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Abstract
Persistent memory (PM) disaggregation improves the re-
source utilization and failure isolation to build a scalable and
cost-effective remote memory pool. However, due to offering
limited computing power and overlooking the bandwidth and
persistence properties of real PMs, existing distributed trans-
action schemes, which are designed for legacy DRAM-based
monolithic servers, fail to efficiently work in the disaggre-
gated PM architecture. In this paper, we propose FORD, a
Fast One-sided RDMA-based Distributed transaction system.
FORD thoroughly leverages one-sided RDMA to handle trans-
actions for bypassing the remote CPU in PM pool. To reduce
the round trips, FORD batches the read and lock operations
into one request to eliminate extra locking and validations.
To accelerate the transaction commit, FORD updates all the
remote replicas in a single round trip with parallel undo log-
ging and data visibility control. Moreover, considering the
limited PM bandwidth, FORD enables the backup replicas
to be read to alleviate the load on the primary replicas, thus
improving the throughput. To efficiently guarantee the remote
data persistency in the PM pool, FORD selectively flushes
data to the backup replicas to mitigate the network overheads.
Experimental results demonstrate that FORD improves the
transaction throughput by up to 2.3× and reduces the latency
by up to 74.3% compared with the state-of-the-art systems.

1 Introduction
Memory disaggregation, which decouples the compute and
memory resources from the traditional monolithic servers into
independent compute and memory pools, has gained exten-
sive interests in both industry [11, 14, 42] and academia [1,
20, 47, 57, 72]. By efficient resource pooling, the resource
utilization, elasticity, failure isolation, and heterogeneity are
significantly improved in datacenters [45]. The compute pool
runs programs with a small DRAM buffer, and the memory
pool stores application data with weak compute units only for
memory allocations and interconnections [72]. Fast networks,
e.g., RDMA, are generally adopted to connect the compute
and memory pools [57]. Recently, the persistent memory (PM)

is available on the market [12], which exhibits non-volatility
and low latency with high density and low costs [67]. Hence,
the efficient use of PM becomes important to build a persis-
tent, large, and cost-effective disaggregated PM pool [54].

To ensure that the data are atomically and consistently
accessed in the PM pool, the compute pool is required to
leverage distributed transactions (dtxns) to read/write the re-
mote data. However, existing RDMA-based dtxn systems are
designed for traditional monolithic servers, in which each
server hosts the CPU and DRAM resources. These systems
fail to work on the disaggregated PM, since the PM pool does
not contain CPUs to frequently handle extensive computa-
tion tasks during dtxn processing, e.g., concurrency control
in HTM [9, 61], data retrieving [60], locking [19, 29, 44], and
busy buffer polling [18]. Moreover, legacy systems do not
consider the bandwidth and persistence properties of real PM,
leading to low throughputs and inconsistent remote writes.
To run dtxns on the disaggregated PM, an intuitive solution
is to leverage one-sided RDMA to bypass the CPU in PM
pool. However, we observe that using one-sided RDMA in
existing dtxn systems incurs substantial round trips and access
contentions, which significantly decrease the performance. It
is non-trivial to design a high-performance dtxn system for
the disaggregated PM due to the following challenges:

1) Long-latency processing. Legacy systems adopt the
optimistic concurrency control (OCC) [32] to serialize dtxns,
and the primary-backup replication for high availability. OCC
is efficient for read-only dtxns due to no locks on read-only
data. However, for the read-write dtxns, the data in read-write
set consume 3 round trips to be read, locked, and validated
before writing remote replicas, thus heavily increasing the
latency. Furthermore, to ensure that the dtxn can roll forward
once the primary fails, prior designs consume 2 round trips to
write remote replicas, i.e., writing redo logs to backups and
updating primaries, which however delays the dtxn commit.

2) Limited PM bandwidth on the primary. When using
the primary-backup replication, legacy systems only allow
the primary to be read, since the newest data in backups are
still stored in redo logs after the dtxn commits. Hence, all the
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RDMA read/write requests are issued to the primary to be
handled. However, the PM DIMM suffers from lower write
bandwidth (e.g., 12.9 GB/s of six interleaved 256GB PM
DIMMs [67]) than recent RDMA-capable NICs or RNICs
(e.g., 25GB/s for a dual-port ConnectX-5 RNIC [52]). The
substantial RDMA reads saturate PM bandwidth and further
block write requests. As a result, the primary’s PM becomes
a performance bottleneck, which decreases the throughput.

3) Lack of remote persistency guarantee. Existing DRAM-
based systems overlook the persistence property of PM. When
issuing RDMA writes to the PM pool, the data are cached
in RNIC but not immediately persisted to PM. Hence, the
remote persistency [17, 23] is not guaranteed, which possibly
causes the remote data to be lost or partially updated once a
crash occurs in the PM pool, leading to data inconsistency.
Therefore, it is important to ensure the remote persistency in
dtxn processing with low network overheads.

Existing studies do not efficiently address these challenges
on disaggregated PM. FaSST [29] uses the remote proce-
dure call (RPC) to reduce round trips, but RPC requires the
CPU in PM pool to frequently query, lock and update data.
DrTM+H [60] employs hybrid RDMA verbs to improve per-
formance, but the two-sided RDMA fails to work in the PM
pool due to consuming the remote CPU. NAM-DB [68] de-
couples compute and storage servers to run dtxns. It adopts
snapshot isolation and operation logs without checkpointing
to disks. The data are not replicated, thus hurting the availabil-
ity. After commit, the inputs, descriptions, and timestamps of
dtxns are recorded in operation logs. Once the operation logs
fill up the memory, the system cannot serve writes. NAM-DB
works on DRAM and disks, which is not designed for PM.

To tackle the above challenges, we propose FORD, a Fast
One-sided RDMA-based Distributed transaction system. Un-
like prior systems, FORD fully leverages one-sided RDMA
to process dtxns for the new disaggregated PM architecture
with efficient round trip reductions and PM-conscious designs.
Specifically, this paper makes the following contributions:

• Hitchhiked Locking and Coalescent Commit to reduce
latency. FORD efficiently attaches the locks with read re-
quests in a hitchhiker manner, to read remote data that belong
to the read-write set in a single round trip during the dtxn
execution phase. Hence, it is unnecessary to consume extra
round trips for locking and validations after the execution
phase (§ 3.2). Furthermore, FORD leverages a coalescent
commit scheme to in-place update all the primaries and back-
ups in a single round trip to accelerate commit. To ensure that
the dtxn can roll back once the replica crashes, FORD writes
undo logs in parallel with the dtxn execution. To prevent the
updated data from being partially read, FORD temporarily
marks the data to be invisible in the commit round trip. After
commit, the data are made visible in the background, which
consumes at most 0.5 round trip time (§ 3.3).

• Backup-enabled Read to release the PM bandwidth
on the primary replicas. FORD allows the backups to serve

the read requests, thus freeing up the PM bandwidth in the
primary to serve other requests. Since the backups are in-place
updated by using our coalescent commit scheme, the compute
pool can easily read the newest data from the backups after
the dtxn commits. By balancing the load on the primaries and
backups, FORD eliminates the performance bottleneck on the
primary to improve the throughput (§ 3.4).

• Selective Remote Flush to guarantee remote per-
sistency with low overheads. FORD leverages one-sided
RDMA flush schemes to persist the written data from remote
RNIC cache to PM for remote persistency. However, flushing
each RDMA WRITE to each remote replica incurs substantial
round trips. To avoid this, FORD selectively issues the flushes
only after the final write and to the backups. Since the ( f +1)-
way primary-backup replication tolerates at most f replica
failures, once the updates are persistently stored in the f
backups, the remote persistency is guaranteed. Hence, FORD
significantly reduces the remote flush operations (§ 3.5).

