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Abstract—In backup systems, the chunks of each backup are physically scattered after deduplication, which causes a challenging

fragmentation problem. We observe that the fragmentation comes into sparse and out-of-order containers. The sparse container

decreases restore performance and garbage collection efficiency, while the out-of-order container decreases restore performance

if the restore cache is small. In order to reduce the fragmentation, we propose History-Aware Rewriting algorithm (HAR) and

Cache-Aware Filter (CAF). HAR exploits historical information in backup systems to accurately identify and reduce sparse containers,

and CAF exploits restore cache knowledge to identify the out-of-order containers that hurt restore performance. CAF efficiently

complements HAR in datasets where out-of-order containers are dominant. To reduce the metadata overhead of the garbage

collection, we further propose a Container-Marker Algorithm (CMA) to identify valid containers instead of valid chunks. Our extensive

experimental results from real-world datasets show HAR significantly improves the restore performance by 2.84-175.36� at a cost of

only rewriting 0.5-2.03 percent data.

Index Terms—Data deduplication, storage system, chunk fragmentation, performance evaluation
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1 INTRODUCTION

DEDUPLICATION has become a key component in modern
backup systems due to its demonstrated ability of

improving storage efficiency [1], [2]. A deduplication-
based backup system divides a backup stream into vari-
able-sized chunks [3], and identifies each chunk by its
SHA-1 digest [4], i.e., fingerprint. A fingerprint index is
used to map fingerprints of stored chunks to their physi-
cal addresses. In general, small and variable-sized chunks
(e.g., 8 KB on average) are managed at a larger unit
called container [1] that is a fixed-sized (e.g., 4 MB) struc-
ture. The containers are the basic unit of read and write
operations. During a backup, the chunks that need to be
written are aggregated into containers to preserve the
spatial locality of the backup stream, and a recipe is
generated to record the fingerprint sequence of the
backup. During a restore, the backup stream is recon-
structed according to the recipe. The containers serve as
the prefetching unit due to the spatial locality. A restore

cache holds the prefetched containers and evicts an entire
container via an LRU algorithm [5].

Since duplicate chunks are eliminated between multiple
backups, the chunks of a backup unfortunately become
physically scattered in different containers, which is known
as fragmentation [6], [7]. The negative impacts of the frag-
mentation are two-fold. First, the fragmentation severely
decreases restore performance [5], [8]. The infrequent restore
is important and the main concern from users [9]. Moreover,
data replication, which is important for disaster recovery,
requires reconstructions of original backup streams from
deduplication systems [10], [11], and thus suffers from a per-
formance problem similar to the restore operation.

Second, the fragmentation results in invalid chunks (not
referenced by any backups) becoming physically scattered
in different containers when users delete expired backups.
Existing garbage collection solutions first identify valid
chunks and the containers holding only a few valid chunks
(i.e., reference management [12], [13], [14]). Then, a merging
operation is required to copy the valid chunks in the identi-
fied containers to new containers [15], [16]. Finally, the iden-
tified containers are reclaimed. Unfortunately, the metadata
space overhead of reference management is proportional to
the number of chunks, and the merging operation is the
most time-consuming phase in garbage collection [14].

We observe that the fragmentation comes in two catego-
ries of containers: sparse containers and out-of-order con-
tainers, which have different negative impacts and require
dedicated solutions. During a restore, a majority of chunks
in a sparse container are never accessed, and the chunks in
an out-of-order container are accessed intermittently. Both
of them hurt the restore performance. Increasing the restore
cache size alleviates the negative impacts of out-of-order
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containers, but it is ineffective for sparse containers because
they directly amplify read operations. Additionally, the
merging operation is required to reclaim sparse containers
in the garbage collection after users delete backups.

Existing solutions [5], [8], [17] propose to rewrite dupli-
cate but fragmented chunks during the backup via rewriting
algorithm, which is a tradeoff between deduplication ratio
(the size of the non-deduplicated data divided by that of
the deduplicated data) and restore performance. These
approaches buffer a small part of the on-going backup
stream, and identify the fragmented chunks within the
buffer. They fail to accurately identify sparse containers
because an out-of-order container seems sparse in the lim-
ited-sized buffer. Hence, most of their rewritten chunks
belong to out-of-order containers, which limit their gains in
restore performance and garbage collection efficiency.

Our key observation is that two consecutive backups are
very similar, and thus historical information collected
during the backup is very useful to improve the next
backup. For example, sparse containers for the current
backup remain sparse for the next backup. This observation
motivates our work to propose a HAR. During a backup,
HAR rewrites the duplicate chunks in the sparse containers
identified by the previous backup, and records the emerg-
ing sparse containers to rewrite them in the next backup.
HAR outperforms existing rewriting algorithms in terms of
restore performance and deduplication ratio.

In some cases, such as concurrent restore and datasets like
virtual machine images, a sufficient restore cache could be
unaffordable. To improve the restore performance under lim-
ited restore cache, we develop two optimization approaches
for HAR, including an efficient restore caching scheme (OPT)
and a hybrid rewriting algorithm. OPT outperforms the tradi-
tional LRU since it always evicts the cached containers that
will not be accessed for the longest time in the future. The
hybrid scheme takes advantages of HAR and existing rewrit-
ing algorithms (such as Capping [5]). To avoid a significant
decrease of deduplication ratio in the hybrid scheme, we
develop a CAF as an optimization of existing rewriting
algorithms. CAF simulates the restore cache during a backup
to identify the out-of-order containers that are out of the scope
of the estimated restore cache. The hybrid scheme signifi-
cantly improves the restore performance under limited
restore cachewith a slight decrease of deduplication ratio.

During the garbage collection, we need to identify valid
chunks for identifying and merging sparse containers,
which is cumbersome and error-prone due to the existence
of large amounts of chunks. Since HAR efficiently reduces
sparse containers, the identification of valid chunks is no
longer necessary. We further propose a new reference man-
agement approach called CMA that identifies valid contain-
ers (holding some valid chunks) instead of valid chunks.
Compared to existing reference management approaches,
CMA significantly reduces the metadata overhead.

The paper makes the following contributions.

� We classify the fragmentation into two categories:
out-of-order and sparse containers. The former
reduces restore performance, which can be
addressed by increasing the restore cache size.
The latter reduces both restore performance and

garbage collection efficiency, and we require a
rewriting algorithm that is capable of accurately
identifying sparse containers.

