usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Design Tradeoffs for Data Deduplication
Performance in Backup Workloads

Min Fu, Dan Feng, and Yu Hua, Huazhong University of Science and Technology;
Xubin He, Virginia Commonwealth University; Zuoning Chen, National Engineering Research
Center for Parallel Computer; Wen Xia and Yucheng Zhang, Huazhong University of Science
and Technology; Yujuan Tan, Chonggqing University

https://www.usenix.org/conference/fast15/technical-sessions/presentation/fu

This paper is included in the Proceedings of the
13th USENIX Conference on
File and Storage Technologies (FAST '15).
February 16-19, 2015 - Santa Clara, CA, USA
ISBN 978-1-931971-201

Open access to the Proceedings of the
13th USENIX Conference on
File and Storage Technologies
is sponsored by USENIX

Design Tradeoffs for Data Deduplication Performance in Backup Workloads

Min Fuf, Dan Feng', Yu Hua', Xubin Het, Zuoning Chen”, Wen Xiaf, Yucheng Zhang?, Yujuan Tan$
tWuhan National Lab for Optoelectronics
School of Computer, Huazhong University of Science and Technology, Wuhan, China
tDept. of Electrical and Computer Engineering, Virginia Commonwealth University, VA, USA
*National Engineering Research Center for Parallel Computer, Beijing, China
§College of Computer Science, Chongqing University, Chongging, China
Corresponding author: dfeng @ hust.edu.cn

Abstract

Data deduplication has become a standard component in
modern backup systems. In order to understand the fun-
damental tradeoffs in each of its design choices (such as
prefetching and sampling), we disassemble data dedupli-
cation into a large N-dimensional parameter space. Each
point in the space is of various parameter settings, and
performs a tradeoff among backup and restore perfor-
mance, memory footprint, and storage cost. Existing and
potential solutions can be considered as specific points
in the space. Then, we propose a general-purpose frame-
work to evaluate various deduplication solutions in the
space. Given that no single solution is perfect in all met-
rics, our goal is to find some reasonable solutions that
have sustained backup performance and perform a suit-
able tradeoff between deduplication ratio, memory foot-
prints, and restore performance. Our findings from ex-
tensive experiments using real-world workloads provide
a detailed guide to make efficient design decisions ac-
cording to the desired tradeoff.

1 Introduction

Efficient storage of a huge volume of digital data be-
comes a big challenge for industry and academia. IDC
predicts that there will be 44 ZB of digital data in
2020 [3], which will continue to grow exponentially. Re-
cent work reveals the wide existence of a large amount of
duplicate data in storage systems, including primary stor-
age systems [27, 37], secondary backup systems [36],
and high-performance data centers [26]. In order to sup-
port efficient storage, data deduplication is a widely de-
ployed technique between the underlying storage system
and upper applications due to its efficiency and scala-
bility; it becomes increasingly important in large-scale
storage systems, especially backup systems.

In backup systems, data deduplication divides a back-
up stream into non-overlapping variable-sized chunks,
and identifies each chunk with a cryptographic digest,

such as SHA-1, commonly referred to as a fingerprint.
Two chunks with identical fingerprints are considered
duplicates without requiring a byte-by-byte comparison.
The probability of hash collisions is much smaller than
that of hardware errors [33], thus it is widely accepted in
real-world backup systems. A fingerprint index maps fin-
gerprints of the stored chunks to their physical addresses.
A duplicate chunk can be identified via checking the ex-
istence of its fingerprint in the index. During a backup,
the duplicate chunks are eliminated immediately for in-
line data deduplication. The chunks with unique finger-
prints that do not exist in the fingerprint index are aggre-
gated into fixed-sized containers (typically 4 MB), which
are managed in a log-structure manner [39]. A recipe
that consists of the fingerprint sequence of the backup is
written for future data recovery.

There have been many publications about data dedup-
lication [32]. However, it remains unclear how existing
solutions make their design decisions and whether poten-
tial solutions can do better. Hence, in the first part of the
paper (Section 2), we present a taxonomy to classify ex-
isting work using individual design parameters, includ-
ing key-value, fingerprint prefetching and caching,
segmenting, sampling, rewriting, restore, etc. Dif-
ferent from previous surveys [24, 32], our taxonomy is
fine-grained with in-depth discussions. We obtain an N-
dimensional parameter space, and each point in the spa-
ce performs a tradeoff among backup and restore per-
formance, memory footprint, and storage cost. Existing
solutions are considered as specific points. We figure
out how existing solutions choose their points, which al-
lows us to find potentially better solutions. For example,
similarity detection in Sparse Indexing [22] and segment
prefetching in SilLo [38] are highly complementary.

Although there are some open-source deduplication
platforms, such as dmdedup [35], none of them are
capable of evaluating the parameter space we dis-
cuss. Hence, the second part of our paper (Section 3)

USENIX Association

13th USENIX Conference on File and Storage Technologies (FAST "15) 331

Segment A Segment B Segment C Segment D

R Y e Vo T

(1) €alculate
fingerprint
for each chunk

Fingerprint .
Cache !

___________ -
(4) If not,
check in the

key—value stord

Find a match?

(2) Lookup in the
Fingerprint cache

(7) Duplicate chunk
¢ Write the fingerprint
to recipe store
Hash engine +

Recipe Store ||
- I
. | Container Store ||

Key—Value Store @) If not

(fingerprint index)

(5) If yes i

Unique chunk
Write the chunk to
container store

Insert the fingerprint
to key-value store
Write the fingerprint
to recipe store

Prefeching fingerprints
from either container
store or recipe store
into fingerprint cache

0

Figure 1: A typical deduplication system and the Base deduplication procedure.

presents a general-purpose Deduplication Framework
(DeFrame)', for comprehensive data deduplication eval-
uation. DeFrame implements the entire parameter space
discussed in a modular and extensible fashion; this en-
ables apple-to-apple comparisons among both existing
and potential solutions. Our aim is to facilitate finding
solutions that provide sustained high backup and restore
performance, low memory footprints, and high storage
efficiency.

The third part of our paper (Section 4) presents our
findings in a large-scale experimental evaluation using
real-world long-term workloads. The findings provide a
detailed guide to make reasonable decisions according to
the desired tradeoff. For example, if high restore per-
formance is required, a rewriting algorithm is required
to trade storage efficiency for restore performance. With
a rewriting algorithm, the design decisions on the finger-
print index need to be changed. To the best of our knowl-
edge, this is the first work that examines the interplays
between fingerprint index and rewriting algorithms.

2 In-line Data Deduplication Space

Figure 1 depicts a typical deduplication system. Gen-
erally, we have three components on disks: (1) The fin-
gerprint index maps fingerprints of stored chunks to their
physical locations. It is used to identify duplicate chunks.
(2) The recipe store manages recipes that describe the
logical fingerprint sequences of concluded backups. A
recipe is used to reconstruct a backup stream during re-
store. (3) The container store is a log-structured storage
system. While duplicate chunks are eliminated, unique
chunks are aggregated into fixed-sized containers. We
also have a fingerprint cache in DRAM that holds popu-
lar fingerprints to boost duplication identification.
Figure 1 also shows the basic deduplication procedure,
namely Base. At the top left, we have three sample back-
up streams that correspond to the snapshots of the prima-
ry data in three consecutive days. Each backup stream is
divided into chunks, and 4 consecutive chunks constitute
a segment (a segment describes the chunk sequence of

"https://github.com/fomy/destor

Parameter list
sampling
segmenting
segment selection
segment prefetching
key-value mapping
rewriting algorithm
restore algorithm

Description

selecting representative fingerprints
splitting the unit of logical locality
selecting segments to be prefetched
exploiting segment-level locality
multiple logical positions per fingerprint
reducing fragmentation

designing restore cache

Table 1: The major parameters we discuss.

a piece of data stream; we assume a simplest segment-
ing approach the this case). Each chunk is processed in
the following steps: (1) The hash engine calculates the
SHA-1 digest for the chunk as its unique identification,
namely fingerprint. (2) Look up the fingerprint in the in-
DRAM fingerprint cache. (3) If we find a match, jump to
step 7. (4) Otherwise, look up the fingerprint in the key-
value store. (5) If we find a match, invoke a fingerprint
prefetching procedure. Jump to step 7. (6) Otherwise,
the chunk is unique. We write the chunk to the contain-
er store, insert the fingerprint to the key-value store, and
write the fingerprint to the recipe store. Jump to step 1 to
process the next chunk. (7) The chunk is a duplicate. We
eliminate the chunk and write its fingerprint to the recipe
store. Jump to step 1 to process the next chunk.

In the following sections, we (1) propose the finger-
print index subspace (the key component in data dedup-
lication systems) to characterize existing solutions and
find potentially better solutions, and (2) discuss the in-
terplays among fingerprint index, rewriting, and restore
algorithms. Table 1 lists the major parameters.

