
SEALing Neural Network Models in Encrypted Deep
Learning Accelerators

Pengfei Zuo∗†, Yu Hua∗�, Ling Liang†, Xinfeng Xie†, Xing Hu‡, Yuan Xie†

∗Huazhong University of Science and Technology
†University of California, Santa Barbara

‡SKL of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences

Abstract—Deep learning (DL) accelerators suffer from a new security
problem, i.e., being vulnerable to physical access based attacks. An
adversary can easily obtain the entire neural network (NN) model
by physically snooping the memory bus that connects the accelerator
chip with DRAM memory. Therefore, memory encryption becomes
important for DL accelerators to improve their security. Nevertheless,
we observe that traditional memory encryption techniques that have
been efficiently used in CPU systems cause significant performance
degradation when directly used in DL accelerators, due to the big
bandwidth gap between the memory bus and the encryption engine. To
address this problem, our paper proposes SEAL, a Secure and Efficient
Accelerator scheme for deep Learning to enhance the performance
of encrypted DL accelerators by improving the data access band-
width. Specifically, SEAL leverages a criticality-aware smart encryption
scheme that identifies partial data having no impact on the security of
NN models and allows them to bypass the encryption engine, thus
reducing the amount of data to be encrypted without affecting security.
Extensive experimental results demonstrate that, compared with existing
memory encryption techniques, SEAL achieves 1.34− 1.4× overall
performance improvement.

I. INTRODUCTION

With the increase of computing performance and storage capacity
of edge devices, DL systems are increasingly expanded and used from
cloud to edge devices, such as self-driving cars and Internet-of-things
devices. By employing DL accelerators, e.g., GPU and NPU, edge
devices are able to carry out real-time local inferences based on current
environments without a connection with a remote control center with
high latency.

In DL accelerators, neural network (NN) models are confidential
information. Because NN models represent the Intellectual Property
(IP) of model owners, which should be protected to preserve their
competitive advantages. More importantly, the knowledge of NN
models can facilitate an adversary to carry out more powerful
adversarial attacks [5]. In adversarial attacks, an adversary is able
to intentionally affect the outcome of the DL inference by modifying
the input data with a slight perturbation that is imperceptible to humans.
In general, if the adversary does not know NN models, the success rate
of the adversarial attack is low. With the knowledge of NN models,
the success rate is significantly improved [4].

However, DL accelerators deployed on edge devices are easier
to be physically accessed, thus being vulnerable to physical access
based attacks. The accelerator chip and DRAM themselves are usually
well packaged and hence secure to physical access, but the memory
bus connecting accelerator and DRAM is not secure, due to being
vulnerable to bus snooping attacks [9], [10], [24]. Since the DL
accelerator has to access the NN model stored in the DRAM memory
through the memory bus during the inference, an adversary can easily
obtain the entire NN model by inserting a bus snooper on the memory
bus to intercept the data communicated between the DL accelerator

�Corresponding author: Yu Hua (csyhua@hust.edu.cn)

chip and DRAM. Therefore, memory encryption for encrypting the
data transmission through the memory bus is important.

Although there already exist mature memory encryption techniques
successfully used in secure CPU systems, we observe employing them
in DL accelerators significantly decreases the performance. The overall
performance of DL accelerators is reduced by over 50% after using
memory encryption, as evaluated in Section II-B. Such a significant
performance decrease is unacceptable for the latency-sensitive DL
accelerators on edge devices that must carry out real-time inferences
based on current environments, e.g., self-driving cars. We obtain the
insight that its main reason comes from the big bandwidth gap between
the memory bus of DL accelerators and the encryption engine. For
DL accelerators, e.g., GPUs, their performance is highly bandwidth-
bounded and hence they generally use the high-bandwidth memory,
e.g., GDDR. The bandwidth of their memory bus is generally higher
than 160GB/s [18]. However, the state-of-the-art encryption engine
with hardware implementation achieves only about 8GB/s of bandwidth
on average [14], [15], [21]. Even though we deploy one encryption
engine in every memory controller (six encryption engines totally),
the big bandwidth gap remains. As a result, the high bandwidth of
the GDDR memory bus is under-utilized and the encryption engine
becomes the bandwidth bottleneck in secure DL accelerators.

To address these problems, our paper proposes SEAL, a Secure
and Efficient Accelerator scheme for deep Learning to enhance the
security of DL accelerators on edge devices while delivering a high
performance. SEAL reduces the performance overhead of encryption
by using a criticality-aware smart encryption (SE) scheme. Specifically,
the SE scheme identifies partial data having no impact on the security of
NN models and allow them to bypass the encryption engine, lowering
the amount of data to be encrypted without any loss of security. The
idea of the SE scheme is to measure the relative importance of weight
parameters in the NN model. Based on the relative importance, the
SE scheme does not encrypt these weight parameters with the lowest
importance, and thus it is unnecessary to encrypt their corresponding
channels in the input or output feature maps. Based on the quantitative
security evaluation in terms of both IP protection and adversarial
attacks [5], we determine the percentage of encrypted data with which
the SE scheme achieves the same security level as full encryption.

