
GPHash: An Efficient Hash Index for GPU with Byte-Granularity Persistent
Memory

Menglei Chen, Yu Hua*, Zhangyu Chen, Ming Zhang, Gen Dong
Wuhan National Laboratory for Optoelectronics, School of Computer

Huazhong University of Science and Technology
*Corresponding Author: Yu Hua (csyhua@hust.edu.cn)

Abstract
GPU with persistent memory (GPM) enables GPU-powered
applications to directly manage the data in persistent mem-
ory at the byte granularity. Hash indexes have been widely
used to achieve efficient data management. However, con-
ventional hash indexes become inefficient for GPM systems
due to warp-agnostic execution manner, high-overhead con-
sistency guarantee, and significant bandwidth gap between
PM and GPU. In this paper, we propose GPHash, an efficient
hash index for GPM systems with high performance and con-
sistency guarantee. To fully exploit the parallelism of GPU,
GPHash executes all index operations in a lock-free and warp-
cooperative manner. Moreover, by using CAS primitive and
slot states, GPHash ensures consistency guarantee with low
overhead. To further bridge the bandwidth gap between PM
and GPU, GPHash caches hot items in GPU memory while
minimizing the overhead for cache management. Extensive
evaluations on YCSB and real-world workloads show that
GPHash outperforms state-of-the-art CPU-assisted data man-
agement approaches and GPM hash indexes by up to 27.62×.

1 Introduction
With dramatic increases in computing throughput and memory
bandwidth, GPUs have been widely used in various applica-
tions to accelerate computation, e.g., deep neural networks
training/inference [24, 42], databases [18, 19, 53], and scien-
tific computing [35, 58, 60, 76]. These GPU-powered applica-
tions are driven by large-scale data. For instance, by storing
TB-scale embedding vectors, deep recommendation systems
achieve higher recommendation accuracy and richer feature
representations [2, 73]. Constrained by limited memory ca-
pacity and the volatile property, it is not feasible for GPU
applications to store large-scale essential data in GPU mem-
ory. To accommodate data of ever-increasing scale while en-
suring data reliability, GPU-based applications store the data
in large-capacity persistent storage devices (e.g., SSD) [21]
and rely on the CPU to manage the data in the storage (e.g.,
storing/searching a given key).

However, CPU-assisted data management involves time-
consuming data transmission between GPU and CPU, while

introducing extra CPU consumption and interference with
other CPU applications. To alleviate data transmission over-
head and eliminate extra CPU consumption, GPUDirect Stor-
age (GDS) technology [48] provides a direct path between
GPU memory and block storage devices. While GDS en-
ables fast transmission between GPU memory and storage
devices for large files, unfortunately, it only provides block-
level interfaces, which do not meet the programming and high-
performance requirements that necessitate byte-granularity
access for indexes [36, 44, 51, 63, 77].

In order to support fine-grained direct access to storage
devices from GPU kernels, the GPU with persistent mem-
ory (GPM) model [51, 52] exploits the byte-addressability of
persistent memory (PM) [14, 59]. GPM can be implemented
by leveraging the unified virtual addressing (UVA) technol-
ogy [46] to map the PM onto the GPU’s virtual address space.
GPM enables applications to directly manage data on PM
at the byte granularity without CPU involvement, thus de-
creasing the costs of data management. Meanwhile, such
GPM-enabled data management can also benefit from the
high parallelism of GPU.

Hash indexes support parallel accesses to the fine-grained
data with constant-scale single-point query performance,
which hence are widely used to achieve efficient data man-
agement [3, 12, 44, 50, 63, 77]. GPM-enabled hash indexes
become promising to boost data management performance
in GPU-powered applications. For example, deep recommen-
dation systems benefit from GPM hash indexes to search
target embedding vectors during each inference (e.g., embed-
ding_lookup in Microsoft recommenders [41] and Facebook
DLRM [20]). However, to the best of our knowledge, there is
no existing hash index designed for GPM. In practice, simply
porting existing hash indexes to GPM systems unfortunately
suffers from the following challenges.

1) Performance degradation due to warp-agnostic exe-
cution manner. The basic unit of scheduling in the GPU is
warp, which consists of 32 GPU threads [45]. When threads
within the same warp take different execution paths due to
conditional branching, they would be serialized and only a

small portion can execute instructions, called warp diver-
gence [56, 66]. When the threads in a warp access the same
cache line, the GPU hardware coalesces these accesses into a
single cache access, which delivers high throughput [3, 34].
However, hash indexes typically make each thread indepen-
dently perform index operations without the awareness of the
warp-based execution features. Such warp-agnostic execution
manner suffers from severe warp divergence and uncoalesced
memory accesses, thus leading to severe performance degra-
dation. Even worse, some hash indexes adopt lock-based de-
signs, which exacerbate the contentions among thousands of
concurrent GPU threads.

2) High overheads for crash consistency guarantee. It
is important to guarantee crash consistency for the PM data
managed in the GPM hash indexes. However, it is non-trivial
to achieve this, since the unit of atomic memory write on
PM (e.g., 8 bytes for 64-bit CPUs) is limited by the width
of memory bus [49, 77]. Hence, when writing data whose
size exceeds this atomic unit, a system crash may result in
partial updates and cause data inconsistency, thus leading
to unexpected errors and incorrectness in GPU applications.
Although logging [22] and copy-on-write (CoW) [25] tech-
niques can be used to guarantee crash consistency for data,
these techniques introduce extra write overhead to PM.

3) Huge bandwidth gap between PM and GPU. While the
read bandwidth of GPU memory in NVIDIA V100 can reach
900 GB/s [47], the read bandwidth of PM is only 39.6 GB/s
in six Intel Optane DC PMMs [29, 69]. When performing
thousands of concurrent index operations, bandwidth-hungry
GPU kernels suffer from PM’s limited bandwidth [29, 47, 52].
As a result, the naive GPM indexes fail to fully leverage the
GPU to boost the performance due to massive bandwidth-
limited PM accesses from GPU kernels when concurrently
performing index operations.

In order to efficiently address the mentioned problems, we
propose GPHash1, an efficient hash index for GPM systems.
GPHash fully leverages the high parallelism of GPU and
provides a low-overhead consistency guarantee while further
increasing the performance with a frozen-based bucket cache.
Specifically, this paper makes the following contributions:

• GPU-conscious and PM-friendly hash table structure.
To achieve high performance and efficiency of GPHash,
the hash table structure of GPHash is designed to be GPU-
conscious and PM-friendly. GPHash features one-shot warp
access, i.e., using 32 threads in a warp to concurrently ac-
cess the buckets to find the target key, which exploits the
parallelism of a warp and thus delivers high performance.
Moreover, GPHash facilitates coalesced memory accesses by
directly placing keys in the hash table slots. Furthermore,
GPHash achieves high memory efficiency by employing slot
associativity, inter-level sharing, and multi-hash locations.

• Lock-free concurrency control with crash consistency
1We have released the open-source codes for public use in https://gi

thub.com/LighT-chenml/GPHash.

guarantee. GPHash employs lock-free index operations to
mitigate the contentions among threads. These operations
are executed in a warp-cooperative manner via warp-level
instructions to alleviate warp divergence. Moreover, by using
the compare-and-swap (CAS) primitive and the slot state (in-
dicating whether an index slot is under insertion), the index
operations are implemented as log-free, which further reduces
the overheads for crash consistency guarantee.

• Frozen-based bucket cache. To bridge the bandwidth
gap between PM and GPU, we aim to reduce PM access
by caching hot items in GPU memory. However, traditional
list-based cache management causes high contentions among
GPU threads when massive threads concurrently query and up-
date the lists. To address this challenge, we propose a frozen-
based bucket cache design, called BktCache, to minimize the
overhead of cache management. Since the items in the same
bucket are concurrently accessed, BktCache caches items at
the bucket granularity. BktCache periodically identifies and
fetches hot buckets (i.e., loading phase) while keeping the
membership of the cached buckets unchanged (i.e., frozen
phase) between the loading phases. We employ a concurrent
loading scheme to reduce the overhead of loading BktCache.
• Real implementation and extensive evaluation. We have

implemented and evaluated GPHash using YCSB and real-
world workloads. Extensive experimental results show that
GPHash outperforms state-of-the-art CPU-assisted data man-
agement approaches and GPM hash indexes by up to 27.62×
and 17.42×, respectively.

It is worth noting that our GPHash can be efficiently
adopted in GPM systems that are implemented via Compute
Express Link (CXL) technology [16, 59], as long as these
GPM systems provide direct accesses to PM from GPU ker-
nels using load/store instructions. Implementing hash in-
dexes on these GPM systems also requires efficient orchestra-
tion of GPU thread execution, low-overhead crash consistency
guarantee, and mitigation of the bandwidth gap between GPU
memory and CXL. GPHash has addressed these challenges
via GPM-friendly hash table design, lock-free and log-free
operations, and frozen-based cache. Hence, GPHash is still
efficient for CXL-based GPM systems.

2 Background and Motivation
2.1 GPU with Persistent Memory
2.1.1 Persistent Memory
Persistent memory (PM) provides persistence, large capacity,
byte-addressability, and near-DRAM performance. The ac-
cess latency of PM is 3-10 times of DRAM, and the bandwidth
of PM is 1/6 of DRAM [29, 69]. Existing schemes mainly
focus on re-configuring architectures or re-designing system
software for the PM to gain full benefits [10,11,27,37,62, 64,
65, 68, 69]. The data persistence is guaranteed via executing
flush and fence instructions. Although Intel would discon-
tinue Optane PM [23], the features and properties of persistent
memory can be achieved via other memory technologies and

https://github.com/LighT-chenml/GPHash
https://github.com/LighT-chenml/GPHash

techniques [15,57,59], e.g., Samsung memory-semantic CXL
SSD [59]. By leveraging CXL interconnect technology [16]
and a built-in DRAM cache, the memory-semantic SSD can
effectively act as persistent memory to build GPM systems.
2.1.2 The Parallelism of GPUs
GPUs achieve high parallelism by using thousands of GPU
threads [47]. A modern GPU contains hundreds of streaming
multiprocessors (SMs). Each SM contains many SIMD units.
An SIMD unit consists of several lanes, which concurrently
execute the same instruction on different data items. The
smallest execution unit is the GPU thread, which is mapped
to an SIMD lane. GPU programming languages (e.g., CUDA)
require programmers to arrange threads in the GPU hardware
hierarchy. In CUDA, 32 threads form a warp, which is the
smallest scheduled unit in the GPU [46]. However, the threads
in the same warp will be serialized if executing different in-
structions due to branch instructions, called warp divergence.
When the warp divergence occurs, only a small portion of
threads in the warp is executing instructions, thus limiting
the parallelism of the warp. When a warp loads/stores data
that fall in the same GPU cache line (i.e., 128 bytes), the
GPU hardware coalesces them into a single cache access,
called coalesced memory access. In contrast, uncoalesced
memory accesses lead to multiple cache accesses, causing
performance degradation. Several warps form a thread block,
which is scheduled to run on an SM. The grid is the largest
execution unit, which consists of several thread blocks that
execute a GPU kernel.
2.1.3 Efficient Data Management for GPU with PM
After over a decade of phenomenal growth in computing
throughput and memory bandwidth of GPUs, the GPU-
powered applications have become prevalent in various do-
mains [24, 42, 58]. These applications are always in pursuit
of handling larger amounts of data for better efficiency. For
example, recent studies show that the embedding vectors in
deep recommendation systems will scale to dozens of TBs
for higher recommendation accuracy and richer feature repre-
sentations [2, 73]. Such an unprecedented data scale requires
highly efficient data management.