� In order to accurately identify and reduce sparse
containers, we observe that sparse containers remain
sparse in next backup, and hence propose HAR.
HAR significantly improves restore performance
with a slight decrease of deduplication ratio.

� We develop CAF to exploit cache knowledge to
identify the out-of-order containers that would hurt
restore performance. CAF is used in the hybrid
scheme to improve restore performance under lim-
ited restore cache without a significant decrease of
deduplication ratio.

� In order to reduce the metadata overhead of the
garbage collection, we propose CMA that identifies
valid containers instead of valid chunks in the gar-
bage collection.

The rest of the paper is organized as follow. Section 2
presents related work. Section 3 illustrates how the frag-
mentation arises. Section 4 discusses the fragmentation cate-
gory and our observations. Section 5 presents our design
and optimizations. Section 6 evaluates our approaches.
Finally we conclude our work in Section 7.

2 RELATED WORK

The fragmentation problem in deduplication systems has
received many attentions. iDedup [18] eliminates sequential
and duplicate chunks in the context of primary storage sys-
tems. Nam et al. propose a quantitative metric to measure the
fragmentation level of deduplication systems [7], and a selec-
tive deduplication scheme [8] for backup workloads. SAR
[19] stores hot chunks in SSD to accelerate reads. RevDedup
[20] employs a hybrid inline and out-of-line deduplication
scheme to improve restore performance of latest backups.
The Context-Based Rewriting algorithm (CBR) [17] and the
capping algorithm (Capping) [5] are recently proposed
rewriting algorithms to address the fragmentation problem.
Both of them buffer a small part of the on-going backup
stream during a backup, and identify fragmented chunks
within the buffer (generally 10-20MB). For example, Capping
divides the backup stream into fixed-sized segments (e.g.,
20 MB), and conjectures the fragmentation within each seg-
ment. Capping limits the maximum number (say T ) of con-
tainers a segment can refer to. Suppose a new segment refers
toN containers and N > T , the chunks in the N � T contain-
ers that hold the least chunks in the segment are rewritten.

Reference management for the garbage collection is com-
plicated since each chunk can be referenced by multiple
backups. The offline approaches traverse all fingerprints
(including the fingerprint index and recipes) when the sys-
tem is idle. For example, Botelho et al. [14] build a perfect
hash vector as a compact representation of all chunks. Since
recipes need to occupy significantly large storage space [21],
the traversing operation is time-consuming. The inline
approaches maintain additional metadata during backup to
facilitate the garbage collection. Maintaining a reference
counter for each chunk [13] is expensive and error-prone
[12]. Grouped Mark-and-Sweep (GMS) [12] uses a bitmap to
mark which chunks in a container are used by a backup.
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3 THE FRAGMENTATION PROBLEM

In this section, we describe how the fragmentation arises
and how the fragmentation slows down restore and garbage
collection. Fig. 1 illustrates an example of two consecutive
backups. There are 13 chunks in the first backup. Each
chunk is identified by a character, and duplicate chunks
share an identical character. Two duplicate chunks, say
A and D, are identified by deduplicating the stream, which
is called self-reference. A and D are called self-referred chunks.
All unique chunks are stored in the firstfour containers, and
a blank is appended to the 4th half-full container to make it
be aligned. With a three-container-sized LRU cache, restor-
ing the first backup needs to read 5 containers. The self-
referred chunk A requires extra reading container I.

The second backup is composed of 13 chunks, nine of
which are duplicates in the first backup. The four new
chunks are stored in two new containers. With a three-
container-sized LRU cache, restoring the second backup
needs to read nine containers.

Although both of the backups consist of 13 chunks,
restoring the second backup needs to read four more con-
tainers than restoring the first backup. Hence, the restore
performance of the second backup is much worse than that
of the first backup. Recent work reported the severe
decrease of restore performance in deduplication systems
[5], [8], [17]. We observe a 21� decrease in our Kernel data-
set (detailed in Section 6.1).

If we delete the first backup, four chunks including
chunk K (in container IV) become invalid. However, since
they are scattered in four different containers, we cannot
reclaim them directly. For example, because chunk J is still
referenced by the second backup, we can’t reclaim container
IV. Existing work uses the offline container merging opera-
tion [15], [16]. The merging reads the containers that have
only a few valid chunks and copies them to new containers.
Therefore, it suffers from a performance problem similar to
the restore operation, and becomes the most time-consum-
ing phase in the garbage collection [14].

4 CLASSIFICATION AND OBSERVATIONS

In this section, we (1) describe two types of fragmented con-
tainers and their impacts, and (2) present our key observa-
tions that motivate our work.

4.1 Sparse Container

As shown in Fig. 1, only one chunk in container IV is refer-
enced by the second backup. Prefetching container IV for
chunk J is inefficientwhen restoring the second backup.After

deleting the first backup, we require a merging operation to
reclaim the invalid chunks in container IV. This kind of con-
tainers exacerbates system performance on both restore and
garbage collection. We define a container’s utilization for a
backup as the fraction of its chunks referenced by the backup.
If the utilization of a container is smaller than a predefined uti-
lization threshold, such as 50 percent, the container is consid-
ered as a sparse container for the backup. We use the average
utilization of all the containers related with a backup to mea-
sure the overall sparse level of the backup.

Sparse containers directly amplify read operations
because containers are the prefetching units. Prefetching
a container of 50 percent utilization at most achieves
50 percent of the maximum storage bandwidth, because
50 percent of the chunks in the container are never
accessed. Hence, the average utilization determines the
maximum restore performance with an unlimited restore
cache. Additionally, the chunks that have never been
accessed in sparse containers require the slots in the
restore cache, thus decreasing the available cache size.
Therefore, reducing sparse containers is important to
improve the restore performance.

After backup deletions, invalid chunks in a sparse con-
tainer fail to be reclaimed until all other chunks in the con-
tainer become invalid. Symantec reports the probability that
all chunks in a container become invalid is low [22]. We also
observe that garbage collection reclaims little space without
additional mechanisms, such as offline merging sparse con-
tainers. Since the merging operation suffers from a perfor-
mance problem similar to the restore operation, we require
a more efficient solution to migrate valid chunks in sparse
containers.

4.2 Out-of-Order Container

If a container is accessed many times intermittently during a
restore, we consider it as an out-of-order container for the
restore. As shown in Fig. 1, container V will be accessed
three times intermittently while restoring the second
backup. With a three-container-sized LRU restore cache,
restoring each chunk in container V incurs a cache miss that
decreases restore performance.