We have implemented SEAL in GPGPU-Sim [1] and evaluated it
using three classical CNN models including VGG-16 [22], ResNet-
18 [8], and ResNet-34 [8]. Experimental results show that, compared
with existing memory encryption techniques, SEAL achieves 1.34−
1.4× overall performance improvement and reduces the inference
latency by 26%−28%.

II. BACKGROUND AND MOTIVATION

A. Threat Model and Purposes

A generic hardware architecture for DL accelerators (GPU, FPGA,
and ASIC) consists of an array of processing elements (PEs, or called

978-1-6654-3274-0/21/$31.00 ©2021 IEEE 1255

20
21

 5
8t

h
A

C
M

/IE
EE

 D
es

ig
n

A
ut

om
at

io
n

C
on

fe
re

nc
e

(D
A

C
) |

 9
78

-1
-6

65
4-

32
74

-0
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

A
C

18
07

4.
20

21
.9

58
61

99

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on February 18,2022 at 05:43:50 UTC from IEEE Xplore. Restrictions apply.

0%

20%

40%

60%

80%

100%

24 96 384 1536

C
ac

h
e

H
it

 R
at

e

Counter Cache Size (KB)

(a) Instruction per cycle (IPC)

0

200

400

600

800

1000

B
aselin

e

D
irect

C
tr-2

4

C
tr-9

6

C
tr-3

8
4

C
tr-1

5
3
6

IP
C

(b) Counter cache hit rate

Fig. 1: The IPCs of GPUs with two straightforward memory encryption
solutions.

cores in GPUs) and a data cache (or called global buffer) on chip. As
the size of the on-chip data cache is limited, the entire NN model and
the intermediate data produced during DL inference are stored in the
off-chip DRAM memory with large capacity. The accelerator accesses
the DRAM through a high-bandwidth memory bus.

Threat Model: Like existing threat models for hardware attacks on
CPUs [24] and accelerators [9], [10], we consider on-chip components
of accelerators and DRAM are secure. However, an adversary can
insert a bus snooper or a memory scanner on the memory bus to obtain
the data communicated between the accelerator chip and off-chip
DRAM and further steals the entire NN model [9], [10].

Threat Purposes: We consider the following threat purposes that
an adversary obtains NN models via bus snooping.

1) IP Stealing. NN models are considered as the IP of model
owners [10]. Model owners may consume a large amount of financial
and material resources to train a sophisticated NN model. The adversary
may be a business competitor of model owners. The leakage of NN
models incurs the property loss of model owners and reduces their
competitive advantages.

2) Adversarial Attacks. The exposion of an NN model can
significantly increase the risk that the NN model is attacked by
adversarial attacks. In adversarial attacks, an adversary aims to apply
an imperceptible non-random perturbation on the input data to change
the prediction results of NN models [5]. The perturbed input data are
termed as adversarial examples. If the adversary does not know the NN
model, the adversarial attack is called black-box attack. If the adversary
knows the entire NN model, the adversarial attack is called white-box
attack. In the black-box attacks, the attack success rate is low. In the
white-box attacks, the attack success rate significantly increases since
the adversary can generate high-quality adversarial examples by using
the known model information [4].

In order to protect the NN models in DL accelerators from bus
snooping attacks, encrypting the data transmitted through the memory
bus is important. Existing memory encryption techniques including
direct encryption and counter mode encryption [24] are widely used
in secure CPU systems to enable secure data transmission through
the DDR bus of CPU memory. However, data security on the high-
bandwidth memory bus for DL accelerators are rarely touched by
existing work.

B. Straightforward Solutions for Securing DL Accelerators

We consider two straightforward solutions, i.e., simply employing
existing direct encryption and counter mode encryption techniques in
DL accelerators, to improve the security of NN models. Without loss of
generality, in the rest of this paper, we analyze GPU as a representative
example of DL accelerators. However, the problems, insights, and
solutions that we develop are also applicable to other DL accelerators.

TABLE I: Performance comparisons of different AES encryption
engine implementations (counter mode).