2 Background and Motivation
2.1 Disaggregated Persistent Memory
Traditional datacenters consist of a collection of monolithic
servers, each of which hosts compute units and memory mod-
ules. However, such an architecture suffers from low resource
utilization, poor elasticity, and coarse failure domain [57]. For
example, even if only more CPU cores are needed, we have to
add more servers that waste the memory/storage capacities.

To address these drawbacks, memory disaggregation de-
couples the compute and memory resources from monolithic
servers to independent and RDMA-connected resource pools,
in which each compute and memory pool is flexibly deployed
and scaled, thus improving the resource utilization, elasticity,
and failure isolation [72]. The compute pool contains substan-
tial compute blades (e.g., CPU cores) to execute applications
with a small memory as cache. The memory pool consists
of many memory blades (e.g., DRAM DIMMs) to store the
application data, and contain weak compute units only for
memory allocations and network interconnections [57, 72].

The memory pool does not guarantee data persistence when
using DRAM as memory blades. Plugging UPS [19, 61] adds
“non-volatility” on DRAM, which however increases the costs
and energy consumptions. If a power failure occurs, the data
in DRAM are flushed to disks with the support of UPS, which
incurs I/O overheads. Moreover, it is hard to increase the
capacity of one DRAM DIMM due to the limited scalabil-
ity [53], causing high costs to build a large memory pool.

Persistent memory (PM) addresses the above issues by pro-
viding persistence, high density (e.g., 512 GB/DIMM [13]),
and low costs (e.g., 39.2% $/GB of DRAM [3]), while ex-
hibiting DRAM-like latency [67]. As memory disaggregation
meets the needs of datacenters, disaggregating PM also enjoys
the same benefits [54]. Hence, we leverage PM as memory
blades to build the disaggregated persistent memory (DPM),
which forms a persistent and cost-effective memory pool.
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2.2 RDMA-based Distributed Transactions
Due to the benefits of bypassing remote CPU and tradi-
tional TCP/IP stack, recent studies leverage RDMA to run
distributed transactions (dtxns) [19, 29, 44, 60, 61]. Specifi-
cally, a coordinator is leveraged to read remote data, run dtxn
logic, and commit the updated data back to remote machines.
The concurrency control schemes, such as two-phase locking
(2PL) [4] and optimistic concurrency control (OCC) [32], are
used to serialize dtxns. 2PL acquires locks for all data before
execution, and releases all locks after commit. OCC does not
lock data during execution, but acquires (or releases) locks
for all the written data before (or after) commit. Many sys-
tems adopt OCC due to not locking the read-only data, which
benefits read-only dtxns. Moreover, the primary-backup repli-
cation (PBR) [33] is incorporated in dtxn processing for high
availability [19, 60, 70]. The ( f +1)-way PBR contains 1 pri-
mary and f backups for each data shard, and tolerates at most
f replica failures. We assume that the fail-stop failures [25]
can occur in arbitrary replicas at any time. The failed replica
can be quickly detected and recovered by using RDMA [19].
Like FaRM [18,19,44], DrTM [9,60,61] and FaSST [29], we
currently do not consider the byzantine failures [26].

Our paper focuses on the efficient use of OCC and PBR.
Fig. 1 presents how existing RDMA systems [19, 60] process
dtxns over OCC and PBR. Without loss of generality, we
use 2-way replication as an example. In general, there are 5
phases: 1) Execution. A coordinator reads the required data
(i.e., read set = {A, B, C}) from primaries and locally executes
a dtxn. The updated data (i.e., write set = {A, B}) are buffered
in a local cache. 2) Locking. After execution, the coordinator
locks the write set in primaries to serialize dtxns. If locking
fails, the coordinator aborts the dtxn. 3) Validation. If lock-
ing succeeds, the coordinator reads the data versions from
primaries to validate that the versions of read and write sets
are unchanged. If the validation fails, the coordinator aborts
the dtxn. 4) Commit backup. If the validation succeeds, the
coordinator sends redo logs to remote backups. 5) Commit pri-
mary. After receiving all ACKs from backups, the coordinator
updates and unlocks the primaries to commit the dtxn.

2.3 Distributed Transactions on DPM
System Model. In the disaggregated PM architecture, PM is
used as remote memory with persistence to durably store the
application data (including the primary and backups). The
PM pool contains a small number of weak compute units
only for memory allocations and RDMA connections during
the initialization [57, 72]. Afterwards, these compute units
are not used during the execution since they are too weak to
frequently and efficiently handle substantial tasks. Moreover,
there is no PM in the compute pool that uses RDMA to access
the data stored in remote PMs at the byte granularity (no
page swap). To ensure the atomicity, the compute pool uses
coordinators to run transactions that read/write data across
remote PMs. All transactions are hence distributed, and the
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Figure 1: Using OCC and PBR to process dtxns.

replication is accessed by multiple coordinators, which use
RDMA to commit each dtxn. Two-sided RDMA-based RPC
reduces the network round trips by consuming remote CPUs
to handle multiple operations in one round trip [29]. But the
PM pool does not contain CPUs to process requests during
execution, and RPC fails to work. Hence, the coordinators
need to use one-sided RDMA to bypass remote CPUs.

Legacy RDMA-based dtxn systems become inefficient on
disaggregated PM since they are not designed for memory
disaggregation and real PM. Directly using one-sided RDMA
will incur extensive round trips that decrease the performance:

1) As shown in Fig. 1, due to no locks in the execution
phase, the intersected data between read and write sets (i.e.,
read-write set = {A, B}) are operated in execution, locking, and
validation phases, which consume 3 round trip times (RTTs)
before updating the replicas. In general, the read-write set is
equal to the write set, since the data need to be read before
being written back [29]. Hence, these round trips widely exist
in read-write dtxns, causing extra latency. Moreover, if the
locking (or validation) fails, the dtxn aborts, which wastes
the execution (or execution+locking) phases. As a result, the
coordinator consumes useless round trips before processing
the next dtxn, thus decreasing the throughput. DrTM+H [60]
merges the locking and validation phases, but still consumes
an RTT to validate the read-write set.

2) Fig. 1 shows that existing systems [19, 29, 44, 60] con-
sume 2 RTTs to first write backups (redo logs) and then write
primaries (in-place updates) for high availability. By doing
so, the dtxn is ensured to commit after receiving all ACKs
from backups, since even if the primary fails, the new data
can be recovered from redo logs in the backup. In the mono-
lithic architecture, the coordinator can co-locate with a pri-
mary or backup, and hence the local commit can save an RTT.
But in the disaggregated architecture, the compute pool does
not store any replica. Hence, each read-write dtxn inevitably
spends 2 RTTs to commit, which incurs high latency.

Moreover, prior systems work on DRAM+SSD. FaRM [19]
and DrTM [61] regard the battery-backed DRAM as PM,
but the bandwidth and persistence properties of real PM are
overlooked, causing inefficiency on the disaggregated PM:

1) Prior systems [9, 19, 44, 60] do not allow backups to
serve read requests, since in backups the redo logs are asyn-
chronously migrated to the in-place locations after updating
the primary. Hence, only the primary can serve the latest data
after commit [44]. As a result, all requests from coordinators
are sent to the primary, causing a high load on the primary’s

USENIX Association 20th USENIX Conference on File and Storage Technologies    53



0
2
4
6
8

10
12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Read frequency

1 read thread
2 read threads
4 read threads
8 read threads
16 read threads
32 read threads

W
ri

te
 t

h
ro

u
gh

p
u

t 
(G

b
p

s)

Figure 2: The throughput of RDMA writes to remote PM
when mixing different frequencies of RDMA reads, e.g., 0.5
means that 5 reads are mixed with every 10 writes.