The problem caused by out-of-order containers is compli-
cated by self-references. The self-referred chunkD improves
the restore performance, since the two accesses to D occur
close in time. However, the self-referred chunk A decreases
the restore performance. Generally, the datasets with a large
amount of self-references suffer more from out-of-order
containers.

The impacts of out-of-order containers on restore perfor-
mance are related to the restore cache. For example, with a
four-container-sized LRU cache, restoring the three chunks
in container V incurs only one cache miss. With a sufficient
restore cache, each related container will only incur one
cache miss. For each restore, there is a minimum cache size,
called cache threshold, which is required to achieve the maxi-
mum restore performance (defined by the average utiliza-
tion). Out-of-order containers reduce restore performance if
the cache size is smaller than the cache threshold. They
have no negative impact on garbage collection.

A sufficiently large cache can address the problem
caused by out-of-order containers. However, since the

Fig. 1. An example of two consecutive backups. The shaded areas in
each container represent the chunks required by the second backup.
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memory is expensive, a restore cache of larger than the
cache threshold can be unaffordable in practice. For exam-
ple, there could be multiple concurrent restore procedures,
and datasets are dominated by self-references. Hence, it is
necessary to either decrease the cache threshold or assure
the desired restore performance even if the cache is rela-
tively small. If restoring a chunk in a container incurs an
extra cache miss, it indicates that other chunks in the con-
tainer are far from the chunk in the backup stream. Moving
the chunk to a new container offers an opportunity to
improve restore performance. Another more cost-effective
solution to out-of-order containers is to develop a more
intelligent caching scheme than LRU.

4.3 Our Observations

Because out-of-order containers can be alleviated by the
restore cache, how to reduce sparse containers becomes the
key problem when a sufficiently large restore cache is
affordable. Existing rewriting algorithms of a limited buffer
cannot accurately identify sparse containers, because accu-
rately identifying sparse containers requires the complete
knowledge of the on-going backup. However, the complete
knowledge of a backup cannot be known until the backup
has concluded, making the identification of sparse contain-
ers a challenge.

Due to the incremental nature of backup workloads,
two consecutive backups are very similar, which is the
major assumption behind DDFS [1]. Hence, they share
similar characteristics, including the fragmentation. We
analyze three datasets, including Linux kernel (Kernel), a
virtual machine (VMDK), and a redis server (RDB)
(detailed in Section 6.1), to explore potential characteris-
tics of sparse containers (the utilization threshold is
50 percent). After each backup, we record the accumula-
tive amount of the stored data, as well as the total and
emerging sparse containers for the backup. An emerging
sparse container is not sparse in the last backup but
becomes sparse in the current backup. An inherited sparse
container is already sparse in the last backup and remains
sparse in the current backup. The total sparse containers
are the sum of emerging and inherited sparse containers.

The experimental results are shown in Fig. 2. We have
three observations. (1) The number of total sparse containers
continuously grows. It indicates sparse containers become
more common over time. (2) The number of total sparse con-
tainers increases smoothly most of time. It indicates that the
number of emerging sparse containers of each backup is

relatively small, due to the similarity between consecutive
backups. A few exceptions in the Kernel dataset are major
revision updates, which have more new data and increase
the amount of stored data sharply. It indicates that a large
update results in more emerging sparse containers. (3) The
number of inherited sparse containers of each backup is equivalent
to or slightly less than the number of total sparse containers of the
previous backup. It indicates that sparse containers of the
backup remain sparse in the next backup. A few sparse con-
tainers of the previous backup become not sparse to the cur-
rent backup since their utilizations drop to 0. It seldom
occurs that the utilization of an inherited sparse container
increases in the current backup.

The above observations motivate our work to exploit
the historical information to identify sparse containers,
namely History-Aware Rewriting algorithm. After com-
pleting a backup, we can determine which containers are
sparse within the backup. Because these sparse containers
remain sparse for the next backup, we record these sparse
containers and allow chunks in them to be rewritten in the
next backup. In such a scheme, the emerging sparse con-
tainers of a backup become the inherited sparse containers
of the next backup. Due to the second observation, each
backup needs to rewrite the chunks in a small number of
inherited sparse containers, which would not degrade the
backup performance. Moreover a small number of emerg-
ing sparse containers left to the next backup would not
degrade the restore performance of the current backup.
Due to the third observation, the scheme identifies sparse
containers accurately.

5 DESIGN AND IMPLEMENTATION

5.1 Architecture Overview

Fig. 3 illustrates the overall architecture of our HAR system.
On disks, we have a container pool to provide container
storage service. Any kinds of fingerprint indexes can be
used. Typically, we keep the complete fingerprint index on
disks, as well as the hot part in memory. An in-memory con-
tainer buffer is allocated for chunks to be written.

The system assigns each dataset a globally unique ID,
such as DS1 in Fig. 3. The collected historical information of
each dataset is stored on disks with the dataset’s ID, such as
the DS1 info file. The collected historical information con-
sists of three parts: IDs of inherited sparse containers for
HAR, the container-access sequence for the Belady’s opti-
mal replacement cache, and the container manifest for Con-
tainer-Marker Algorithm.

Fig. 2. Characteristics of sparse containers in three datasets. 50 backups are shown for clarity.
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5.2 History-Aware Rewriting Algorithm

At the beginning of a backup, HAR loads IDs of all inherited
sparse containers to construct the in-memory Sinherited struc-
ture (inherited IDs in Fig. 3). During the backup, HAR
rewrites all duplicate chunks whose container IDs exist in
Sinherited. Additionally, HAR maintains an in-memory struc-
ture, Semerging (included in collected info in Fig. 3), to monitor
the utilizations of all the containers referenced by the
backup. Semerging is a set of utilization records, and each
record consists of a container ID and the current utilization
of the container. After the backup concludes, HAR removes
the records of higher utilizations than the utilization thresh-
old from Semerging. Semerging then contains IDs of all emerging
sparse containers.

In most cases, Semerging can be flushed directly to disks as
the Sinherited of the next backup, because the size of Semerging

is generally small due to our second observation. However,
there are two spikes in Fig. 2a. A large number of emerging
sparse containers indicates that we have many fragmented
chunks to be rewritten in next backup. It would change the
performance bottleneck to data writing [17] and hurt the
backup performance that is of top priority [23]. To address
this problem, HAR sets a rewrite limit, such as 5 percent, to
avoid too much rewrites in next backup.