Area
(mm2)

Power
(mW)

Latency
(cycle)

Throughput
(GB/s)

Morioka et al. [16] N/A 1920 10 1.5
Mathew et al. [15] 1.1 125 20 6.6

Ensilica [3] 1.4 N/A 11 8
Sayilar et al. [21] 6.3 6207 20 16

Liu et al. [14] 6.6 1580 152 19

We implement the two straightforward solutions in GPGPU-Sim [1].
Since the encryption engine increases the chip area and energy overhead
that also affects the chip cooling [19], each memory controller generally
includes one encryption engine [24]. Thus the six memory controllers in
the modeled GPU include six encryption engines. For the counter mode
encryption, we add an on-chip counter cache to buffer recently used
counters. We use the encrypted GPUs to execute matrix multiplication
computation that is the most common operation in DL algorithms.
We evaluate the IPCs of GPUs with different encryption schemes and
compare them with a baseline GPU without using memory encryption
(Baseline), as shown in Figure 1.

First, we observe encrypted GPUs are significantly less efficient
than the unencrypted one. Memory encryption decreases the GPU
IPC by 45%−54% for the matrix multiplication computation. Second,
using counter mode encryption does not deliver higher performance
compared to using direct encryption on GPU, due to incurring extra
memory accesses from counters.

The reason why memory encryption significantly reduces the GPU
performance is the big bandwidth gap between the GDDR memory
bus and the encryption engine. In CPU systems, memory encryption
works well [24], since the AES encryption engine has a similar
bandwidth to the DDR memory bus of CPU. However, in GPU
systems, the GDDR memory is designed for GPUs to achieve high
memory access bandwidth, whose bus bandwidth is generally more
than 160GB/s [18]. Moreover, the state-of-the-art pipelined AES engine
with hardware implementation achieves only about 8GB/s of bandwidth
on average [15]. Even though we deploy one encryption engine in
every memory controller, the total encryption bandwidth is 48 GB/s.
As a result, the high bandwidth of the memory bus is under-utilized and
the AES engine becomes the bandwidth bottleneck in secure GPUs.

A single AES engine usually occupies over 1 mm2 on-die area and
has hundreds or thousands of mW power, as shown in Table I. As
resources on the microprocessor die are very scarce, it is ruinously
costly to integrate more encryption engines into memory controllers on
the GPU die [6]. Even though a GPU/CPU die usually has an area of
90−600 mm2, most area is occupied by cores and on-die memory and
only less than 10% area is left to memory controllers. This is also the
reason why Intel carefully designs the AES hardware implementation
to reduce area and energy overheads for SGX [6]. Like the design
principle of Intel’s SGX [6] and many previous works [24], the goal
of this paper is also to improve the hardware security while having
low on-die overheads.

III. THE SEAL DESIGN

A. Criticality-aware Smart Encryption

SEAL leverages a criticality-aware smart encryption (SE) scheme
to reduce the amount of encrypted data while improving the NN
model security. The SE scheme quantitatively measures the relative
importance of weight parameters in each layer by calculating the
sum of their absolute weights, i.e., `1-norm. The weight parameters

1256

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on February 18,2022 at 05:43:50 UTC from IEEE Xplore. Restrictions apply.

with the smallest absolute values in each layer are considered to be
least important and hence are not encrypted. Thus it is unnecessary to
encrypt the corresponding channels in the input or output feature maps
of unencrypted weight parameters. As a result, the amount of data to
be encrypted is significantly reduced. The percentage of un-encrypted
weight parameters is determined based on the quantitative security
evaluation in Section III-B to obtain maximum performance benefit
and highest security level.

In deep neural networks, we consider using the SE scheme in the
convolution (CONV) layers since most layers in a CNN model are
CONV layers, e.g., 13/16 for VGG-16, 17/18 for ResNet-18, and 33/34
for ResNet-34. The computation process of a CONV layer is shown
in Figure 2. Weight parameters in a CONV layer are organized as a
convolutional kernel matrix, and each convolutional kernel is a weight
matrix, e.g., 3×3. The computation of a CONV layer transforms the
input feature maps with the convolutional kernel matrix to the output
feature maps. The convolutional kernel matrix has nx kernel rows and
ny kernel columns. nx is equal to the number of channels in the input
feature maps. Each kernel row in the kernel matrix corresponds to a
single input channel in the input feature maps and this input channel
does not involve the convolution computation with other kernel rows,
as shown in Figure 2. Similarly, ny is equal to the number of channels
in the output feature maps. Each kernel column in the kernel matrix
corresponds to a single output channel in the output feature maps.

