
A Bandwidth-Efficient Middleware for Encrypted
Deduplication

Helei Cui∗†, Cong Wang∗†, Yu Hua‡, Yuefeng Du∗, and Xingliang Yuan§
∗Department of Computer Science, City University of Hong Kong, Hong Kong, China
†City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China

‡School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China
§Faculty of Information Technology, Monash University, Melbourne, Australia

{helei.cui, yf.du}@my.cityu.edu.hk, congwang@cityu.edu.hk, csyhua@hust.edu.cn, xingliang.yuan@monash.edu

Abstract—Data deduplication is a vital component of current
cloud storage systems for optimized space utilization. However,
users cannot fairly enjoy the storage savings of deduplication.
Uploading two identical files consumes twice the storage quota
from a user’s account, but the server may store one file copy
only. In this paper, we design and implement a middleware
system, namely UWare. It brings storage and bandwidth savings
back to users, while preserving user data privacy. UWare starts
from the message-locked encryption for efficient deduplication
over encrypted data, and initiates the endeavor in leveraging the
similarity characteristics of block-level deduplication to balance
the effectiveness of secure deduplication and system efficiency.
Also, UWare patches a practically feasible side-channel threat
when deploying the proof-of-ownership protocol, i.e., hiding the
existence of a target file during the protocol execution. We imple-
ment a prototype and use a real-world dataset to demonstrate
that UWare can save about 30% storage and bandwidth cost
for users, and reduce over 80% memory space consumption
compared to the secure block-level deduplication.

I. INTRODUCTION

Data deduplication, as an effective redundancy elimination
technique, not only improves storage utilization but also alle-
viates network transmission [1]. While this technique has been
widely adopted on the server side, most of the existing cloud
storage services, such as Dropbox, OneDrive, and Google
Drive, still charge users regardless of the number of duplicated
copies to maximize their profits [2]. Hence in reality, users
cannot fairly enjoy the benefits of server-side deduplication,
either within their own folders or across each other’s [3].

To eliminate this unfair cost on behalf of users, dedicated
deduplication services, as a middleware deployed between
clients and cloud storage servers, are desired to detect du-
plicated files before actually uploading them to the cloud.
However, introducing this kind of middleware would bring
more privacy concerns on users’ data, as it has to scan the
incoming files for deduplication purpose.

To further address such concerns, a mandatory requirement
is to adopt secure deduplication techniques, which aims to en-
sure data privacy during deduplication and has been intensively
studied in the literature [4], [5]. Apart from those studies on
the primitive formulation, such as Message-Locked Encryption
(MLE) [6], Block-Level MLE (BL-MLE) [7], and Updatable

978-1-5386-5541-2/18/$31.00 ©2018 IEEE

Exist or Not
(Run PoW or not) Client-side	DedupAttacker

Hash tag of
a sensitive file

Exposing existence
before	verification

To	check	whether	
the	file	exists?

Fig. 1. An overlooked side-channel in prior secure client-side deduplication
schemes with the adoption of proof-of-ownership protocol.

block-level MLE [8], there are various specialized system
designs, of which the deduplication occurs at either server
side (e.g., DupLESS [9]) or client side (e.g., ClearBox [3]
and SecDep [10]). Compared with the server-side designs that
can only save storage, in the client-side designs, the user sends
a deterministically-derived tag (e.g., a hash value) of the file
to the server for duplicate checking and later uploads the non-
duplicated ones. As the transmission of redundant copies is
avoided, both the storage and bandwidth can be saved. If such
secure client-side deduplication is applied here, our envisioned
deduplication middleware, as well as the backend storage
server, would be able to process encrypted data, while bringing
the benefits of storage and bandwidth savings to users.

Despite promising, existing client-side designs are not di-
rectly applicable to build a secure deduplication middleware,
as they are inherently vulnerable to the ownership cheating
attacks [11], a.k.a., hash-only attacks [5]. That is, the client-
side deduplication allows using a piece of short information
(e.g., the hash tag) to determine and retrieve a duplicated
file, which could be abused by an attacker who does not
hold the actual file but attempts to cheat ownership of that
file [11]. To prevent such attacks, it is essential to involve an
additional step to verify that a user indeed holds a claimed file.
Particularly, the proof-of-ownership (PoW) protocol, as one
common approach, has been incorporated into many secure
client-side deduplication systems, e.g., [3], [7], [12], [13].
An overlooked side-channel in client-side deduplication. It
is recently recognized that the PoW can also be abused to
turn the deduplication server into an oracle [5], allowing an
attacker to learn the file existence by observing whether or
not the PoW testing is performed. Therefore, this overlooked
side-channel is vulnerable to the existence-of-file attacks [14]
without holding the actual file, as shown in Fig. 1. However,
to the best of our knowledge, no secure client-side dedupli-

cation systems considered this when integrating the PoW into
their deduplication procedure. And such unauthorized privacy
leakage must be patched in our middleware design.
Tradeoff among various deduplication modes. Most of
prior secure deduplication systems [3], [9], [12], [15]–[17]
perform file-level deduplication. The major downside of these
systems is the rather low deduplication ratio. To achieve
a higher ratio of deduplication, block-oriented deduplication
is naturally favored. Yet this inevitably coerces additional
overhead upon memory and bandwidth [7], [10], [18]. Our
experiment also verifies that processing at the block level
slows down the overall deduplication procedures by orders of
magnitude compared with the file-level approach (see Table II
in Section IV-B). The contradiction between file- and block-
level approaches urges a solution that acquires an acceptable
deduplication ratio while alleviating performance issues.
This work. We propose UWare, a secure client-side dedupli-
cation middleware system:

To enable efficient deduplication over encrypted data,
UWare applies MLE [6] as its encryption scheme and slightly
modifies the key generation procedure by involving some
randomnesses, similar to [12], [13]. It preserves the function-
ality of data deduplication while protecting data confidentiality
against UWare and the backend cloud storage server.