HAR uses the rewrite limit to determine whether there
are too many sparse containers in Semerging. (1) HAR calcu-
lates an estimated rewrite ratio (defined as the size of rewrit-
ten data divided by the backup size) for the next backup.
Specifically, HAR first calculates the estimated size of
rewritten chunks for each emerging sparse container via
multiplying the utilization by the container size. Then, the
estimated rewrite ratio is calculated as the sum of estimated
sizes divided by the current backup size, which is approxi-
mate to the actual rewrite ratio of the next backup due to
the incremental nature of backup workloads. (2) If the esti-
mated rewrite ratio exceeds the predefined rewrite limit,
HAR removes the record of the largest utilization in
Semerging and jump to step 1. (3) Otherwise, HAR replaces
the IDs of the old inherited sparse containers with the IDs of
emerging sparse containers in Semerging. The Semerging

becomes the Sinherited of the next backup. The complete
workflow of HAR is described in Algorithm 1.

Fig. 4 illustrates the lifespan of a rewritten sparse con-
tainer. The rectangle is a container, and the blank area is the
chunks not referenced by the backup. We assume 4 latest
backups are retained. (1) The container becomes sparse in
backup n. (2) The container is rewritten in backup nþ 1.
The chunks referenced by backup nþ 1 are rewritten to a

new container that holds unique chunks and other rewritten
chunks (blue area). However the old container cannot be
reclaimed after backup nþ 1, because backup n� 2, n� 1,
and n still refer to the old container. (3) After backup nþ 4
is finished, all backups referring to the old container have
been deleted, and thus the old container can be reclaimed.
Each sparse container decreases the restore performance of
the backup recognizing it, and will be reclaimed when the
backup is deleted.

Algorithm 1.History-Aware Rewriting Algorithm

Input: IDs of inherited sparse containers, Sinherited;
Output: IDs of emerging sparse containers, Semerging;
1: Initialize a set, Semerging.
2: while the backup is not completed do
3: Receive a chunk and look up its fingerprint in the finger-

print index.
4: if the chunk is duplicate then
5: if the chunk’s container ID exists in Sinherited then
6: Rewrite the chunk to a new container.
7: else
8: Eliminate the chunk.
9: end if
10: else
11: Write the chunk to a new container.
12: end if
13: Update the utilization record in Semerging.
14: end while
15: Remove all utilization records of larger utilizations than the

utilization threshold from Semerging.
16: Calculate the estimated rewrit ratio for the next backup.
17: while the estimated rewrite ratio is larger than the rewrite

limit do
18: Remove the utilization record of the largest utilization in

Semerging.
19: Update the estimated rewrite ratio.
20: end while
21: return Semerging

Due to the limited number of inherited sparse containers,
the memory consumed by the Sinherited is negligible. Semerging

consumes more memory because it needs to monitor all
containers related with the backup. If the default container
size is 4 MB and the average utilization is 50 percent which
can be easily achieved by HAR, the Semerging of a 1 TB stream
consume 8 MB memory (each record contains a 4-byte ID, a
4-byte current utilization, and an 8-byte pointer). The mem-
ory footprint is smaller than the rewriting buffer used in
CBR [17] and Capping [5].

Fig. 3. The HAR architecture. The arrows indicates metadata flows.

Fig. 4. The lifespan of a rewritten sparse container.
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There is a tradeoff in HAR as we vary the utilization
threshold. A higher utilization threshold results in more
containers being considered sparse, and thus backups are of
better average utilization and restore performance but worse
deduplication ratio. If the utilization threshold is set to
50 percent, HAR promises an average utilization of no less
than 50 percent, and the maximum restore performance is
no less than 50 percent of the maximum storage bandwidth.

5.3 The Impacts of HAR on Garbage Collection

In this section, we discuss how HAR affects the garbage col-
lection efficiency. We define Ci as the set of containers
related with backup i, jCij as the size of Ci, ni as the number
of inherited sparse containers, ri as the size of rewritten
chunks, and di as the size of new chunks. T backups are
retained at any moment. The container size is S. The storage
cost can be measured by the number of valid containers. A
container is valid if it has chunks referenced by non-deleted
backups. After backup k is finished, the number of valid
containers isNk.

Nk ¼
[k

i¼k�Tþ1

Ci

�����

����� ¼ jCk�Tþ1j þ
Xk

i¼k�Tþ2

ri þ di
S

� �
:

For those deleted backups (before backup k� T þ 1),

jCiþ1j ¼ jCij � niþ1 þ riþ1 þ diþ1

S
; 0 � i < k� T þ 1

) Nk ¼ jC0j �
Xk�Tþ1

i¼1

ni � ri þ di
S

� �
þ

Xk

i¼k�Tþ2

ri þ di
S

� �
:

C0 is the initial backup. Since jC0j, di, and S are constants,
we concentrate on the part d related with HAR,

d ¼ �
Xk�Tþ1

i¼1

ni � ri
S

� �
þ

Xk

i¼k�Tþ2

ri
S

� �
: (1)

The value of d demonstrates the additional storage cost of
HAR. If HAR is disabled (the utilization threshold is 0), d is
0. A negative value of d indicates that HAR decreases the
storage cost. If k is small (the system is in the warn-up
stage), the latter part is dominant thus HAR introduces
additional storage cost than no rewriting. If k is large (the
system is aged), the former part is dominant thus HAR
decreases the storage cost.

A higher utilization threshold indicates that both ni and
ri are larger. If k is small, a lower utilization threshold
achieves a lower storage cost since the latter part is domi-
nant. Otherwise, the best utilization threshold is related
with the backup retention time and characteristics of data-
sets. For example, if backups never expire, a higher utiliza-
tion threshold always results in higher storage cost. Only
retaining 1 backup would yield the opposite effect. How-
ever we find a value of 50 percent works well according to
our experimental results in Section 6.7.

5.4 Optimal Restore Cache

To reduce the negative impacts of out-of-order containers
on restore performance, we implement Belady’s optimal

replacement cache [24]. Implementing the optimal cache
(OPT) needs to know the future access pattern. We can col-
lect such information during the backup, since the sequence
of reading chunks during the restore is just the same as the
sequence of writing them during a backup.

After a chunk is processed through either elimination or
over-writing its container ID, its container ID is known. We
add an access record into the collected info in Fig. 3. Each
access record can only hold a container ID. Sequential
accesses to the identical container can be merged into a
record. This part of historical information can be updated to
disks periodically, and thus would not consume much
memory.