2.1 Fingerprint Index

The fingerprint index is a well-recognized performance
bottleneck in large-scale deduplication systems [39]. The
simplest fingerprint index is only a key-value store [33].
The key is a fingerprint and the value points to the chunk.
A duplicate chunk is identified via checking the exis-
tence of its fingerprint in the key-value store. Suppose
each key-value pair consumes 32 bytes (including a 20-
byte fingerprint, an 8-byte container ID, and 4-byte other
metadata) and the chunk size is 4 KB on average, in-
dexing 1 TB unique data requires at least an 8 GB-sized
key-value store. Putting all fingerprints in DRAM is not

332 13th USENIX Conference on File and Storage Technologies (FAST "15)

USENIX Association

cost-efficient. To model the storage cost, we use the unit
price from Amazon.com [1]: A Western Digital Blue 1
TB 7200 RPM SATA Hard Drive costs $60, and a King-
ston HyperX Blu 8§ GB 1600 MHz DDR3 DRAM costs
$80. The total storage cost is $140, 57.14% of which is
for DRAM.

An HDD-based key-value store suffers from HDD’s
poor random-access performance, since the fingerprint is
completely random in nature. For example, the through-
put of Content-Defined Chunking (CDC) is about 400
MB/s under commercial CPUs [11], and hence CDC pro-
duces 102,400 chunks per second. Each chunk incurs
a lookup request to the key-value store, i.e., 102,400
lookup requests per second. The required throughput
is significantly higher than that of HDDs, i.e., 100 IO-
PS [14]. SSDs support much higher throughput, near-
ly 75,000 IOPS as venders report [4]. However, SSDs
are much more expensive than HDDs and suffer from a
performance degradation over time due to reduced over-
provisioning space [19].

Due to the incremental nature of backup workloads,
the fingerprints of consecutive backups appear in simi-
lar sequences [39], which is known as locality. In or-
der to reduce the overhead of the key-value store, mod-
ern fingerprint indexes leverage locality to prefetch fin-
gerprints, and maintain a fingerprint cache to hold the
prefetched fingerprints in memory. The fingerprint index
hence consists of two submodules: a key-value store and
a fingerprint prefetching/caching module. The value in-
stead points to the prefetching unit. According to the use
of the key-value store, we classify the fingerprint index
into exact and near-exact deduplication.

e Exact Deduplication (ED): all duplicate chunks
are eliminated for highest deduplication ratio (the
data size before deduplication divided by the data
size after deduplication).

e Near-exact Deduplication (ND): a small number
of duplicate chunks are allowed for higher backup
performance and lower memory footprint.

According to the fingerprint prefetching policy, we clas-
sify the fingerprint index into exploiting logical and
physical locality.

e Logical Locality (LL): the chunk (fingerprint) se-
quence of a backup stream before deduplication. It
is preserved in recipes.

e Physical Locality (PL): the physical layout of
chunks (fingerprints), namely the chunk sequence
after deduplication. It is preserved in containers.

Figure 2 shows the categories of existing fingerprint
indexes. The cross-product of the deduplication and lo-

(EDPL)

e PRUNE
e ChunkStash
e DDFS
Exact Dedupe (ED)
Near-exact Dedupe (ND)
3
o Sparse Indexing z
e Extreme Binning E e BLC
o SiLo S
Z
B
(NDLL) = (EDLL)

Figure 2: Categories of existing fingerprint indexes.
The typical examples include DDFS [39], Sparse Index-
ing [22], Extreme Binning [10], ChunkStash [14], Sam-
pled Index [18], SiLo [38], PRUNE [28], and BLC [25].

cality variations include EDPL, EDLL, NDPL, and ND-
LL. In the following, we discuss their parameter sub-
spaces and how to choose reasonable parameter settings.

2.1.1 Exact vs. Near-exact Deduplication

The main difference between exact and near-exact de-
duplication is the use of the key-value store. For exact
deduplication, the key-value store has to index the fin-
gerprints of all stored chunks and hence becomes too
large to be stored in DRAM. The fingerprint prefetch-
ing/caching module is employed to avoid a large frac-
tion of lookup requests to the key-value store. Due to
the strong locality in backup workloads, the prefetched
fingerprints are possibly accessed later. Although the fin-
gerprint index is typically lookup-intensive (most chunks
are duplicate in backup workloads), its key-value store is
expected not to be lookup-intensive since a large frac-
tion of lookup requests are avoided by the fingerprint
prefetching and caching. However, the fragmentation
problem discussed in Section 2.1.2 reduces the efficien-
cy of the fingerprint prefetching and caching, making the
key-value store become lookup-intensive over time.

For near-exact deduplication, only sampled represen-
tative fingerprints, namely features, are indexed to down-
size the key-value store. With a high sampling ratio
(e.g., 128:1), the key-value store is small enough to be
completely stored in DRAM. Since only a small frac-
tion of stored chunks are indexed, many duplicate chunks
cannot be found in the key-value store. The finger-
print prefetching/caching module is important to main-
tain a high deduplication ratio. Once an indexed dup-
licate fingerprint is found, many unindexed fingerprints
are prefetched to answer following lookup requests. The
sampling method is important to the prefetching efficien-
cy, and hence needs to be chosen carefully, which are
discussed in Section 2.1.2 and 2.1.3 respectively.

The memory footprint of exact deduplication is relat-
ed to the key-value store, and proportional to the number

USENIX Association

13th USENIX Conference on File and Storage Technologies (FAST "15) 333

of the stored chunks. For example, if we employ Berke-
ley DB [2] paired with a Bloom filter [12] as the key-
value store, 1 byte DRAM per stored chunk is required
to maintain a low false positive ratio for the Bloom filter.
Suppose S is the average chunk size in KB and M is the
DRAM bytes per key, the storage cost per TB stored da-
ta includes $(1%) for DRAM and $60 for HDD. Given
M =1 and S = 4, the storage cost per TB stored data is
$62.5 (4% for DRAM). In other underlying storage, such
as RAID [31], the proportion of DRAM decreases.

The memory footprint of near-exact deduplication de-
pends on the sampling ratio R. Suppose each key-value
pair consumes 32 bytes, M is equal to %. The stor-
age cost per TB stored data includes $(;%2) for DRAM
and $60 for HDD. For example, if R = 128 and § = 4,
the storage cost per TB data in near-exact deduplication
is $60.625 (1% for DRAM). However, it is unfair to
simply claim that near-exact deduplication saves mon-
ey, since its stored data includes duplicate chunks. Sup-
pose a 10% loss of deduplication ratio, 1 TB data in
near-exact deduplication only stores 90% of 1 TB data
in exact deduplication. Hence, near-exact deduplication
requires 1.11 TB to store the 1 TB data in exact dedup-
lication. The total storage cost in near-exact dedupli-
cation is about $67.36, higher than exact deduplication.
To decrease storage cost, near-exact deduplication has
to achieve a high deduplication ratio, no smaller than
(32 +60) /(12 +60) of the deduplication ratio in exa-
ct deduplication. In our cost model, near-exact dedup-
lication needs to achieve 97% of the deduplication ratio
of exact deduplication, which is difficult based on our
observations in Section 4.7. Hence, near-exact dedupli-
cation generally indicates a cost increase.

2.1.2 Exploiting Physical Locality

The unique chunks (fingerprints) of a backup are aggre-
gated into containers. Due to the incremental nature of
backup workloads, the fingerprints in a container are pos-
sibly accessed together in subsequent backups [39]. The
locality preserved in containers is called physical locali-
ty. To exploit the physical locality, the value in the key-
value store is the container ID and thus the prefetching
unit is a container. If a duplicate fingerprint is identified
in the key-value store, we obtain a container ID and then
read the metadata section (a summary on the fingerprints)
of the container into the fingerprint cache. Note that only
unique fingerprints are updated with their container IDs
in the key-value store.

Although physical locality is an effective approxima-
tion of logical locality, the deviation increases over time.
For example, old containers have many useless finger-
prints for new backups. As a result, the efficiency of the
fingerprint prefetching/caching module decreases over
time. This problem is known as fragmentation, which

severely decreases restore performance as reported in re-
cent work [29, 21]. For EDPL, the fragmentation gradu-
ally changes the key-value store to be lookup-intensive,
and the ever-increasing lookup overhead results in un-
predictable backup performance. We cannot know when
the fingerprint index will become the performance bot-
tleneck in an aged system.

For NDPL, the sampling method has significant im-
pacts on deduplication ratio. We observe two sampling
methods, uniform and random. The former selects the
first fingerprint every R fingerprints in a container, while
the latter selects the fingerprints that mod R = 0 in a con-
tainer. Although Sampled Index [18] uses the random
sampling, we observe the uniform sampling is better. In
the random sampling, the missed duplicate fingerprints
would not be sampled (mod R # 0) after being written
to new containers, making new containers have less fea-
tures and hence smaller probability of being prefetched.
Without this problem, the uniform sampling achieves a
significantly higher deduplication ratio.