To patch the aforementioned side-channel issue, UWare
makes the file existence oblivious throughout the PoW testing.
Unlike prior systems [3], [7], [12], [13] that indicate the
file existence before running the PoW protocol, UWare hides
the existence information by always responding a random
PoW challenge and delays the deduplication result till the
completion of the PoW protocol. In this way, the user knows
nothing about the file existence by using its hash only.

To balance the deduplication effectiveness and efficiency,
UWare initiates an endeavor in leveraging the similarity char-
acteristic of file blocks (i.e., a small group of sampled block
tags can approximately represent the whole file [19]) in se-
cure deduplication. The tailored similarity-based deduplication
mode reduces the memory consumption significantly with a
little but acceptable loss of deduplication ratio. This also min-
imizes the necessary leakage in the block-level deduplication,
which does not reveal the equality among all the blocks [20].
That is, only the identical blocks of similar files are learned,
while the identical blocks of dissimilar files are encrypted into
totally different ciphertext blocks.

To summarize, UWare has the following features:
• Enhanced security. UWare enables cross-user client-side

deduplication over encrypted data, so as to bring deduplication
benefits of storage and bandwidth savings to the client. It
patches a practically feasible side-channel overlooked in the
deployment of the PoW protocol. A user who does not hold
the file will not be aware of its existence in the server.
• Synergized system. UWare systematically incorporates

MLE, PoW, and near-exact deduplication together. Especially,
the tailored similarity-based deduplication mode is tunable to
balance the effectiveness (in terms of deduplication ratio) and
efficiency (in terms of required memory space and bandwidth).

2GB à 1GB Deduplicated
Cloud	Storage

User	
Clients UWare

$

3GB

1GB1GB

1GB1GB

A B

B C
1GB 1GB1GB

A B C

Fig. 2. Usage scenario of UWare system.

• Balanced performance. We implement a prototype, test
it at AWS EC2, and publish the code on GitHub1. Extensive
evaluations show that UWare saves over 30% bandwidth when
uploading the whole dataset. Compared with the block-level
mode, UWare shrinks over 80% of the index size, and shortens
the average processing time from 25.9 ms to 14.7 ms for large
files, with only a loss of 10% in the deduplication ratio.

II. SYSTEM OVERVIEW

UWare is designed to be an imminent and easy-to-be-
deployed solution to save cloud storage fees for users with
enhanced defensive mechanisms against hash-only existence-
of-file attacks. Compatible with popular cloud storage services,
UWare will perform secure deduplication services at the
gateway of enterprise-level networks.

Fig. 2 shows the usage scenario of UWare. Three parties
are involved: user client (C), storage server (S), and secure
deduplication middleware UWare. Specifically, C is installed
at a local device, helping the user to encrypt and upload files
to S for storage purpose. S stores all users’ data, which is
maintained by a public cloud storage service provider like
AWS or Azure. As a middleware between C and S, UWare
indexes short information (e.g., hash tags for duplicate check-
ing and some random values for PoW testing) of encrypted
files/blocks of all users for efficiency, and enables Cs to further
save cloud-storage cost via deduplication within the enterprise-
level networks. Moreover, UWare defends against threats di-
rectly caused by conveniently accessible short information for
deduplication, such as cheating ownership [11], identifying file
existence [14] via hash, and poisoning stored data [12].

A. Preliminaries

•Message-locked encryption (MLE) [6] is a cryptographic
primitive formalized for ensuring data confidentiality in secure
data deduplication, where the ciphertexts of unpredictable
messages cannot be distinguished by an efficient attacker ex-
cept with negligible probability. In MLE, the same data always
result in identical tags for the use of duplicate checking, where
the ciphertext could be randomized in some constructions, e.g.,
randomized convergent encryption (RCE) [6].
• Proof-of-ownership (PoW) is an essential component

in client-side deduplication systems, where a verifier (i.e.,
UWare in our system) confirms that a prover (C) indeed
holds a claimed file/block. In the literature, there are a line
of studies [3], [7], [11]–[13] adopting PoW protocols under
different threat models. In this work, we comply with a

1Source code: https://github.com/harrycui/UWare

strong model proposed by Halevi et al. [11], where multi-
time leakage of data could exist before/after an execution of
PoW protocol. A weaker model means that a bounded amount
of information of data could be leaked only before PoW
starts [12], [13]. As introduced later in Section III-A, UWare
patches the PoW protocol and can address the aforementioned
file-existence side-channel under both threat models.

B. Threats
We consider the two following adversaries in UWare:
• A malicious user. It refers to a user who attempts to

launch the ownership cheating attacks [11] or the existence-
of-file attacks [21] by using some short information about a
file (e.g., hash tag) obtained via certain public channels [11].
Also, it refers to a user who utilizes a correct tag for duplicate
checking but uploads a fake ciphertext (that is not consistent
with the tag) to compromise the integrity of other users’ files,
so-called duplicate faking attacks [6] or poison attacks [12].
• A compromised cloud storage server. A stronger at-

tacker may compromise S and attempt to steal and learn the
underlying content of the stored file ciphertexts.

C. Assumptions
Like previous work (e.g., [3], [9], [13]), we assume that

UWare and S are both honest-but-curious. They faithfully per-
form the designated secure deduplication and storage services.
Particularly, UWare will not collude with S to compromise
data confidentiality. This is practical in the deployment of
existing deduplication services [17], [22], as UWare and S
maintained by independent service providers are normally not
co-located. We are aware that such attacks can be mitigated
by either resorting to an additional independent party (for
embedding another private key) [9] or involving a group
of online users (for obliviously sharing the data encryption
key) [15] (see more discussions in Section III-D).

