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Abstract
GPU with persistent memory (GPM) enables GPU-powered
applications to directly manage the data in persistent mem-
ory at the byte granularity. Hash indexes have been widely
used to achieve efficient data management. However, con-
ventional hash indexes become inefficient for GPM systems
due to warp-agnostic execution manner, high-overhead con-
sistency guarantee, and significant bandwidth gap between
PM and GPU. In this paper, we propose GPHash, an efficient
hash index for GPM systems with high performance and con-
sistency guarantee. To fully exploit the parallelism of GPU,
GPHash executes all index operations in a lock-free and warp-
cooperative manner. Moreover, by using CAS primitive and
slot states, GPHash ensures consistency guarantee with low
overhead. To further bridge the bandwidth gap between PM
and GPU, GPHash caches hot items in GPU memory while
minimizing the overhead for cache management. Extensive
evaluations on YCSB and real-world workloads show that
GPHash outperforms state-of-the-art CPU-assisted data man-
agement approaches and GPM hash indexes by up to 27.62×.

1 Introduction
With dramatic increases in computing throughput and memory
bandwidth, GPUs have been widely used in various applica-
tions to accelerate computation, e.g., deep neural networks
training/inference [24, 42], databases [18, 19, 53], and scien-
tific computing [35, 58, 60, 76]. These GPU-powered applica-
tions are driven by large-scale data. For instance, by storing
TB-scale embedding vectors, deep recommendation systems
achieve higher recommendation accuracy and richer feature
representations [2, 73]. Constrained by limited memory ca-
pacity and the volatile property, it is not feasible for GPU
applications to store large-scale essential data in GPU mem-
ory. To accommodate data of ever-increasing scale while en-
suring data reliability, GPU-based applications store the data
in large-capacity persistent storage devices (e.g., SSD) [21]
and rely on the CPU to manage the data in the storage (e.g.,
storing/searching a given key).

However, CPU-assisted data management involves time-
consuming data transmission between GPU and CPU, while

introducing extra CPU consumption and interference with
other CPU applications. To alleviate data transmission over-
head and eliminate extra CPU consumption, GPUDirect Stor-
age (GDS) technology [48] provides a direct path between
GPU memory and block storage devices. While GDS en-
ables fast transmission between GPU memory and storage
devices for large files, unfortunately, it only provides block-
level interfaces, which do not meet the programming and high-
performance requirements that necessitate byte-granularity
access for indexes [36, 44, 51, 63, 77].

In order to support fine-grained direct access to storage
devices from GPU kernels, the GPU with persistent mem-
ory (GPM) model [51, 52] exploits the byte-addressability of
persistent memory (PM) [14, 59]. GPM can be implemented
by leveraging the unified virtual addressing (UVA) technol-
ogy [46] to map the PM onto the GPU’s virtual address space.
GPM enables applications to directly manage data on PM
at the byte granularity without CPU involvement, thus de-
creasing the costs of data management. Meanwhile, such
GPM-enabled data management can also benefit from the
high parallelism of GPU.

Hash indexes support parallel accesses to the fine-grained
data with constant-scale single-point query performance,
which hence are widely used to achieve efficient data man-
agement [3, 12, 44, 50, 63, 77]. GPM-enabled hash indexes
become promising to boost data management performance
in GPU-powered applications. For example, deep recommen-
dation systems benefit from GPM hash indexes to search
target embedding vectors during each inference (e.g., embed-
ding_lookup in Microsoft recommenders [41] and Facebook
DLRM [20]). However, to the best of our knowledge, there is
no existing hash index designed for GPM. In practice, simply
porting existing hash indexes to GPM systems unfortunately
suffers from the following challenges.

1) Performance degradation due to warp-agnostic exe-
cution manner. The basic unit of scheduling in the GPU is
warp, which consists of 32 GPU threads [45]. When threads
within the same warp take different execution paths due to
conditional branching, they would be serialized and only a



small portion can execute instructions, called warp diver-
gence [56, 66]. When the threads in a warp access the same
cache line, the GPU hardware coalesces these accesses into a
single cache access, which delivers high throughput [3, 34].
However, hash indexes typically make each thread indepen-
dently perform index operations without the awareness of the
warp-based execution features. Such warp-agnostic execution
manner suffers from severe warp divergence and uncoalesced
memory accesses, thus leading to severe performance degra-
dation. Even worse, some hash indexes adopt lock-based de-
signs, which exacerbate the contentions among thousands of
concurrent GPU threads.