2.1.3 Exploiting Logical Locality

To exploit logical locality preserved in recipes, each
recipe is divided into subsequences called segments. A
segment describes a fingerprint subsequence of a backup,
and maps its fingerprints to container IDs. We identify
each segment by a unique ID. The value in the key-value
store points to a segment instead of a container, and the
segment becomes the prefetching unit. Due to the local-
ity preserved in the segment, the prefetched fingerprints
are possibly accessed later. Note that in addition to u-
nique fingerprints, duplicate fingerprints have new seg-
ment IDs (unlike physical locality).

For exact deduplication whose key-value store is not
in DRAM, it is necessary to access the key-value store
as infrequently as possible. Since the Base procedure
depicted in Figure 1 follows this principle (only missed-
in-cache fingerprints are checked in the key-value store),
it is suitable for EDLL. A problem in EDLL is frequent-
ly updating the key-value store, since unique and dupli-
cate fingerprints both have new segment IDs. As a result,
all fingerprints are updated with their new segment IDs
in the key-value store. The extremely high update over-
head, which has not been discussed in previous studies,
either rapidly wears out an SSD-based key-value store
or exhausts the HDD bandwidth. We propose to sample
features in segments and only update the segment IDs of
unique fingerprints and features in the key-value store.
In theory, the sampling would increase lookup overhead,
since it leaves many fingerprints along with old seg-
ment IDs, leading to a suboptimal prefetching efficien-
cy. However, based on our observations in Section 4.3,
the increase of lookup overhead is negligible, making it
a reasonable tradeoff. One problem of the sampling op-
timization is that, after users delete some backups, the

334 13th USENIX Conference on File and Storage Technologies (FAST '15)

USENIX Association

BLC [25] | Extreme Binning [10] | Sparse Index [22] SiLo [38]
Exact deduplication Yes No No No
Segmenting method FSS FDS CDS FSS & FDS
Sampling method N/A Minimum Random Minimum
Segment selection Base Top-all Top-k Top-1
Segment prefetching Yes No No Yes
Key-value mapping relationship 1:1 1:1 Varied 1:1

Table 2: Design choices for exploiting logical locality.

fingerprints pointing to stale segments may become un-
reachable. It would decrease deduplication ratio. A pos-
sible solution is to add a column in key-value store to
keep container IDs. Only the fingerprints in reclaimed
containers are removed in key-value store. The addition-
al storage cost is negligible since EDLL keeps key-value
store on disks.

Previous studies on NDLL use similarity detection
(described later) instead of the Base procedure [22, 10,
38]. Given the more complicated logic frame and ad-
ditional in-memory buffer in similarity detection, it is
still necessary to make the motivation clear. Based on
our observations in Section 4.5, the Base procedure per-
forms well in source code and database datasets (datasets
are described in Section 4.1), but underperforms in vir-
tual machine dataset. The major characteristic of virtual
machine images is that each image itself contains many
duplicate chunks, namely self-reference. Self-reference,
absent in our source code and database datasets, inter-
feres with the prefetching decision in the Base procedure.
A more efficient fingerprint prefetching policy is hence
desired in complicated datasets like virtual machine im-
ages. As a solution, similarity detection uses a buffer to
hold the processing segment, and load the most similar
stored segments in order to deduplicate the processing
segment. We summarize existing fingerprint indexes ex-
ploiting logical locality in Table 2, and discuss similarity
detection in a 5-dimensional parameter subspace: seg-
menting, sampling, segment selection, segment prefetch-
ing, and key-value mapping. Note that the following me-
thods of segmenting, sampling, and prefetching are also
applicable in the Base procedure.

Segmenting method. The File-Defined Segmenting
(FDS) considers each file as a segment [10], which suf-
fers from the greatly varied file size. The Fixed-Sized
Segmenting (FSS) aggregates a fixed number (or size) of
chunks into a segment [38]. FSS suffers from a shift-
ed content problem similar to the Fixed-Sized Chunk-
ing method, since a single chunk insertion/deletion com-
pletely changes the segment boundaries. The Content-
Defined Segmenting method (CDS) checks the finger-
prints in the backup stream [22, 16]. If a chunk’s finger-
print matches some predefined rules (e.g., last 10 bits are
zeros), the chunk is considered as a segment boundary.
CDS is shift-resistant.

Sampling method. It is impractical to calculate the

exact similarity of two segments using their all finger-
prints. According to Broder [13], the similarity of the
two randomly sampled subsets is an unbiased approxi-
mation of that of the two complete sets. A segment is
considered as a set of fingerprints. A subset of the fin-
gerprints are selected as features since the fingerprints
are already random. If two segments share some fea-
tures, they are considered similar. There are three ba-
sic sampling methods: uniform, random, and minimum.
The uniform and random sampling methods have been
explained in Section 2.1.2. Suppose the sampling ratio is
R, the minimum sampling selects the &7 18R ;.
mum fingerprints in a segment. Since the distribution of
minimum fingerprints is uneven, Aronovich et al. pro-
pose to select the fingerprint adjacent to the minimum
fingerprint [9]. Only sampled fingerprints are indexed
in the key-value store. A smaller R provides more can-
didates for the segment selection at a cost of increasing
the memory footprint. One feature per segment forces
a single candidate. The uniform sampling suffers from
the problem of content shifting, while the random and
minimum sampling are shift-resistant.

Segment selection. After features are sampled in a
new segment S, we look up the features in the key-value
store to find the IDs of similar segments. There may be
many candidates, but not all of them are loaded in the fin-
gerprint cache since too many segment reads hurt back-
up performance. The similarity-based selection, namely
Top-k, selects k most similar segments. Its procedure is
as follows: (1) a most similar segment that shares most
features with S is selected at a time; (2) the features of the
selected segment are eliminated in remaining candidates,
to avoid giving scores for features belonging to already
selected segments; (3) jump to step 1 to select the next
similar segment, until k of segments are selected or we
run out of candidates [22]. A more aggressive selection
method is to read all similar segments together, namely
Top-all. A necessary optimization for Top-all is to phys-
ically aggregate similar segments into a bin, and thus a
single I/O can fetch all similar segments [10]. A dedi-
cated bin store is hence required. It underperforms if we
sample more than 1 feature per segment, since the bins
grow big quickly.

Figure 1 illustrates how similar segments arise. Sup-
pose A is the first version of segment A, A, is the sec-
ond version, and so on. Due to the incremental nature

USENIX Association

13th USENIX Conference on File and Storage Technologies (FAST "15) 335

of backup workloads, Az is possibly similar to its earli-
er versions, i.e., A and A;. Such kind of similar seg-
ments are time-oriented. Generally, reading only the lat-
est version is sufficient. An exceptional case is a segment
boundary change, which frequently occurs if fixed-sized
segmenting is used. A boundary change may move a
part of segment B to segment A, and hence A3 has two
time-oriented similar segments, A and B,. A larger k is
desired to handle these situations. In datasets like virtual
machine images, A can be similar with other segments,
such as E, due to self-reference. These similar segments
are space-oriented. Suppose A, and E, both have 8 fea-
tures, 6 of them are shared. After deduplicating E; at a
later time than A,, 6 of A,’s features are overwritten to be
mapped to E,. E is selected prior to Ay when dedupli-
cating Az. A larger k increases the probability of reading
A>. Hence, with many space-oriented segments, a larger
k is required to accurately read the time-oriented similar
segment at a cost of decreased backup performance.

Segment prefetching. Sil.o exploits segment-level
locality to prefetch segments [38]. Suppose A3 is sim-
ilar to A,, it is reasonable to expect the next segment
B3 is similar to B, that is next to A;. Fortunately, B,
is adjacent to A, in the recipe, and hence p — 1 segments
following A, are prefetched when deduplicating Az. If
more than 1 similar segments are read, segment prefetch-
ing can be applied to either all similar segments, as long
as k x p segments do not overflow the fingerprint cache,
or only the most similar segment.

Segment prefetching has at least two advantages: 1)
Reducing lookup overhead. Prefetching B; together with
Aj, while deduplicating Az, avoids the additional I/O of
reading B, for the following B3. 2) Improving dedup-
lication ratio. Assuming the similarity detection fails
for B3 (i.e., B, is not found due to its features being
changed), the previous segment prefetching caused by
Az, whose similarity detection succeeds (i.e., A, is read
for Az and B, is prefetched together), offers a dedupli-
cation opportunity for B3. Segment prefetching also alle-
viates the problem caused by segment boundary change.
In the case of two time-oriented similar segments, A
and B, would be prefetched for A3 even if k = 1. Seg-
ment prefetching relies on storing segments in a logical
sequence being incompatible with Top-all.