PM. However, PM shows lower write bandwidth than the new
generations of RNICs, as mentioned before. We use 128GB
Optane PM DIMMs and ConnectX-5 RNIC with 100Gbps
InfiniBand to evaluate the throughput of RDMA writes when
mixing different frequencies of RDMA reads. As shown in
Fig. 2, when using 32 threads to concurrently issue read re-
quests, the write throughput decreases by up to 87.5%. Hence,
only using the primary to serve all requests makes the PM
bandwidth become a performance bottleneck.

2) Lack of remote persistency guarantee. Current RDMA
verbs have no persistency semantic [17]. For RDMA writes,
the data are first buffered in a volatile cache in remote RNIC,
which acknowledges (ACK) the writes once validated [59].
Hence, even if the client receives all ACKs, some data may not
be persisted to remote PM in case of a crash. This misleads
the client into considering that the data are durably stored
in the remote PM. Hence, it is important to guarantee the
remote persistency for RDMA writes, which is however not
considered in prior dtxn systems due to using DRAM.

In summary, state-of-the-art dtxn systems become ineffi-
cient on the disaggregated PM due to causing substantial
round trips and overlooking the PM properties. Our paper
proposes FORD, an efficient one-sided RDMA-based dtxn
processing system for the new disaggregated PM architecture.

3 The FORD Design
3.1 Overview
Fig. 3 shows the overview of FORD. The compute blades run
dtxns and access application data in PM blades. The com-
pute and PM pools communicate using connection managers
(CMs), which maintain the RDMA queue pair connections.

FORD’s workflow contains two stages. 1) The Init stage:
❶ The clients use the weak compute units in the PM pool (by
RPCs) to allocate and register memory for subsequent RDMA
operations [57, 72], and then load database (DB) tables. The
DB tables are organized by indexes (§ 4.1). ❷ The compute
and PM pools build RDMA connections using CMs. To calcu-
late the remote address for one-sided RDMA in the compute
pool, the CM in PM pool sends the metadata of all the indexes
to each compute blade. These metadata only consume several
MBs and are buffered in the compute pool (§ 4.1). Moreover,
each memory blade notifies the compute blade about the roles
(i.e., primary or backup) of its stored tables, so that the coordi-
nator can correctly access the data during processing. 2) The
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Figure 3: The system overview of FORD.

Run stage: ❸ The clients issue substantial dtxns to the com-
pute blades, which spawn threads as coordinators to leverage
our runtime library for fast dtxn processing. This library con-
tains our novel designs in § 3.2–§ 3.5, and exposes easy-to-use
interfaces (§ 4.2). ❹ Each coordinator uses one-sided RDMA
to process dtxns, which are serialized by locking and ver-
sion validations. Hence, there is no consistency requirement
among compute blades. ❺ After processing, the coordinators
report “tx_commited" or “tx_aborted" to clients. The Init
stage performs only once before the Run stage, and the weak
compute units in PM pool are not involved in the Run stage.

3.2 Hitchhiked Locking
As analyzed in § 2.3 and shown in Fig. 4a, prior works con-
sume 3 RTTs to separately read, lock, and validate data to
process a general read-write dtxn in Fig. 3.

To reduce the heavy round trips, FORD proposes a hitch-
hiked locking scheme to lock the data that belong to the read-
write set when reading them in the execution phase. The read
and write sets are known according to the transaction logic.
FORD sends the lock request together with the read request
in a hitchhiker manner. In this way, the read-write data do not
need to be locked and validated after execution, since other
transactions cannot modify the locked data. Therefore, the
total round trips of processing a dtxn are efficiently reduced.

Due to not using the CPUs in PM pool, it is hard to lock
and read data using one-sided RDMA in one round trip. To
address this issue, FORD adopts the doorbell mechanism [28]
to batch the RDMA CAS followed by an RDMA READ in
one request, which is delivered and ACKed in one round trip,
instead of being separately issued in two round trips, as shown
in Fig. 4b. The RDMA CAS first tries to lock the remote data,
and RDMA READ further fetches the data. Since the transport
mode is reliable connection, the two RDMA operations are
reliably delivered to the remote RNIC in order [51]. Then the
batched operations are executed by RNIC as the delivering
order to ensure correctness. After receiving the ACK of the
batched request, the coordinator checks whether the locking
is successful by comparing the return value of RDMA CAS
with the previously sent lock value, i.e., only equality means
a success. If the locking fails, the coordinator aborts the dtxn
and unlocks the previously locked data to avoid deadlocks.
Fig. 4c shows our hitchhiked locking scheme, which locks
and reads the read-write data (e.g., {A, B}) using one-sided
RDMA in one round trip, thus reducing the latency.
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Our hitchhiked locking is different from 2PL, which locks
all the data before execution. FORD still maintains the opti-
mistic feature of OCC to avoid contentions for the data that
are only read. Specifically, the read-only data (e.g., data C in
Fig. 4c) are not locked in the execution phase, and the locked
read-write data can still be read by other coordinators (but
cannot be locked). There is a validation phase to guarantee
the version correctness for the read-only data. If a dtxn does
not have the read-only data, the validation is eliminated.

Enabling hitchhiked locking requires remote data addresses
for one-sided RDMA. FORD leverages a hash indexing
scheme for the coordinator to compute the remote address
of a bucket and read it (§ 4.1). Due to hash collisions, it is
hard to accurately lock the slot in a remote bucket at the first
read. However, directly locking the entire bucket prevents
other coordinators from locking different slots in the same
bucket, causing unnecessary contentions. Hence, the hitch-
hiked locking is disabled when the data are first read. After
reading, the coordinator obtains the remote data addresses
and buffers them in its local cache. Each time the previous
data are read again, the local cache provides the addresses to
enable hitchhiked locking. If some remote data addresses in
the PM pool are changed by a coordinator (e.g., some data are
deleted and then inserted to different places), another coordi-
nator can easily discover that its buffered addresses become
stale, since the key of the fetched data mismatches the queried
key. In this case, the coordinator re-reads the bucket to obtain
the correct data and updates its buffered addresses.

Our hitchhiked locking is different from: 1) FaRM [18, 19,
44] and DrTM+H [60], that consume a dedicated RTT to lock
data. 2) DrTM+R [9], that exclusively locks all the data in the
read and write sets. 3) FaSST [29], that uses RPC to lock data,
which fails to work on the disaggregated memory. Unlike
FaSST, FORD leverages one-sided RDMA to read and lock
data in one round trip. Hitchhiked locking does not lengthen
the lock duration due to eliminating the locking and validation
phases for the read-write data. In the above systems that sup-
port OCC and primary-backup replication, we summarize the
lock duration: 1) FaRM [18,19,44]. 4 phases = lock + validate
+ commit backup + commit primary&unlock. 2) FaSST [29].
5 phases = lock + validate + log + commit backup + com-
mit primary&unlock. 3) DrTM+R [9]. 4 phases = lock +
validate + update + unlock. 4) DrTM+H [60]. 3 phases =
lock&validate + commit backup + commit primary&unlock.
5) Our FORD. 3 phases (or 4 phases) w/o (or w/) read-only

data = read&lock read-write set (or + validate read-only set)
+ commit all replicas (§ 3.3) + background unlock (§ 3.3.2).