To meet the demands of ever-increasing data scale and reli-
ability, applications typically store the data in large-capacity
persistent storage devices (e.g. SSD and PM). In general,
GPU applications rely on the CPU to manage the data in
the storage, called CPU-assisted data management. The blue
line in Figure 1 shows the data path of the CPU-assisted data
management. Specifically, the GPU applications need to first
transfer data from GPU memory to CPU memory and then
rely on the CPU to write (read) the data into (from) storage
devices, e.g., updating the value of a given key. The CPU-
assisted approach suffers from time-consuming data transmis-
sion between GPU and CPU, while introducing extra CPU
consumption and interference with other CPU applications.

To mitigate data transmission overhead and eliminate ex-
tra CPU consumption, NVIDIA GPUDirect Storage (GDS)

...
L2 Cache

SIMD
Unit

SM

L1 Cache

GPU Memory

SIMD
Unit

SM

L1 Cache

...

GPU CPU

PCIe

PCIe

PCIe

Core

LLC

PM DRAM

Core...

Unified Virtual Address

CPU-
Assisted

GPM

Figure 1: The overview of GPM system model.

technology [48] provides a direct path between GPU memory
and block storage devices via direct memory access (DMA).
Unfortunately, while GDS shows great capability in transmit-
ting large files between GPU memory and storage devices, it
only provides block-level interfaces, which mismatches the
byte-granularity requirement for data structures such hash
indexes, thus incurring high overheads [51]. Recent works
propose a system model, called GPM (i.e., GPU with Persis-
tent Memory) [51, 52], which exploits the properties of the
PM [14, 59]. GPM can be implemented by: (1) mapping the
PM onto the GPU’s virtual address space via unified virtual
addressing (UVA) technology [46]; (2) ordering data using
system-scoped threadfence (e.g., threadfence_system()
in CUDA); (3) turning DDIO off to bypass the last level
cache (LLC) to guarantee persistence. The red line in Figure 1
shows the data path of the GPM-based data management.
By leveraging the byte-addressability of PM, GPM enables
GPU-based applications to directly access PM at the byte
granularity without CPU involvement, thus decreasing the
costs of data management. GPM-enabled data management
also benefits from the high parallelism of GPU.

2.2 Hash Indexes on GPM Systems
Hash indexes have been widely used in many data manage-
ment systems [3, 12, 44, 63, 77]. GPU-powered applications
can benefit from GPM-enabled hash indexes to achieve effi-
cient data management [32,67,72]. Porting existing PM-based
and GPU-based hash indexes to GPM systems is an intuitive
way to implement GPM hash indexes. Unfortunately, these
indexes suffer from the following challenges.
Challenge 1: Warp-agnostic execution manner causes se-
vere performance degradation. In general, hash indexes lever-
age multiple threads to concurrently perform index operations
for high throughput, where each thread independently per-
forms index operations. However, such warp-agnostic execu-
tion manner suffers from severe warp divergence and uncoa-
lesced memory accesses in the context of GPU. Specifically,
when the threads in the same warp perform different oper-
ations without intra-warp communications, they passively
encounter warp divergence due to branch instructions. More-
over, most hash indexes only store the pointers of keys (or
key-value pairs) to reduce the storage overhead [12,36,63,78].
However, when the threads in a warp access keys in parallel,
the addresses of these keys are scattered, hence leading to un-
coalesced memory accesses. In addition, some hash indexes

Level 7
(Top Level)

Level 6

Level 4

Level 5

Thread 0 ...

...

...

...

...

...

...

...

...

...

...

...

...
0 15 12716 31

Thread 1 Thread 15 Thread 16 Thread 17 Thread 31...

Hash1(Key31) Hash2(Key31)

Shared by 2 top buckets

Warp

Activated

Candidate buckets
in one-shot warp
access

Slot 0
Slot 1
Slot 2
Slot 3

(b) Fixed-length large key (> 8 Bytes)
8-byte FP & State Value pointerKey

(a) Fixed-length small key (<= 8 Bytes)
8-byte Key & State Value pointer

(c) Variable-length keys and values
16-bit FP 48-bit Key-value pair pointer

Inter-level
shared buckets

63

(a) GPU-conscious and PM-friendly hash table

Pointer-based key placement

Bucket FPs & States Value PtrsKey Ptr0 Key Ptr1 Key Ptr2 Key Ptr3

Thread 0 Thread 1 Thread 3

PM
Space

Scattered addresses

Coalesced addresses

In-place key placement

Bucket FPs & States Value PtrsKey0 Key1 Key2 Key3

Thread 0 Thread 1 Thread 3

PM
Space

Thread 2

Thread 2

(b) In-place key placement

Figure 2: The hash table structure of GPHash (using 2 hash locations and 4-level buckets with 4-way associativity as an example).

use lock-based designs, which exacerbate the contentions
among thousands of concurrent GPU threads and even cause
dead-lock when the threads in a warp acquire the same lock.
Challenge 2: Guaranteeing data consistency in the presence
of crashes introduces high overheads. Since GPM hash in-
dexes directly manage data in PM, it is important to guarantee
data consistency in the presence of crashes, which however
is non-trivial. The size of atomic memory write of PM is
limited by the memory bus width (e.g., 8 bytes for 64-bit
CPUs) [49, 70, 77]. As a result, if a system failure occurs
before completing writing the data whose size is larger than
8 bytes, the data will be corrupted. Logging and copy-on-
write (CoW) techniques are widely used to guarantee crash
consistency for data larger than 8 bytes [33, 75]. When using
logging, indexes store the old data (undo logging) or new
data (redo logging) into logs and then write the new data in
place. When using CoW, we copy the old data to a newly
created space and perform the updates on the copy, and then
atomically modify the 8-byte pointer to point to the new data.
However, these techniques introduce high write overhead.
Challenge 3: Huge bandwidth gap between PM and GPU
limits the utilization of GPU’s high parallelism. There is a
significant bandwidth gap between PM and GPU memory. For
example, while the bandwidth of GPU memory in NVIDIA
V100 can reach 900 GB/s [47], the read and write bandwidths
of PM are only 39.6 GB/s and 13.8 GB/s for six Intel Optane
DC PMMs, respectively [29, 69]. Hence, when performing
massive concurrent index operations, the bandwidth-limited
PM fails to efficiently handle massive concurrent accesses
from the bandwidth-hungry GPU kernels [29, 47, 52]. Such a
huge bandwidth gap between PM and GPU hinders fully uti-
lizing the high parallelism of GPU. Moreover, some schemes,
such as cuckoo hashing [34] and linked-list-based hashing [3],
incur extra PM accesses to handle hash collisions, which fur-
ther deteriorates the bandwidth problem.

3 The GPHash Design
We propose GPHash, an efficient hash index for GPU with
persistent memory.

3.1 The Hash Table Structure of GPHash
In the context of GPM systems, an efficient hash table needs
to fully utilize the high parallelism of GPU and minimize

extra PM writes for handling hash collisions. To this end,
we propose a GPU-conscious and PM-friendly hash table
that supports one-shot warp access with minimal uncoalesced
memory accesses while keeping high memory efficiency. As
shown in Figure 2(a), GPHash uses a level-based hash ta-
ble that consists of multiple levels, where level i contains 2i

buckets. GPHash embraces the following design decisions.
1) Slot associativity. Like many hash schemes, in our GPHash,
each bucket contains multiple slots, each of which stores a key-
value item. Figure 2(a) shows an example of GPHash with
4-way slot associativity, where each bucket has 4 slots. By
leveraging slot associativity, each bucket can handle multiple
hash collisions without any movements and extra PM writes.
Moreover, slot associativity is friendly for exploiting GPU’s
parallelism since multiple slots can be concurrently accessed.
2) Inter-level sharing. GPHash leverages inter-level shar-
ing [12,77] to handle more hash collisions for higher memory
efficiency. Only the buckets in the top level can be addressed
by hash functions. The buckets in the other levels are shared
by several buckets in the top level and each bucket in the
top level has multiple sharing buckets. For example, in Fig-
ure 2(a), each bucket in level 5 is shared by 4 buckets in level
7 (i.e., the top level), while each bucket in level 7 has 3 sharing
buckets (in levels 4, 5, 6 respectively). We insert a new item
into the less-loaded bucket among the addressed bucket and
its sharing buckets (e.g., 4 sharing buckets in total for GPHash
with 4 levels). With the aid of inter-level sharing, GPHash
can handle more hash collisions and improve the efficiency
of load balance, thus enabling higher memory efficiency.
3) Multiple hash locations. Prior study [43] reveals that en-
abling each key to have multiple choices for its storage loca-
tions leads to exponential improvements in memory efficiency
over one choice. Based on this observation, GPHash uses sev-
eral hash functions to compute multiple hash locations for
each key. As shown in Figure 2(a), by using 2 hash functions,
there are 8 candidate buckets for each new item to insert,
which further improves memory efficiency.
4) One-shot warp access. By leveraging the parallelism of
the warp, GPHash can access all slots of candidate buckets
for a given key at one time. As mentioned above, GPHash
leverages slot associativity, inter-level sharing, and multiple
hash locations, to achieve higher memory efficiency. However,

an insertion operation needs to probe all candidate buckets
for better load balance while a search operation also has to
access all candidate buckets in the worst case. Therefore,
for CPU-based hash schemes, there is a trade-off between
high memory efficiency and high performance. However, for
GPM systems, hash indexes can exploit the high parallelism
of GPU to achieve both high memory efficiency and high
performance. By using appropriate configurations, we probe
all slots of candidate buckets with one-shot warp access. As
shown in Figure 2(a), 32 threads in a warp can concurrently
access all 32 slots of candidate buckets for a given key. Note
that the one-shot warp access feature is based on the warp-
cooperative execution manner (§3.2.1).
5) In-place key placement. While many hash schemes store
the pointers of keys to reduce storage overheads for empty
slots, these hash schemes exhibit uncoalesced memory ac-
cesses when GPU threads in a warp concurrently access keys,
as shown in Figure 2(b). To address this problem and facili-
tate coalesced memory accesses, GPHash leverages in-place
key placement, which directly stores the keys in slots. The
keys of the same buckets hence can be stored in continuous
coalesced addresses. When the threads in a warp access keys
in the same buckets, these accesses can be coalesced. Since
the values are typically accessed by a dedicated thread in a
warp, we still store the pointer of the value.