Key-value mapping relationship. The key-value
store maps features to stored segments. Since a feature
can belong to different segments (hence multiple logical
positions), the key can be mapped to multiple segment
IDs. As aresult, the value becomes a FIFO queue of seg-
ment IDs, where v is the queue size. For NDLL, main-
taining the queues has low performance overhead since
the key-value store is in DRAM. A larger v provides
more similar segment candidates at a cost of a higher
memory footprint. It is useful in the following cases: 1)

Self-reference is common. A larger v alleviates the above
problem of feature overwrites caused by space-oriented
similar segments. 2) The corrupted primary data is re-
stored to an earlier version rather than the latest version
(rollback). For example, if A, has some errors, we roll
back to A; and thus A3 derives from A; rather than A,. In
this case, A is a better candidate than A, for deduplicat-
ing Az, however features of A; have been overwritten by
Aj,. A larger v avoids this problem.

2.2 Rewriting and Restore Algorithms

Since the fragmentation decreases the restore perfor-
mance in aged systems, the rewriting algorithm, an emer-
ging dimension in the parameter space, was proposed to
allow sustained high restore performance [20, 21, 17]. It
identifies fragmented duplicate chunks and rewrites them
to new containers. Even though near-exact deduplication
trades deduplication ratio for restore performance, our
observations in Section 4.6 show that the rewriting algo-
rithm is a more efficient tradeoff. However, the rewriting
algorithm’s interplay with the fingerprint index has not
yet been discussed.

We are mainly concerned about two questions. (1)
How does the rewriting algorithm reduce the ever-
increasing lookup overhead of EDPL? Since the rewrit-
ing algorithm reduces the fragmentation, EDPL is im-
proved because of better physical locality. Our observa-
tions in Section 4.6 show that, via an efficient rewriting
algorithm, the lookup overhead of EDPL no longer in-
creases over time. EDPL then has sustained backup per-
formance. (2) Does the fingerprint index return the latest
container ID when a recently rewritten chunk is checked?
Each rewritten chunk would have a new container ID. If
the old container ID is returned when that chunk is recir-
culated, then another rewrite could occur. Based on our
observations, this problem is more pronounced and sig-
nificant in EDLL than EDPL. An intuitive explanation is
that, due to our sampling optimization mentioned in Sec-
tion 2.1.3, an old segment containing obsolete container
IDs is read for deduplication. As a result, EDPL becomes
better than EDLL due to its higher deduplication ratio.

While the rewriting algorithm determines the chunk
placement, an efficient restore algorithm leverages the
placement to gain better restore performance with a lim-
ited memory footprint. There have been three restore al-
gorithms: the basic LRU cache, the forward assembly
area (ASM) [21], and the optimal cache (OPT) [17]. In
all of them, a container serves as the prefetching unit
during a restore to leverage locality. Their major dif-
ference is that while LRU and OPT use container-level
replacement, ASM uses chunk-level replacement. We
observe these algorithms’ performances under different
placements in Section 4.6. If the fragmentation is dom-
inant, ASM is more efficient. The reason is that LRU

336 13th USENIX Conference on File and Storage Technologies (FAST "15)

USENIX Association

Physical Locality

Logical Locality
- 1

Finge int Inde
H i
} Key-Value Fingerprint) | i)
H Store | Prefetching) | Recipe Store Container Store
']
i :
! i Write full

Write recipe

containers

Backup stream Lookup
fingerprints

Insert/Update
key-value pairs

Figure 3: The architecture and backup pipeline.

and OPT hold many useless chunks that are not restored
in DRAM due to their container-level replacement. On
the other hand, if an efficient rewriting algorithm has re-
duced the fragmentation, the container-level replacement
is improved due to better physical locality and OPT per-
forms best due to its accurate cache replacement.

3 The DeFrame Framework

The N-dimensional parameter space discussed in Sec-
tion 2 provides a large amount of design choices, but
there is no platform to evaluate these choices as far as we
know. In this section, we present DeFrame as a general-
purpose chunk-level deduplication framework to facil-
itate exploring alternatives. In DeFrame, existing and
potential solutions are considered as specific points in
the N-dimensional parameter space. We implement De-
Frame using C and pthreads on 64-bit Linux.

3.1 Architecture

As shown in Figure 3, DeFrame consists of three sub-
modules discussed in Section 2. In the container store,
each container is identified by a globally unique ID. The
container is the prefetching unit for exploiting physical
locality. Each container includes a metadata section that
summarizes the fingerprints of all chunks in the contain-
er. We can fetch an entire container or only its metadata
section via a container ID.

The recipe store manages recipes of all finished back-
ups. In recipes, the associated container IDs are stored
along with fingerprints so as to restore a backup with-
out the need to consult the fingerprint index. We add
some indicators of segment boundaries in each recipe to
facilitate reading a segment that is the prefetching unit
for exploiting logical locality. Each segment is identi-
fied by a globally unique ID. For example, an ID can
consist of a 2-byte pointer to a recipe, a 4-byte offset in
the recipe, and a 2-byte segment size that indicates how
many chunks are in the segment.

The fingerprint index consists of a key-value store and
a fingerprint prefetching/caching module. Two kinds of
key-value stores are currently supported: an in-DRAM
hash table and a MySQL database [6] paired with a
Bloom filter. Since we implement a virtual layer upon the

key-value store, it is easy to add a new key-value store.

3.2 Backup Pipeline

As shown in Figure 3, we divide the workflow of da-
ta deduplication into six phases: Chunk, Hash, Dedup,
Rewrite, Filter, and Append. (1) The Chunk phase
divides the backup stream into chunks. We have im-
plemented Fixed-Sized Chunking and Content-Defined
Chunking (CDC). (2) The Hash phase calculates a SHA-
1 digest for each chunk as the fingerprint. (3) The De-
dup phase aggregates chunks into segments, and iden-
tifies duplicate chunks via consulting the fingerprint in-
dex. A duplicate chunk is marked and obtains the con-
tainer ID of its stored copy. The created segments are the
prefetching units of logical locality, and the batch pro-
cess units for physical locality. We have implemented
the Base, Top-k, and Mix procedures (first Top-k then
Base). (4) The Rewrite phase identifies fragmented dup-
licate chunks, and rewrites them to improve restore per-
formance. It is a tradeoff between deduplication ratio
and restore performance. We have implemented four
rewriting algorithms, including CFL-SD [30], CBR [20],
Capping [21], and HAR [17]. Each fragmented chunk is
marked. (5) The Filter phase handles chunks according
to their marks. Unique and fragmented chunks are added
to the container buffer. Once the container buffer is full,
it is pushed to the next phase. The recipe store and key-
value store are updated. (6) The Append phase writes
full containers to the container store.

‘We pipeline the phases via pthreads to leverage multi-
core architecture. The dedup, rewrite, and filter phases
are separated for modularity: we can implement a new
rewriting algorithm without the need to modify the fin-
gerprint index, and vice versa.

Segmenting and Sampling. The segmenting method
is called in the dedup phase, and the sampling method
is called for each segment either in the dedup phase for
the similarity detection, or in the filter phase for the Base
procedure. All segmenting and sampling methods men-
tioned in Section 2 have been implemented. Content-
defined segmenting is implemented via checking the last
n bits of a fingerprint. If all the bits are zero, the fin-
gerprint (chunk) is considered to be the beginning of a
new segment, thus generating an average segment size
of 2" chunks. To select the first fingerprint of a content-
defined segment as a feature, the random sampling also
checks the last log, R (< n) bits.

3.3 Restore Pipeline

The restore pipeline in DeFrame consists of three phases:
Reading Recipe, Reading Chunks, and Writing Chunks.
(1) Reading Recipe. The required backup recipe is
opened for restore. The fingerprints are read and issued
one by one to the next step. (2) Reading Chunks. Each
fingerprint incurs a chunk read request. The container

USENIX Association

13th USENIX Conference on File and Storage Technologies (FAST '15) 337

Dataset name Kernel VMDK RDB
Total size 104 GB 1.89 TB 1.12TB
of versions 258 127 212
Deduplication ratio 45.28 27.36 39.1
Avg. chunk size 529KB | 5.25KB 4.5KB
Self-reference <1% 15-20% 0
Fragmentation Severe | Moderate | Severe

Table 3: The characteristics of datasets.

is read from the container store to satisfy the request.
A chunk cache is maintained to hold popular chunks in
memory. We have implemented three kinds of restore
algorithms, including the basic LRU cache, the optimal
cache [17], and the rolling forward assembly area [21].
Given a chunk placement determined by the rewriting al-
gorithm, a good restore algorithm boosts the restore pro-
cedure with a limited memory footprint. The required
chunks are issued one by one to the next phase. (3) Writ-
ing Chunks. Using the received chunks, files are recon-
structed in the local file system.