Though our lock duration experiences 4 phases w/ read-
only data, the coordinator can immediately detect lock con-
flicts in the execution phase, and run the next dtxn as early as
possible. Hence, FORD avoids the aforementioned wastes of
the execution (or execution+locking) phases due to the lock
(or validation) failures in prior systems [9, 19, 60]. This trade-
off is beneficial for improving the transaction throughput.

3.3 Coalescent Commit
As analyzed in § 2.3 and shown in Fig. 5a, existing dtxn
systems spend 2 RTTs to separately write redo logs to the
backup and then update the primary to finish commit. Hence,
if the primary crashes, the dtxn can roll forward by using
the redo logs in backups. However, this incurs high network
overheads on the disaggregated PM, since each read-write
dtxn needs 2 RTTs to replicate the updated data.

To reduce latency, FORD proposes a coalescent commit
protocol to update the primaries and backups together in only
one round trip. The coordinator commits the dtxn if the ACKs
from all replicas are received. Otherwise, the dtxn aborts
and rolls back. In fact, there is a trade-off between the replica
commit latency and recovery state (i.e., 2 RTTs + roll forward,
or 1 RTT + roll back). In practice, the commit latency is more
important for the disaggregated PM, since we need to decrease
the number of round trips to accelerate dtxn processing in
common cases, in which no ACK is lost. Hence, we choose
to commit all replicas together to improve the performance,
and support to roll back dtxns in case of failures.

In the disaggregated PM architecture, we need to consider
how to update replicas when using coalescent commit. For
primaries, it is efficient to in-place update data, since the co-
ordinators can directly read and lock the remote data without
address redirections. But for backups, it is inefficient to send
redo logs like FaRM [19, 44] and DrTM+H [60]. Because the
CPUs in the PM pool are not involved in processing dtxns,
the new data in redo logs will not be installed after commit.
As a result, the backup cannot work after the memory is filled
up by logs. Hence, we choose to in-place update the backup.

3.3.1 Parallel Undo Logging
In general, it is challenging to in-place update the backups
and primaries in one round trip. Because in case of a crash, the
remote old data could be partially overwritten, which prevents
the dtxn from being rolled back. To tackle this challenge,
FORD sends undo logs to all the replicas before in-place
updates. Hence, the dtxns can roll back using the old data
in undo logs. Unlike redo logs, the undo logs are simply
discarded by setting the log status to be “committed” after
the dtxn commits, which is completed by coordinators in the
background. Hence, undo logging meets the requirement of
PM pool, i.e., not involving the remote CPU to move data.

The next question is how to send undo logs to remote
replicas. One solution is to spend a dedicated round trip to
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send logs, which however causes extra RTTs. We observe that
undo logs can be immediately generated once the old data
of the read-write set have been read in the execution phase.
Based on this observation, we design a parallel undo logging
scheme to generate and send undo logs in parallel with the
transaction logic execution. Therefore, it is unnecessary to
consume an extra round trip to send undo logs. To ensure
atomicity, the coordinator only needs to check that all the
ACKs of log writes (i.e., RDMA WRITE) are returned before
updating the replicas. Note that the redo logs cannot be sent in
the execution phase, because we have to wait for completing
the transaction execution to obtain the newest data to generate
redo logs, which heavily weakens the parallelism especially
in the transaction that goes through a long-time execution
logic, e.g., the New Order transaction in TPCC [15].

3.3.2 Visibility Control
In order to ensure consistency, our coalescent commit protocol
guarantees that the data that being updated in the replicas are
not partially read. Since our hitchhiked locking scheme does
not block read-only requests, a coordinator possibly reads
some remote data that are being updated, causing inconsis-
tency. To avoid this, FORD proposes a one-sided RDMA-
based visibility control to decide whether the data are visible
to coordinators, as shown in Fig. 5b. The idea is to batch
an invisible request followed by an RDMA WRITE into one
request to update the remote replicas: 1) The invisible request
prevents other coordinators from reading data by setting the
invisible flag to 1. FORD implements the 1-bit invisible flag
and 63-bit lock value in an 8B value, called VLock, which
is atomically modified via an RDMA CAS. 2) The RDMA
WRITE in-place updates the remote replica. After receiving
all ACKs, the coordinator reports “tx_committed" to clients.
Otherwise, e.g., a replica fails, the coordinator rolls back the
dtxn by using undo logs. After commit or rollback, the coor-
dinator unlocks data and makes them visible by writing an
8B zero to VLock in a background release phase.

The release phase does not exist on the critical path of the
dtxn commit. It incurs only 0.5 round trip time (RTT) or can
be fully overlapped: 1) Once the remote RNIC receives the
RDMA CAS request and clears the VLock, other coordinators
can immediately access the remote data. It is unnecessary to
wait for returning the ACK, thus only consuming 0.5 RTT
to make data visible. If some data are currently invisible,
a coordinator can re-read them until visible. After all the
required data become visible, the coordinator continues to

process dtxns to guarantee the atomic visibility. 2) If there
is no coordinator currently reading the invisible data, the
background release phase is completely overlapped with other
in-flight dtxns, thus avoiding re-read operations.

3.4 Backup-enabled Read
As discussed in § 2.3, only leveraging the primary to handle all
the requests decreases the throughput due to the limited write
bandwidth of PM. To tackle this challenge, FORD enables
the backups to serve read requests for the read-only (RO)
data, i.e., the coordinators are allowed to read the RO data
from backups. This frees up the PM in the primary to serve
other requests (e.g., lock and write), thus balancing the load
to improve throughput. Based on our coalescent commit that
in-place updates all replicas, it is easy for a coordinator to
read the RO data from backups due to no address redirection.

FORD guarantees the correctness of the RO data that are
read from backups. If a dtxn (e.g., dtxn1) reads all its RO data
before (or after) another dtxn (e.g., dtxn2) commits the repli-
cas, dtxn1 will obtain the old (or new) data, which guarantees
the correctness since dtxn2 is uncommitted (or committed).
However, if dtxn1 reads multiple RO data and goes through
dtxn2’s execution and commit phases, the data that dtxn1
has read are possibly stale after dtxn2 updates the replicas. To
address this issue, FORD validates the versions of all dtxn1’s
RO data before dtxn1 commits, as guaranteed by our hitch-
hiked locking scheme in Fig. 4c. If the validation fails, the
coordinator aborts dtxn1 to ensure correctness.

Existing systems unfortunately fail to efficiently read data
from backups: 1) For legacy database systems, e.g., Microsoft
Azure [16] and Amazon Aurora [56]. The primary (or backup)
replica handles the write (or read) requests from clients. After
a client writes data to the primary, the backup needs to wait
for receiving and installing the new data that are sent from
the primary. Hence, after updating the primary, the clients
are delayed to read the latest data from backups, thus causing
extra latency. Moreover, in the disaggregated PM, the CPUs in
the primaries and backups are not involved in dtxn processing.
Hence, the data send/receive operations between replicas fail
to work in the PM pool. 2) For prior RDMA-based dtxn
systems [19, 44, 60]. The coordinator writes updated data
to the primaries (i.e., in-place updates) and backups (i.e.,
redo logs) to commit a dtxn. However, other coordinators
cannot read the backups after the dtxn commits, since the
latest data in backups have not been transmitted from the redo
logs to the in-place locations. Moreover, in the disaggregated
PM, the backups fail to extract the updated data in redo logs
and transmit these updates due to involving the CPU in PM
pool during dtxn processing. Unlike the above systems, our
coalescent commit protocol in-place updates the backups and
primaries together without involving the CPU in PM pool.
Hence, the coordinators are allowed to read the latest in-place
data from backups after the dtxn commits, which alleviates
the load on primary’s PM to improve the throughput.