UWare does not hide the equality of processed files or
blocks, owing to the intrinsic essence of deduplication that
it is unavoidable to know whether the target file/block is
duplicated [9], [15]. However, the confidentiality of each
uploaded file should always be protected with MLE. In the
meanwhile, UWare tries to minimize the necessary leakage
when leveraging file similarity characteristic for deduplication
(see details in Section III-C).

It is worth mentioning that other side-channel attacks based
on timing analysis (e.g., measuring the operation time (or
the response time) made by UWare) and traffic analysis (e.g.,
observing whether deduplication occurs by using an actual file)
as well as file-injection attacks (e.g., uploading two similar
files) are orthogonal to our UWare design rationale. Note that
some traffic obfuscation approaches can mitigate these attacks
by randomizing the operation delays and traffic volumes but
inevitably sacrifice deduplication performance [4], [23], [24].

III. OUR PROPOSED DESIGN

Adhering to the principle of benefiting users with storage
and bandwidth savings, UWare offers various modes of secure
data deduplication services.

Cloud Storage

fid fC
… …

UWare RAM
FTIndex

fT r, {fid}

Fig. 3. Secure file-level dedup in UWare.

A. UWare Operation at File Level

For ease of exposition, we begin with the most straight-
forward mode, i.e., secure file-level deduplication. UWare
is built on top of MLE because it is the most efficient
cryptographic primitive known so far for deduplication over
encrypted data [9]. Yet, only adopting MLE cannot address
the threats in our target client-side deduplication middleware.
A malicious user could use a piece of short information about
a file (e.g., the file hash) to cheat UWare the ownership of that
file [11], [12] or identify its existence [14].

The ownership cheating attack has been addressed by in-
corporating a PoW protocol in prior systems [3], [7], [12],
[13]. However, as mentioned, the existence-of-file attack is still
feasible due to the overlooked side-channel in the deployment
of their PoW protocols. Namely, an attacker who has a file
hash can know if it exists without having to complete the
PoW testing. We emphasize that such attack is meaningful in
practice. For instance, if the target file is highly sensitive or too
huge to be carried out, it cannot be provided to the employee
(or a third-party agency) to launch file-existence detection,
e.g., mass surveillance via a hash database [25].

We emphasize that the reason for this side-channel leakage
is that existing deduplication designs perform the PoW testing
after the (initial) duplicate checking passes. The PoW protocol
will be skipped if the duplicate checking fails, i.e., no file hash
is presented. Therefore, to patch this, a promising solution
is to make the file existence oblivious unless the user (who
holds the actual file) passes the PoW testing. That means no
matter the initial duplicate checking is successful or not, a
PoW challenge will be always returned. And the user should
not be able to infer the duplicate checking result based on the
challenge message in PoW protocol.
Our modified deduplication procedure. As shown in Ta-
ble I, UWare first checks whether the incoming file tag fT
(computed via a cryptographic hash function Hash(f), e.g.,
SHA256) exists in the index, called FTIndex (see Fig. 3). If
fT is not present in FTIndex, UWare knows that the file f
has not been uploaded, and returns two fresh randomnesses
for r and r∗. Otherwise, UWare returns the previously used r
in FTIndex together with a one-time randomness r∗. Here, r
is used for the key generation, ensuring that the same file can
always produce the same ciphertext, while r∗ is for the proof
generation, verifying that the user indeed holds the claimed
file f even in a strong threat model [11], i.e., the previous
proof fCT (file ciphertext tag) can be leaked.

Upon receiving the challenge (r, r∗), the C computes the
file encryption key fK via Hash(r, f). Next, it encrypts f via
a deterministic symmetric encryption scheme (e.g., CTR mode
using AES with a fixed IV [9]), i.e., fC ← Enc(fK, f). Then

TABLE I
AN EXEMPLARY SERVICE FLOW OF UWARE IN FILE-LEVEL DEDUPLICATION MODE.

User Client UWare
1. Generate file tag fT from a file f

fT−−→ 2. Perform initial checking:

3. Generate file key fK by using f and r
r,r∗←−−−− − If fT exists: return the previously used r and a fresh r∗

4. Encrypt f with fK − Else: return fresh randomness r and r∗

Our patch: no matter initial checking successes or not, the challenge message (r, r∗) is sent back to enforce PoW execution.

5. Generate ciphertext tag fCT ∗ as the proof by jointly
fCT∗
−−−−→ 6. Perform final verification:

using the ciphertext fC and r∗ − If fT exists in Step 2 and fCT ∗ matches (i.e., passing PoW):

7. Upload operation:
True/False←−−−−−−−− return True

− If True: skip upload − Else: return False

− Else: upload ciphertext fC
fC−−→ 8. Update metadata, and store fC at cloud storage

it computes the file ciphertext tag fCT ∗ ← Hash(r∗, fC), and
sends back fCT ∗ as the proof to UWare.

At last, an additional verification is performed by UWare:
i. If the fT was found in FTIndex in initial checking,

UWare checks whether the proof fCT ∗ is correct by
computing it with the r∗ and the corresponding fC2. If
the proof matches, UWare returns the fid and True to
the C, and directly appends the C on the owner list of
the file ciphertext fC.

ii. Otherwise, UWare assigns a new fid′ to this incoming
file, and returns the fid′ and False. Later, UWare will
update FTIndex with [fT, (r, {fid′})].