At the beginning of a restore, we load the container-
access sequence into memory. If the cache is full, we evict
the cached container that will not be accessed for the longest
time in the future.

The complete sequence of access records can consume
considerable memory when out-of-order containers are
dominant. Assuming each container is accessed 50 times
intermittently and the average utilization is 50 percent, the
complete sequence of access records of a 1 TB stream con-
sumes over 100 MB of memory. Instead of checking the
complete sequence of access records, we can use a slide win-
dow to check a fixed-sized part of the future sequence, as a
near-optimal scheme. The memory footprint of this near-
optimal scheme is hence bounded.

5.5 A Hybrid Scheme

Our observation in Section 6.5 shows that HAR requires a
2048-container-sized restore cache (8 GB) to outperform
Capping in a virtual machine image dataset. The memory
footprint is around a half image in size. It is because virtual
machine images contain many self-references that exacer-
bate the problem of out-of-order containers. In practice,
such a large restore cache could be unaffordable due to con-
current backup/restore procedures.

Since most of the chunks rewritten by existing rewriting
algorithms belong to out-of-order containers, we propose a
hybrid scheme that takes advantages of both HAR and
existing rewriting algorithms (e.g., CBR [17] and Capping
[5]) as optional optimizations. The hybrid scheme can be
straightforward. However, existing rewriting algorithms
have no idea of the restore cache, and hence rewrite too
many unnecessary out-of-order containers. The simple
combination decreases deduplication ratio significantly
(generally, its deduplication ratio is smaller than min
ðHAR; existing rewriting algorithmsÞ). We hence need to
optimize existing rewriting algorithms to avoid unnecessary
rewrites.

Fig. 5 shows a sample backup stream. The blue container
is out-of-order. With a 7-chunk-sized rewriting buffer, the
chunk Y would be rewritten by existing rewriting algo-
rithms since the X and Z beyond the scope of the rewriting
buffer. However, with a three-container-sized LRU cache,
the chunk Y would not hurt the restore performance, since
the blue container has been prefetched for restoring X and
would remain in the cache while restoring Y . Rewriting Y
mistakenly not only reduces storage efficiency but also
hurts restore performance.
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We develop a CAF to exploit cache knowledge, as an
optimization of existing rewriting algorithms. Our key
observation is that the sequence of restoring chunks is just
the same as the sequence of writing them during the
backup. Hence, given an LRU restore cache with a prede-
fined size, we are aware of the runtime state of the restore
cache during the backup. CAF simulates the LRU restore
cache during the backup using the container IDs of the pre-
ceding chunks in the backup stream. For example, when we
back up Y , CAF knows the blue container would remain in
the restore cache if a three-container-sized LRU cache is
used. CAF then denies the request of rewriting Y . CAF
improves existing rewriting algorithms in terms of both
storage efficiency and restore performance.

CAF needs to estimate the restore cache size, which we
call the estimated cache size. In practice, CAF may under-
estimate or over-estimate the restore cache size. 1) under-
estimation. If the restore cache size is larger than the esti-
mated cache size, some chunks that would NOT hurt
restore performance are rewritten. However, CAF has
avoided a large amount of mistaken rewrites, and thus out-
performs existing rewriting algorithms in terms of both
deduplication ratio and restore performance. 2) over-
estimation. If the restore cache size is smaller than the esti-
mated cache size, some chunks that would hurt restore
performance are NOT rewritten. Hence, CAF improves
the deduplication ratio of existing rewriting algorithms at
a cost of decreasing restore performance. We suggest to
use a large estimated cache size for CAF and satisfy the
cache demand during restore if possible. Moreover, the
restore cache can employ other replacement algorithms
rather than LRU, e.g., the optimal cache proposed in
Section 5.4. Based on our experimental results in Section
6.5, CAF works well even if we use the optimal cache.

Fig. 6 shows the possible states (SPARSE, OUT_OF_
ORDER, and CACHED) of a duplicate chunk in the hybrid
rewriting scheme. The workflow is as follow: (1) The dupli-
cate chunk is checked by HAR. (2) If HAR considers the

chunk fragmented, the chunk is marked as SPARSE. Jump
to step 9. (3) Otherwise, Capping further checks the chunk
(other rewriting algorithms, such as CBR, are also applica-
ble). (4) If Capping considers the chunk NOT fragmented,
jump to step 8. (5) Otherwise, the chunk is marked as
OUT_OF_ORDER. CAF checks the chunk’s container ID in
the simulated restore cache. (6) If the chunk is expected in
the restore cache, it is marked CACHED. Jump to step 8.
(7) Otherwise, jump to 9. (8) The chunk is eliminated. Jump
to step 1 for the next chunk. (9) The chunk is rewritten.
Jump to step 1 for the next chunk.

Based on our observations in Section 6, only rewriting a
small number of additional chunks improves restore perfor-
mance significantly when the restore cache is small. The
hybrid scheme efficiently reduces the cache threshold by a
factor of 4 in the virtual machine images. Since the hybrid
scheme always rewrites more data than HAR, we suggest to
enable the hybrid scheme only in the datasets where self-
references are common.

5.6 Container-Marker Algorithm

Existing garbage collection schemes rely on merging sparse
containers to reclaim invalid chunks in the containers.
Before merging, they have to identify invalid chunks to
determine utilizations of containers, i.e., reference manage-
ment. Existing reference management approaches [12], [13],
[14] are inevitably cumbersome due to the existence of large
amounts of chunks.

HAR naturally accelerates expirations of sparse contain-
ers and thus the merging is no longer necessary. Hence, we
need not to calculate the exact utilization of each container.
We design the CMA to efficiently determine which contain-
ers are invalid. CMA assumes users delete backups in a
FIFO scheme, in which oldest backups are deleted first. The
FIFO scheme is widely used, such as Dropbox [25] that
keeps data of latest 30 days for free users.

CMA maintains a container manifest for each dataset. The
container manifest records IDs of all containers related to
the dataset. Each ID is paired with a backup time, and the
backup time indicates the dataset’s most recent backup that
refers to the container. Each backup time can be represented
by one byte, and let the backup time of the earliest non-
deleted backup be 0. One byte suffices differentiating
256 backups, and more bytes can be allocated for longer
backup retention time. Each container can be used by many
different datasets. For each container, CMA maintains a
dataset list that records IDs of the datasets referring to the
container. A possible approach is to store the lists in the
blank areas of containers, which on average is half of the

Fig. 5. An example of a backup stream. Chunks with the same pattern are in an identical container. We also show the cached containers before
restoring Y .