56    20th USENIX Conference on File and Storage Technologies USENIX Association



Coordinator
Primary
Backup

1 1F

(a) (b) (c)

F 1 F2 2 21 F 2 1 1 2F
Data Remote flushF

F2

Figure 6: Ensuring remote persistency using (a) full flush, (b)
selective flush, and (c) selective flush with request batching.

3.5 Selective Remote Flush
It is important to guarantee the remote persistency when com-
mitting the data updates to the PM pool, which is however
overlooked in prior dtxn systems that use DRAM as the mem-
ory. Recently, the one-sided RDMA FLUSH [23, 48] is being
proposed to persist data from remote RNIC to PM. However,
flushing each data to each remote replica (i.e., full flush) con-
sumes many round trips. As shown in Fig. 6a, updating 2 data
incurs 8 round trips after using remote flushes.

In order to guarantee remote persistency with low network
overhead, we propose a selective remote flush scheme, as
shown in Fig. 6b. The idea is to issue an RDMA FLUSH
after the final RDMA WRITE and only to backups, since: 1)
RDMA FLUSH supports to flush all the previous written data.
Hence, it is sufficient to use one RDMA FLUSH after the final
write to one replica. 2) In the ( f + 1)-way primary-backup
replication, once the data are persisted in all backups, even
if the primary crashes, we can recover the primary by using
backups. Hence, it is sufficient to issue RDMA FLUSH to only
backups. Note that if all the f +1 replicas fail, the data cannot
be recovered [19]. FORD guarantees remote persistency with
at most f replica failures. Thus, by issuing necessary flush
operations, FORD significantly reduces the round trips.

As RDMA FLUSH is currently unavailable in programming
due to the needs of modifying RNIC and PCIe [48], we lever-
age one-sided RDMA READ-after-WRITE to flush the data in
RNIC to memory like [27, 31]. Specifically, the RDMA READ
fetches any size (e.g., 1B) of the data that are written by
RDMA WRITE. Then, the remote RNIC will issue all PCIe
writes before issuing PCIe reads to satisfy the RDMA READ.
In this way, the data in RNIC are written to PM. We further
optimize this procedure by batching the write and read into
one request to eliminate the extra read round trip. This im-
plementation is compatible with the future one-sided RDMA
FLUSH, i.e., replacing RDMA READ with RDMA FLUSH, as
shown in Fig 6c. In essence, our selective remote flush scheme
aims to reduce the round trips when ensuring remote data per-
sistency. Hence, this scheme is not affected by the specific
implementation of remote data flushing, e.g., using the future
RDMA FLUSH primitive or current READ-after-WRITE method.

3.6 Failure Tolerance
The replica fails in PM pool. Due to supporting replication
in dtxn processing, FORD recovers the data in the failed repli-
cas from other replicas that are alive. If any primary or backup
fails: i) Before commit, the coordinator aborts the transac-
tion and unlocks the data. ii) During commit, the coordinator
aborts the transaction, reads the remote undo logs to revoke

data updates and unlocks data. iii) In the release phase, the
transaction has already committed. The coordinator clears
the VLock in the replicas. If some replicas that cannot be re-
covered, we add new replicas to maintain the ( f + 1)-way
replication, and migrate data to the new replicas.
The coordinator fails in compute pool. Due to writing undo
logs to remote replica, FORD handles coordinator failures by
rolling back dtxns. Like FaRM [19] and DrTM [61], FORD
supports to use leases [22] to detect failures. After the leases
expire (e.g., 5 ms [19]), a failure possibly occurs. However,
once a coordinator fails before it reports "tx_committed", it is
unknown whether the remote replicas have been updated. To
address this issue, FORD reads the undo logs in replicas to
revoke all the updates and reports “tx_aborted" to clients.
The network communication fails. Due to network parti-
tions, either availability or consistency is sacrificed based on
the CAP theorem [6, 21]. In this case, FORD only allows the
primary partition [5] to serve requests, which guarantees the
strong consistency of ACID dtxns for OLTP workloads.

3.7 Put It All Together
Fig. 7 illustrates how our designs (§ 3.2–§ 3.5) work together
to process dtxns by using one-sided RDMA primitives. The
requests in one RTT are issued and ACKed in parallel.

1) Execution. A coordinator reads and locks the re-
quired read-write data from primaries using batched RDMA
CAS+READ in one round trip. The read-only data can be
fetched from backups or primaries using RDMA READ. The
undo logs are immediately generated and written to remote
replicas by RDMA WRITE in parallel with the execution. The
concurrent dtxns that have conflicting accesses to the same
remote data are serialized by locks. If any lock operation fails,
the coordinator aborts the dtxn and unlocks the remote data.

2) Validation. After execution, the coordinator reads the
versions of the read-only data (if any) using RDMA READ,
and verifies that the data versions are not modified by other
coordinators. If a version changes, the coordinator aborts the
dtxn and unlocks the remote data.

3) Commit. After validation, the coordinator checks that
all the ACKs of undo logs are received, and then commits
the updated data to all the replicas in one round trip. The
data in primaries are marked to be invisible and updated
with the batched RDMA CAS+WRITE. The data in backups
are updated and further flushed from RNIC to PM using re-
mote data flushing operations. Therefore, the coordinator uses
batched RDMA CAS+WRITE+FLUSH to update backups. Af-
ter receiving all the ACKs from replicas, the coordinator re-
ports “tx_committed" to the client. Afterwards, the coordina-
tor starts processing the next dtxn.

4) Release. After the dtxn commits, the coordinator uses
RDMA CAS to release the remote data by setting them visible
and unlocking them in the background.

FORD efficiently handles different types of dtxns. 1) For
read-only dtxns, FORD reads remote data and validates ver-
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Figure 7: Distributed transaction processing in FORD.

sions before commit. Prior systems [19, 60] adopt similar
operations. However, the difference is that FORD supports
coordinators to read backups to improve the throughput while
prior systems do not support this. 2) For read-write dtxns, only
2 RTTs (i.e., Execution+Commit, w/o read-only data) or 3
RTTs (i.e., Execution+Validation+Commit, w/ read-only data)
are on the critical path. Compared with existing designs that
require 5 RTTs [19,29] or 4 RTTs [60] to process a read-write
dtxn (as analyzed in § 2.3), FORD significantly improves the
performance for the disaggregated PM architecture.