Remark. Different from prior secure client-side schemes [3],
[7], [12], [13], our design hides the file existence and delays
the result notification (i.e., True/False) until the completion
of PoW. The user who just holds a file hash is still requested
to upload the corresponding file ciphertext fC as she cannot
compute the correct proof. Thus, she does not know the exis-
tence of that file. Note that the randomness r∗ can be removed,
if one adopts a weaker threat model, i.e., allowing a bounded
amount one-time leakage of a file (e.g., file hash) before
running PoW. In this case, the file ciphertext fC is directly
used for generating the proof, i.e., fCT ∗ ← Hash(fC).

Addressing duplicate faking attack. Once a user (i.e., either
the initial uploader or the subsequent uploader) launches the
duplicate faking attack [6] to tamper with the file integrity,
there would be a special case that the fT was found in
FTIndex but the received proof (i.e., fCT ∗) is incorrect.
When this happens, UWare will perform as if the fT was not
found in FTIndex, assign a new fid′, and update FTIndex by
adding fid′ into the ID list of the fT . Since all unmatched
ciphertexts are requested to upload, the correct ciphertexts will
not be affected by those dummy ones.

B. UWare Operation at Block Level

To achieve more storage savings, dividing a file into blocks
and exploiting data redundancy at the block level is a promis-
ing approach [1], [18]. Thus, we now consider how to support
block-level deduplication in UWare. A common practice is

2For efficiency, UWare can pre-compute a number of “challenge-proof
pairs”, i.e., {r∗i , fCTi}. Once they are used up, UWare fetches the fC back
from S and prepare other new pairs.

to treat each block as an independent file (e.g., [15], [17],
[26]). So the basic element in duplicate checking and data
encryption is a block, where the block size could be either
fixed or variable in different settings [18].

Performance issues on memory space and bandwidth.
Although the deduplication ratio significantly increases com-
pared with the file-level mode, e.g., from 5% to 40% in our
experiment, directly adopting the above file-level design into
the block-level mode still faces crucial performance issues.
With the growing volume of the files, the amount of metadata
for secure duplication (e.g., block tags) would be huge [7].
For example, given 100 TB unique files with 4 KB average
block size (supposing no duplicated blocks), at least 800 GB
of the block tags (e.g., via SHA256) would be kept in the index
without considering other metadata (e.g., file/block IDs and the
randomness r for key generation). Regarding the bandwidth,
the number of returned challenge messages (i.e., {r, r∗}) after
the initial checking step would increase linearly to the block
numbers, which could a considerable cost when facing a large
file. To alleviate these issues, we will elaborate a tunable
design, aiming to balance the deduplication performance and
system efficiency for secure deduplication.

C. UWare Operation at Dual Level with File Similarity

Among different deduplication strategies in the plaintext
domain, near-exact deduplication achieves lower memory cost
with comparable deduplication ratio to the original block-
level deduplication [18]. Its success comes from the Broder’s
theorem [19], i.e., the similarity of the two randomly sampled
subsets is an unbiased approximation of that of the two
complete sets [18]. In other words, a small group of sampled
block tags can approximately represent the entire block tags
of the file. Thus, it is possible to leverage such similarity
characteristics to narrow down the similar files for higher
deduplication performance and reduce the memory cost [18].

Based on the above methodology, UWare can use the
sampled RP (“RePresentative”) tags to quickly narrow down
the similar files [18], and then perform pairwise block-level
checking between the incoming file and similar files. It also
needs another similarity-based inverted index, namely RPTIn-
dex, where the key is each RP tag rpT and the value is a list
of file IDs {fid} of which the files share the same rpT .

3c 2d a6 … 19 87
α β γ … δ ε

3c 2d f4 … 19 90
α β ζ … δ η

Incoming File B

Ciphertext of File A

UWare Cloud Storage

Tag File	IDs

2d …,	File	A

19 …,	File	A

RPTIndex

Representative tags

45 30 e3 … 19 90
θ κ λ … µ ν

Ciphertext of a dissimilar file

Fig. 4. Illustration of similarity-based deduplication mode. The identical
blocks of two similar files (e.g., the stored File A and the new File B) will
remain identical after encryption. But the identical blocks of two dissimilar
files will be encrypted into totally different ciphertexts.

Here, the RP tags are sampled from all the block tags of
a file, where different sampling methods can be used. For
example, the uniform method always selects the first block
tag in every R blocks, which is easy to implement and can
still achieve a higher deduplication ratio as indicated by [18].
The tradeoff is that, a smaller sampling ratio R will lead to
more RP tags, which increases the chance to locate similar
files, but incurs more space and computational cost.
Potential performance issues. Directly applying the above
approach requires the client C to send all block tags, including
the RP tags, to UWare. Later, the same number of challenge
messages {r, r∗} will be returned for block key generation
and proof generation. From another perspective, in order to
locate the previously used randomness r of each duplicated
block in initial duplicate checking, UWare requires either huge
index space for storing all existing blocks’ metadata (e.g., per-
block randomness r) or longer processing time for loading the
blocks’ metadata of similar files from disk into memory.
Our per-file randomness design. To balance the performance
and efficiency, we prefer a per-file randomness r design. That
is, each file, regardless of how many blocks it has, will be
assigned a single randomness r for the key generation. The
same r will be shared with subsequent similar files. Particu-
larly, the block-level duplicate checking will be performed by
using the blocks of the most (Top-1) similar file only.

1) Pros and Cons: This per-file randomness design can
accelerate the duplicate checking step by keeping all required
metadata in RAM. One reason is that the number of random-
nesses is much smaller than the above per-block randomness
design. Also, the bandwidth cost can reduce accordingly, as
each file requires only a pair of challenge randomness (r, r∗).
From the perspective of security, exploiting data redundancy
at the block level will inevitably reveal the similarity of files,
explicitly the number of common blocks. But our per-file
randomness design can minimize the necessary leakage only
among the similar files. The reason is that only identical blocks
of the similar files that share the same r can be detected, while
the identical blocks of dissimilar files will be encrypted into
totally different ciphertext blocks, as shown in Fig. 4.