Fig. 6. State transitions of a duplicate chunk in the hybrid rewriting
scheme. We use Capping as an example. Other rewriting algorithms are
applicable.
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chunk size. After a backup is completed, the backup times
of the containers referenced by the backup (HAR already
monitors these container IDs) are updated to the largest
time in the old manifest plus one. CMA adds the dataset’s
ID to the lists of the containers that are in the new mani-
fest but not in the old one. If the lists (or manifests) are
corrupted, we can recover them by traversing manifests
of all datasets (or all related recipes). Hence, CMA is
fault-tolerant and recoverable.

If we need to delete the oldest t backups of a dataset,
CMA loads the container manifest into memory. The con-
tainer IDs with a backup time smaller than t are removed
from the manifest, and the backup time of the remaining
IDs decreases by t. CMA removes the dataset’s ID from the
lists of the removed containers. If a container’s list is empty,
the container can be reclaimed. We further examine the
fingerprints in reclaimed containers. If a fingerprint is
mapped to a reclaimed container in the fingerprint index,
its entry is reclaimed.

Because HAR effectively maintains high utilizations of
containers, the container manifest is small. We assume
that each backup is 1 TB and 90 percent identical to adjacent
backups. Recent 20 backups are retained. With a 50 percent
average utilization, the backups at most refer to 1:5 million
containers. Hence the manifest and lists consume at most
13:5MB storage space (each container has a 4-byte container
ID paired with a 1-byte backup time in the manifest, and a
4-byte dataset ID in its list).

6 PERFORMANCE EVALUATION

6.1 Datasets

Four datasets, including Kernel, VMDK, RDB, and Syn-
thetic, are used for evaluation. Their characteristics are
listed in Table 1. Each backup stream is divided into vari-
able-sized chunks via Content-Defined Chunking [3].

Kernel, downloaded from the web[26], is a commonly
used public dataset [27]. It consists of 258 consecutive ver-
sions of unpacked Linux codes. Each version is 412:78 MB
on average. Two consecutive versions are generally
99 percent identical except when there are major revision
upgrades. There are only a few self-references and hence
sparse containers are dominant.

VMDK is from a virtual machine installed Ubuntu
12.04LTS, which is a common use-case in real-world [12].
We compiled source code, patched the system, and ran an
HTTP server on the virtual machine. VMDK consists of
126 full backups. Each full backup is 15:36 GB in size on
average, and 90-98 percent identical to its adjacent backups.
Each backup contains about 15 percent self-referred chunks.

Out-of-order containers are dominant and sparse containers
are less severe.

RDB consists of snapshots of a Redis database [28]. The
database has 5 million records, 5 GB in space. We ran YCSB
[29] to update the database in a Zipfian distribution. The
update ratio is of 1 percent on average. After each run, we
archived the uncompressed dump.rdb file that is the on-
disk snapshot of the database. Finally, we got 212 versions
of snapshots. There is no self-reference and hence sparse
containers are dominant.

Synthetic was generated according to existing approaches
[5], [27]. We simulated common operations of file systems,
such as file creation/deletion/modification. We finally
obtained a 4:5 TB dataset with 400 versions. There is no self-
reference in Synthetic and sparse containers are dominant.

6.2 Experimental Configurations

We implemented our ideas, including HAR, OPT, CAF, and
CMA, on Destor that is an open-source platform for data
deduplication evaluation [23]. We also implemented
Capping [5] for comparisons. Capping is used in the hybrid
scheme by default. Since the design of the fingerprint index
is out of scope for the paper, we simply accommodate the
complete fingerprint index in memory. The baseline is of no
rewriting, and the default caching scheme is OPT. The con-
tainer size is 4 MB. The capping level in Capping is 14/
20 containers per MB (i.e., a 20 MB rewriting buffer at most
refers to 14 containers). The default utilization threshold in
HAR is 50 percent. We vary the estimated cache size of CAF
according to the characteristics of the datasets, specifically
32-container-size in Kernel, 64-container-size in RDB and
Synthetic, and 512-container-size in VMDK. We expect a
larger cache in VMDK since out-of-order containers are
dominant. CAF is used to refer to CAF-optimized Capping
in the following. We retain the latest 30 backups at any
moment. We don’t apply the offline container merging as in
previous work [5], [8], because it requires a long idle time.

We use Restore Speed Factor [5] as the metric of the
restore performance. The restore speed factor is defined as
1 divided by mean containers read per MB of restored data.
It indicates how much data restored per container read. A
higher restore speed factor indicates better restore perfor-
mance because we reconstruct a backup stream via less
container reads. Given the container size is 4 MB, 4 units of
restore speed factor correspond to the maximum storage
bandwidth.

6.3 Average Utilization

The average utilization of a backup exhibits its theoretically
maximum restore performance with unlimited restore
cache. We calculate the utilization via dividing the backup
size by the total size of actually referred containers. Fig. 7
shows the average utilizations of several rewriting
algorithms. The baseline has lowest average utilizations in
all datasets due to its severe fragmentation. Capping
improves the average utilization by 1.24-3.1� than the base-
line. CAF has similar average utilizations to Capping
although CAF rewrites less data. We observe that HAR as
well as the hybrid scheme obtain highest average utiliza-
tions in all datasets. The average utilizations of HAR are

TABLE 1
Characteristics of Datasets

dataset name Kernel VMDK RDB Synthetic

total size 104 GB 1.89 TB 1.12 TB 4.5 TB
# of versions 258 126 212 400
deduplication ratio 45.28 27.32 39.11 37.26
avg. chunk size 5:29 KB 5:25 KB 4.5 KB 12:44 KB
sparse severe medium severe severe
out-of-order medium severe medium medium
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73:55, 107:09, 65:13, and 65:6 percent in Kernel, VMDK,
RDB, and Synthetic respectively, which indicate the maxi-
mum restore speed factors (¼ average utilization � 4) are 2:94,
4:28, 2:61, and 2:62. In VMDK, the average utilization
of HAR exceeds 100 percent since VMDK has many self-
references that can restore more data than themselves (a
self-referred chunk can restore more data than its size since
it is restored multiple times in a restore).