3.8 Correctness and Overhead Analysis
Serializability. FORD leverages locks and validations to guar-
antee serializability. The committed read-write dtxns are seri-
alizable at the point where all the written data are successfully
locked. The committed read-only dtxns are serializable at the
point of their last read. FORD guarantees these serializability
points by ensuring that the data versions at the serialization
point are equal to the versions during execution, i.e., locking
ensures this for the written data since other coordinators can-
not modify the versions of locked data, and validation ensures
this for the read data since a version change will abort the
dtxn. Moreover, to guarantee serializability across failures,
the coordinator waits for all ACKs from all replicas before
commit. Once a replica fails during the coalescent commit,
FORD aborts the dtxn since an ACK is not received.
ACID. FORD ensures the ACID properties for dtxns: (1)
Atomicity. FORD records undo logs, which are used to re-
voke the partial updates if a failure occurs before commit. (2)
Consistency. All the data versions are consistent before the
dtxn starts and after it commits. (3) Isolation. FORD uses
locks and version validations to guarantee the serializability
among the read-write and read-only dtxns. (4) Durability. The
updated data are persistently stored in PM after commit.
The Number of RDMA Operations. Due to fully using
one-sided RDMA to bypass the CPUs in PM pool, FORD in-
evitably increases the number of RDMA operations to commit
a dtxn. It is worth noting that the new RNICs (e.g., ConnectX-
5 [52]) are efficient to handle one-sided RDMA operations
including CAS [60]. Hence, slightly increasing the number of
RDMA operations has negligible impacts on performance. In
fact, FORD focuses on reducing the number of RDMA round
trips, which is more important to improve the performance
since the RDMA round trip still suffers from higher latency
(e.g., 3–8 µs [3]) than local access (e.g., 62–305 ns [67]).

4 Implementations
4.1 Data Store in Memory Pool
FORD supports different indexes to organize database (DB)
tables in PM pool, e.g., hash tables and B+-trees. These index-
ing schemes form the data store of FORD, called FStore. Our
transaction techniques are independent of the specific index
used in FStore, since these techniques aim to reduce net-
work round trips and balance loads, and regard remote data as
general objects. For example, when using B+-trees, our hitch-
hiked locking scheme reads and locks the leaf nodes, and our
coalescent commit scheme writes the updated tree nodes back
to all replicas together. The internal pointer nodes are cached
to reduce remote tree traversing. Moreover, since the hash
table is widely used in fast RDMA operations [18, 54, 61, 72],
we use hash table as an example to present the implementa-
tions of FStore. Each hash table maintains a DB table and
supports read/update/insert/delete operations.

The records in DB tables are persistently stored in FStore.
Existing hashing schemes that support fixed-size and variable-
size records can be used in FORD, e.g., RACE hashing [72].
When supporting fixed-size records, the records are stored in
the hash table for direct access. When supporting variable-
size records, the pointers of records are stored in the hash
table. In this case, our hitchhiked locking scheme reads and
locks the pointer, and then fetches the record. Hence, FORD
is flexibly to adapt different hash schemes to support fixed or
variable record sizes. For simplicity, we show an implementa-
tion of storing fixed-size records. Like FaSST [29], the record
consists of an 8B key and a maximum sized value (e.g., 1KB).
Such record meets many OLTP workloads (e.g., TPCC [15]).
To further support dtxns, FORD packs the record with the
following information into an object, called FObj.

• Occupy (1B): Whether this FObj occupies a slot.
• TableID (8B): DB table that this record belongs to.
• Version (8B): Version number of this record.
• VLock (8B): 1-bit (in)visibility flag and 63-bit lock.
After allocating and registering a memory region (MR)

in PM pool, FStore enables clients to load records into hash
tables before running dtxns. Fig. 8 shows the structure of hash
tables. A hash table contains an array of buckets, and each
bucket contains several slots and one pointer called Next. The
numbers of buckets and slots are configured by clients. Each
FObj occupies a slot. A client initializes a FObj and hashes its
key to obtain the target bucket (e.g., b1) to be inserted. After
inserting the FObj to an empty slot, its Occupy is set to 1. If
b1 is full, the FObj is inserted to a new bucket (e.g., b2) whose
address is recorded in the Next pointer of b1. b2 is stored in a
reserved space (RS) of MR. The size of RS is set by the client,
e.g., 20% of the MR space. The client uses a pointer, called
RS-Ptr, to trace the current bucket address in RS. Moving the
RS-Ptr forward to a bucket size will generate a new bucket in
RS. If the RS is exhausted but the hash collision still occurs,
the client re-allocates memory to load tables.
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Figure 8: The hash table structure in FStore.

To enable coordinators to calculate remote addresses for
one-sided RDMA in dtxn processing, the connection manager
in PM pool sends the metadata (as listed below) of each hash
table to the compute pool during network interconnections.

• TableID (8B): Global unique database table id.
• Addr (8B): Virtual start address of this hash table.
• Off (8B): Offset between Addr and MR’s start address.
• BucketNum (8B): Bucket number of the hash table.
• BucketSize (4B): Size of a bucket (in bytes).
• SlotNum (4B): Number of slots per bucket.
Given the key (e.g., K0) of a record, if its remote address

is buffered in the local cache, the coordinator directly reads
the record using an RDMA READ. Otherwise, the coordinator
reads a remote record as the following Steps:
S1: Calculate the bucket id:

bucket_id= Hash(K0) mod BucketNum
S2: Calculate the bucket offset in the remote MR:

bucket_off= bucket_id×BucketSize+Off
S3: Read the remote bucket (bkt) using bucket_off.
S4: Compare K0 with the SlotNum keys in bkt. If a key = K0,

the record is obtained. Then go to S7. Or else go to S5.
S5: If the next field of bkt is NULL, there is no such remote

record. Then go to S8. Or else go to S6.
S6: Calculate the next bucket offset as below and go to S3.

bucket_off= bkt.next−Addr+Off
S7: Exit if the record is visible. Or else re-read it until visible.
S8: Exit with a KEY_NOT_EXIST hint.

Since the metadata size of a hash table is only 40B and each
remote address is 8B, the local cache in compute pool can
buffer all these metadata and addresses, as shown in Fig. 15a.
Caching metadata is scalable, because the compute blades do
not need to synchronize their metadata with each other: 1) The
metadata of index does not change. 2) If the cached addresses
are stale, FORD enables the coordinator to detect this and
update its own cached addresses, as discussed in § 3.2.

4.2 Transaction Interfaces
FORD provides a runtime library, called FLib, for applications
to process dtxns. Flib exposes the following interfaces:

• TxBegin: Start to execute a dtxn and record its id.
• AddRO: Add an initialized FObj to the read-only set.
• AddRW: Add an initialized FObj to the read-write set.
• TxExecute: The coordinator reads the remote data spec-

ified in read-only and read-write sets, and then exe-
cutes the dtxn logic. Our hitchhiked locking and backup-
enabled read schemes are leveraged.

• TxCommit: After execution, the coordinator commits the
updated data to remote primaries and backups using our
coalescent commit and selective remote flush schemes.

1  bool WriteCheck(uint64_t dtxn_id, DTXN* dtxn) {

2    // The `dtxn` invokes FLib interfaces

3    dtxn->TxBegin(dtxn_id);

4    // Use a random account as the key

5    uint64_t acct_id = RandomAccount();    

6    FObj* sav_obj = new FObj(SavingsTableID, acct_id);

7    FObj* chk_obj = new FObj(CheckingTableID, acct_id);

8    dtxn->AddRO(sav_obj);

9    dtxn->AddRW(chk_obj);

10   if (!dtxn->TxExecute()) return false;

11   // Get record values and run transaction logic

12   sav_val_t* sav = (sav_val_t*) sav_obj->value;

13   chk_val_t* chk = (chk_val_t*) chk_obj->value;

14   if (sav->balance + chk->balance < PredefinedAmount)

15     chk->balance -= (PredefinedAmount + 1);

16   else chk->balance -= PredefinedAmount;

17   bool status = dtxn->TxCommit();

18   delete sav_obj; delete chk_obj;

19   // Report commit (true) or abort (false) to client

20   return status;

21 }

Figure 9: The example of C++ code using FLib interfaces.
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Our transaction interfaces support general transaction pro-
cessing. Specifically, the developers are not required to know
all the read/write sets at the beginning of each transaction. In-
stead, developers call AddRO, AddRW, and TxExecute multiple
times when reading/writing data occurs during a transaction.
Fig. 9 illustrates an example of using our interfaces in the
Write Check transaction of the SmallBank benchmark [50].
This transaction reads the balances from the Savings and
Checking tables, and updates the balance in the Checking
table. It shows that our interfaces are easy-to-use.