3.4 Garbage Collection

After users delete expired backups, chunks become in-
valid (not referenced by any backup) and must be re-
claimed. There are a number of possible techniques
for garbage collection (GC), such as reference count-
ing [34] and mark-and-sweep [18]. Extending the De-
Frame taxonomy to allow comparison of GC techniques
is beyond the scope of this work; currently, DeFrame em-
ploys the History-Aware Rewriting (HAR) algorithm and
Container-Marker Algorithm (CMA) proposed in [17].
HAR rewrites fragmented valid chunks to new contain-
ers during backups, and CMA reclaims old containers
that are no longer referenced.

4 Evaluation

In this section, we evaluate the parameter space to find
reasonable solutions that perform suitable tradeoffs.

4.1 Experimental Setup

We use three real-world datasets as shown in Table 3.
Kernel is downloaded from the web [5]. It consists
of 258 versions of unpacked Linux kernel source code.
VMDK is from a virtual machine with Ubuntu 12.04.
We compiled the source code, patched the system, and
ran an HTTP server on the virtual machine. VMDK has
many self-references; it also has less fragmentation from
its fewer versions and random updates. RDB consists of
Redis database [7] snapshots. The database has 5 mil-
lion records, 5 GB in space and an on average 1% update
ratio. We disable the default rdbcompression option.

All datasets are divided into variable-sized chunks via
CDC. We use the content-defined segmenting with an av-
erage segment size of 1024 chunks by default. The con-
tainer size is 4 MB, which is close to the average size of
segments. The default fingerprint cache has 1024 slots

to hold prefetching units, being either containers or seg-
ments. Hence, the cache can hold 1 million fingerprints,
which is relatively large for our datasets.

4.2 Metrics and Our Goal

Our evaluations are in terms of quantitative metrics listed
as follow. (1) Deduplication ratio: the original backup
data size divided by the size of stored data. It indicates
how efficiently data deduplication eliminates duplicates,
being an important factor in the storage cost. (2) Mem-
ory footprint: the runtime DRAM consumption. A low
memory footprint is always preferred due to DRAM’s
high unit price and energy consumption. (3) Storage
cost: the cost for storing chunks and the fingerprint in-
dex, including memory footprint. We ignore the cost
for storing recipes, since it is constant. (4) Lookup re-
quests per GB: the number of required lookup requests to
the key-value store to deduplicate 1 GB of data, most of
which are random reads. (5) Update requests per GB: the
number of required update requests to the key-value store
to deduplicate 1 GB of data. A higher lookup/update
overhead degrades the backup performance. Lookup re-
quests to unique fingerprints are eliminated since most
of them are expected to be answered by the in-memory
Bloom filter. (6) Restore speed: 1 divided by mean con-
tainers read per MB of restored data [21]. It is used to
evaluate restore performance, where a higher value is
better. Since the container size is 4 MB, 4 units of re-
store speed translate to the maximum storage bandwidth.

It is practically impossible to find a solution that per-
forms the best in all metrics. Our goal is to find some
reasonable solutions with the following properties: (1)
sustained, high backup performance as the top priority;
(2) reasonable tradeoffs in the remaining metrics.

4.3 Exact Deduplication

Previous studies [39, 14] of EDPL fail to have an insight
of the impacts of the fragmentation on the backup per-
formance, since their datasets are short-term. Figure 4
shows the ever-increasing lookup overhead. We observe
6.5-12.0x and 5.1-114.4x increases in Kernel and RDB
respectively under different fingerprint cache sizes. A
larger cache cannot address the fragmentation problem;
a 4096-slot cache performs as poor as the default 1024-
slot cache. A 128-slot cache results in a 114.4 X increase
in RDB, which indicates an insufficient cache can result
in unexpectedly poor performance. This causes com-
plications in practice due to the difficulty in predicting
how much memory is required to avoid unexpected per-
formance degradations. Furthermore, even with a large
cache, the lookup overhead still increases over time.
Before comparing EDLL to EDPL, we need to de-
termine the best segmenting and sampling methods for
EDLL. Figure 5(a) shows the lookup/update overheads

338 13th USENIX Conference on File and Storage Technologies (FAST "15)

USENIX Association

m 5000 T
&) 128-slot
5 4000 256-slot
2-‘ 512-slot e
2 3000 1024-slot
g 2048-slot
g 2000 4096-slot
S 1000
- —
o .
2 0 L L L L L
0 50 100 150 200 250
backup version
(a) Kernel

Figure 4: The

450
400 -
350 t
300
250 t
200
150 . 1
FSS(uniform) ——

100 FSS(random) 1
50 | CDS(uniform) % |
CDS(random) |-}

12000 16000

avg. update requests per GB

(a) Segmenting and sampling

[

T +

K

T

5
2

avg. lookup requests per GB

8000 20000

m 5000 T

G} 128-slot

54000 + 256-slot

% 512-slot e

- 3000 | 1024-slot

8 2048-slot

g 2000 - 4096-slot

S 1000 |

&

o))

2 0 L L L L

0 50 100 150 200

backup version
(b) RDB

ever-increasing lookup overhead of EDPL in Kernel and RDB under various fingerprint cache sizes.

400

m

O 350 ¢

=

& 300

2z 250

é

g“ . 128-slot
= 256-slot
£l [512-slot s
§ o 1024-slot
g8 I 2048-slot
2

))) __4096-slot
0 20 40 60 80
backup version

(b) Cache size

0

100 120

Figure 5: Impacts of varying segmenting, sampling, and cache size on EDLL in VMDK. (a) FSS is Fixed-Sized
Segmenting and CDS is Content-Defined Segmenting. Points in a line are of different sampling ratios, which are 256,
128, 64, 32, and 16 from left to right. (b) EDLL is of CDS and a 256:1 random sampling ratio.

EDLL(R=32)
EDLL(R=64)

EDLL(R=128)

EDP
EDLL(R=16) EDLL(R=256)

1400
1200
1000 -
800 |
600
400
200 [T

0

lookup requests per GB

. . .
100 150 200
backup version

(a) Lookup overhead

.
0 50

EDPL ——
EDLL(R=16)

EDLL(R=32)
EDLL(R=64)

EDLL(R=128)
EDLL(R=256)

100000

10000 £

update requests per GB

150 200

1000

. .
50 100
backup version

(b) Update overhead

Figure 6: Comparisons between EDPL and EDLL in terms of lookup and update overheads. R = 256 indicates a

sampling ratio of 256:1. Results come from RDB.

of EDLL under different segmenting and sampling me-
thods in VMDK. Similar results are observed in Kernel
and RDB. Increasing the sampling ratio shows an effi-
cient tradeoff: a significantly lower update overhead at a
negligible cost of a higher lookup overhead. The fixed-
sized segmenting paired with the random sampling per-
forms worst. This is because it cannot sample the first
fingerprint in a segment, which is important for the Base
procedure. The other three combinations are more effi-
cient since they sample the first fingerprint (the random
sampling performs well in the content-defined segment-
ing due to our optimization in Section 3.2). The content-
defined segmenting is better than the fixed-sized seg-
menting due to its shift-resistance. Figure 5(b) shows
the lookup overheads in VMDK under different cache
sizes. We do not observe an ever-increasing trend of
lookup overhead in EDLL. A 128-slot cache results in
additional I/O (17% more than the default) due to the

space-oriented similar segments in VMDK. Kernel and
RDB (not shown in the figure) do not cause this problem
because they have no self-reference.

Figure 6 compares EDPL and EDLL in terms of
lookup and update overheads. EDLL uses the content-
defined segmenting and random sampling. Results in
Kernel and VMDK are not shown, because they have
similar results to RDB. While EDPL suffers from the
ever-increasing lookup overhead, EDLL has a much low-
er and sustained lookup overhead (3.6 x lower than ED-
PL on average). With a 256:1 sampling ratio, EDLL
has 1.29x higher update overhead since it updates sam-
pled duplicate fingerprints with their new segment IDs.
Note that lookup requests are completely random, and
update requests can be optimized to sequential writes via
a log-structured key-value store, which is a popular de-
sign [8, 23, 15]. Overall, if the highest deduplication ra-
tio is required, EDLL is a better choice due to its sus-

USENIX Association

13th USENIX Conference on File and Storage Technologies (FAST '15)

339

tained high backup performance.

Finding (1): While the fragmentation results in an
ever-increasing lookup overhead in EDPL, EDLL
achieves sustained performance. The sampling op-
timization performs an efficient tradeoff in EDLL.