6.4 Deduplication Ratio

Deduplication ratio explains the amount of written chunks,
and the storage cost if no backup is deleted. Since we delete
backups in a FIFO scheme to trigger garbage collection, the
actual storage cost after garbage collection is shown in
Section 6.6.

Fig. 8 shows deduplication ratios of rewriting algorithms.
The deduplication ratios of HAR are 27:43, 23:96, 24:6, and
21:2 in Kernel, VMDK, RDB, and Synthetic respectively. HAR
writes 65:25, 13:96, 58:99, and 75:73 percent more data than
the baseline respectively. The average rewrite ratios remain at
a low level, respectively 1:46, 0:5, 1:51, and 2:03 percent. It
indicates the size of rewritten data is small relative to the size
of backups. Due to such low rewrite ratios, the fingerprint
lookup, content-defined chunking, and SHA-1 computation
remain the performance bottleneck of backups. Hence, HAR
has trivial impacts on the backup performance.

We observe that HAR achieves considerably higher
deduplication ratios than Capping. The rewrite ratios of
Capping are around two times larger than that of HAR.
With the help of CAF, Capping achieves comparable dedu-
plication ratio to HAR. The hybrid scheme achieves better
deduplication ratio than Capping, but decreases deduplica-
tion ratios compared with HAR, such as by 16:3 percent
in VMDK.

Fig. 9 shows how the rewrite limit of HAR works. We
compare two different values of the rewrite limit, 5 and
100 percent. Only the results of Kernel are given because
there is no sharp increase of sparse containers in other data-
sets as shown in Fig. 2. If the rewrite limit is 100 percent,
HAR rewrites all referenced chunks in sparse containers and
hence results in high rewrite ratios in a few backups. For
example, the backup 24 has a 28.9 percent rewrite ratio. The
occasional high rewrite ratios hurt the backup performance
of these backups [17]. We observe that a rewrite limit of
5 percent successfully limits the upper bound of rewrite
ratio. The fragmented chunks of the backup 24 are amortized
by the following 5 backups. Hence, HAR would not hurt
backup performance evenwhen bursting sparse containers.

6.5 Restore Performance

In this section, we compare the rewriting algorithms in
terms of restore performance. Due to the limited space, the
experimental results from the Synthetic dataset are not
shown, which are similar with those from RDB.

Fig. 10 shows the restore performance achieved by each
rewriting algorithm with a given cache size. We tune the
cache size according to the datasets, and show the impacts
of varying cache size later in Fig. 11. The default caching
scheme is OPT. We observe severe declines of the restore
performance in the baseline. For instance, restoring the lat-
est backup is 21� slower than restoring the first backup in
Kernel. OPT alone increases restore performance by a factor
of 1.5-2, however the performance remains at a low level.

We further examine the restore performance of the
rewriting algorithms. In Kernel, the restore performance of
Capping in last backups is around 2 units of restore speed
factor. Compared to Capping, CAF achieves comparable
restore performance although it rewrites less data. HAR is
better than Capping and CAF in terms of restore perfor-
mance. HAR as well as OPT improve the restore perfor-
mance of the baseline by a factor of 14:43. There are some
occasional smaller values in the curve of HAR. That is
because a large upgrade in Linux kernel produces a large
amount of sparse containers. The fragmented chunks in the
sparse containers are amortized by following backups due
to the rewrite limit of 5 percent. The hybrid scheme achieves
best restore performance.

In VMDK, out-of-order containers are dominant and
sparse containers are less severe. The restore performance
of Capping in last backups is around 2.5-3 units of restore
speed factor. CAF improves the restore performance of
Capping by a factor of around 1:14, since it avoids a large
amount of mistaken rewrites. HAR as well as OPT improve

Fig. 7. The average utilization of last 20 backups achieved by each
rewriting algorithm.

Fig. 8. The comparisons between HAR and other rewriting algorithms in
terms of deduplication ratio.

Fig. 9. The impacts of varying the rewrite limit of HAR in Kernel.
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the restore performance of the baseline by a factor of 2:84,
which is worse than Capping since out-of-order containers
are dominant in VMDK. But we will see later that HAR is
able to achieve best restore performance with a larger
restore cache. The hybrid scheme is significantly better than
other rewriting algorithms since it takes advantages of
HAR, Capping, and CAF. The restore performance of the
initial backups exceeds the maximum storage bandwidth (4
units of restore speed factor) due to the large amount of
self-references in VMDK.

The results in RDB are similar with those in Kernel. CAF
has comparable restore performance to Capping while
rewrites less data. HAR achieves best restore performance,
175:36� higher than the baseline. The hybrid scheme can’t
outperform HAR remarkably since sparse containers are
dominant in RDB.

Fig. 11 compares restore performance among rewriting
algorithms under various cache sizes. For CAF and the
hybrid scheme, we use a constant estimated restore cache in
each dataset no matter how the restore cache varies. It is
because we cannot exactly predict the available memory in
advance. In all datasets, HAR performs worse than Capping
in a small cache, but better in a large cache. It is because
when the cache is small, out-of-order containers are domi-
nant and thus HAR that focuses on sparse containers under-
performs. When the cache is large, out-of-order containers
never hurt restore performance and the restore performance
is determined by the average utilizations as shown in Fig. 7.
As a result, HAR performs best if we have a large restore
cache. In backup systems, a large restore cache is common
since restore is rare and critical.

We observe that the hybrid scheme improves the restore
performance of HAR when the restore cache is small

without decreasing restore performance when the restore
cache is large. For example, in VMDK, the restore perfor-
mance of the hybrid scheme is approximate to that of
Capping when the cache is small, while it is approximate
to that of HAR when the cache is large. The hybrid
scheme reduces the cache threshold of HAR in all data-
sets. Taking VMDK as an example, the cache threshold of
HAR is 2,048-container-size, and the hybrid scheme
reduces the cache threshold by 4�. The cache thresholds
of HAR in Kernel and RDB are small, therefore a restore
cache of reasonable size can address the problem caused
by out-of-order containers without decreasing deduplica-
tion ratio. We suggest to disable the hybrid scheme in
Kernel and RDB for storage saving, while enable the
hybrid scheme in VMDK which has a significantly larger
cache threshold due to self-references.