4.3 Interleaved Transaction Processing
As shown in Fig. 10a, sequentially processing dtxns in a
thread wastes the CPU cycles due to waiting for RDMA
ACKs, which significantly decreases the throughput. To avoid
CPU idling in the compute pool, FORD leverages an inter-
leaved processing model that enables multiple coordinators in
one thread to process different dtxns in pipeline, as presented
in Fig. 10b. In this way, the network RTTs are efficiently hided
and the CPU cores in the compute pool are fully utilized to
improve the throughput.

We use coroutines [29, 60] to implement the interleaved
processing. Each CPU thread generates several coroutines and
each coroutine acts as a coordinator to execute dtxns. After
issuing the RDMA requests, a coroutine yields its CPU core
to another coroutine to process the next dtxn. A dedicated
coroutine in each thread polls RDMA ACKs. If all ACKs of a
coroutine arrived, FORD schedules this coroutine to occupy
the CPU core to resume execution. The results in Fig. 16
show that using a proper number of coroutines improves the
throughput without heavily increasing the latency.
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5 Performance Evaluation
5.1 Experimental Setup
Testbed. We use three machines, each of which contains a
100Gbps Mellanox ConnectX-5 IB RNIC. They are connected
via a 100Gbps Mellanox SB7890 IB switch. One machine
equipped with the Intel Xeon Gold 6230R CPU and 8GB
DRAM is leveraged as the compute pool to run coordinators.
Other two machines form the PM pool, each of which contains
6 interleaved 128GB Intel Optane DC PM modules. Each
database table is stored in the two PM machines to maintain
a 2-way replication, i.e., one primary and one backup.
Benchmarks. We leverage a key-value store (KVS) as the
micro-benchmark to analyze how different factors affect each
design of FORD. KVS stores 1 million key-value pairs in one
table, in which the key is 8B and value is 40B. The transaction
in KVS accesses a specific number of objects with different
read:write ratios and different access patterns as configured
in § 5.2. KVS supports the skewed and uniform access patterns,
in which the skewed access uses the Zipfian distribution with
the default skewness 0.99 [10]. We further adopt three OLTP
benchmarks, i.e., TATP [49], SmallBank [50], and TPCC [15],
as the macro-benchmarks to examine the end-to-end per-
formance. These benchmarks are widely used in prior stud-
ies [19, 29, 60, 61]. TATP models a telecom application and
contains 4 tables, in which 80% of the transactions are read-
only, and the record size is up to 48B. SmallBank simulates
a banking application that includes 2 tables, in which 85% of
transactions are read-write, and the record size is 16B. TPCC
models a complex ordering system that consists of 9 tables, in
which 92% of transactions are read-write, and the record size
is up to 672B. We generate 8 warehouses in TPCC. We have
implemented all the workloads of each macro-benchmark and
run the standard transaction mix in § 5.3. We run 1 million
dtxns in each benchmark, and report the throughput by count-
ing the number of committed dtxns per second. We report
the processing time of the committed dtxn as the latency,
including the 50th and 99th percentile latencies.
Comparisons. We implement FORD1 using C++ (13.1k
lines of codes) and compare it with two state-of-the-art
RDMA-based dtxn processing systems, i.e., FaRM [19] and
DrTM+H [60] (called DrTMH). We use one-sided RDMA
to re-implement their dtxn processes for the disaggregated
PM. Moreover, our selective remote flush scheme is applied
to FaRM and DrTMH to make them compatible with remote
PM. We do not compare against FaSST [29] that fully uses
two-sided RDMA, which is difficult to work in the disag-
gregated memory architecture due to consuming the remote
CPUs in memory pool throughout the entire dtxn processing.

5.2 Micro-Benchmark Results and Analysis
Lock Duration. Locks are generally used to serialize dtxns.
However, a long lock duration causes frequent aborts and

1Open source code: https://github.com/minghust/ford
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leads to low throughputs. To obtain the lock duration, we con-
figure the coordinator to not abort dtxn but wait for the data to
be unlocked if the locking fails. We compare the lock duration
in FORD, FaRM and DrTMH by using 64 coordinators to
concurrently run dtxns in which each dtxn processes one data.
Fig. 11 shows the average lock duration of each coordinator at
different read:write ratios in the dtxn mix, e.g., 25:75 means
that 25% of the dtxns are read-only while 75% are read-write.
The results show that the reduction of lock duration is larger
in the uniform access when reducing the write ratio, since
the uniform access has lower locality than the skewed access,
which decreases the data hotness. Hence, the total time for
the coordinator to wait for unlocking the hot data significantly
decreases. Compared with DrTMH and FORD, FaRM suffers
from longer lock durations since the data are locked across
4 phases, i.e., locking, validation, commit backup, and com-
mit primary. DrTMH reduces the lock duration by merging
the locking and validation into one phase. Our FORD uses
the hitchhiked locking scheme to lock the read-write data in
the execution phase, but the lock duration does not become
longer, since the read-write data do not need to be locked or
validated again, and the dtxn commits earlier.
Invisibility Duration. FORD leverages the coalescent com-
mit scheme to update the primaries and backups together in
one round trip. To avoid partial reads, the data are temporarily
marked as invisible after commit until the background release
phase. To analyze the overheads of the data invisibility, we
record the total time spent for re-reading the invisible data
until visible (i.e., invisibility duration) in 64 coordinators, and
then calculate the proportion of the invisibility duration in the
entire dtxn running time. As shown in Fig. 12, the proportion
slightly decreases when increasing the read ratio from 0% to
25%, since the invisible data are reduced when decreasing
writes. As the read ratio continues to increase, the proportion
increases, since there are substantial read-only dtxns that wait
for the data to be visible, which increases the total invisibil-
ity durations in all coordinators. When the read:write ratio
is 100:0, all data are visible and the proportion becomes 0.
The results show that the proportion is only less than 8%
in different read:write ratios and access patterns, since the
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Figure 13: The dtxn throughput and latency when dis-
abling/enabling coordinators to read the backup replicas.

background release phase consumes at most 0.5 RTT to make
data visible. Therefore, the data invisibility in our coalescent
commit design exhibits low performance overheads.
Read from Backups. Due to the limited write bandwidth of
PM, FORD enables the coordinators to read the read-only
data from backups to alleviate the load on the primary’s PM.
To demonstrate the benefits of this design, we run 224 coordi-
nators to increase the load, and examine the dtxn throughput
and latency when disabling/enabling the coordinators to read
backups. Fig. 13 shows that as the read ratio increases, en-
abling coordinators to read the backup replica improves the
throughput by up to 1.5×, and reduces the 50th/99th per-
centile latencies by up to 31.7%/35.3%. The backup absorbs
substantial read requests to prevent all the coordinators from
competing for the primary’s PM, thus improving the through-
put. When increasing the number of backup nodes, FORD will
gain higher performance improvements since all the backups
can be read to balance loads.
Remote Flush. FORD guarantees the remote persistency in
dtxn processing by flushing the data from the RNIC cache to
PM. We compare the dtxn throughput and latency when adopt-
ing the full flush and selective flush schemes discussed in § 3.5.
To show the overheads of remote data flush, we use one coor-
dinator to avoid extra contention overheads. We increase the
number (1–10) of written data per dtxn to add the flush opera-
tions. The results in the skewed and uniform accesses exhibit
similar trends. Fig. 14a and 14b show that our selective flush
scheme improves the throughput by 28.7%/29.5% over the
full flush scheme in skewed/uniform access. Fig. 14c and 14d
show that the selective flush mitigates the 50th/99th percentile
latencies by 22.5%/12.4% (22.8%/14%) in the skewed (uni-
form) access. Our selective flush scheme performs better due
to only issuing flushes to the backups after the final RDMA
WRITE, thus reducing the number of flush operations. More-
over, Fig. 14 shows that the performance of using the selective
flush decreases when the number of accessed data increases.
This is because other operations in the dtxn increase (e.g.,
data reads, validations, and remote writes), thus decreasing
the overall performance.
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Figure 14: The dtxn throughput and latency using full/selec-
tive flush when accessing different numbers of data per dtxn.