Specifically, for the item with the fixed-length key, we store
the key and the pointer of the value. For the item with the
variable-length key, we store the pointer of the key-value pair,
which is consistent with prior schemes [12, 78]. Furthermore,
by employing fingerprints (FP, i.e., a part of hash value) [36,
49], GPHash can avoid the unnecessary reads for full keys
if the fingerprints of keys are different. To support lock-free
and log-free operations on the fixed-length keys, two values
in the key/fingerprint value ranges are reserved as the slot
states, which are used to indicate whether the slot is empty
or under insertion (detailed in §3.2.3). The concern about
in-place key placement is extra storage overheads for empty
slots. Prior works [4,5,71,74] have shown that key-value items
whose sizes are smaller than 128 bytes dominate in large-scale
key-value stores and GPU-specific workloads. Therefore, the
storage overheads of empty slots are limited since GPHash
also provides high load factors.

Put them all together, the structure of GPHash is shown in
Figure 2(a), which contains multi-level buckets with K-way
slot associativity. The blue buckets indicate the shared buckets
while the pink buckets show the candidate buckets in a warp
access. The structure of GPHash is simple and efficient on
GPM systems, exhibiting the following strengths:

• GPU-friendly. GPHash probes all slots of candidate buck-
ets within one-shot warp access, which is beneficial for uti-
lizing GPU’s parallelism. Meanwhile, GPHash facilitates the
coalesced memory accesses with in-place key placement.

• Write-optimized. Each insertion operation in GPHash
only involves a constant number of buckets without any data

movement from/to other buckets or linking new buckets. In
tandem with coalesced memory accesses, GPHash minimizes
PM writes.

• Memory-efficient. By embracing slot associativity, inter-
level sharing, and multiple hash locations, GPHash can tol-
erate more hash collisions with better load balance. GPHash
provides a high load factor that is up to 92% (§4.2)

3.2 Lock-Free Concurrency Control with
Crash Consistency Guarantee

As discussed in §2.2, lock-based designs suffer from severe
contentions among thousands of concurrent GPU threads and
even cause dead-locks. Hence, it is critical for GPM hash
indexes to achieve lock-free concurrency control. Moreover,
GPM hash indexes need to minimize overheads for the crash
consistency guarantee. Since compare-and-swap (CAS) prim-
itive (e.g., atomicCAS() in CUDA [46]) can atomically up-
date an 8-byte content, GPHash leverages its atomicity in
tandem with slot states to enable lock-free concurrency con-
trol with crash consistency guarantee. Besides, to mitigate
warp divergence, GPHash executes index operations in a warp-
cooperative manner.

3.2.1 Warp-cooperative Execution Manner
In order to mitigate the warp divergence, GPHash performs
index operations at the warp granularity. As shown in Fig-
ure 2(a), the index operation assigned to thread 31 is acti-
vated, and all 32 threads in the warp cooperate to complete
this activated index operation. We use CUDA’s warp-level in-
structions [45] to perform intra-warp communication among
threads. Specifically, the ballot instruction is used to find
the threads whose assigned index operations have not been
completed. Among these threads, we then select the thread
with minimal thread number and activate its assigned index
operation, and the thread is called the activated thread. More-
over, we use the shfl instruction to broadcast a variable to
all threads in the warp.

When cooperating to complete the activated operation, the
threads in a warp concurrently perform processes that can
be performed in parallel. For instance, to find the activated
key, the activated thread first broadcasts the activated key
via the shfl instruction, and then all 32 threads in the warp
access the candidate slots in parallel. For other processes
that should be performed in sequence (e.g., writing the key
after locating the target slot), a dedicated thread in the warp
(e.g., the activated thread) is responsible for performing these
processes. Unlike the warp-agnostic execution manner, such
a warp-cooperative execution manner actively controls warp
divergence with intra-warp synchronization and efficiently
exploits the parallelism of warps.

3.2.2 Correctness Challenges
Duplicate items. In rare cases, when concurrently performing
insertion operations with the same key in a lock-free manner,
threads may insert the key into different slots, thus leading to
duplicate items. To tolerate duplicate items, akin to the prior

work [78], GPHash determines the valid item of a key. Given
multiple items of the same key, the valid item is the one having
the maximal level number, the minimal bucket number, and
the minimal slot number. When finding duplicates, GPHash
keeps the valid item and deletes other duplicates.
Concurrency correctness. When threads concurrently per-
form the search and the IDU (i.e., insertion/deletion/update)
operations with the same key, the readers may return the
partial-updated value, which violates the concurrency correct-
ness. To ensure concurrency correctness while providing high
performance, GPHash follows the “no lost key” concurrent
correctness condition akin to prior schemes [38, 78]. Specifi-
cally, when threads concurrently perform the search and the
update operations, the search operations return either the old
or the new values instead of partial-updated values. When
a search and a deletion run in parallel, the search operation
returns either the value or no-key statement.
Crash consistency guarantee. When directly managing data
in persistent memory, a crash would interrupt the ongoing
index operations, which can lead to persistent partial updates
for keys and values. Such data inconsistency causes data loss
and unpredictable errors. To guarantee data consistency in the
presence of crashes, GPHash uses CAS primitive and the slot
state to achieve log-free operations with negligible overhead.

3.2.3 Lock-Free and Log-Free Operations
We introduce the details of lock-free and log-free operations.
Here, we focus on operations of the fixed-length large keys
whose sizes are larger than 8 bytes, while the operations of
fixed-length small keys (i.e., ≤ 8 bytes) and variable-length
keys can be implemented in a similar way using the CAS
primitive. We use system-scoped threadfence [46] to order
the persists for the correct consistency guarantee.
Insertion. Figure 3 illustrates the lock-free and log-free in-
sertions. First, GPHash obtains the fingerprints and the keys
of all candidate slots of the activated key with one-shot warp
access. GPHash then checks if the key exists by comparing
these keys with the activated key, while leveraging the finger-
prints for fast comparison. If the activated key does not exist,
GPHash finds the empty slots, i.e., the slots whose states are
EMPTY2. If there are several empty slots, GPHash inserts the
activated key into the slot belonging to the less-loaded bucket.
After deciding the target slot for insertion, the activated thread
uses CAS primitive to atomically change the slot state (i.e.,
fingerprint region) from EMPTY to INSERT. If the CAS fails,
meaning that the slot is changed by another thread, GPHash
re-executes the insertion from the beginning. If CAS succeeds,
the activated thread writes the item into the target slot. Finally,
the activated thread sets the fingerprint region of the target
slot to the hash value of the activated key.

The insertion can easily recover from crashes. There are
two cases of a slot after crashes. (1) The slot state is INSERT,

2We reserve two 8-byte values in the fingerprint value range, i.e., EMPTY
and INSERT, to indicate the slot is empty or under insertion.

Thread 0 ...Thread 1 Thread 31

Buckets ...

Warp

... ...
Check if the key exists1

Find the empty slot belonging to
the less-loaded bucket

2

Value PtrFP & State: EMPTY_KEY
EMPTY: 0xFFFFFFFFFFFFFFFF

Target Slot

Set the State to INSERTING using AtomicCAS operation3

Key

Value PtrFP & State: INSERT Target Slot Key

Retry

CAS fails

Value PtrFP & State: INSERT Target Slot Key

Write the key and value ptr4 In-place writing

Value PtrFP & State: Hash ValueTarget Slot Key

Set the FP to the hash value of the key5

INSERT: 0xFFFFFFFFFFFFFFFE
CAS Succeeds Crash

Recover

Figure 3: The illustration of lock-free and log-free insertion
(using the logical structure of a slot for easy understanding).

indicating that the slot is under insertion (i.e., writing a new
item) before crashes. In this case, the slot may be broken, and
thus we need to clear the slot and set the slot state to EMPTY.
(2) The slot state is not INSERT, meaning that the slot is empty
or contains an unbroken item. In this case, we do not need to
do anything since the slot is already in a valid state.
Deletion. For deletion operation, GPHash first locates the tar-
get items whose keys are equal to the activated key, including
duplicate items. Similar to insertion, the activated thread is
responsible for atomically deleting all these items by using
the CAS primitive to set the slot states to EMPTY. Thanks
to the atomicity of the CAS primitive, the deletion does not
introduce any invalid slot state in the presence of crashes.
Update. For the update operation in GPHash, after locating
the target slot and deleting the other duplicates, the activated
thread atomically changes the value pointer to point to the
new value via the CAS primitive. GPHash writes the new
value to the pre-allocated space before updating the value
pointer. After crashes, the value pointer either points to the
old value or the new one, both of which are unbroken.
Search. Since GPHash takes advantage of the atomicity of the
CAS primitive to perform the IDU operations, the lock-free
search operation can be easily implemented. After locating all
slots whose keys are equal to the activated key, the activated
thread reads the value that is pointed by the value pointer of
the valid slot. If the activated key does not exist, the thread
returns a no-key statement. Based on the above introduction
to other operations, the search operation can be proved to
meet the “no lost key” concurrent correctness condition.
Resizing. As the load factor increases, more hash collisions
will occur in hash indexes, which results in performance degra-
dation and insertion failure. Thanks to the one-shot warp ac-
cess, GPHash does not suffer from performance degradation
caused by more hash collisions. However, GPHash still needs
to handle insertion failure to avoid item loss. If failing to
find an empty slot to insert a new item, GPHash has to resize.
Specifically, GPHash first allocates a new level as the new
top one. GPHash then leverages thousands of GPU threads
to scan the bottom level in parallel and rehashes the items.
Each rehashing operation consists of reading the item in the

bottom level, inserting the item into the other levels (includ-
ing the new level), and deleting the item from the bottom
level. GPHash also performs rehashing in a warp-cooperative
execution manner to mitigate warp divergence.

It is worth noting that there is no rehashing failure (mean-
ing that the insertion of a rehashed item fails) in GPHash.
Because the new level can store more items than the bottom
level, and there are fewer hash collisions in the new level than
in the bottom level. Moreover, by leveraging the atomicity
of insertion and deletion operations, the resizing can tolerate
crashes. There are three cases of rehashed items after crashes.
(1) The item has not been inserted into the other levels. (2)
The item has been inserted into the other levels and has not
been deleted from the bottom level. (3) The item has fin-
ished rehashing and has been deleted from the bottom level.
While we do not need to do anything for items in case (3),
the rehashing of items in cases (1) and (2) continues after
recovery. We observe that GPHash can directly continue to
rehash items in the bottom level, i.e., items in cases (1) and
(2), since re-inserting the items in case (2) will simply return
the key-existing statement.
Recovery. To recover from normal shutdowns or system
crashes, GPHash first initializes the GPM system, i.e., map-
ping the PM file onto the GPU’s virtual address space. Then,
GPHash checks the slot states and clears the slots that were
under insertion. Besides, if GPHash was performing resizing
before crashes (indicated by a flag is_resizing), GPHash
continues to rehash the items in the bottom level. In our im-
plementation, we carefully consider all cases during resizing
operation including updating metadata in the presence of
crashes, which are omitted here due to space limits.