On the other hand, as the detection range is limited to the
blocks of the most similar file, the deduplication ratio will
decrease accordingly, say 6% loss in our experiment.

2) The Detailed Deduplication Procedure: Fig. 5 illustrates
the major data structures in this mode. Now, UWare requires
three indexes: 1) FTIndex stores the metadata of each file, e.g.,

bid bC
… …

UWare RAM
FTIndex

fT r, {fid}

RPTIndex
rpT {fid}

Cloud Storage

FidIndex
fid r

UWare Disk

BidTable
fid {bid}1≤x≤n

Fig. 5. Secure similarity-based dedup in UWare.

file tag fT and per-file randomness r; 2) RPTIndex maintains
the similarity information of the previously appeared files; 3)
FidIndex is used for quickly retrieving the previously used
randomness r after locating the most similar file.

Moreover, to reduce the memory consumption, UWare
moves some “less-urgent” metadata to the disk, e.g., the
BidTable maintains the relationship between a file and its
blocks. This kind of metadata is required in PoW verification
(i.e., Step 4), and can be loaded dynamically after the initial
duplicate checking (i.e., Step 2).

For practical purpose, UWare always conducts the file-level
duplicate checking before performing the similarity-based
block-level deduplication, so-called a dual-level design [7].
• Step 1: Tag generation by user. Suppose that a user

wants to upload a file f , which is divided into multiple blocks
f [1]|| · · · ||f [n] by the client C. Next, the C computes a file
tag fT and a group of block tags {bT [x]}1≤x≤n via Hash(·);
and then samples the RP tags {rpT [y]}1≤y≤m via a sampling
method (e.g., the aforementioned uniform method that always
selects the first block tag in every R blocks). Then the C sends
(fT, {rpT [y]}1≤y≤m) to UWare for duplicate checking.
• Step 2: Initial checking by UWare. Upon receiving the

request, UWare runs Algorithm 1 for duplicate checking. Then
it returns a challenge message (r, r∗).
• Step 3: Data encryption and proof generation by user.

By using the randomness r, the C first generates a block
key bK[x] for each block f [x] via Hash(r, f [x]). Then it
encrypts the blocks {bC[x] ← Enc(bK[x], f [x])}1≤x≤n, and
computes the block ciphertext tags by using the other one-time
randomness r∗, i.e., {bCT ∗[x] ← Hash(r∗, bC[x])}1≤x≤n.
Next, the {bCT ∗[x]}1≤x≤n, as the PoW proof, is sent back
to UWare for final verification.
• Step 4: Final verification by UWare. At last, UWare

needs to return a file ID fid, a list of block IDs {bid}, and
a signal vector σf , which marks the duplicated blocks, i.e.,
“σf [x] = 1” indicates the x-th block of file f is duplicated.
UWare initializes each element of σf to 0, and changes them
according to the following situations:

i. The file is duplicated. If the fT was found in FTIndex
in Step 2, UWare will check whether the block ciphertext tags
{bCT ∗[x]}1≤x≤n are correct. Normally, all the tags would be
matched with the duplicated file’s blocks, i.e., passing the PoW
testing. Thus, UWare modifies each element of σf to 1.

ii. Some blocks are duplicated. Otherwise, UWare
will check whether each of the block ciphertext tags
{bCT ∗[x]}1≤x≤n matches one of the blocks of the most sim-
ilar file. For those matched block ciphertext, UWare modifies

Algorithm 1: Initial duplicate checking
Input: File tag fT , RP tags {rpT [y]}1≤y≤m.
Output: Challenge message (r, r∗).

1 if FTIndex.contains(fT) then
2 r ← FTIndex.get(fT);

3 else
4 Initialize a HashMap Map;
5 for each y ∈ [1,m] do
6 if RPTIndex.contains(rpT [y]) then
7 {fid} ← RPTIndex.get(rpT [y]);
8 for each fid ∈ {fid} do
9 if Map.contains(fid) then

10 Map.put(fid,Map.get(fid) + 1);

11 else
12 Map.put(fid, 1);

13 if Map.size() > 0 then
14 Rank the Map based on its values, and get the most

similar fid∗;
15 r ← FidIndex.get(fid∗);

16 else
17 Randomly generate a fresh r ← {0, 1}∗;

18 Randomly generate a fresh r∗ ← {0, 1}∗;
19 Send back (r, r∗).

the corresponding elements of σf to 1, and updates all related
indexes accordingly. In this case, a new fid′ will be assigned,
and the related data structures will be updated accordingly.

iii. The file is duplicated but verification fails. Similar to
the file-level mode, there is a special case that the fT was
found in FTIndex in Step 2, but the received proofs (i.e.,
{bCT ∗[x]}1≤x≤n) are not correct entirely. In this case, UWare
will perform as if the fT was new, update FTIndex by adding
a new fid′ into the ID list of the fT , and request the C to
upload all unmatched block ciphertexts. So the user can always
retrieve the uploaded file, without being affected by others.

D. Security of UWare

Now, we show that UWare can effectively address the
threats from a malicious user (C) and a compromised cloud
storage server (S), as defined in Section II-B.
Security against a malicious C. The malicious C attempts to
use a hash tag fT (or {bT [x]}1≤x≤n) to cheat the ownership
of a file that she does not have or identify its existence at S.
With these tags, the C can send a deduplication request to
UWare. However, UWare always returns a random challenge
message (r, r∗), and asks the C to use the file f to compute
the ciphertext tag(s) as the PoW proof. Particularly, without
holding f , the C is unable to compute the correct encryption
key fK (or {bK[x]}1≤x≤n), and the correct proof fCT ∗ (or
{bCT ∗[x]}1≤x≤n). So the PoW testing will fail and UWare
will not be fooled to treat the C as a legitimate owner.