Relative Importance Measurement. We measure the relative
importance of a kernel row in each layer by calculating the sum
of its absolute weights, i.e., `1-norm. The sum of absolute weights
in a row also represents the average magnitude of the kernel weights
which gives an expectation of the magnitude of the output feature
map. Thus kernel rows with smaller sums of absolute weights tend
to produce feature maps with weak activations, compared with the
other kernel rows in the same layer [13]. Hence, these rows with
small absolute-value sums have a lower impact on the output of the
entire NN model compared with the rows with large absolute-value
sums. Existing work [13] on pruning NN models demonstrate that,
even after completely eliminating the convolution computation that
uses these weight parameters with small absolute values, the original
accuracy of the NN model can be regained by retraining the networks.
This observation indicates that these weight parameters with small
absolute values are less important to the NN model and thus rarely
affect the security of the NN model. We have confirmed this conjecture
by performing IP protection and adversarial attack tests as presented in
Section III-B, whose results motivate us to propose the smart encryption
(SE) scheme to reduce the encryption overhead in DL accelerators by
only encrypting the weight parameters with large absolute values.

Smart Encryption. After computing the sum of absolute weights in
each row, the SE scheme sorts the kernel rows based on their sums, and
then encrypts partial kernel rows with the largest sums. The percentage
of the encrypted kernel rows is determined by our quantitative security
analysis as shown in Section III-B. However, the encrypted weight
parameters in the SE scheme can be easily figured out if the input and
output feature maps of this CONV layer are unencrypted. Therefore,
for each encrypted row, the SE scheme also encrypts one input channel
in the input feature maps corresponding to the encrypted row, since
each kernel row corresponds to a single input channel and does not
involve the convolution computation with other input channels, as
shown in Figure 2. In this way, the encrypted weight parameters cannot
be figured out. For example, for the matrix multiplication Y = Xω ,
the input channel X and the weights ω are encrypted. ω cannot be
figured out even though the adversary knows Y . The data in the input
channel X is encrypted once being produced by the previous CONV
layer. Hence, the plaintext in the encrypted channel X is never exposed

Kernel Matrix

r1

Kernel Matrix

X

W

Y

W’

hx

wx

hy

wy

r3

Fig. 2: An example for SEAL encryption. (Green areas: encrypted
data. Each grid in the kernel matrix is a kernel.)

to the memory bus.
Moreover, when considering unencrypted data among multiple

layers, the encrypted channels and weights cannot be figured out and
hence also secure. To prove this, we use a simple example with two
sequential CONV layers, i.e., Y = Xω and Z = Y ω

′
.

X =
[

XXX000 X1
]
,ω =

[
ωωωrrr000
ωr1

]
=

[
ωωω000000 ωωω000111
ω10 ω11

]
,Y =

[
Y0 YYY 111

]
,

ω
′
=

[
ω
′
r0

ωωω
′
rrr111

]
=

[
ω
′
00 ω

′
01

ωωω
′
111000 ωωω

′
111111

]
,Z =

[
ZZZ000 Z1

]
(1)

The feature maps X, Y, and Z have 2 channels. Since there are 2 input
and output channels, kernel matrixes ω and ω

′
have 2 rows and 2

columns. With a 50% encryption ratio, we assume the first row ωr0 in
ω is encrypted, and the second row ω

′

r1 in ω
′

is encrypted. Based on
the SE scheme, we should encrypt the first channel X0 in X and the
second channel Y1 in Y . Moreover, we assume Z0 is encrypted in Z.
Thus for the two sequential CONV layers, we can have the following
equations (In Equations 1, 2 and 3, the bold fonts mean encrypted
data): {

XXX000 ∗ωωω000000 +X1 ∗ω10 = Y0
XXX000 ∗ωωω000111 +X1 ∗ω11 = YYY 111

(2)

{
Y0 ∗ω

′
00 +YYY 111 ∗ωωω

′
111000 = ZZZ000

Y0 ∗ω
′
01 +YYY 111 ∗ωωω

′
111111 = Z1

(3)

We observe encrypted input channels are never multiplied with
unencrypted weight rows, and unencrypted input channels are never
multiplied with encrypted weight rows. Thus we can only obtain the
product of two encrypted matrixes, e.g., X0 ∗ω00, but cannot figure out
any single encrypted matrix from Equations 2 and 3. Therefore, the
data in encrypted channels and weights are secure even considering
data among multiple layers.

In fact, the SE scheme can also be applied to full-connected (FC)
layers since each FC layer also includes a kernel matrix like the CONV
layer. Therefore, the proposed SE scheme can be applied to other deep
neural networks, e.g., recurrent neural networks, that are composed of
many FC layers.

To support the proposed SE, we expose a new programming primitive,
emalloc(), to the high-level program in order to allow programmers
to leverage the benefits of SEAL. The memory space allocated by
emalloc() needs to be encrypted. The memory space allocated by
existing malloc() in current programming languages does not need
to be encrypted.