It is interesting that CAF also underperforms when the
restore cache is small. The reasons are two-fold. First, a
smaller restore cache than the estimated cache in CAF (the
over-estimation case discussed in Section 5.5) would
degrade the restore performance of Capping. Second, when
the restore cache size drops to the capping level in Capping,
CAF becomes inefficient. One assumption of CAF is that we
have a much larger restore cache than the rewriting buffer
in Capping.

6.6 Garbage Collection

We examine how rewriting algorithms affect garbage collec-
tion in this section. The number of valid containers after gar-
bage collection exhibits the actual storage cost, and all
invalid containers are immediately reclaimed. The results
are shown in Fig. 12. In the initial backups, the baseline has
least valid containers, which verifies the discussions in

Fig. 10. The comparisons of rewriting algorithms in terms of restore performance. The cache is 32-, 512-, and 64-container-sized in Kernel, VMDK,
and RDB respectively.

Fig. 11. The comparisons of rewriting algorithms under various cache size. Restore speed factor is the average value of last 20 backups. The cache
size is in terms of # of containers.
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Section 5.3. The advantage of HAR becomes more obvious
over time, since the proportion of the former part in
Equation (1) increases. In last 20 backups, HAR decreases
the number of valid containers by 52:48, 19:35, and
49 percent compared to the baseline in Kernel, VMDK, and
RDB respectively. The results indicate HAR achieves better
storage saving than the baseline after garbage collection,
and the container merging opearion is no longer necessary
in a deduplication system with HAR.

We observe that Capping increases the number of
valid containers by 1.3� in VMDK compared to the base-
line. It indicates that Capping exacerbates the problem of
garbage collection in VMDK. In other words, although
Capping results in each backup version refers to less con-
tainers than the baseline, all 30 latest live backup ver-
sions together refer to more containers. The reason is that
Capping rewrites many copies of self-referred chunks
into different containers, which reduces the average uti-
lizations. Capping also increases the number of valid
containers in the early 180 backups of RDB which has no
self-reference. An intuitive explanation is that Capping
generally rewrites a part of chunks in a sparse container
that makes the rewritten chunks in new containers and
the old sparse container still being referenced. In last
20 backups of Kernel and RDB, Capping reduces the
number of valid containers by 34 and 7:84 percent
respectively.

After avoiding many unnecessary rewrites, CAF
achieves lower storage costs than Capping after garbage col-
lection in all datasets. For example, in VMDK, CAF reduces
the number of valid containers by 25 percent than Capping.
The hybrid scheme significantly reduces the number of
valid containers compared with the baseline, while results

in slightly more valid containers than HAR. It outperforms
Capping and CAF in all datasets.

6.7 Varying the Utilization Threshold

The utilization threshold determines the definition of sparse
containers. The impacts of varying the utilization threshold
on deduplication ratio and restore performance are both
shown in Fig. 13.

In VMDK, as the utilization threshold varies from 90 to
10 percent, the deduplication ratio increases from 17:3 to
26:84 and the restore performance decreases by about
38 percent. In particular, with a 70 percent utilization
threshold and a 2;048-container-sized cache, the restore
performance exceeds 4 units of restore speed factor. The
reason is that the self-referred chunks restore more data
than themselves. In Kernel and RDB, deduplication ratio
and restore performance are more sensitive to the change
of the utilization threshold than in VMDK, since sparse
containers are dominant in Kernel and RDB. As the utili-
zation threshold varies from 90 to 10 percent, the dedupli-
cation ratio increases from 17:06 to 42:44, and from 13:84
to 35:37 respectively. The deduplication ratio has not
declined significantly as the utilization threshold varies
from 80 to 90 percent in RDB, due to the rewrite limit of 5
percent. The smaller the restore cache is, the more signifi-
cant the performance decrease is as the utilization thresh-
old decreases.

Varying the utilization threshold also has significant
impacts on garbage collection, as shown in Fig. 14. A lower
utilization threshold results in less valid containers in initial
backups of all our datasets. However, we observe a trend
that higher utilization thresholds gradually outperform

Fig. 12. The comparisons of rewriting algorithms in terms of storage cost after garbage collection.

Fig. 13. Impacts of varying the utilization threshold on restore performance and deduplication ratio. Restore speed factor is the average value of last
20 backups. The cache size is in terms of # of containers. Each curve shows varying the utilization threshold from left to right: 90%, 80%, 70%, 60%,
50%, 40%, 30%, 20%, and 10%.
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lower utilization thresholds over time. The best utilization
thresholds finally are 30-50 percent in Kernel, 20-40 percent in
VMDK, and 50-60 percent in RDB. There are some periodical
peaks in Kernel, since a large upgrade to Linux kernel results
in a large amount of emerging sparse containers. These con-
tainers will be rewritten in the following backups, which sud-
denly increases the number of valid containers. After the
backup expires, the number of valid containers is reduced.

Based on the experimental results, we believe a
50 percent utilization threshold is practical in most cases,
since it causes moderate rewrites and obtains significant
improvements in terms of restore performance and garbage
collection efficiency.

7 CONCLUSIONS

The fragmentation decreases the efficiencies of restore and
garbage collection in deduplication-based backup systems.
We observe that the fragmentation comes in two categories:
sparse containers and out-of-order containers. Sparse con-
tainers determine the maximum restore performance, while
out-of-order containers determine the restore performance
under limited restore cache.

HAR accurately identifies and rewrites sparse containers
via exploiting historical information. We also implement an
optimal restore caching scheme (OPT) and propose a hybrid
rewriting algorithm as complements of HAR to reduce the
negative impacts of out-of-order containers. HAR, as well as
OPT, improves restore performance by 2.84-175.36� at an
acceptable cost in deduplication ratio. HAR outperforms the
state-of-the-art work in terms of both deduplication ratio and
restore performance. The hybrid scheme is helpful to further
improve restore performance in datasets where out-of-order
containers are dominant. To avoid a significant decrease of
deduplication ratio in the hybrid scheme, we develop a CAF
to exploit cache knowledge. With the help of CAF, the hybrid
scheme significantly improves the deduplication ratio with-
out decreasing the restore performance. Note that CAF can be
used as an optimization of existing rewriting algorithms.

The ability of HAR to reduce sparse containers facilitates
the garbage collection. It is no longer necessary to offline
merge sparse containers, which relies on chunk-level refer-
ence management to identify valid chunks. We propose a
CMA that identifies valid containers instead of valid
chunks. Since the metadata overhead of CMA is bounded
by the number of containers, it is more cost-effective than
existing reference management approaches whose over-
head is bounded by the number of chunks.
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