3.3 Frozen-Based Bucket Cache
To bridge the bandwidth gap between PM and GPU, we
aim to reduce PM accesses. Previous studies show that real-
world workloads often feature Zipfian popularity distribu-
tion [4, 8, 9, 28, 71]. Under such skewed workloads, hot items
receive extremely frequent accesses. Based on this observa-
tion, GPHash reduces PM accesses by caching hot items in
GPU memory. Traditional caching schemes fetch items in
case of encountering a cache miss (i.e., the accessed item is
not in the cache) and evict items to make room for these newly
fetched items. Unfortunately, in the context of GPM systems,
these caching schemes suffer from high overheads for cache
management. For example, most caching schemes, such as
LRU, use linked-lists to achieve the O(1) time efficiency for
cache management [17, 39]. However, when massive GPU
threads frequently query and update the lists, such list-based
implementations cause high contentions among GPU threads,
which makes these caching schemes inefficient. To address
this problem, we propose BktCache, a frozen-based bucket
cache that minimizes the overhead of cache management.
Bucket granularity. While traditional caches often cache
hot items at the single-item granularity, our BktCache caches

BktCache

Thread 0 ...Thread 1 Thread 31

GPHash

...

...G
PU

PM ...

... ...

Fetch the new bucket2

1 Invalidate the old
cached bucket

3 Validate the new
cached bucket

Cache hit

Cache miss

Valid caching

Fetching the
new bucket

Invalid caching

Figure 4: The overview of concurrent fetching mechanism.

items at the bucket granularity. This is based on the observa-
tion that the items in the same bucket are always accessed con-
currently due to the one-shot warp access feature of GPHash.
Besides, BktCache identifies hot items at the bucket granu-
larity, which reduces storage overhead for the metadata. For
example, when implementing the LFU caching algorithm [39],
we only record the accessed frequencies for buckets. We fur-
ther record mapping relationships between buckets in GPHash
and buckets in BktCache, defined as (1) F(x) = y, which in-
dicates that the bucket x in GPHash is cached into the bucket
y in BktCache, and (2) G(y) = x, which indicates that the
bucket y in BktCache is cached from the bucket x in GPHash.
Frozen-based caching. Since there are thousands of concur-
rent GPU threads, it is important for BktCache to avoid con-
tentions among threads. Inspired by FrozenHot [54], we adopt
the frozen-based design in BktCache. We periodically load
the BktCache, which includes identifying the hot buckets via
caching algorithms (e.g., LFU [39]) and fetching these buck-
ets into the BktCache. The membership of the cached buckets
is unchanged between the two adjacent loading phases. There
are two benefits of the frozen-based caching design. (1) It
significantly decreases the overhead of cache management.
(2) It does not suffer from performance degradation caused by
cache thrashing [54]. The concern about adopting the frozen-
based design comes from the decrease in the hit rate. Since the
real-world workloads often exhibit the scan or repeated access
patterns [55, 71], shuffling cache contents leads to marginal
profits on hit rates when the scan size is larger than the cache
size. In GPHash, the overhead of dynamically evicting and
fetching buckets in BktCache overwhelms the performance
gain of the limited increases in hit rates, which causes severe
performance degradation by several orders of magnitude. In
contrast, the frozen-based cache design minimizes the man-
agement cost while achieving comparable hit rates, hence
enabling higher performance.
Concurrent loading scheme. To mitigate the interference of
the cache loading to ongoing index operations, BktCache con-
currently loads the BktCache. While the concurrent identifica-
tion of hot buckets can be easily implemented, it is non-trivial
to realize concurrent fetching. Figure 4 shows the overview
of concurrent fetching mechanism. To fetch a bucket x to the
bucket y in the BktCache, we first invalidate the old mapping
by setting the F(G(y)) to NOT_CACHED. To avoid inconsis-

� � �

� � �

�

� �
� � � � � � � � � � � � � � �
 � � � � � � � � � �
 	 � � � � � � � � � �
 	 � �
 � � � � � � � � � � � � � � � �
 � � � �

� � �
� � �

�

� �

�
��

��
	�

��
��

��
��

��

�

	 � � � � � � � � � � � � � � � �
 �

(a) Positive Search, 8-byte

� � �

� � �

�

� �

�
��

��
	�

��
��

��
��

��

�

	 � � � � � � � � � � � � � � � �
 �

(b) Negative Search, 8-byte

� � � � � �

� � �

�

� �

�
��

��
	�

��
��

��
��

��

�

	 � � � � � � � � � � � � � � � �
 �

(c) Insertion, 8-byte

� � �

� � �

�

� �

�
��

��
	�

��
��

��
��

��

�

	 � � � � � � � � � � � � � � � �
 �

(d) Update, 8-byte

� � �

� � �

�

� �

�
��

��
	�

��
��

��
��

��

�

	 � � � � � � � � � � � � � � � �
 �

(e) Deletion, 8-byte

� � �

� � �

�

� �

�
��

��
	�

��
��

��
��

��

�

	 � � � � � � � � � � � � � � � �
 �

(f) Positive Search, 32-byte

� � �

� � �

�

� �

�
��

��
	�

��
��

��
��

��

�

	 � � � � � � � � � � � � � � � �
 �

(g) Negative Search, 32-byte

� � � � � �

� � �

�

� �

�
��

��
	�

��
��

��
��

��

�

	 � � � � � � � � � � � � � � � �
 �

(h) Insertion, 32-byte

� � �
� � �

�

� �

�
��

��
	�

��
��

��
��

��

�

	 � � � � � � � � � � � � � � � �
 �

(i) Update, 32-byte

� � �

� � �

�

� �

�
��

��
	�

��
��

��
��

��

�

	 � � � � � � � � � � � � � � � �
 �

(j) Deletion, 32-byte

Figure 5: The throughputs and latencies of different index operations under various configurations.

tency in the ongoing operations on the bucket y, we wait for
completions of these operations (i.e., waiting for the reference
count of bucket y to become 0) before updating the bucket
y. We then copy the content of the bucket x to the bucket
y. Finally, we validate the new mapping by setting the F(x)
to y and the G(y) to x. The mapping relationships between
buckets are atomically updated by using the CAS primitive,
hence ensuring the concurrency correctness. We implement
the concurrent fetching mechanism by using another GPU
stream to fetch different buckets in parallel.
Operations with caching. For all index operations, GPHash
prioritizes reading keys from the BktCache, which accelerates
accessing the buckets. After locating the target bucket, for
search operations, if the target buckets are cached, GPHash
directly reads the values via the pointers in the cached buckets.
For IDU operations, if the target buckets are cached, GPHash
needs to modify the corresponding buckets in the BktCache
after completing modifications to the buckets in GPHash.

4 Performance Evaluation
4.1 Experimental Setup
Platform. Our experiments are conducted on a Linux server
equipped with two Intel 26-core Xeon Gold 6230R CPUs, one
NVIDIA Tesla V100 GPU, 192 GB DDR4 DRAM, and 768
GB Intel Optane DC PMM (6 × 128 GB PMMs). The Optane
DC PMMs, as a case in point, are configured in the App Direct
mode and mounted with the ext4-DAX file system. The server
is installed with Ubuntu 18.04. The CUDA version is 11.4.
To avoid the impact of NUMA architectures, we conduct all
the experiments on one CPU socket by pinning threads to one
NUMA node consistent with prior works [12, 33].
Comparisons. We evaluate the following data management
approaches using configurations suggested by original papers.
We evaluate the CPU-assisted data management approaches.
For fair evaluation, we also use PM to store the data and
leverage the three representative PM hash indexes to man-

age the data in PM, including Clevel [12], Dash [36], and
SEPH [63]. Moreover, we evaluate the GPM-enabled data
management approaches that leverage GPM hash indexes to
directly manage the data stored in PM, including naive GPM
hash indexes and GPHash. To the best of our knowledge,
there is no existing hash index tailored for GPM, and hence
we implement and evaluate two naive GPM hash indexes
by porting Clevel (which is the closest to GPHash) and a
list-based GPU hash index SlabHash [3] to GPM systems,
i.e., Clevel-GPM and SlabHash-GPM. In Clevel-GPM, each
thread independently performs index operations without intra-
warp communication. For SlabHash-GPM, we use logging to
ensure crash consistency.

Workloads. We leverage widely used YCSB [13] benchmark
and multiple real-world workloads to evaluate the perfor-
mance of GPHash and the compared schemes.

• YCSB workloads. We generate a micro-benchmark
to evaluate the performance of different index operations,
which contains the following types of workloads: Positive
search (the queried keys exist), Negative search (the queried
keys do not exist), Insertion, Update, and Deletion. Besides,
we further generate a macro-benchmark, which contains the
5 YCSB core workloads: A (50% read, 50% update), B (95%
read, 5% update), C (100% read), D (read-the-latest, 95%
read, 5% insertion), F (50% read, 50% read-modify-write)
and LOAD (100% insertion). Since none of the hash indexes
optimizes for the range query, we do not evaluate the YCSB E
workload. The workloads are generated in the Zipfian distri-
bution with the default skewness (θ = 0.99). The experiment
on YCSB workloads consists of load and run phases. In the
load phase, we initialize the hash indexes with 16 million
key-value pairs for micro- and macro-benchmarks. In the run
phase, each hash index performs 16 million and 64 million
operations in the micro- and macro-benchmarks, respectively.
For most experiments, we use 8-byte and 32-byte keys that

� � �

� � �

�

� �
� � � � � � � � � � � � � � �
 � � � � � � � � � �
 	 � � � � � � � � � �
 	 � �
 � � � � � � � � � � � � � � � �
 � � � �

� � �
� � �

�

� �

�
��

��
	�

��
��

��
��

��

�

	 � � � � � � � � � � � � � � � �
 �

(a) YCSB A

� � �
� � �

�

� �

�
��

��
	�

��
��

��
��

��

�

	 � � � � � � � � � � � � � � � �
 �

(b) YCSB B

� � �

� � �

�

� �

�
��

��
	�

��
��

��
��

��

�

	 � � � � � � � � � � � � � � � �
 �

(c) YCSB C

� � �

� � �

�

� �

�
��

��
	�

��
��

��
��

��

�

	 � � � � � � � � � � � � � � � �
 �

(d) YCSB D

� � �
� � �

�

� �

�
��

��
	�

��
��

��
��

��

�

	 � � � � � � � � � � � � � � � �
 �

(e) YCSB F

� � � � � �

� � �

�

� �

�
��

��
	�

��
��

��
��

��

�

	 � � � � � � � � � � � � � � � �
 �

(f) YCSB LOAD

Figure 6: The throughputs and latencies under YCSB workloads using 32-byte keys.

are representative of real large-scale key-value store work-
loads [4,71], while the length of values is set to 128 bytes (i.e.,
the size of 32-dimension vector stored in FP32 type).