4.4 Near-exact Deduplication exploiting
Physical Locality

NDPL is simple and easy to implement. Figure 7(a)
shows how to choose an appropriate sampling method
for NDPL. We only show the results from VMDK, which
are similar to the results from Kernel and RDB. The
uniform sampling achieves significantly higher dedupli-
cation ratio than the random sampling. The reason has
been discussed in Section 2.1.2; for the random sam-
pling, the missed duplicate fingerprints are definitely not
sampled, making new containers have less features and
hence smaller probability of being prefetched. The sam-
pling ratio is a tradeoff between memory footprint and
deduplication ratio: a higher sampling ratio indicates a
lower memory footprint at a cost of a decreased dedupli-
cation ratio. Figure 7(b) shows that NDPL is surprisingly
resistent to small cache sizes: a 64-slot cache results in
only an 8% decrease of the deduplication ratio than the
default in RDB. Also observed (not shown in the figure)
are 24-93% additional I/O, which come from prefetch-
ing fingerprints. Compared to EDPL, NDPL has better
backup performance because of its in-memory key-value
store at a cost of decreasing deduplication ratio.

Finding (2): In NDPL, the uniform sampling is
better than the random sampling. The fingerprint
cache has minimal impacts on deduplication ratio.

4.5 Near-exact Deduplication exploiting
Logical Locality
Figure 8(a) compares the Base procedure (see Figure 1)
to the simplest similarity detection Top-1, which helps
to choose appropriate sampling method. The content-
defined segmenting is used due to its advantage shown
in EDLL. In the Base procedure, the random sampling
achieves comparable deduplication ratio using less mem-
ory than the uniform sampling. NDLL is expected to
outperform NDPL in terms of deduplication ratio since
NDLL does not suffer from fragmentation. However,
we surprisingly observe that, while NDLL does better in
Kernel and RDB as expected, NDPL is better in VM-
DK (shown in Figure 7(b) and 8(b)). The reason is
that self-reference is common in VMDK. The finger-
print prefetching is misguided by space-oriented similar
segments as discussed in Section 2.1.3. Moreover, the
fingerprint cache contains many duplicate fingerprints
that reduce the effective cache size, therefore a 4096-slot

cache improves deduplication ratio by 7.5%. NDPL does
not have this problem since its prefetching unit (i.e., con-
tainer) is after-deduplication. A 64-slot cache results in
23% additional I/Os in VMDK (not shown in the figure),
but has no side-effect in Kernel and RDB.

In the Top-1 procedure, only the most similar segment
is read. The minimum sampling is slightly better than the
random sampling. The Top-1 procedure is worse than the
Base procedure. The reason is two-fold as discussed in
Section 2.1.3: (1) a segment boundary change results in
more time-oriented similar segments; (2) self-reference
results in many space-oriented similar segments.

Finding (3): The Base procedure underperforms in
NDLL if self-reference is common. Reading a sin-
gle most similar segment is insufficient due to self-
reference and segment boundary changes.

We further examine the remaining NDLL subspace:
segment selection (s), segment prefetching (p), and map-
ping relationship (v). Figure 9 shows the impacts of vary-
ing the three parameters on deduplication ratio (lookup
overheads are omitted due to space limits). On the X-
axis, we have parameters in the format (s,p,v). The
s indicates the segment selection method, being either
Base or Top-k. The p indicates the number of prefetched
segments plus the selected segment. We apply segment
prefetching to all similar segments selected. The v in-
dicates the maximum number of segments that a feature
refers to. The random sampling is used, with a sampling
ratio of 128. For convenience, we use NDLL(s, p,v) to
represent a point in the space.

A larger v results in a higher lookup overhead when
k > 1, since it provides more similar segment candi-
dates. We observe that increasing v is not cost-effective
in Kernel which lacks self-reference, since it increas-
es lookup overhead without an improvement of dedup-
lication ratio. However, in RDB which also lacks of
self-reference, NDLL(Top-1,1,2) achieves better dedup-
lication ratio than NDLL(Top-1,1,1) due to the rollbacks
in RDB. A larger v is helpful to improve deduplication
ratio in VMDK where self-reference is common. For ex-
ample, NDLL(Top-1,1,2) achieves 1.31x higher dedup-
lication ratio than NDLL(Top-1,1,1) without an increase
of lookup overhead.

The segment prefetching is efficient for increasing de-
duplication ratio and decreasing lookup overhead. As
the parameter p increases from 1 to 4 in the Base proce-
dure, the deduplication ratios increase by 1.06x, 1.04x,
and 1.39x in Kernel, RDB, and VMDK respectively,
while the lookup overheads decrease by 3.81x, 3.99x,
and 3.47x. The Base procedure is sufficient to achieve
a high deduplication ratio in Kernel and RDB that lack
self-reference. Given its simple logical frame, the Base
procedure is a reasonable choice if self-reference is rare.

340 13th USENIX Conference on File and Storage Technologies (FAST '15)

USENIX Association

2 1e+06 64-slot BTN 1024-slot mmm—
@ uniform —— ° 256-slot 4096-slot
< d x 8
*E random 8 1000/
= 100000 ¢ 1 £ o T T ——
£ S 80% | 7 ; s]
& S I i %]
B 10000 ¢ f = 60% ~
15} 3 40% | ¢ 1
5 2 0 : '
= 1000 ; ; : : ‘ o 20% r B 1

0 5 10 15 20 25 30 = 0% f ¢ 1

deduplication ratio e Kernel RDB VMDK
(a) Sampling (b) Cache size

Figure 7: Impacts of varying sampling method and cache size on NDPL. (a) Points in each line are of different
sampling ratios, which are 256, 128, 64, 32, 16, and 1 from left to right. (b) NDPL uses a 128:1 uniform sampling
ratio. The Y-axis shows the relative deduplication ratio to exact deduplication.

_ 64-slot 1024-slot - m—
& 100000 ———————————————————— e Aesior —
2 . 2
g 10000 ¢ B3 J = 100% ‘ — ‘
=S ¥ g g]
= 2 80% [s]
B ¥ : S g

L o) Base(uniform) —— | = 60% r g § 1
g 1000 CT 9! Base(random) 5 o g :
=t Top-1(minimum) - 1 40% g]
2 100 L Top:1(random) ~E; T 20% | B ? A

4 6 8 10 12 14 16 18 20 22 24 26 % 0% g

deduplication ratio © Kernel RDB VMDK
(a) Segment selection and sampling (b) Cache size

Figure 8: (a) Comparisons of Base and Top-1 in VMDK. Points in each line are of different sampling ratios, which
are 512, 256, 128, 64, 32, and 16 from left to right. (b) NDLL is of the Base procedure and a 128:1 random sampling.
The Y-axis shows the relative deduplication ratio to exact deduplication.

Kernel EXxxx RDB === VMDK £

100

H

oyl
3 -
57
7
XI0%

X1

0
XX,

IO
XXX

AZORONIO

&l
3]
X1,
TR0
<

9l
IO
XX

XX
X

|

X

303

X XA
9.,
SO
XX
X
XX

OROTIES

IOEH
VAW
XX

XX
XX
XX

60

XX
x>

RIOHOTIIIQ

IOEIOTNIO
ST,

Feeeeeee

X
XX
e

X
9, 9.9.9.91

XL ZA
S

XX

XX

OO
X
XX

X

IO
XXX
2O
XXX XX XKL

!

X
XXX
a
<X
X
2058

40

X XXX
00
0%

%X

X
X
XX

S;
53

I TITETL

XX
R XXX
X
)03

XX

XX
XX

XX
XX

XX
SRS
SRt
X XS
IO
XXX
o
5T
e e ee

>
XXX

EERRL
RXX
EORK

KX
b

relative deduplication ratio (%)
[
[

Figure 9: Impacts of the segment selection, segment prefetching, and mapping relationship on deduplication ratio.
The deduplication ratios are relative to those of exact deduplication.

However, the Base procedure only achieves a 73.74% de- fewer impacts in Kernel and RDB, since they have fewer
duplication ratio of exact deduplication in VMDK where space-oriented similar segments and hence fewer candi-
self-reference is common. dates. The segment prefetching is a great complement
Finding (4): If self-reference is rare, the Base pro- to the Top-k procedure, since it amortizes the addition-
cedure is sufficient for a high deduplication ratio. al lookup overhead caused by increasing k. NDLL(Top-

4.4.1) reduces the lookup overheads of NDLL(Top-4,1,1)

In more complicated environments like virtual ma- by 2.79x, 3.97x, and 2.07x in Kernel, RDB, and VM-
chine storage, the Top-k procedure is desired. A higherk DK respectively. It also improves deduplication ratio by
indicates a higher deduplication ratio at a cost of a higher a factor of 1.2x in VMDK. NDLL(Top-4,4,1) achieves
lookup overhead. As k increases from NDLL(Top-1,1,1) a 95.83%, 99.65%, and 87.20% deduplication ratio of

to NDLL(Top-4,1,1), the deduplication ratios increase by~ exact deduplication, significantly higher than NDPL.
1.17x, 1.24x%, and 1.97x in Kernel, RDB, and VMDK

respectively, at a cost of 1.15x, 1.01x, and 1.56x more F'im'ling (5): If se.lf-referfence is common, fhe
segment reads. Note that Top-4 outperforms Base in stmtlanty deitectwn is required. The segmenting
terms of deduplication ratio in all datasets. Varying k has prefetching is a great complement to Top-k.