Local Cache. The coordinator has a local cache to buffer re-
mote data addresses for efficient one-sided RDMA operations.
To evaluate the overheads (including the size and miss rate) of
the local cache, we change the maximum number of accessible
keys from 1k to 512k to obtain the average sizes of buffered
addresses, and the average miss rates during address lookups.
Fig. 15a shows that the buffered addresses only consume 6.8
MB even if uniformly accessing 512k keys with poor locality.
Hence, a small MB-scale cache is sufficient for a coordina-
tor to buffer remote addresses. Since a GB-scale DRAM is
leveraged in the compute pool to store the metadata [45], it is
unnecessary to limit the size of the coordinator-local cache
in practice. Fig. 15b shows that the miss rate is 18.2%/44.6%
when accessing 512k keys in skewed/uniform access. For
a cache hit, the coordinator uses the buffered address to di-
rectly read the record. However, if a cache miss (or a hash
bucket collision) occurs, the coordinator needs to calculate
the remote bucket address and read a bucket to find the record,
which incurs more latency. In general, the miss rate depends
on the locality of workloads. If some remote addresses are not
buffered, the cache misses are inevitable in dtxn processing.
However, FORD provides a sufficiently large local cache for
each coordinator to avoid evicting the buffered addresses from
the cache, thus reducing the miss rate as much as possible.

5.3 Macro-Benchmark Results and Analysis
Coroutine Execution. To improve the throughput, FORD
leverages coroutines to process dtxns to avoid CPU idling.
A thread generates at least 2 coroutines since a specified
coroutine in each thread is used to poll the RDMA ACKs.
Fig. 16 shows the dtxn throughput and median latency in
macro-benchmarks when changing the number of coroutines
in one thread. The throughputs increase by 3.4×/2.2×/2.5×
on TATP/SmallBank/TPCC until the CPU is saturated. On the
other hand, the latency continues to increase when using more
coroutines, since the execution pipeline becomes deeper, and
the coroutines are scheduled to wait for occupying the CPU
to resume execution. From the experimental results, we learn
that using 6–8 coroutines is helpful to significantly improve
the throughput without heavily increasing the latency.
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Figure 16: The dtxn throughput and 50th percentile latency
in one thread when using different numbers of coroutines.

End-to-End Performance. We use 16 threads and each
thread generates 8 coroutines (1 coroutine polls ACKs), as a
total of 16×(8−1)= 112 coordinators, to evaluate the end-to-
end throughput and latency in FaRM, DrTMH, and FORD us-
ing the macro-benchmarks. In real experiments, due to differ-
ent system scales (e.g., 90 machines [19]), the overall through-
put in our small-scale testbed becomes lower than [19, 60].
However, our testbed can accurately evaluate the performance
in different system configurations. Our selective remote flush
scheme is applied to three systems to ensure remote persis-
tency. As shown in Fig. 17, compared with FaRM/DrTMH,
FORD improves the throughput by 1.4×/1.3×, and reduces
the 50th (99th) latency by 12%/9.1% (54.8%/46.8%) in TATP,
improves the throughput by 1.6×/1.3×, and reduces the 50th
(99th) latency by 34.3%/30.9% (64.6%/32.4%) in SmallBank,
and improves the throughput by 2.3×/1.4×, and reduces the
50th (99th) latency by 74.3%/66.2% (63.8%/28.7%) In TPCC.
DrTMH outperforms FaRM by merging locking and valida-
tion phases. FaRM and DrTMH show high performance in
TATP, since 80% of the dtxns are read-only and the uses of
one-sided RDMA READs accelerate the processing. However,
in SmallBank and TPCC that contain extensive read-write
dtxns, the performance decreases due to their long dtxn pro-
cessing paths. Unlike them, our FORD efficiently mitigates
the round trips to shorten the processing path, and balances
loads on the replicas, thus improving the performance.

6 Related Work
Fast Distributed Transactions. Many systems have been pro-
posed for efficient distributed transaction processing. Some
designs leverage RDMA to handle transactions [9, 18, 19, 29,
31, 41, 44, 60, 61]. Storm [41] proposes a transactional API to
operate remote data based on one-sided reads and write-based
RPCs. HyperLoop [31] offloads some computations to RNIC
and requires remote CPU to operate the metadata. Moreover,
application locality [7, 30, 37] is exploited to convert a dis-
tributed transaction to a local one, which however sacrifices
the generality. New transaction abstractions [63], replication
protocols [70], and concurrency controls [40, 58, 64, 69] are
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Figure 17: The end-to-end performance.

also proposed to improve the performance. The above sys-
tems work on the monolithic architecture, while our FORD
focuses on the new disaggregated PM architecture and fully
leverages one-sided RDMA to process transactions.
Distributed Persistent Memory. PM has been recently ex-
ploited in the distributed environments. These studies em-
ploy PM in a symmetric way, where each server in a cluster
hosts the PM that can be accessed locally or remotely by
other servers. Some designs expose interfaces of file sys-
tem [3, 38, 65, 66] and memory management [46, 71]. Some
studies provide optimization hints on system implementations
when using RDMA and PM [27, 62]. In general, the symmet-
ric deployment supports fast local accesses, but suffers from
poor resource scalability and coarse failure domain due to
using monolithic servers. Unlike these works, FORD provides
transaction interfaces, and deploys PM in the disaggregated
way to improve the scalability and failure isolation.
Disaggregated Memory. The disaggregated memory be-
comes popular in datacenters due to high resource utilization
and elasticity. Existing works explore memory disaggregation
in hardware architectures [35,36], networks [20,47], operating
systems [45], KV stores [54], hash indexes [72], data swap-
ping [2,8,24,43], and memory managements [1,34,39,55,57].
Our proposed FORD is orthogonal to these systems to build a
fast transaction processing system for the disaggregated PM.

7 Conclusion
Our paper proposes FORD, a fast distributed transaction pro-
cessing system that leverage one-sided RDMA for the new
disaggregated persistent memory (PM) architecture. To accel-
erate transaction processing, FORD explores and exploits the
request batching and parallelization to eliminate extra locking
and validations, and commit all remote replicas together in a
single round trip. Moreover, to efficiently utilize the remote
PM, FORD enables the backup replicas to serve read requests
to balance loads, and guarantees the remote persistency with
low network overheads. Experimental results demonstrate that
FORD significantly outperforms the state-of-the-art systems
in terms of transaction throughput and latency.
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