2) High overheads for crash consistency guarantee. It
is important to guarantee crash consistency for the PM data
managed in the GPM hash indexes. However, it is non-trivial
to achieve this, since the unit of atomic memory write on
PM (e.g., 8 bytes for 64-bit CPUs) is limited by the width
of memory bus [49, 77]. Hence, when writing data whose
size exceeds this atomic unit, a system crash may result in
partial updates and cause data inconsistency, thus leading
to unexpected errors and incorrectness in GPU applications.
Although logging [22] and copy-on-write (CoW) [25] tech-
niques can be used to guarantee crash consistency for data,
these techniques introduce extra write overhead to PM.

3) Huge bandwidth gap between PM and GPU. While the
read bandwidth of GPU memory in NVIDIA V100 can reach
900 GB/s [47], the read bandwidth of PM is only 39.6 GB/s
in six Intel Optane DC PMMs [29, 69]. When performing
thousands of concurrent index operations, bandwidth-hungry
GPU kernels suffer from PM’s limited bandwidth [29, 47, 52].
As a result, the naive GPM indexes fail to fully leverage the
GPU to boost the performance due to massive bandwidth-
limited PM accesses from GPU kernels when concurrently
performing index operations.

In order to efficiently address the mentioned problems, we
propose GPHash1, an efficient hash index for GPM systems.
GPHash fully leverages the high parallelism of GPU and
provides a low-overhead consistency guarantee while further
increasing the performance with a frozen-based bucket cache.
Specifically, this paper makes the following contributions:

• GPU-conscious and PM-friendly hash table structure.
To achieve high performance and efficiency of GPHash,
the hash table structure of GPHash is designed to be GPU-
conscious and PM-friendly. GPHash features one-shot warp
access, i.e., using 32 threads in a warp to concurrently ac-
cess the buckets to find the target key, which exploits the
parallelism of a warp and thus delivers high performance.
Moreover, GPHash facilitates coalesced memory accesses by
directly placing keys in the hash table slots. Furthermore,
GPHash achieves high memory efficiency by employing slot
associativity, inter-level sharing, and multi-hash locations.

• Lock-free concurrency control with crash consistency
1We have released the open-source codes for public use in https://gi

thub.com/LighT-chenml/GPHash.

guarantee. GPHash employs lock-free index operations to
mitigate the contentions among threads. These operations
are executed in a warp-cooperative manner via warp-level
instructions to alleviate warp divergence. Moreover, by using
the compare-and-swap (CAS) primitive and the slot state (in-
dicating whether an index slot is under insertion), the index
operations are implemented as log-free, which further reduces
the overheads for crash consistency guarantee.

• Frozen-based bucket cache. To bridge the bandwidth
gap between PM and GPU, we aim to reduce PM access
by caching hot items in GPU memory. However, traditional
list-based cache management causes high contentions among
GPU threads when massive threads concurrently query and up-
date the lists. To address this challenge, we propose a frozen-
based bucket cache design, called BktCache, to minimize the
overhead of cache management. Since the items in the same
bucket are concurrently accessed, BktCache caches items at
the bucket granularity. BktCache periodically identifies and
fetches hot buckets (i.e., loading phase) while keeping the
membership of the cached buckets unchanged (i.e., frozen
phase) between the loading phases. We employ a concurrent
loading scheme to reduce the overhead of loading BktCache.
• Real implementation and extensive evaluation. We have

implemented and evaluated GPHash using YCSB and real-
world workloads. Extensive experimental results show that
GPHash outperforms state-of-the-art CPU-assisted data man-
agement approaches and GPM hash indexes by up to 27.62×
and 17.42×, respectively.