The C may also attempt to compromise the integrity of other
users’ data by uploading a fake ciphertext. However, this will
cause a special case as mentioned in Section III-A and III-C,
and UWare will treat it as a “new” file connected to the C.

Security against a compromised S. An attacker may com-
promise the backend cloud storage S to obtain the stored
ciphertext. However, the ciphertext of files/blocks (i.e., fC
or bC) is encrypted by the data owner via Enc(fK, f) (or
Enc(bK[x], f [x])), where the key is generated via Hash(r, f)
(or Hash(r, f [x])) after interacting with UWare. Note that
introducing randomness r guarantees that even the attacker
obtains the partial information of files or hashes, she cannot
compromise the encryption key. Similar treatment is also used
in [12] and [13]. Without the correct fK (or bK) to pass the
PoW, the attacker is unable to decrypt the ciphertext.
Further mitigation against brute-force attacks. A compro-
mised UWare may launch the offline brute-force attack by
leveraging the stored tags (e.g., fT and bT). This is because
the tags for duplicate checking are derived deterministically
from the file/block itself [13]. To address this attack, one can
involve an additional key server to securely embed another
secret sk in the process of tag generation as in [9], [13].
Without sk, UWare is unable to compute the tags. Another
potential brute-force attack is the online brute-force attack,
where an attacker uploads all possible files and observes which
one is deduplicated. To address this, standard rate-limiting
strategies as used in [9], [15] can be adopted in UWare.

IV. PERFORMANCE EVALUATION

A. Experimental Setup
We implement a prototype with roughly 2,400 lines of

Java code. We evaluate its performance on an AWS instance
“r3.xlarge” with Intel Xeon E5-2670 v2 (4 vCPU @ 2.50 GHz)
with 30.5 GiB of RAM in Linux (Ubuntu 16.04 LTS). Par-
ticularly, we use Java Cryptography Architecture to realize
the symmetric encryption via AES-256 in CTR mode and the
cryptographic hash function via SHA256.

In our experiment, we use a real dataset Fslhomes Snap-
shots3, containing daily snapshots of students’ home directo-
ries. Each snapshot file was collected with multiple average
block sizes, ranging from 2 KB to 128 KB. It also contains a
rich set of file system metadata, such as file names, file/block
sizes, and block hashes. Here, we randomly select one snap-
shot file for each of the seven students in the directory of
“2014”, and use the collection whose the average block size
is 16 KB as our dataset. Consequently, we have 2,400,000 files
with 34,172,800 blocks, and the total size is about 564 GB.

For demonstration purpose, we keep all the required meta-
data of stored files/blocks in RAM. During the testing, we
simulate a scenario that a C is uploading all the files in our
dataset via UWare one by one. And we do not compare with
prior secure deduplication systems, because none of them is
designed as a deduplication middleware, nor considers the sim-
ilarity characteristic of files. Regarding the sampling method in
similarity-based deduplication, we adopt the uniform method4

(i.e., selecting the first block tag in every R blocks), and set
the sampling ratio R as 128, as suggested by [18].

3FSL Traces and Snapshots Public Archive: http://tracer.filesystems.org/
4Other sampling methods (e.g., the random [18] and the minimum [19])

can also be adopted here, with (slightly) different performance.

Mode I Mode II Mode III Mode IV
0

10

20

30

40

50

60
D

e
d
u
p
li
c
a
ti

o
n
 r

a
ti

o
 (

%
)

Dedup. in plaintext

Dedup. in ciphertext

(a) Deduplication ratio
Mode I Mode II Mode III Mode IV

0

300

600

900

1200

1500

In
d
e
x
 s

iz
e
 (

M
B

)

Dedup. in plaintext

Dedup. in ciphertext

(b) Index size
Fig. 6. Comparison between plaintext design and UWare in four modes.

B. Evaluation

1) Deduplication Effectiveness: To demonstrate the effec-
tiveness in terms of deduplication ratio, we test UWare in
all modes (i.e., file-level (Mode I), block-level (Mode II),
similarity-based dual-level with per-block randomness in all
similar files (Mode III) as mentioned in Section III-C, and
that with per-file randomness in top-1 similar file (Mode IV))
in both plaintext domain and ciphertext domain.

Fig. 6-(a) shows that UWare achieves the same dedupli-
cation ratios with the plaintext designs. That means that our
security design does not affect the effectiveness of the dedu-
plication methods. The reason is that the duplicate checking
step in UWare is based on the equality testing of underlying
blocks/files, and the used encryption method preserves the
equality information. Besides that, the results confirm that
the block-level mode can eliminate much more redundancy
(≈ 40%) than the file-level mode (≈ 5%). In addition, our
per-file randomness design incurs a little but acceptable loss of
the deduplication ratio, i.e., 6% compared with the per-block
randomness design, and 10% compared with the block-level
mode. But it still achieves a much higher deduplication ratio
(≈ 30%) than the file-level mode (≈ 5%).

2) Index Space Overhead: We now report the system per-
formance in terms of required index space in the four modes.
Compared with the plaintext designs, our secure deduplication
designs lead to the index expansion, up to 27%, because of
the randomness r, as shown in Fig. 6-(b). In particular, we
have the following findings: 1) The block-level mode, which
achieves the best deduplication performance, requires much
larger memory space (near 1,000 MB for our dataset) com-
pared with the file-level mode (about 61 MB). 2) The secure
similarity-based dual-level deduplication mode with per-block
randomness design requires even (a little) more memory space
than the block-level mode due to the extra RPTIndex and
more randomnesses. 3) Our per-file randomness design (about
140 MB) just requires a little more memory space than the
file-level mode, which is much less than the block-level mode
(i.e., over 80% in-memory index space saving).