B. Security Analysis

For the security analysis, we first discuss the case where an adversary
does not know what NN architecture is used in the target DL accelerator.
In this case, even though some NN model data are obtained by the
bus snooping attack, the adversary is difficult to distinguish which
data are used for a particular layer. In our proposed SE scheme, some
data are encrypted and hence it is more difficult for the adversary to

1257

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on February 18,2022 at 05:43:50 UTC from IEEE Xplore. Restrictions apply.

65%

70%

75%

80%

85%

90%

95%

100%

A
cc

u
ra

cy

Selective Encryption Ratio

Average VGG16

ResNet18 ResNet34

Fig. 3: The inference accuracy of substitute models.

recover the NN model. Therefore, we consider a strong attack model in
which an adversary is able to figure out the NN architecture in the DL
accelerator via side channel information [9], [10], e.g., memory access
patterns obtained from the memory bus, or device specifications. In
this case, the adversary can distinguish the data from different layers
and know the locations in the NN model where the encrypted and
unencrypted data correspond to. Under the strong attack model, we
below present the security analysis. The security of NN models involves
two aspects including IP stealing and adversarial attacks, as presented
in Section II-A.

1) Substitute Model Generation: In the security evaluation tests,
we use three classical CNN models including VGG-16, ResNet-18, and
ResNet-34 and train them on the widely used CIFAR-10 dataset [11].
The NN model stored in the target DL accelerator is called victim model,
and the NN model that the adversary extracts from the accelerator by
using bus-snooping attacks is called substitute model. Based on the
fact that the adversary does not know the training dataset of the victim
model, we isolate 90% of training samples (45,000 images) in CIFAR-
10 as the training dataset of the victim model [20]. The remaining
10% of training samples (5,000 images) are used by the adversary.
Based on the 5,000 images, the adversary uses Jacobian-based dataset
augmentation [20] to generate additional 40,000 images and then query
them in the target accelerator to obtain their corresponding labels. The
generated image-label pairs are used as the training dataset of the
adversary’s substitute models. The adversary may obtain three kinds
of substitute models as follows.
• White-box model. If a DL accelerator does not equip memory

encryption, the adversary can know the entire victim model including
all weight parameters and the NN architecture. Thus we consider
an NN model that is the same as the victim model as the white-box
substitute model.
• Black-box model. If we encrypt all the victim model data and

intermediate data, the adversary knows the NN architecture but does
not know any weight parameters. However, the adversary can feed
his/her own images into the target DL accelerator and obtain the output
label. By using the image-label pairs, the adversary is able to retrain an
NN model with the same architecture as the victim model. We consider
the retrained NN model as the black-box substitute model.
• SEAL models. SEAL selectively encrypts partial data that are

critical and thus the adversary knows the NN architecture and partial
weight parameters that are unencrypted. We perform full encryption
on the first two CONV layers, the last one CONV layer, and the last
FC layers of a CNN model to prevent the adversary from calculating
the weight parameters via input and output layers, and perform the
SE scheme on the remaining weight layers. However, by using inputs
and outputs of the target DL accelerator, the adversary is able to
supplement the unknown part of weight parameters via retraining the
NN. Specifically, the adversary initializes an NN model with known
weight parameters and fills random numbers following a standard

�
��

�
�

�
�

�

�
�

	
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
���

�
��

�
�

�
�

�

�
�

	
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
���

�
��

�
�

�
�

�

�
�

	
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
���

� � �

� � �

� � �

� � �

� � �

� � 	

� �

� � �

� � �

� �

� � �
� � � � � � � � �� � � � � � � � �

�
	�

�

��
	�

�
��

��
�

� � � � � � � � � � � � � � � � � � � �

� � � � �

Fig. 4: The transferability of different substitute models.

normal distribution for unknown weight parameters [7]. The adversary
then keeps the known weight parameters unchanged and fine-tunes
unknown weight parameters by retraining the NN using inputs and
outputs of the target DL accelerator. Note that the attacker can know the
information that the sums of unknown weight rows must be larger than
those of known weight rows and then leverage this information during
fine-tuning. However, in our experiments, we observe the generated
substitute models leveraging the information do not perform better,
since limiting the sums of unknown weight rows may destroy efficient
parameter fine-tuning.

2) Security on IP Stealing: One of the attack purposes is to steal
the IP of NN models. The efficiency of the stolen attacks depends
on the inference accuracy of the extracted substitute models. In the
stolen attack tests, we first generate the three kinds of substitute models
including white-box, black-box, and SEAL models that the adversary
may obtain as mentioned above. For SEAL models, we vary the
encryption ratio from 90% to 10%. The encryption ratio is defined as
the ratio of encrypted weight parameters to all weight parameters in
each layer. The encrypted weights have the largest absolute weight
values in each layer. We evaluate the inference accuracy of these
substitute models using test samples of the victim model.