USENIX Association 13th USENIX Conference on File and Storage Technologies (FAST '15) 341

Dataset EDPL NDPL-128 NDPL-256 NDPL-512 HAR+EDPL

Kernel 45.35 36.86 33.52 30.66 31.26

Deduplication ratio RDB 39.10 32.64 29.31 25.86 28.28
VMDK 27.36 24.50 23.15 21.46 24.90

Kernel 0.50 0.92 1.04 1.19 2.60

Restore speed RDB 0.50 0.82 0.87 0.95 2.26
VMDK 1.39 2.49 2.62 2.74 2.80

Table 4: Comparisons between near-exact deduplication and rewriting in terms of restore speed and deduplication
ratio. NDPL-256 indicates NDPL of a 256:1 uniform sampling ratio. HAR uses EDPL as the fingerprint index. The
restore cache contains 128 containers for Kernel, and 1024 containers for RDB and VMDK.

4.6 Rewriting Algorithm and its Interplay

Fragmentation decreases restore performance signifi-
cantly in aged systems. The rewriting algorithm is pro-
posed to trade deduplication ratio for restore perfor-
mance. To motivate the rewriting algorithm, Table 4
compares near-exact deduplication to a rewriting algo-
rithm, History-Aware Rewriting algorithm (HAR) [17].
We choose HAR due to its accuracy in identifying frag-
mentation. As the baseline, EDPL has best deduplication
ratio and hence worst restore performance. NDPL shows
its ability of improving restore performance, however
not as well as HAR. Taking RDB as an example, ND-
PL of a 512:1 uniform sampling ratio trades 33.88% de-
duplication ratio for only 1.18 X improvement in restore
speed, while HAR trades 27.69% for 2.8 x improvement.

We now answer the questions in Section 2.2: (1) How
does the rewriting algorithm improve EDPL in terms of
lookup overhead? (2) How does fingerprint index af-
fect the rewriting algorithm? Figure 10(a) shows how
HAR improves EDPL. We observe that HAR success-
fully stops the ever-increasing trend of lookup overhead
in EDPL. Although EDPL still has a higher lookup over-
head than EDLL, it is not a big deal because a predictable
and sustained performance is the main concern. More-
over, HAR has no impact on EDLL, since EDLL does
not exploit physical locality that HAR improves. The
periodic spikes are because of major updates in Linux
kernel, such as from 3.1 to 3.2. These result in many
new chunks, which reduce logical locality. Figure 10(b)
shows how fingerprint index affects HAR. EDPL out-
performs EDLL in terms of deduplication ratio in all
datasets. As explained in Section 2.2, EDLL could re-
turn an obsolete container ID if an old segment is read,
and hence a recently rewritten chunk would be rewrit-
ten again. Overall, with an efficient rewriting algorithm,
EDPL is a better choice than EDLL due to its higher de-
duplication ratio and sustained performance.

Finding (6): The rewriting algorithm helps EDPL
to achieve sustained backup performance. With a
rewriting algorithm, EDPL is better due to its higher
deduplication ratio than other index schemes.

We further examine three restore algorithms: the LRU
cache, the forward assembly area (ASM) [21], and the

optimal cache (OPT) [17]. Figure 11 shows the efficien-
cies of these restore algorithms with and without HAR in
Kernel and VMDK. Because the restore algorithm only
matters under limited memory, the DRAM used is smal-
ler than Table 4, 32-container-sized in Kernel and 256-
container-sized in VMDK. If no rewriting algorithm is
used, the restore performance of EDPL decreases over
time due to the fragmentation. ASM has better perfor-
mance than LRU and OPT, since it never holds useless
chunks in memory. If HAR is used, EDPL has sus-
tained high restore performance since the fragmentation
has been reduced. OPT is best in this case due to its effi-
cient cache replacement.

Finding (7): Without rewriting, the forward as-
sembly area is recommended; but with an efficient
rewriting algorithm, the optimal cache is better.

4.7 Storage Cost

As discussed in Section 2, indexing 1 TB unique data
of 4 KB chunks in DRAM, called baseline, costs $140,
57.14% of which is for DRAM. The cost is even higher
if considering the high energy consumption of DRAM.
The baseline storage costs are $0.23, $3.11, and $7.55 in
Kernel, RDB, and VMDK respectively.

To reduce the storage cost, we either use HDD instead
of DRAM for exact deduplication or index a part of fin-
gerprints in DRAM for near-exact deduplication. Table 5
shows the relative storage costs to the baseline in each
dataset. EDPL and EDLL have the identical storage cost,
since they have the same deduplication ratio and key-
value store. We assume that the key-value store in EDPL
and EDLL is a database paired with a Bloom filter, hence
1 byte DRAM per stored chunk for a low false positive
ratio. EDPL and EDLL reduce the storage cost by a fac-
tor of around 1.75. The fraction of the DRAM cost is
2.27-2.50%.

Near-exact deduplication of a high sampling ratio fur-
ther reduces the DRAM cost, at a cost of decreasing de-
duplication ratio. As discussed in Section 2.1.1, near-
exact deduplication with a 128:1 sampling ratio and 4 KB
chunk size needs to achieve 97% of deduplication ratio of
exact deduplication to avoid a cost increase. To evaluate
this tradeoff, we observe the storage costs of NDPL and
NDLL under various sampling ratios. NDPL uses the

342 13th USENIX Conference on File and Storage Technologies (FAST '15)

USENIX Association

T T
EDPL ——
EDLL
r EDPL + HAR
| EDLL + HAR

lookup requests per GB

100 150 200 250
backup versions
(a)

0 50

relative deduplication ratio

EDPL oot NDPL EDLL mwwwwm NDLL @700

100%

80% r

Q%%

X

X4

el
o
]

60% r

oo
%
X

XXX

RIS

050598
RLRRRIRR
JITTRXKY
K

40%

R

RRIEETS
JRTRZS
Sesatoresss

25
e
2225

20% r

28
0303050599
<R

2

0%
RDB

(b)

Kernel VMDK

Figure 10: Interplays between fingerprint index and rewriting algorithm (i.e., HAR). (a) How does HAR improve
EDPL in terms of lookup overhead in Kernel? (b) How does fingerprint index affect HAR? The Y-axis shows the
relative deduplication ratio to that of exact deduplication without rewriting.

ASM +HAR
OPT + HAR

LRU w/o HAR —— OPT w/o HAR
ASM w/o HAR LRU + HAR

i

restore speed
“

| h ;
100 150 200 250
backup version

(a) Kernel

restore speed

ASM + HAR
OPT + HAR

LRU w/o HAR —— OPT w/o HAR
ASM w/o HAR LRU + HAR

L
120

L
100

. . . .
0 20 40 60 80
backup version

(b) VMDK

Figure 11: Interplays between the rewriting and restore algorithms. EDPL is used as the fingerprint index.

Dataset Fraction EDPL/EDLL NDPL-64 NDPL-128 NDPL-256 NDLL-64 NDLL-128 NDLL-256
DRAM 1.33% 0.83% 0.49% 0.31% 0.66% 0.34% 0.16%

Kernel HDD 57.34% 65.01% 70.56% 77.58% 59.03% 59.83% 60.23%
Total 58.67% 65.84% 71.04% 77.89% 59.69% 60.17% 60.39%

DRAM 1.40% 0.83% 0.48% 0.31% 0.70% 0.35% 0.17%

RDB HDD 55.15% 61.25% 66.08% 73.58% 55.27% 55.34% 55.65%
Total 56.55% 62.07% 66.56% 73.89% 55.97% 55.69% 55.82%

DRAM 1.41% 0.82% 0.45% 0.27% 0.71% 0.35% 0.18%

VMDK HDD 54.86% 60.32% 63.16% 67.10% 59.79% 62.92% 71.24%
Total 56.27% 61.14% 63.61% 67.36% 60.49% 63.27% 71.42%

Table 5: The storage costs relative to the baseline which indexes all fingerprints in DRAM. NDPL-128 is NDPL of a

128:1 uniform sampling ratio.

uniform sampling, and NDLL is of the parameter (Top-
4,4,1). As shown in Table 5, NDPL increases the storage
cost in all datasets; NDLL increases the storage cost in
most cases, except in RDB.

Finding (8): Although near-exact deduplication re-
duces the DRAM cost, it cannot reduce the total stor-
age cost.

5 Conclusions

In this paper, we discuss the parameter space of data de-
duplication in detail, and we present a general-purpose
framework called DeFrame for evaluation. DeFrame can
efficiently find reasonable solutions to explore tradeoffs
among backup and restore performance, memory foot-
prints, and storage costs. Our findings, from a large-scale
evaluation using three real-world long-term workloads,
provide a detailed guide to make efficient design deci-
sions for deduplication systems.

