IEEE
Trans. Image Processing, vol. 13, no. 4, pp. 600-612.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20170330081459
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