Figure 3 shows their inference accuracy. We observe that the while-
box model has a very high accuracy, i.e., about 94%, due to being the
same as the victim model. The black-box model significantly reduces
the accuracy from 94% to 75%. This is because the adversary does not
know any weights and training samples in the victim model, and the
black-box model can only be trained from a blank model by using the
adversary’s training dataset. For SEAL models, when the encryption
ratio is only 20%, the accuracy significantly decreases by 14% on
average (from 94% to 80%), since the weight parameters with the
largest absolutes are encrypted. When the encryption ratios ≥ 40%,
the accuracy is almost the same as that of the black-box model. It
means the SEAL with a ≥ 40% encryption ratio achieves the same
security level as the black-box model for IP protection.

3) Security on Adversarial Attacks: If the purpose is to attack
the victim model, the adversary can use the extracted NN models to
generate adversarial examples and then use the adversarial examples
to perform adversarial attacks. In adversarial attacks, the adversary
aims to add the minimum perturbation on the input to mislead the
victim model to produce a pre-assigned incorrect output [12]. In the
adversarial attack tests, we use the three kinds of substitute models
including white-box, black-box, and SEAL models to respectively
generate 1,000 adversarial examples via the I-FGSM method [12].
Each batch of 1,000 adversarial examples have a 100% attack success
rate to attack their corresponding substitute models. We then use
these adversarial examples to attack the victim model and evaluate the
transferability of adversarial examples. The transferability is defined as
the ratio of the adversarial examples that successfully attack the victim

1258

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on February 18,2022 at 05:43:50 UTC from IEEE Xplore. Restrictions apply.

� � �

� � �

� � �

� � �

� � 	

� � �

 � � � �
 � � � �
 � � � �

� �
 � � � � � � � � � � � � � � � � � � � � � � � 	 � � � � � � � 	 � � � � � �

 � � � �

�
�

�
�

	
�

�
�

��
�

�

Fig. 5: IPCs normalized to that of Baseline for CONV layers.

� � �

� � �

� � �

� � 	

� �

� � �

 �

� �
 � � � � � � � � � � � � � � � � � � � � � � � 	 � � � � � � � 	 � � � � �

 � � � � �

�
�

�
�

	
�

�
�

��
�

�

Fig. 6: IPCs normalized to that of Baseline for POOL layers.

model to all adversarial examples, which is a widely used metric to
evaluate the efficiency of substitute models for adversarial attacks [4].
Figure 4 shows the transferability of adversarial examples generated
by different substitute models.

We observe that black-box models have much low transferability
(about 20%) for the three CNN models compared with while-box
models, since the adversary with black-box models does not know
any weight parameters and training samples of the victim model.
For SEAL models, when the encryption ratios ≥ 50% for the three
CNN models, the transferability is close to, and even smaller than
those of black-box models. The reason is that the unencrypted weight
parameters in SEAL are relatively un-important because they have
the smallest absolute weights in each layer. If the adversary keeps
the unencrypted weight parameters unchanged and fine-tunes the
remaining weight parameters, the unchanged, un-important weight
parameters may disturb the retrained model, producing smaller attack
success rates than the black-box model. When the encryption ratios <
40%, the transferability rapidly increases since some important weight
parameters with large absolutes are exposed to the adversary. Based on
the above results, we set the encryption ratio of SEAL to 50%, which
obtains the maximum performance benefit when achieving the same
security level as the black-box models.

IV. PERFORMANCE EVALUATION

A. Methodology

We evaluate the performance of SEAL using the GPGPU-Sim
v3.2.2 [1], a cycle-level simulator for contemporary GPUs. We model
the microarchitecture for NVIDIA GeForce GTX480 GPU [18] with
15 streaming multiprocessors, one of the default GPUs in GPGPU-Sim.
The GPU has a GDDR5 memory bus with 1848 MHz, 384-bit bus
bandwidth, and 6 channels. To implement SEAL, we add an AES
encryption engine in every memory controller of the simulated GPU.
We model a pipeline AES encryption engine with 128-bit block [15],
in which the overall AES encryption latency for a cache line is 20
cycles and the bandwidth of each AES engine is 8GB/s.

We use three classical CNN models including VGG-16 [22], ResNet-
18 [8], and ResNet-34 [8] to evaluate the performance of different
encryption schemes. For comparisons, we evaluate an insecure GPU
without memory encryption as the baseline (Baseline), traditional
direct encryption (Direct) and counter mode encryption (Counter).

 � � � � � � � � � � � 	 � � � � � � � � �

� � �

� � �

� � �

� � �

� � 	

� � �

� �
 � � � � � � � � � � � � � � � � � � � � � � � 	 � � � � � � � 	 � � � � � � �

�
�

�
�

	
�

�
�

��
�

�

Fig. 7: Overall IPCs normalized to that of Baseline.