It is impossible to have a solution that performs the
best in all metrics, To achieve the lowest storage cost,
Exact Deduplication exploiting Logical Locality (EDLL)
is preferred due to its highest deduplication ratio and sus-
tained high backup performance. To achieve the low-
est memory footprint, Near-exact Deduplication is rec-
ommended: either exploiting Physical Locality (NDPL)
for its simpleness, or exploiting Logical Locality (ND-
LL) for better deduplication ratio. To achieve a sustained
high restore performance, Exact Deduplication exploit-
ing Physical Locality (EDPL) combined with a rewriting
algorithm would be a better choice.

Acknowledgments

We are grateful to our shepherd Fred Douglis and the
anonymous reviewers for their insightful feedback. We
appreciate Benjamin Young for his work to proofread
the final version. The work was partly supported by

USENIX Association

13th USENIX Conference on File and Storage Technologies (FAST '15)

343

National Basic Research 973 Program of China under

Grant No.

2011CB302301; NSFC No. 61025008,

61173043, 61232004, and 6140050892; 863 Project
2013AA013203; Fundamental Research Funds for the
Central Universities, HUST, under Grant No. 2014QN-
RCO19. The work conducted at VCU was partially spon-
sored by US National Science Foundation under Grants
CNS-1320349 and CNS-1218960. The work was al-
so supported by Key Laboratory of Information Storage
System, Ministry of Education, China.

References

(1]
(2]

3

—

(4]

(5]
(6]
[7
[8]

—

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Amazon. http://www.amazon. com, 2014.

Berkeley DB. http://www.oracle.com/us/products/
database/berkeley-db/overview/index.htm, 2014.

The digital universe of opportunities. http://www.emc.
com/leadership/digital-universe/2014iview/
executive-summary.htm, 2014.

Intel solid-state drive dc s3700 series. http://www.
intel.com/content/www/us/en/solid-state-drives/
solid-state-drives-dc-s3700-series.html, 2014.

Linux kernel. http://www.kernel.org/, 2014.
MySQL. http://www.mysql.com/, 2014.
Redis. http://redis.io/, 2014.

ANAND, A., MUTHUKRISHNAN, C., KAPPES, S., AKELLA,
A., AND NATH, S. Cheap and large CAMs for high performance
data-intensive networked systems. In Proc. USENIX NSDI, 2010.

ARONOVICH, L., ASHER, R., BACHMAT, E., BITNER, H.,
HIRSCH, M., AND KLEIN, S. T. The design of a similarity based
deduplication system. In Proc. ACM SYSTOR, 2009.

BHAGWAT, D., ESHGHI, K., LONG, D. D., AND LILLIBRIDGE,
M. Extreme binning: Scalable, parallel deduplication for chunk-
based file backup. In Proc. IEEE MASCOTS, 2009.

BHATOTIA, P., RODRIGUES, R., AND VERMA, A. Shredder :
Gpu-accelerated incremental storage and computation. In Proc.
USENIX FAST, 2012.

BLoOM, B. H. Space/time trade-offs in hash coding with allow-
able errors. Commun. ACM 13,7 (July 1970), 422-426.

BRODER, A. On the resemblance and containment of documents.
In Compression and Complexity of Sequences 1997. Proceedings
(Jun 1997), pp. 21-29.

DEBNATH, B., SENGUPTA, S., AND LI, J. ChunkStash: speed-
ing up inline storage deduplication using flash memory. In Proc.
USENIX ATC, 2010.

DEBNATH, B., SENGUPTA, S., AND LI, J. SkimpyStash: Ram
space skimpy key-value store on flash-based storage. In Proc.
ACM SIGMOD, 2011.

DoONG, W., DOUGLIS, F., L1, K., PATTERSON, H., REDDY, S.,
AND SHILANE, P. Tradeoffs in scalable data routing for dedup-
lication clusters. In Proc. USENIX FAST, 2011.

Fu, M., FENG, D., Hua, Y., HE, X., CHEN, Z., XIA, W,
HUANG, F., AND LIU, Q. Accelerating restore and garbage col-

lection in deduplication-based backup systems via exploiting his-
torical information. In Proc. USENIX ATC, 2014.

Guo, F., AND EFSTATHOPOULOS, P. Building a high-
performance deduplication system. In Proc. USENIX ATC, 2011.

HUANG, P., WU, G., HE, X., AND XIAO, W. An aggressive
worn-out flash block management scheme to alleviate ssd perfor-
mance degradation. In Proc. ACM EuroSys, 2014.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

KACZMARCZYK, M., BARCZYNSKI, M., KILIAN, W., AND
DuBNICKI, C. Reducing impact of data fragmentation caused
by in-line deduplication. In Proc. ACM SYSTOR, 2012.

LILLIBRIDGE, M., ESHGHI, K., AND BHAGWAT, D. Improv-
ing restore speed for backup systems that use inline chunk-based
deduplication. In Proc. USENIX FAST, 2013.

LILLIBRIDGE, M., ESHGHI, K., BHAGWAT, D., DEOLALIKAR,
V., TREZISE, G., AND CAMBLE, P. Sparse indexing: large s-
cale, inline deduplication using sampling and locality. In Proc.
USENIX FAST, 2009.

LiMm, H., FAN, B., ANDERSEN, D. G., AND KAMINSKY, M.
SILT: A memory-efficient, high-performance key-value store. In
Proc. ACM SOSP, 2011.

MANDAGERE, N., ZHOU, P., SMITH, M. A., AND UTTAM-
CHANDANI, S. Demystifying data deduplication. In Proc.
ACM/IFIP/USENIX Middleware, 2008.

MEISTER, D., KAISER, J., AND BRINKMANN, A. Block local-
ity caching for data deduplication. In Proc. ACM SYSTOR, 2013.

MEISTER, D., KAISER, J., BRINKMANN, A., CORTES, T.,
KUHN, M., AND KUNKEL, J. A study on data deduplication
in hpc storage systems. In Proc. IEEE SC, 2012.

MEYER, D. T., AND BOLOSKY, W. J. A study of practical de-
duplication. In Proc. USENIX FAST, 2011.

MIN, J., YOON, D., AND WON, Y. Efficient deduplication tech-
niques for modern backup operation. Computers, IEEE Transac-
tions on 60, 6 (June 2011), 824-840.

NAM, Y., Lu, G., PARK, N., X1a0, W., AND Du, D. H.
Chunk fragmentation level: An effective indicator for read per-
formance degradation in deduplication storage. In Proc. IEEE
HPCC, 2011.

NAM, Y.J., PARK, D., AND DU, D. H. Assuring demanded read
performance of data deduplication storage with backup datasets.
In Proc. IEEE MASCOTS, 2012.

PATTERSON, D. A., GIBSON, G., AND KATZ, R. H. A case
for redundant arrays of inexpensive disks (RAID). In Proc. ACM
SIGMOD, 1988.

PAULO, J. A., AND PEREIRA, J. A survey and classification of
storage deduplication systems. ACM Comput. Surv. 47, 1 (June
2014), 11:1-11:30.

QUINLAN, S., AND DORWARD, S. Venti: a new approach to
archival storage. In Proc. USENIX FAST, 2002.

STRZELCZAK, P., ADAMCZYK, E., HERMAN-IzYCKA, U.,
SAKOWICZ, J., SLUSARCZYK, L., WRONA, J., AND DUBNIC-
KI, C. Concurrent deletion in a distributed content-addressable
storage system with global deduplication. In Proc. USENIX
FAST, 2013.

TARASOV, V., JAIN, D., KUENNING, G., MANDAL, S.,
PALANISAMI, K., SHILANE, P., TREHAN, S., AND ZADOK, E.
Dmdedup: Device mapper target for data deduplication. In 20714
Ottawa Linux Symposium.

WALLACE, G., DOUGLIS, F., QIAN, H., SHILANE, P., SMAL-
DONE, S., CHAMNESS, M., AND Hsu, W. Characteristics of
backup workloads in production systems. In Proc. USENIX FAST,
2012.

WILDANI, A., MILLER, E. L., AND RODEH, O. Hands: A
heuristically arranged non-backup in-line deduplication system.
In Proc. IEEE ICDE, 2013.

XIA, W., JIANG, H., FENG, D., AND HUA, Y. Silo: a similarity-
locality based near-exact deduplication scheme with low ram
overhead and high throughput. In Proc. USENIX ATC, 2011.
ZHU, B., L1, K., AND PATTERSON, H. Avoiding the disk bot-

tleneck in the data domain deduplication file system. In Proc.
USENIX FAST, 2008.

344

13th USENIX Conference on File and Storage Technologies (FAST '15)

USENIX Association