It is worth noting that our GPHash can be efficiently
adopted in GPM systems that are implemented via Compute
Express Link (CXL) technology [16, 59], as long as these
GPM systems provide direct accesses to PM from GPU ker-
nels using load/store instructions. Implementing hash in-
dexes on these GPM systems also requires efficient orchestra-
tion of GPU thread execution, low-overhead crash consistency
guarantee, and mitigation of the bandwidth gap between GPU
memory and CXL. GPHash has addressed these challenges
via GPM-friendly hash table design, lock-free and log-free
operations, and frozen-based cache. Hence, GPHash is still
efficient for CXL-based GPM systems.

2 Background and Motivation
2.1 GPU with Persistent Memory
2.1.1 Persistent Memory
Persistent memory (PM) provides persistence, large capacity,
byte-addressability, and near-DRAM performance. The ac-
cess latency of PM is 3-10 times of DRAM, and the bandwidth
of PM is 1/6 of DRAM [29, 69]. Existing schemes mainly
focus on re-configuring architectures or re-designing system
software for the PM to gain full benefits [10,11,27,37,62, 64,
65, 68, 69]. The data persistence is guaranteed via executing
flush and fence instructions. Although Intel would discon-
tinue Optane PM [23], the features and properties of persistent
memory can be achieved via other memory technologies and

https://github.com/LighT-chenml/GPHash
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techniques [15,57,59], e.g., Samsung memory-semantic CXL
SSD [59]. By leveraging CXL interconnect technology [16]
and a built-in DRAM cache, the memory-semantic SSD can
effectively act as persistent memory to build GPM systems.
2.1.2 The Parallelism of GPUs
GPUs achieve high parallelism by using thousands of GPU
threads [47]. A modern GPU contains hundreds of streaming
multiprocessors (SMs). Each SM contains many SIMD units.
An SIMD unit consists of several lanes, which concurrently
execute the same instruction on different data items. The
smallest execution unit is the GPU thread, which is mapped
to an SIMD lane. GPU programming languages (e.g., CUDA)
require programmers to arrange threads in the GPU hardware
hierarchy. In CUDA, 32 threads form a warp, which is the
smallest scheduled unit in the GPU [46]. However, the threads
in the same warp will be serialized if executing different in-
structions due to branch instructions, called warp divergence.
When the warp divergence occurs, only a small portion of
threads in the warp is executing instructions, thus limiting
the parallelism of the warp. When a warp loads/stores data
that fall in the same GPU cache line (i.e., 128 bytes), the
GPU hardware coalesces them into a single cache access,
called coalesced memory access. In contrast, uncoalesced
memory accesses lead to multiple cache accesses, causing
performance degradation. Several warps form a thread block,
which is scheduled to run on an SM. The grid is the largest
execution unit, which consists of several thread blocks that
execute a GPU kernel.
2.1.3 Efficient Data Management for GPU with PM
After over a decade of phenomenal growth in computing
throughput and memory bandwidth of GPUs, the GPU-
powered applications have become prevalent in various do-
mains [24, 42, 58]. These applications are always in pursuit
of handling larger amounts of data for better efficiency. For
example, recent studies show that the embedding vectors in
deep recommendation systems will scale to dozens of TBs
for higher recommendation accuracy and richer feature repre-
sentations [2, 73]. Such an unprecedented data scale requires
highly efficient data management.

To meet the demands of ever-increasing data scale and reli-
ability, applications typically store the data in large-capacity
persistent storage devices (e.g. SSD and PM). In general,
GPU applications rely on the CPU to manage the data in
the storage, called CPU-assisted data management. The blue
line in Figure 1 shows the data path of the CPU-assisted data
management. Specifically, the GPU applications need to first
transfer data from GPU memory to CPU memory and then
rely on the CPU to write (read) the data into (from) storage
devices, e.g., updating the value of a given key. The CPU-
assisted approach suffers from time-consuming data transmis-
sion between GPU and CPU, while introducing extra CPU
consumption and interference with other CPU applications.