 � � � � � � � � � � � 	 � � � � � � � � �

� � �

� � �

� � �

� � �

� � 	

� � �

� � �

� � �

� � �

� �
 � � � � � � � � � � � � � � � � � � � � � � � 	 � � � � � � � 	 � � � � � �

�
�

�

	�
�

�
�

��
�

��
�

�
�

Fig. 8: The inference latency normalized to that of Baseline.

SEAL-D and SEAL-Cmean our SEAL scheme with direct encryption
and counter mode encryption respectively.

B. Experimental Results

1) Performance of Different Layers: We perform SEAL on CONV
layers whose input and output feature maps are also the input and output
of POOL layers. The default encryption ratio is 50% as presented
in Section III-B. We evaluate four typical CONV layers in VGG, in
which the number of input and output channels is 64/128/256/512, and
the five different POOL layers.

Figure 5 shows the relative IPCs when computing these CONV
layers. We observe that Direct and Counter reduce the GPU IPC
by up to 40% compared with Baseline. The reason is that memory
encryption significantly reduces the data access bandwidth in GPUs.
By comparing the performance between Direct/Counter and SEA-
D/SEAL-C, our proposed SEAL improves the performance by 39%
and 33% respectively, due to reducing the amount of the encrypted data
to improve the data access bandwidth without compromising security.

Figure 6 shows the relative IPCs of different encryption schemes
when computing POOL layers. We observe Direct and Counter reduce
the IPC by up to 50%, and perform worse in comparison to computing
CONV layers since the computation of POOL layers is more bandwidth-
bounded than that of CONV layers. SEAL-D and SEAL-C improve
the performance by 66% and 44%, compared with Direct and Counter
respectively.

2) Overall IPC: We evaluate overall IPCs with different encryption
schemes when executing the NN inference using VGG-16, ResNet-18,
and ResNet-34, as shown in Figure 7. Direct and Counter reduce the
GPU IPC for executing NN inference by 30%−38%, compared with
Baseline. Moreover, Direct and Counter deliver higher performance
in ResNets than those in VGG. The reason is that the amounts of
computation and data accesses to memory in VGG are much larger
than those in ResNets and thus VGG requires higher data access
bandwidth. By using SEAL to allow some data to bypass the AES
engine, SEAL-D and SEAL-C significantly improve the IPC by 1.4×
and 1.34× respectively, compared with Direct and Counter.

3) Inference Latency: We investigate the impact of different
encryption schemes on the inference latency, as shown in Figure 8.
Direct and Counter increase the inference latency by 39%− 60%,
compared to Baseline. By using SEAL, SEAL-D and SEAL-C reduce

1259

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on February 18,2022 at 05:43:50 UTC from IEEE Xplore. Restrictions apply.

the inference latency by 28% and 26% on average, compared with
Direct and Counter respectively.

V. RELATED WORK

Model Extraction Attacks in Architecture Layer. Existing
works exploit the information of the operating system and architecture
layers to speculate the NN model related information. Naghibijouybari
et al. [17] exploit the side channel information in the operating system,
such as memory allocation APIs, GPU performance counters, and
timing measurement, to speculate the NN model related information,
e.g., the number of neurons. Hua et al. [10] and Hu et al. [9] exploit
the side channel information in the DL accelerator architecture, e.g.,
the memory access pattern, to speculate the NN architecture related
information.

The model extraction attacks mentioned above can obtain only a
small part of the NN model related information. Compared with these
model extraction attacks, bus snooping attacks for DL accelerators
that our paper focuses on are much more dangerous. This is because
an adversary can obtain all data of the entire NN model including
weight parameters in each layer by the bus snooping attacks. Our paper
proposes a secure and efficient solution, SEAL, to defend against the
bus snooping attacks.

Memory Encryption. Obviously, software memory encryption,
e.g., Graviton [23], cannot adequately defend against physical access
based attacks, since the programs of encryption software themselves
can be stored in the memory. Hardware memory encryption has
been widely used in secure CPU systems to defend against physical
access based attacks by adding the hardware encryption engine on
the CPU chip [24], [25]. However, memory encryption significantly
decreases the performance of DL accelerators, e.g., GPUs, due to the big
bandwidth gap between the GDDR memory bus and encryption engine.
Our proposed SEAL efficiently addresses this problem. Moreover, Cai
et al. [2] focus on the NN model security issue in computing-in-memory
systems based on non-volatile memory, which is orthogonal to our
paper focusing on general accelerators.