3) Service Overhead: The service overhead mainly comes
from the tag generation and data encryption at client side,
and the secure deduplication procedure at UWare. Fig. 7-
(a) shows the average time cost at client side for secure
deduplication in four modes, and Fig. 7-(b) illustrates the
detailed time consumption for three major steps, i.e., tag
generation, file/block key generation, and data encryption. We

16KB 256KB 4MB 32MB 64MB
File size

0

1

2

3

T
im

e
 (

s
)

Mode I (file-level)

Mode II (block-level)

Mode III (per-block r)

Mode IV (per-file r)

(a) Average time cost

4MB 32MB 64MB
File size

0

1

2

3

T
im

e
 (

s
)

Tag generation

Key generation

Data encryption

(b) Time cost of major steps
Fig. 7. Client side cost for secure deduplication (Note: the four bars in (b)
represent the four modes).

TABLE II
AVERAGE OF UWARE PROCESSING TIME.

File size File-level Block-level Similarity-based (ms)

(MB) (ms) (ms) per-block r
per-file r
(Top-1)

0∼64 0.00103 0.0026 1.86 0.00205
64∼2048 0.00091 25.9 457.8 14.7

16KB 256KB 4MB 32MB 64MB
File size

0

100

200

300

400

B
a
n
d
w

id
th

 (
K

B
)

Mode I (file-level)

Mode II (block-level)

Mode III (per-block r)

Mode IV (per-file r)

Fig. 8. Bandwidth cost for secure deduplication.

see that the overall time cost increases linearly to the file
size, where the tag generation and the file/blocks encryption
dominate the cost. Note that Fig. 7-(b) does not show the
time cost of the RP tags sampling step in our similarity-based
design, because it is negligible to the above cost, e.g., it takes
about 0.06 ms for a 64 MB file.

To better evaluate the time cost at UWare, we record the
processing time for the small files (smaller than 64 MB) and
the large files (from 64 MB to 2 GB), respectively. Table II
reports the average time cost of the four modes, which includes
the two major steps, i.e., duplicate checking and verification.
We can see that our per-file randomness design by using the
top-1 similar file is orders of magnitude faster than the per-
block randomness design. The reason is that the number of
randomnesses is the same as the number of unique files, which
is relatively small and can be stored in memory (i.e., FTIndex)
for accelerating the process of initial checking.

In addition, Fig. 8 illustrates the bandwidth consumptions
for secure deduplication with UWare. Specially, our per-file
randomness design (i.e., mode IV) is more efficient than the
per-block randomness design (i.e., mode III), because only
the RP tags are required for initial checking and the returned
challenge message only contains one pair (r, r∗).

V. RELATED WORK

• Deduplication in plaintext domain. The problem of data
deduplication has been extensively studied in the plaintext
domain. In brief, it is achieved by storing and uploading
a single copy of identical files/blocks, where the duplicate

checking procedure mostly relies on some designed indexes
resided in main memory [1]. To improve system efficiency,
there are a line of studies that focus on similarity-based near-
exact deduplication, e.g., [19]. Particularly, Fu et al. [18]
presented a general-purpose framework to evaluate various
deduplication solutions. Their experimental results indicated
that no single solution can perform the best in all metrics, but
near-exact deduplication can achieve lower memory cost at a
cost of decreasing deduplication ratio.
• Deduplication over encrypted data. To enable cross-user

data deduplication over encrypted data, Douceur et al. [16]
first proposed convergent encryption (CE), which encrypts a
file by using its hash value as the key. Thus, users who own the
same file can produce the same key. After that, Bellare et al. [6]
formalized CE to the cryptographic primitive MLE. It is known
that MLE and its variants are vulnerable to offline brute-force
attacks when facing predictable data [6]. Accordingly, follow-
up studies either rely on an additional independent server [9],
[13], [22] or a number of online users [15] to defend against
this threat, which is also compatible with UWare.

Moreover, secure deduplication has been studied in various
settings. For example, Stanek et al. [17] proposed a two-
layer scheme that only deduplicates popular files. Zhou et
al. [10] combined cross-user file-level and single-user block-
level deduplication together to balance the security and per-
formance. Chen et al. [7] proposed BL-MLE, encapsulating
the block keys into the block tags to reduce the metadata
size but requiring linearly scanning all blocks with bilinear
map operations. Recently, Li et al. [20] adopted MinHash
encryption to encrypt each group of consecutive blocks with a
key derived from a sampled block, which can resist frequency
analysis. Different from these studies, we focus on designing
a bandwidth-efficient middleware for secure deduplication ser-
vices and patching the side-channel leakage in the deployment
of a PoW protocol.

VI. CONCLUSION

In this paper, we presented UWare, a bandwidth-efficient
middleware that enables cross-user deduplication over en-
crypted cloud storage. It aims to bring deduplication benefits
of storage and bandwidth savings to users. It patches a
practically feasible side-channel leakage of the existence of a
target file when integrating the PoW protocol. It also leverages
the similarity characteristics to balance the deduplication ef-
fectiveness and system efficiency. Evaluation results show that
UWare can achieve comparable deduplication performance,
efficient memory cost, and modest service overhead.

ACKNOWLEDGMENT

This work was supported in part by the Research Grants
Council of Hong Kong under Grant CityU 11276816, Grant
CityU 11212717, and Grant CityU C1008-16G, in part by
the Innovation and Technology Commission of Hong Kong
under ITF Project ITS/168/17, in part by the National Natural
Science Foundation of China under Grant 61572412 and
61772212, and in part by an AWS Education Research Grant.