• Real-world workloads. We leverage the following real-
world workloads for extensive evaluation. (1) DLRM. This
workload is generated by running the deep learning rec-
ommendation model [20] using the Criteo-Kaggle CTR
dataset [30]. The Criteo-Kaggle CTR dataset contains more
than 45 million click feedbacks. (2) PageRank. This workload
is generated by running the PageRank algorithm [7] using
Twitter social graph [61]. The Twitter social graph contains
41.7 million user profiles and 1.5 billion social relations.
Default configurations. Unless otherwise stated, we evaluate
CPU-assisted approaches using 52 threads. For both CPU-
assisted and GPM-enabled approaches, we perform operations
in a batched manner using a default batch size 212 (i.e., the
number of batched operations). By default, GPHash uses 2
hash locations and 2-level buckets with 8-way associativity,
and the size of BktCache (i.e., the ratio of the number of
cached buckets to the number of total buckets) is configured
to 20% while using the LFU algorithm to identify hot buckets.

4.2 Overall Performance
Figures 5 and 6 present the throughput-latency curves of
different data management approaches using 8-byte and 32-
byte keys, respectively. To plot a throughput-latency curve,
we record the throughput and latency of an approach using
various batch sizes.
Search-only workloads (Pos./Neg. Search, YCSB C). For the
search-only workloads, the results show that directly manag-
ing data via GPM hash indexes enables higher throughput and
lower latency than CPU-assisted approaches by up to 13.84×
and 27.62× respectively. This is because these GPM-enabled
approaches eliminate the time-consuming transmission be-
tween GPU and CPU, while leveraging the high parallelism of
GPU. Among three GPM hash indexes, Clevel-GPM obtains
lower latency when batch size is small due to no overheads for
intra-warp communication. However, when the batch size in-
creases, Clevel-GPM suffers from severe warp divergence due
to its unawareness of GPU’s warp-based execution manner,
thus failing to achieve high throughput. In contrast, GPHash
and SlabHash-GPM can offer high throughput by employ-
ing the warp-cooperative execution manner. Moreover, by
leveraging BktCache, GPHash enables up to 4.28× higher
throughput than SlabHash-GPM.

Insertion workloads (Insertion, YCSB D, LOAD). For the
Insertion and YCSB LOAD workloads, GPHash consistently
outperforms other approaches by 5.79×. We attribute these
improvements to the one-shot warp access feature of GPHash,
which exploits the parallelism of a warp and does not intro-
duce any extra data movement. Unlike GPHash, SlabHash-
GPM needs to probe all linked-list nodes of the target bucket
for an insertion, which is time-consuming. Moreover, such a
list-based design fails to achieve efficient load balance, thus
leading to more contentions among threads and performance
degradation. For the YCSB D workload, GPHash provides
2.16× higher throughput than the other two GPM hash in-
dexes due to its warp-oriented optimization.
Update/deletion workloads (Update, Deletion, YCSB A, B,
F). Compared with other approaches, GPHash gains improve-
ments in terms of throughput by up to 9.23× and 10.37× un-
der the Update and the Deletion workloads, respectively. The
improvements stem from the log-free and lock-free operations
of GPHash as discussed in §3.2.3. In contrast, the logging
overheads deteriorate the performance of SlabHash-GPM.
The trends under the YCSB A and B workloads are similar,
where GPHash outperforms other approaches by 4.75×.
Load factor. To evaluate the memory efficiency of different
hash schemes, we record the load factors (i.e., the number of
the inserted keys divided by the capacity of the hash index)
of each scheme after every 16K (i.e., 214) insertions during
the load phase. As shown in Figure 7, by adopting effective
techniques for load factor improvement, Dash, Clevel (and
Clevel-GPM), and SEPH can achieve high load factors of up
to 85%. SlabHash-GPM resizes when the number of inserted
keys approaches the current capacity of the hash table (e.g.,
80%). As a result, the load factor of SlabHash-GPM is up to
82%. GPHash employs slot associativity, inter-level sharing,
and multiple hash locations to handle more hash collisions
and achieve efficient load balance between buckets, hence
offering high load factors of up to 92%.

4.3 Sources of Improvements
Figure 8 presents the latency breakdowns of different schemes.
The results show that the data transmission between GPU and
CPU accounts for over 30.1% end-to-end latency in CPU-
assisted data management approaches. In contrast, GPM-
enabled approaches eliminate the transmission overheads by
leveraging GPM hash indexes to directly manage the data,
thus delivering lower latency. However, Clevel-GPM pas-

� � � � � � � � � � � � � � � � � � �
� � �

� � �

� � �

� � �

� � 	

� � � � � � � � � � �
 � � � � � � � � � 	 � �

�
 � 	 � � � 	 � � � �

��
��

��
��

	�
�

� � � �
 � � � � �
 � � 	 � � � � �

Figure 7: The load factors of different
hash schemes.

 � 	 � � �
 � 	 � � �
 � 	 � � �
 � 	 � � �
 � 	 � � �
 � 	 � � � � � �

� � � �

� � � �

� � �

� � �

�
��

��
	�

��
��

��
��

��

� � � � � � � � � � �
 � 	 � � � � � � �
 � �
 � � � � � � � � � � �
 � 	 � � 	 	
 � 	

�
��

��
�

�

�

	�

��
�

��
��

��
�

��
	�

�
�

�
�

�
��

�
��

�

�
��

��
�

�

�

	�

��
�

��
��

��
�

��
	�

�
�

�
�

�
��

�
��

�

�
��

��
�

�

�

	�

��
�

��
��

��
�

��
	�

�
�

�
�

�
��

�
��

�

�
��

��
�

�

�

	�

��
�

��
��

��
�

��
	�

�
�

�
�

�
��

�
��

�

�
��

��
�

�

�

	�

��
�

��
��

��
�

��
	�

�
�

�
�

�
��

�
��

�

�
��

��
�

�

�

	�

��
�

��
��

��
�

��
	�

�
�

�
�

�
��

�
��

�

Figure 8: The latency breakdowns of
different hash schemes.

 � 	 � � �
 � 	 � � �
 � 	 � � �
 � 	 � � �
 � 	 � � �
 � 	 � � � � � �
�

�

� �

� �

� �

�

�

�	

�

��
���

��
��

��
��

� � � � 	 � � 	 � � � � � � � � � � � 	 � � � � � 	 � 	 � 	 � � � � � �

� � � � � � � 	 � � 	 � � � � � 	 � 	 � � � � � � � � � �
 	

Figure 9: The factor analysis of GPHash
design.

sively handles warp divergence due to its warp-agnostic exe-
cution manner, failing to fully exploit the high parallelism of
GPU. Moreover, SlabHash-GPM uses logging for the crash
consistency guarantee, which introduces up to 15.2% over-
head and hinders SlabHash-GPM from achieving high per-
formance. By embracing warp-cooperative execution man-
ner and log-free operations, GPHash avoids the drawbacks
of Clevel-GPM and SlabHash-GPM and hence outperforms
other approaches.

4.4 Factor Analysis
To better understand the impacts of the proposed techniques
in GPHash, we evaluate and analyze the performance con-
tributions of these techniques. Figure 9 presents the factor
analysis of GPHash. We start with Baseline that does not
adopt any mentioned techniques. We then apply each pro-
posed technique one by one.

+ Warp-cooperative execution manner. Executing index
operation at the warp granularity mitigates the warp diver-
gence problem and thus improves the performance. The warp-
cooperative execution manner contributes to up to 104.1%
improvement in throughput. Warp cooperation is especially
important for workloads that consist of mixed operations, e.g.,
YCSB A and F. Without warp cooperation, when threads in
a warp concurrently perform different operations, the Base-
line suffers from severe warp divergence. Note that although
YCSB LOAD only contains insertion operations, it also bene-
fits a lot from the warp-cooperative execution manner. This
is because, for insertion operations, GPHash needs to check
whether the activated key exists and re-insert the key if the
CAS primitive fails, which also introduces massive warp di-
vergence among concurrent insertion operations.

+ In-place key placement. The in-place key placement
contributes to all workloads by facilitating coalesced mem-
ory accesses. By adopting the in-place key placement, when
comparing the keys of the slots and the activated key, the
accesses of the keys can be coalesced, thus further increasing
the throughput by up to 13.7%.

+ BktCache. Caching hot items in BktCache enables
higher performance in searching and locating a specific key.
For skewed workloads such as YCSB A, B, and C, BktCache
brings improvements in throughput by up to 40.9%. On the
other hand, for balanced workloads such as YCSB D and
LOAD, BktCache only achieves 7.6% improvements. Besides,
for workloads that contain IDU operations, GPHash needs

to modify the corresponding buckets in the BktCache, which
weakens the performance benefits brought by BktCache.
Specifically, with the same skewness, BktCache achieves
17.6% improvements for YCSB A while offering 35.5% im-
provements for YCSB B because YCSB B contains fewer
update operations.

4.5 Real-World Workloads
To demonstrate the generality of GPHash, we further use
real-world workloads to evaluate GPHash and the compared
schemes. Figure 10 shows the throughputs and latencies of
different schemes under the DLRM and PageRank workloads.
Despite various workloads, GPHash consistently provides up
to 7.09× higher throughput and up to 7.91× lower latency
than other schemes, respectively. The results demonstrate the
efficiency of GPHash across different workloads. For other
approaches except GPHash, their throughputs show trivial
differences across workloads. This is because the access pat-
tern (i.e., workload skewness) has little impact on their perfor-
mance due to the constant-scale query performance of hash
indexes. In contrast, GPHash provides higher throughput on
workloads that exhibit higher skewness, since BktCache can
accelerate more index operations upon these workloads.