VI. CONCLUSION

Memory encryption becomes important to guarantee the security
of DL accelerators, which however causes significant performance
degradation. This paper present the insights that the big bandwidth gap
between the memory bus of DL accelerators and the encryption engine
is the main reason of causing performance degradation. To address
this problem, we propose SEAL to improve the data access bandwidth
of DL accelerators by identifying partial data that have no impact on
the security of NN models and allowing them to bypass the encryption
engine without affecting the security. Our experimental results show
that, compared with existing memory encryption solutions, SEAL
achieves 1.34−1.4× performance improvement on average.

ACKNOWLEDGEMENT

This work was supported in part by National Natural Science
Foundation of China (NSFC) under Grants No. 61772212, No.
62002338, and Key Laboratory of Information Storage System,
Ministry of Education of China.

REFERENCES

[1] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA workloads using a detailed GPU simulator,” in
Proceedings of the 2009 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2009.

[2] Y. Cai, X. Chen, L. Tian, Y. Wang, and H. Yang, “Enabling secure nvm-
based in-memory neural network computing by sparse fast gradient
encryption,” IEEE Transactions on Computers, vol. 69, no. 11, pp.
1596–1610, 2020.

[3] Ensilica, “Advanced encryption standard cryptographic ip,” 2020, https:
//www.ensilica.com/ip/esi-crypto/aes/.

[4] I. Goodfellow, P. McDaniel, and N. Papernot, “Making machine learning
robust against adversarial inputs,” Communications of the ACM, vol. 61,
no. 7, pp. 56–66, 2018.

[5] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems (NeurIPS), 2014.

[6] S. Gueron, “A memory encryption engine suitable for general purpose
processors,” Cryptology ePrint Archive, Report 2016/204, 2016, https:
//eprint.iacr.org/2016/204.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision
(ICCV), 2015.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition (CVPR), 2016.

[9] X. Hu, L. Liang, S. Li, L. Deng, P. Zuo, Y. Ji, X. Xie, Y. Ding,
C. Liu, T. Sherwood, and Y. Xie, “Deepsniffer: a dnn model extraction
framework based on learning architectural hints,” in in Proceedings
of the 25th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2020.

[10] W. Hua, Z. Zhang, and G. E. Suh, “Reverse engineering convolutional
neural networks through side-channel information leaks,” in Proceedings
of the 2018 55th ACM/ESDA/IEEE Design Automation Conference
(DAC), 2018.

[11] A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” Citeseer, Tech. Rep., 2009.

[12] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in
the physical world,” arXiv preprint arXiv:1607.02533, 2016.

[13] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” in Proceedings of the International
Conference on Learning Representations (ICLR), 2017.

[14] B. Liu and B. M. Baas, “Parallel aes encryption engines for many-core
processor arrays,” IEEE transactions on computers, vol. 62, no. 3, pp.
536–547, 2011.

[15] S. Mathew, F. Sheikh, A. Agarwal, M. Kounavis, S. Hsu, H. Kaul,
M. Anders, and R. Krishnamurthy, “53Gbps native GF (24)2 composite-
field AES-encrypt/decrypt accelerator for content-protection in 45nm
high-performance microprocessors,” in Proceedings of the 2010 IEEE
Symposium on VLSI Circuits (VLSIC), 2010.

[16] S. Morioka and A. Satoh, “A 10-gbps full-aes crypto design with a
twisted bdd s-box architecture,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 12, no. 7, pp. 686–691, 2004.

[17] H. Naghibijouybari, A. Neupane, Z. Qian, and N. Abu-Ghazaleh, “Ren-
dered insecure: Gpu side channel attacks are practical,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2018.

[18] Nvidia Corporation, “NVIDIA GeForce GTX 480,” https://www.
geforce.com/hardware/desktop-gpus/geforce-gtx-480/specifications,
2012.

[19] OpenCores, “Tiny AES,” http://opencores.org/project/, 2012.
[20] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and

A. Swami, “Practical black-box attacks against machine learning,” in
Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security (ASIA CCS), 2017.

[21] G. Sayilar and D. Chiou, “Cryptoraptor: High throughput reconfigurable
cryptographic processor,” in 2014 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). IEEE, 2014, pp. 155–161.

[22] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in Proceedings of the International
Conference on Learning Representations (ICLR), 2014.

[23] S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted execution
environments on GPUs,” in Proceedings of the 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2018.

[24] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin,
“Improving cost, performance, and security of memory encryption
and authentication,” in Proceedings of the 33rd Annual International
Symposium on Computer Architecture (ISCA), 2006.

[25] P. Zuo, Y. Hua, and Y. Xie, “Supermem: Enabling application-
transparent secure persistent memory with low overheads,” in Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2019.

1260

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on February 18,2022 at 05:43:50 UTC from IEEE Xplore. Restrictions apply.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move right by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Right
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move right by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Right
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move right by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Right
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