REFERENCES

[1] W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane, Y. Hua, M. Fu,
Y. Zhang, and Y. Zhou, “A Comprehensive Study of the Past, Present,
and Future of Data Deduplication,” Proceedings of the IEEE, vol. 104,
no. 9, pp. 1681–1710, 2016.

[2] “IDC: Public Cloud IaaS Revenues to Triple, by 2020,” https://
solutionsreview.com/cloud-platforms/idc-public-iaas-revenues, 2016.

[3] F. Armknecht, J.-M. Bohli, G. O. Karame, and F. Youssef, “Transparent
Data Deduplication in the Cloud,” in Proc. of ACM CCS, 2015.

[4] Y. Shin, D. Koo, and J. Hur, “A Survey of Secure Data Deduplication
Schemes for Cloud Storage Systems,” ACM Computing Surveys (CSUR),
vol. 49, no. 4, p. 74, 2017.

[5] V. Rabotka and M. Mannan, “An Evaluation of Recent Secure Dedupli-
cation Proposals,” JISA, vol. 27, pp. 3–18, 2016.

[6] M. Bellare, S. Keelveedhi, and T. Ristenpart, “Message-Locked Encryp-
tion and Secure Deduplication,” in Proc. of EUROCRYPT, 2013.

[7] R. Chen, Y. Mu, G. Yang, and F. Guo, “BL-MLE: Block-Level Message-
Locked Encryption for Secure Large File Deduplication,” IEEE TIFS,
vol. 10, no. 12, pp. 2643–2652, 2015.

[8] Y. Zhao and S. S. Chow, “Updatable Block-Level Message-Locked
Encryption,” in Proc. of ACM ASIACCS, 2017.

[9] M. Bellare, S. Keelveedhi, and T. Ristenpart, “DupLESS: Server-Aided
Encryption for Deduplicated Storage,” in Proc. of USENIX Security,
2013.

[10] Y. Zhou, D. Feng, W. Xia, M. Fu, F. Huang, Y. Zhang, and C. Li,
“SecDep: A User-Aware Efficient Fine-Grained Secure Deduplication
Scheme with Multi-Level Key Management,” in Proc. of IEEE MSST,
2015.

[11] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Proofs of
Ownership in Remote Storage Systems,” in Proc. of ACM CCS, 2011.

[12] J. Xu, E.-C. Chang, and J. Zhou, “Weak Leakage-Resilient Client-Side
Deduplication of Encrypted Data in Cloud Storage,” in Proc. of ACM
ASIACCS, 2013.

[13] Y. Zheng, X. Yuan, X. Wang, J. Jiang, C. Wang, and X. Gui, “Toward
Encrypted Cloud Media Center With Secure Deduplication,” IEEE
Trans. on Multimedia, vol. 19, no. 2, pp. 251–265, 2017.

[14] D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Side Channels in Cloud
Services: Deduplication in Cloud Storage,” IEEE Security&Privacy,
vol. 8, no. 6, pp. 40–47, 2010.

[15] J. Liu, N. Asokan, and B. Pinkas, “Secure Deduplication of Encrypted
Data without Additional Independent Servers,” in Proc. of ACM CCS,
2015.

[16] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer,
“Reclaiming Space from Duplicate Files in a Serverless Distributed File
System,” in Proc. of IEEE ICDCS, 2002.

[17] J. Stanek, A. Sorniotti, E. Androulaki, and L. Kencl, “A Secure Data
Deduplication Scheme for Cloud Storage,” in Proc. of FC, 2014.

[18] M. Fu, D. Feng, Y. Hua, X. He, Z. Chen, W. Xia, Y. Zhang, and
Y. Tan, “Design Tradeoffs for Data Deduplication Performance in
Backup Workloads,” in Proc. of USENIX FAST, 2015.

[19] W. Xia, H. Jiang, D. Feng, and Y. Hua, “Similarity and Locality based
Indexing for High Performance Data Deduplication,” IEEE Trans. on
Computers, vol. 64, no. 4, pp. 1162–1176, 2015.

[20] J. Li, C. Qin, P. P. Lee, and X. Zhang, “Information Leakage in
Encrypted Deduplication via Frequency Analysis,” in Proc. of IEEE/IFIP
DSN, 2017.

[21] F. Armknecht, C. Boyd, G. T. Davies, K. Gjøsteen, and M. Toorani,
“Side Channels in Deduplication: Trade-Offs Between Leakage and
Efficiency,” in Proc. of ACM ASIACCS, 2017.

[22] P. Puzio, R. Molva, M. Önen, and S. Loureiro, “ClouDedup: Secure
Deduplication with Encrypted Data for Cloud Storage,” in Proc. of IEEE
CloudCom, 2013.

[23] P. Zuo, Y. Hua, C. Wang, W. Xia, S. Cao, Y. Zhou, and Y. Sun,
“Mitigating Traffic-Based Side Channel Attacks in Bandwidth-Efficient
Cloud Storage,” in Proc. of IEEE IPDPS, 2018.

[24] C.-M. Yu, S. P. Gochhayat, M. Conti, and C.-S. Lu, “Privacy Aware
Data Deduplication for Side Channel in Cloud Storage,” IEEE Trans.
on Cloud Computing, pp. 1–1, 2018.

[25] I. Brown, Research Handbook on Governance of the Internet. Edward
Elgar Publishing, 2013.

[26] Z. Yan, W. Ding, X. Yu, H. Zhu, and R. H. Deng, “Deduplication on
Encrypted Big Data in Cloud,” IEEE Trans. on Big Data, vol. 2, no. 2,
pp. 138–150, 2016.