4.6 Sensitivity Analysis
In this section, we investigate how caching algorithms, cache
sizes, key size, workload skewness, and configurations of
GPHash affect the performance of GPHash.
Caching algorithm and cache size. To demonstrate the im-
pacts of caching algorithms and cache sizes on GPHash’s
performance, we evaluate the performance of GPHash using
different caching algorithms and cache sizes. As shown in Fig-
ure 11, for both the YCSB A and C workloads, the LFU and
LRU algorithms outperform the Random algorithm for most
cache sizes, while LFU provides slightly higher hit rates and
throughput. However, when the cache size is 0, the Random
algorithm delivers higher throughput since it does not need to
record any extra bucket information for deciding which buck-
ets to cache. On the other hand, the LFU and LRU algorithms
need to record the number and the latest time of access, which
introduces some overheads of recording. For the YCSB A
workload, since GPHash needs to update the cached buckets
in the BktCache for update operations, the BktCache provides
less performance improvement under YCSB A compared to
under YCSB C. Moreover, it is worth noting that the benefits

� � � � � �
 	 � � � �
� � �

� � �

� � � � � � � � � � �
 � 	 � � � � � � � � 	 � �
 � � � � � � � � � 	 � � � 	 � � � �

� � � � � �
 	 � � � �
�

� �

�

�

�	

�

��
���

��
��

��
��

(a) Throughput

� � � � � 	 �
 � 	 �
� � �

�

�
��

��
	�

��
��

��
��

��

�

(b) Latency

Figure 10: The throughputs and latencies of different schemes
under real-world workloads.

� � � � � � � � �
�

�

� �

� �

� � � � �
 � � � � � � � � � 	 � � � � � � 	

�

� �

� �

� �

� � � � �
 � � � � � � � � � 	 � � � � � � 	

� � 	 � � � � � �
�

	

� �

� 	

	�
��

�
��

��
���

��
��

��
��

� � � � � � � � � � � � �

�

� 	

	 �

 	

�
���

�

�

��
��

�

(b) YCSB A

� � 	 � � � � � �
�

	

� �

� 	

	�
��

�
��

��
���

��
��

��
��

� � � � � � � � � � � � �

�

� 	

	 �

 	

�
���

�

�

��
��

�
(c) YCSB C

Figure 11: The throughputs (TP) and hit rates (HR) of differ-
ent caching algorithms with various cache sizes.

of BktCache become marginal as the cache size increases. For
example, the LFU-based BktCache brings 45.7% improve-
ments on YCSB C when the cache size increases from 0
to 10%. However, it only provides 16.0% higher throughput
when the cache size increases from 10% to 40%. Therefore,
it would be better to use a suitable cache size (e.g., 20%) to
achieve the sweet point between high performance and low
GPU memory footprint.
Key size. Figure 12(a) shows the throughputs of different
approaches using various key sizes under the YCSB C work-
load. When the key size increases from 8 bytes to 128 bytes,
most approaches only exhibit slight performance degrada-
tion (e.g., 13.1% for GPHash), while SlabHash-GPM expe-
riences a rapid decline in performance by 38.6%. This is
because most approaches employ fingerprinting or similar
technologies to avoid reading the full keys in most cases,
while SlabHash-GPM does not.
Skewness of workloads. Figure 12(b) shows how the skew-
ness of workloads affects the performance of GPHash under
the YCSB C workload. For other approaches except GPHash,
the skewness of workloads has a negligible impact on their
performance. For GPHash, with increasing skewness, Bkt-
Cache can absorb more index operations, thus increasing the
performance.
Configuration of GPHash. Figure 13 presents the through-
puts and the maximum load factors of GPHash under different
configurations of GPHash. To avoid potential impacts on other
design components, we only consider configurations that en-
able the one-shot warp access feature. For clarity, we do not
plot the configurations that neither provide higher maximum
load factors nor offer higher throughput. The results show
that using multiple hash locations and adopting inter-level
sharing can achieve higher load factors. However, while using

� � �

� � �

�

� �
� � � � � � � � � � �
 � 	 � � � � � � � � 	 � �
 � � � � � � � � � 	 � � � 	 � � � �

 � 	 � � 	 � � �

�

� �

�

�

�	

�

��
���

��
��

��
��

� � � � � � � � � � � � � �

(a) Key Size

� � � � � � � � � � � � �

�

� �

�

�

�	

�

��
���

��
��

��
��

	 � � �
 � � � � � � � � � � �

(b) Skewness

Figure 12: The throughputs under different experimental
configurations.

� � � 	 � �
� � �

� � �

� � �

� � �

� � � � � � � � 	 � � � � �
 �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� 	 � � �
� �
 �

� � �

� � � �

�
��

�	
	

��

�

��
��

��

�

� �

� � � � � �

(a) YCSB A

� 	 � � � �

� �
 �

� � �

� � � �

�
��

�	
	

��

�

��
��

��

�

� �

� � � � � �

(b) YCSB C

Figure 13: A spectrum of GPHash allow users to tradeoff
between load factor and throughput. (2L-2H-8S indicates that
GPHash uses 2 hash locations and 2-level buckets with 8-way
associativity.)

large numbers of hash functions and levels enables extremely
high load factor, the number of slots is limited, which causes
uncoalesced memory accesses and performance degradation.
In GPHash, we use 2L-2H-8S as the default configuration
since it offers high performance while providing a decent
load factor. In practice, users can choose which configura-
tions to use, depending on the specific requirements of the
deployed scenarios.

4.7 Overheads of GPHash
Resizing. Figure 14(a) shows the resizing time with differ-
ent numbers of buckets in GPHash. Since GPHash performs
rehash operations in parallel, the resizing can be completed
within hundreds of milliseconds.
Recovery. As shown in Figure 14(b), GPHash achieves in-
stant recovery and provides recovery time comparable to PM
hash indexes (within hundreds of milliseconds). In fact, GPM
initialization (i.e., mapping PM space onto the GPU’s vir-
tual address space) consumes the most time (> 99%). Since
GPHash leverages thousands of threads to check the states of
buckets, the time consumption of checking is trivial.
Loading BktCache. Figure 15 presents the overheads of
loading BktCache with different cache sizes. Without the con-
current fetching mechanism, the throughput rapidly drops to
0 since the operations stall until the loading is completed. By
adopting concurrent fetching mechanism, the throughput does
not significantly decrease. Although the concurrent fetching
slightly increases the loading time, loading BktCache only
consumes hundreds of milliseconds.
Metadata in BktCache. The storage overheads of metadata

� � �
�

� � � �
� 	 � �

� � � �
� � � � �

� � � � �
� � � � �

� 	 � �
� � �

� � �

� � �

� � �

�
��

��
�

��
��

	
��

�	
��

� � � � 	 � �
 � � � � � 	 � �

(a) Resizing Time

� � � � � �
� � �

� � �

� � �

� � �

 � � � � � � � � � � � � � � � � � 	 � � � � � � �

�
��

��

��
��

	
��

�	
�� � � �
 �
 � � � 	 � � � � � � � � � � 	 �

(b) Recovery Time

Figure 14: The time consumptions of resizing and recovery.

in BktCache are limited. When using the LFU algorithm, the
per-bucket counter only introduces a storage overhead of 4
bytes for a bucket, which is negligible compared with the
bucket size (i.e., 384 bytes under default configurations).

5 Discussions
Variable-length key-value pairs. GPHash supports variable-
length key-value pairs by storing the pointers to keys and
values. However, to efficiently support variable-length KVs,
the GPU allocator needs to achieve fast concurrent variable-
length allocation without incurring high memory fragmen-
tation, which is not the main design goal of this work and
is left to our future work. In fact, supporting variable-length
key-value pairs is not a necessity in real-world GPM-enabled
applications. For example, in deep recommendation systems,
since the keys (e.g., product IDs) and values (i.e., embedding
vectors) of embedding vector lookups are fixed-length, the
hash indexes that support fixed-length key-value pairs are
enough to boost the performance in such a scenario.
Concurrent resizing. It is challenging for GPM hash schemes
to support concurrent resizing. During the rehashing opera-
tion, the hash index needs to concurrently perform the ongoing
index operations and insertions for rehashing. As a result, the
insertions for rehashing will interfere with the ongoing index
operations, which decreases the performance. In GPHash, it
is harder to support concurrent resizing since we need to guar-
antee the consistency of BktCache during resizing. Moreover,
concurrent resizing weakens the performance gain of one-shot
warp access since GPHash needs to also probe the new level.
However, since the number and the overhead of resizing are
limited in GPHash, it is well-recognized in the community to
only support static resizing [3, 33, 34, 77].

6 Related Work
Hash indexes for PM. There are many hash indexes [6, 12,
26, 33, 36, 40, 44, 63, 77] tailored for PM to achieve high
performance. Level hashing [77] proposes a two-level hash
table to achieve cost-efficient resizing and constant-scale time
complexity with limited extra PM writes. Based on the level
hashing, Clevel hashing [12] proposes a lock-free multi-level
scheme that supports asynchronous resizing, thus further im-
proving the performance. Dash [36] employs several tech-
niques including balanced insert, displacement, and stashing
to delay segment splitting, to reduce the cache misses and PM
accesses. SEPH [63] introduces a level segment structure as a

�
 � � 	 � � � � � � � � � �
�
�
�

� �

� � � � � � �
 � � � � �
 � � � � � 	
 � � � � � � �
 � � � � �
 � � � � � 	
 �

� � � � � � � � � � � �
�

�

	

� �

�

�

�	

�

��
���

��
��

��
��

� � � � � � � �

� � � � � � � �
� � � � � 	 � �

� � �

(b) Small Size (5%)

� � � � � � � � �
 � � 	 �
�

�

� �

�

�

�	

�

��
���

��
��

��
��

� � � � � � � � �

� � � � � � � � � �
� � � � 	
 � �

� � � � �

(c) Large Size (20%)

Figure 15: The overheads of loading BktCache.

key to break the dilemma between efficiency and predictabil-
ity. Some designs such as RECIPE [33] and Pronto [40] con-
sider the general-purpose conversion methods that convert
volatile DRAM indexes into persistent counterparts for PM.
However, the above hash indexes are agnostic to the GPU ar-
chitecture, which hence become inefficient for GPM systems.
Unlike these schemes, our GPHash can efficiently leverage
the high parallelism of GPU to achieve high performance.
GPU hash tables. Existing GPU hash tables focus on exploit-
ing the high parallelism of GPU [1, 3, 31, 34, 74]. Stash [31]
uses a compact data structure to support out-of-core GPU
parallel hashing. Mega-KV [74] is an efficient design of GPU-
based cuckoo hashing, which boosts overall performance.
However, these hash tables are designed for the static case
where the data size for insertions is known in advance, and
thus cannot support dynamic workloads. SlabHash [3] is a
dynamic hash table on GPUs, which uses an efficient GPU
allocator to handle concurrent allocations for the hash table.
However, the above GPU hash tables are designed for volatile
GPU memory, hence failing to efficiently guarantee crash con-
sistency in GPM systems. Unlike these schemes, our GPHash
can ensure crash consistency with proper overheads by lever-
aging log-free operations.

7 Conclusion
In this paper, we have designed, implemented, and evaluated
GPHash, which is an efficient hash scheme for GPM systems.
The hash table structure is designed to be GPU-conscious
and PM-friendly, which enables high performance and high
memory efficiency. GPHash adopts a warp-cooperative execu-
tion manner to mitigate warp divergence and support one-shot
warp access. GPHash further leverages lock-free and log-free
operations to achieve lock-free concurrency control with the
crash consistency guarantee. Moreover, GPHash reduces PM
accesses by caching hot buckets in BktCache while mini-
mizing cache management overheads. Evaluation shows that
GPHash outperforms state-of-the-art CPU-assisted data man-
agement approaches and GPM hash indexes by several times.

Acknowledgments
This work was supported in part by National Natural Science
Foundation of China (NSFC) under Grant No. 62125202
and U22B2022. We are grateful to our shepherd, Yi Xu, and
anonymous reviewers for their comments and suggestions.

References

[1] Dan A. Alcantara, Andrei Sharf, Fatemeh Abbasinejad,
Shubhabrata Sengupta, Michael Mitzenmacher, John D.
Owens, and Nina Amenta. Real-time parallel hashing
on the GPU. ACM Transactions on Graphics, 28(5):154,
2009

[2] Ehsan K. Ardestani, Changkyu Kim, Seung Jae Lee,
Luoshang Pan, Jens Axboe, Valmiki Rampersad, Banit
Agrawal, Fuxun Yu, Ansha Yu, Trung Le, Hector Yuen,
Dheevatsa Mudigere, Shishir Juluri, Akshat Nanda,
Manoj Wodekar, Krishnakumar Nair, Maxim Naumov,
Chris Petersen, Mikhail Smelyanskiy, and Vijay Rao.
Supporting massive DLRM inference through software
defined memory. In Proceedings of the 42nd IEEE Inter-
national Conference on Distributed Computing Systems
(ICDCS’22), pages 302–312. 2022

[3] Saman Ashkiani, Martin Farach-Colton, and John D.
Owens. A dynamic hash table for the GPU. In Pro-
ceedings of the 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS’18), pages
419–429. 2018

[4] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a
large-scale key-value store. In Proceedings of the
12th ACM SIGMETRICS/PERFORMANCE Joint Inter-
national Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS’12), pages 53–64.
2012

[5] Muhammad A. Awad, Saman Ashkiani, Rob Johnson,
Martin Farach-Colton, and John D. Owens. Engineering
a high-performance GPU b-tree. In Proceedings of
the 24th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP’19), pages
145–157. 2019

[6] Lawrence Benson, Hendrik Makait, and Tilmann Rabl.
Viper: An efficient hybrid pmem-dram key-value
store. Proceedings of the VLDB Endowment (PVLDB),
14(9):1544–1556, 2021

[7] Sergey Brin and Lawrence Page. The anatomy of a
large-scale hypertextual web search engine. Computer
Networks, 30(1-7):107–117, 1998

[8] Zhichao Cao, Siying Dong, Sagar Vemuri, and David
H. C. Du. Characterizing, modeling, and benchmarking
rocksdb key-value workloads at facebook. In Proceed-
ings of the 18th USENIX Conference on File and Storage
Technologies (FAST’20), pages 209–223. 2020

[9] Jiqiang Chen, Liang Chen, Sheng Wang, Guoyun Zhu,
Yuanyuan Sun, Huan Liu, and Feifei Li. Hotring: A

hotspot-aware in-memory key-value store. In Proceed-
ings of the 18th USENIX Conference on File and Storage
Technologies (FAST’20), pages 239–252. 2020

[10] Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang,
and Jiwu Shu. utree: a persistent b+-tree with low tail
latency. Proceedings of the VLDB Endowment (PVLDB),
13(12):2634–2648, 2020

[11] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang
Wang, and Jiwu Shu. Flatstore: An efficient log-
structured key-value storage engine for persistent mem-
ory. In Proceedings of the 25th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’20), pages
1077–1091. 2020

[12] Zhangyu Chen, Yu Hua, Bo Ding, and Pengfei Zuo.
Lock-free concurrent level hashing for persistent mem-
ory. In Proceedings of the 2020 USENIX Annual Tech-
nical Conference (ATC’20), pages 799–812. 2020

[13] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with YCSB. In Proceedings of the
1st ACM Symposium on Cloud Computing (SoCC’10),
pages 143–154. 2010

[14] Intel Corporation. Intel Optane DC persistent memory.
https://www.intel.com/content/www/us/en/pr
oducts/memory-storage/optane-dc-persisten
t-memory.html, 2019.

[15] Kioxia Corporation. XL-FLASH Storage Class Memory
Solution. https://www.kioxia.com/en-jp/busine
ss/news/2022/20220802-1.html, 2022.

[16] CXL. Compute Express Link Specification. https:
//computeexpresslink.org/, 2024.

[17] Asit Dan and Donald F. Towsley. An approximate anal-
ysis of the LRU and FIFO buffer replacement schemes.
In Proceedings of the 1990 ACM SIGMETRICS confer-
ence on Measurement and modeling of computer systems
(SIGMETRICS’90), pages 143–152. 1990

[18] Harish Doraiswamy and Juliana Freire. A gpu-friendly
geometric data model and algebra for spatial queries. In
Proceedings of the 2020 International Conference on
Management of Data (SIGMOD’20), pages 1875–1885.
2020

[19] Harish Doraiswamy and Juliana Freire. SPADE: gpu-
powered spatial database engine for commodity hard-
ware. In Proceedings of the 38th IEEE International
Conference on Data Engineering (ICDE’22), pages
2669–2681. 2022

https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html
https://www.kioxia.com/en-jp/business/news/2022/20220802-1.html
https://www.kioxia.com/en-jp/business/news/2022/20220802-1.html
https://computeexpresslink.org/
https://computeexpresslink.org/

[20] Facebook. Deep Learning Recommendation Model for
Personalization and Recommendation Systems. https:
//github.com/facebookresearch/dlrm, 2024.

[21] Bin Gao, Zhuomin He, Puru Sharma, Qingxuan Kang,
Djordje Jevdjic, Junbo Deng, Xingkun Yang, Zhou Yu,
and Pengfei Zuo. Cost-efficient large language model
serving for multi-turn conversations with cachedatten-
tion. In Proceedings of the 2024 USENIX Annual Tech-
nical Conference (USENIX ATC’24), pages 111–126.
2024

[22] Robert B. Hagmann. Reimplementing the cedar file
system using logging and group commit. In Proceed-
ings of the 11th ACM Symposium on Operating System
Principles (SOSP’87), pages 155–162. 1987

[23] Tom’s Hardware. Intel Kills Optane Memory Business.
https://www.tomshardware.com/news/intel-k
ills-optane-memory-business-for-good, 2022.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR’16), pages 770–
778. 2016

[25] Dave Hitz, James Lau, and Michael A. Malcolm. File
system design for an NFS file server appliance. In Pro-
ceedings of the USENIX Winter 1994 Technical Confer-
ence (USENIX Winter’94), pages 235–246. 1994

[26] Daokun Hu, Zhiwen Chen, Wenkui Che, Jianhua Sun,
and Hao Chen. Halo: A hybrid pmem-dram persistent
hash index with fast’recovery. In Proceedings of the
2022 International Conference on Management of Data
(SIGMOD’22), pages 1049–1063. 2022

[27] Daokun Hu, Zhiwen Chen, Jianbing Wu, Jianhua Sun,
and Hao Chen. Persistent memory hash indexes: An
experimental evaluation. Proceedings of the VLDB En-
dowment (PVLDB), 14(5):785–798, 2021

[28] Qi Huang, Helga Gudmundsdottir, Ymir Vigfusson,
Daniel A. Freedman, Ken Birman, and Robbert van Re-
nesse. Characterizing load imbalance in real-world net-
worked caches. In Proceedings of the 13th ACM Work-
shop on Hot Topics in Networks (HotNets’14), pages
8:1–8:7. 2014

[29] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao
Liu, Amir Saman Memaripour, Yun Joon Soh, Zixuan
Wang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao, and
Steven Swanson. Basic performance measurements of
the intel optane DC persistent memory module. CoRR,
abs/1903.05714, 2019

[30] Kaggle. Display Advertising Challenge. https://ww
w.kaggle.com/c/criteo-display-ad-challenge,
2014.

[31] Farzad Khorasani, Mehmet E. Belviranli, Rajiv Gupta,
and Laxmi N. Bhuyan. Stadium hashing: Scalable and
flexible hashing on gpus. In Proceedings of the 2015
International Conference on Parallel Architectures and
Compilation (PACT’15), pages 63–74. 2015

[32] Daniar Heri Kurniawan, Ruipu Wang, Kahfi S. Zulki-
fli, Fandi A. Wiranata, John Bent, Ymir Vigfusson, and
Haryadi S. Gunawi. Evstore: Storage and caching ca-
pabilities for scaling embedding tables in deep recom-
mendation systems. In Proceedings of the 28th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS’23), pages 281–294. 2023

[33] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap,
Taesoo Kim, and Vijay Chidambaram. Recipe: convert-
ing concurrent DRAM indexes to persistent-memory
indexes. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles (SOSP’19), pages 462–
477. 2019

[34] Yuchen Li, Qiwei Zhu, Zheng Lyu, Zhongdong Huang,
and Jianling Sun. Dycuckoo: Dynamic hash tables on
gpus. In Proceedings of the 37th IEEE International
Conference on Data Engineering (ICDE’21), pages 744–
755. 2021

[35] Xiaocheng Liu, Ziming Zhong, and Kai Xu. A hybrid so-
lution method for CFD applications on gpu-accelerated
hybrid HPC platforms. Future Generation Computer
Systems, 56:759–765, 2016

[36] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and
Eric Lo. Dash: Scalable hashing on persistent mem-
ory. Proceedings of the VLDB Endowment (PVLDB),
13(8):1147–1161, 2020

[37] Shaonan Ma, Kang Chen, Shimin Chen, Mengxing
Liu, Jianglang Zhu, Hongbo Kang, and Yongwei Wu.
ROART: range-query optimized persistent ART. In Pro-
ceedings of the 19th USENIX Conference on File and
Storage Technologies (FAST’21), pages 1–16. 2021

[38] Yandong Mao, Eddie Kohler, and Robert Tappan Morris.
Cache craftiness for fast multicore key-value storage.
In Proceedings of the Seventh European Conference on
Computer Systems (EuroSys’12), pages 183–196. 2012

[39] Dhruv Mátáni, Ketan Shah, and Anirban Mitra. An O(1)
algorithm for implementing the LFU cache eviction
scheme. CoRR, abs/2110.11602, 2021

https://github.com/facebookresearch/dlrm
https://github.com/facebookresearch/dlrm
https://www.tomshardware.com/news/intel-kills-optane-memory-business-for-good
https://www.tomshardware.com/news/intel-kills-optane-memory-business-for-good
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/criteo-display-ad-challenge

[40] Amir Saman Memaripour, Joseph Izraelevitz, and
Steven Swanson. Pronto: Easy and fast’persistence for
volatile data structures. In Proceedings of the 25th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS’20), pages 789–806. 2020

[41] Microsoft. Best Practices on Recommendation Systems.
https://github.com/recommenders-team/reco
mmenders, 2024.

[42] Ben Mildenhall, Peter Hedman, Ricardo Martin-Brualla,
Pratul P. Srinivasan, and Jonathan T. Barron. Nerf in the
dark: High dynamic range view synthesis from noisy
raw images. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR’22), pages 16169–16178. 2022

[43] Michael Mitzenmacher. The power of two choices in
randomized load balancing. IEEE Transactions on Par-
allel and Distributed Systems, 12(10):1094–1104, 2001

[44] Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H.
Noh, and Beomseok Nam. Write-optimized dynamic
hashing for persistent memory. In Proceedings of the
17th USENIX Conference on File and Storage Technolo-
gies (FAST’19), pages 31–44. 2019

[45] NVIDIA. Using CUDA Warp-Level Primitives. https:
//developer.nvidia.com/blog/using-cuda-war
p-level-primitives/, 2018.

[46] NVIDIA. CUDA C++ Programming Guide. https:
//docs.nvidia.com/cuda/cuda-c-programming
-guide/, 2022.

[47] NVIDIA. GPU Performance Background User’s Guide.
https://docs.nvidia.com/deeplearning/perfo
rmance/dl-performance-gpu-background/index.
html, 2023.

[48] NVIDIA. Getting Started with NVIDIA GPUDirect
Storage. https://docs.nvidia.com/gpudirect-s
torage/getting-started/index.html, 2024.

[49] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas
Willhalm, and Wolfgang Lehner. Fptree: A hybrid SCM-
DRAM persistent and concurrent b-tree for storage class
memory. In Proceedings of the 2016 International Con-
ference on Management of Data (SIGMOD’16), pages
371–386. 2016

[50] Santosh Pandey, Xiaoye Sherry Li, Aydin Buluç, Jiejun
Xu, and Hang Liu. H-INDEX: hash-indexing for par-
allel triangle counting on gpus. In Proceedings of the
2019 IEEE High Performance Extreme Computing Con-
ference (HPEC’19), pages 1–7. 2019

[51] Shweta Pandey, Aditya K. Kamath, and Arkaprava Basu.
GPM: leveraging persistent memory from a GPU. In
Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS’22), pages 142–156.
2022

[52] Shweta Pandey, Aditya K. Kamath, and Arkaprava Basu.
Scoped buffered persistency model for gpus. In Tor M.
Aamodt, Natalie D. Enright Jerger, and Michael M.
Swift, editors, Proceedings of the 28th ACM Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS’23),
pages 688–701. 2023

[53] Shujian Qian and Ashvin Goel. Massively parallel multi-
versioned transaction processing. In Proceedings of the
18th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’24), pages 765–781. 2024

[54] Ziyue Qiu, Juncheng Yang, Juncheng Zhang, Cheng Li,
Xiaosong Ma, Qi Chen, Mao Yang, and Yinlong Xu.
Frozenhot cache: Rethinking cache management for
modern hardware. In Proceedings of the Eighteenth Eu-
ropean Conference on Computer Systems (EuroSys’23),
pages 557–573. 2023

[55] Liana V. Rodriguez, Farzana Beente Yusuf, Steven
Lyons, Eysler Paz, Raju Rangaswami, Jason Liu, Ming
Zhao, and Giri Narasimhan. Learning cache replace-
ment with CACHEUS. In Proceedings of the 19th
USENIX Conference on File and Storage Technologies
(FAST 21), pages 341–354. 2021

[56] Timothy G. Rogers, Mike O’Connor, and Tor M.
Aamodt. Divergence-aware warp scheduling. In Pro-
ceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’13), pages
99–110. 2013

[57] Chaoyi Ruan, Yingqiang Zhang, Chao Bi, Xiaosong Ma,
Hao Chen, Feifei Li, Xinjun Yang, Cheng Li, Ashraf
Aboulnaga, and Yinlong Xu. Persistent memory dis-
aggregation for cloud-native relational databases. In
Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS’23), pages 498–512.
2023

[58] Amir Hossein Nodehi Sabet, Junqiao Qiu, and Zhijia
Zhao. Tigr: Transforming irregular graphs for gpu-
friendly graph processing. In Proceedings of the Twenty-
Third International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS’18), pages 622–636. 2018

https://github.com/recommenders-team/recommenders
https://github.com/recommenders-team/recommenders
https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/
https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/
https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html
https://docs.nvidia.com/gpudirect-storage/getting-started/index.html
https://docs.nvidia.com/gpudirect-storage/getting-started/index.html

[59] Samsung. Samsung Memory-Semantic CXL SSD. http
s://semiconductor.samsung.com/us/news-eve
nts/tech-blog/samsung-cxl-solutions-cmm-h/,
2024.

[60] Stefan Seritan, Keiran Thompson, and Todd J. Martínez.
Terachem cloud: A high-performance computing ser-
vice for scalable distributed gpu-accelerated electronic
structure calculations. Journal of Chemical Information
and Modeling, 60(4):2126–2137, 2020

[61] Twitter. Twitter Social Graph. https://anlab-kaist
.github.io/traces/WWW2010, 2010.

[62] Lukas Vogel, Alexander van Renen, Satoshi Imamura,
Jana Giceva, Thomas Neumann, and Alfons Kemper.
Plush: A write-optimized persistent log-structured hash-
table. Proceedings of the VLDB Endowment (PVLDB),
15(11):2895–2907, 2022

[63] Chao Wang, Junliang Hu, Tsun-Yu Yang, Yuhong Liang,
and Ming-Chang Yang. SEPH: scalable, efficient, and
predictable hashing on persistent memory. In Proceed-
ings of the 17th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI’23), pages 479–
495. 2023

[64] Xingda Wei, Xiating Xie, Rong Chen, Haibo Chen, and
Binyu Zang. Characterizing and optimizing remote
persistent memory with RDMA and NVM. In Proceed-
ings of the 2021 USENIX Annual Technical Conference
(ATC’21), pages 523–536. 2021

[65] Kan Wu, Kaiwei Tu, Yuvraj Patel, Rathijit Sen,
Kwanghyun Park, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Nyxcache: Flexible and
efficient multi-tenant persistent memory caching. In
Proceedings of the 20th USENIX Conference on File
and Storage Technologies (FAST’22), pages 1–16. 2022

[66] Ping Xiang, Yi Yang, and Huiyang Zhou. Warp-level
divergence in gpus: Characterization, impact, and miti-
gation. In Proceedings of the 20th IEEE International
Symposium on High Performance Computer Architec-
ture (HPCA’14), pages 284–295. 2014

[67] Minhui Xie, Youyou Lu, Jiazhen Lin, Qing Wang, Jian
Gao, Kai Ren, and Jiwu Shu. Fleche: an efficient GPU
embedding cache for personalized recommendations. In
Proceedings of the Seventeenth European Conference on
Computer Systems (EuroSys’22), pages 402–416. 2022

[68] Yi Xu, Joseph Izraelevitz, and Steven Swanson. Clobber-
nvm: log less, re-execute more. In Proceedings of the
26th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS’21), pages 346–359. 2021

[69] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steven Swanson. An empirical guide
to the behavior and use of scalable persistent memory.
In Proceedings of the 18th USENIX Conference on File
and Storage Technologies (FAST’20), pages 169–182.
2020

[70] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang,
Khai Leong Yong, and Bingsheng He. Nv-tree: Reduc-
ing consistency cost for nvm-based single level systems.
In Proceedings of the 13th USENIX Conference on File
and Storage Technologies (FAST’15), pages 167–181.
2015

[71] Juncheng Yang, Yao Yue, and K. V. Rashmi. A large
scale analysis of hundreds of in-memory cache clusters
at twitter. In Proceedings of the 14th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI’20), pages 191–208. 2020

[72] Haojie Ye, Sanketh Vedula, Yuhan Chen, Yichen Yang,
Alex M. Bronstein, Ronald G. Dreslinski, Trevor N.
Mudge, and Nishil Talati. GRACE: A scalable graph-
based approach to accelerating recommendation model
inference. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’23), pages
282–301. 2023

[73] Chaoliang Zeng, Layong Luo, Qingsong Ning, Yaodong
Han, Yuhang Jiang, Ding Tang, Zilong Wang, Kai Chen,
and Chuanxiong Guo. FAERY: an fpga-accelerated
embedding-based retrieval system. In Proceedings of
the 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’22), pages 841–856.
2022

[74] Kai Zhang, Kaibo Wang, Yuan Yuan, Lei Guo, Rubao
Lee, and Xiaodong Zhang. Mega-kv: A case for gpus
to maximize the throughput of in-memory key-value
stores. Proceedings of the VLDB Endowment (PVLDB),
8(11):1226–1237, 2015

[75] Lu Zhang and Steven Swanson. Pangolin: A fault-
tolerant persistent memory programming library. In
Dahlia Malkhi and Dan Tsafrir, editors, Proceedings
of the 2019 USENIX Annual Technical Conference
(ATC’19), pages 897–912. 2019

[76] Yu Zhang, Xiaofei Liao, Hai Jin, Bingsheng He, Haikun
Liu, and Lin Gu. Digraph: An efficient path-based it-
erative directed graph processing system on multiple
gpus. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’19), pages
601–614. 2019

https://semiconductor.samsung.com/us/news-events/tech-blog/samsung-cxl-solutions-cmm-h/
https://semiconductor.samsung.com/us/news-events/tech-blog/samsung-cxl-solutions-cmm-h/
https://semiconductor.samsung.com/us/news-events/tech-blog/samsung-cxl-solutions-cmm-h/
https://anlab-kaist.github.io/traces/WWW2010
https://anlab-kaist.github.io/traces/WWW2010

[77] Pengfei Zuo, Yu Hua, and Jie Wu. Write-optimized and
high-performance hashing index scheme for persistent
memory. In Proceedings of the 13th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI’18), pages 461–476. 2018

[78] Pengfei Zuo, Jiazhao Sun, Liu Yang, Shuangwu Zhang,
and Yu Hua. One-sided rdma-conscious extendible hash-
ing for disaggregated memory. In Proceedings of the
2021 USENIX Annual Technical Conference (ATC’21),
pages 15–29. 2021

	Introduction
	Background and Motivation
	GPU with Persistent Memory
	Persistent Memory
	The Parallelism of GPUs
	Efficient Data Management for GPU with PM

	Hash Indexes on GPM Systems

	The GPHash Design
	The Hash Table Structure of GPHash
	Lock-Free Concurrency Control with Crash Consistency Guarantee
	Warp-cooperative Execution Manner
	Correctness Challenges
	Lock-Free and Log-Free Operations

	Frozen-Based Bucket Cache

	Performance Evaluation
	Experimental Setup
	Overall Performance
	Sources of Improvements
	Factor Analysis
	Real-World Workloads
	Sensitivity Analysis
	Overheads of GPHash

	Discussions
	Related Work
	Conclusion