To mitigate data transmission overhead and eliminate ex-
tra CPU consumption, NVIDIA GPUDirect Storage (GDS)
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Figure 1: The overview of GPM system model.

technology [48] provides a direct path between GPU memory
and block storage devices via direct memory access (DMA).
Unfortunately, while GDS shows great capability in transmit-
ting large files between GPU memory and storage devices, it
only provides block-level interfaces, which mismatches the
byte-granularity requirement for data structures such hash
indexes, thus incurring high overheads [51]. Recent works
propose a system model, called GPM (i.e., GPU with Persis-
tent Memory) [51, 52], which exploits the properties of the
PM [14, 59]. GPM can be implemented by: (1) mapping the
PM onto the GPU’s virtual address space via unified virtual
addressing (UVA) technology [46]; (2) ordering data using
system-scoped threadfence (e.g., threadfence_system()
in CUDA); (3) turning DDIO off to bypass the last level
cache (LLC) to guarantee persistence. The red line in Figure 1
shows the data path of the GPM-based data management.
By leveraging the byte-addressability of PM, GPM enables
GPU-based applications to directly access PM at the byte
granularity without CPU involvement, thus decreasing the
costs of data management. GPM-enabled data management
also benefits from the high parallelism of GPU.

2.2 Hash Indexes on GPM Systems
Hash indexes have been widely used in many data manage-
ment systems [3, 12, 44, 63, 77]. GPU-powered applications
can benefit from GPM-enabled hash indexes to achieve effi-
cient data management [32,67,72]. Porting existing PM-based
and GPU-based hash indexes to GPM systems is an intuitive
way to implement GPM hash indexes. Unfortunately, these
indexes suffer from the following challenges.
Challenge 1: Warp-agnostic execution manner causes se-
vere performance degradation. In general, hash indexes lever-
age multiple threads to concurrently perform index operations
for high throughput, where each thread independently per-
forms index operations. However, such warp-agnostic execu-
tion manner suffers from severe warp divergence and uncoa-
lesced memory accesses in the context of GPU. Specifically,
when the threads in the same warp perform different oper-
ations without intra-warp communications, they passively
encounter warp divergence due to branch instructions. More-
over, most hash indexes only store the pointers of keys (or
key-value pairs) to reduce the storage overhead [12,36,63,78].
However, when the threads in a warp access keys in parallel,
the addresses of these keys are scattered, hence leading to un-
coalesced memory accesses. In addition, some hash indexes
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Figure 2: The hash table structure of GPHash (using 2 hash locations and 4-level buckets with 4-way associativity as an example).

use lock-based designs, which exacerbate the contentions
among thousands of concurrent GPU threads and even cause
dead-lock when the threads in a warp acquire the same lock.
Challenge 2: Guaranteeing data consistency in the presence
of crashes introduces high overheads. Since GPM hash in-
dexes directly manage data in PM, it is important to guarantee
data consistency in the presence of crashes, which however
is non-trivial. The size of atomic memory write of PM is
limited by the memory bus width (e.g., 8 bytes for 64-bit
CPUs) [49, 70, 77]. As a result, if a system failure occurs
before completing writing the data whose size is larger than
8 bytes, the data will be corrupted. Logging and copy-on-
write (CoW) techniques are widely used to guarantee crash
consistency for data larger than 8 bytes [33, 75]. When using
logging, indexes store the old data (undo logging) or new
data (redo logging) into logs and then write the new data in
place. When using CoW, we copy the old data to a newly
created space and perform the updates on the copy, and then
atomically modify the 8-byte pointer to point to the new data.
However, these techniques introduce high write overhead.
Challenge 3: Huge bandwidth gap between PM and GPU
limits the utilization of GPU’s high parallelism. There is a
significant bandwidth gap between PM and GPU memory. For
example, while the bandwidth of GPU memory in NVIDIA
V100 can reach 900 GB/s [47], the read and write bandwidths
of PM are only 39.6 GB/s and 13.8 GB/s for six Intel Optane
DC PMMs, respectively [29, 69]. Hence, when performing
massive concurrent index operations, the bandwidth-limited
PM fails to efficiently handle massive concurrent accesses
from the bandwidth-hungry GPU kernels [29, 47, 52]. Such a
huge bandwidth gap between PM and GPU hinders fully uti-
lizing the high parallelism of GPU. Moreover, some schemes,
such as cuckoo hashing [34] and linked-list-based hashing [3],
incur extra PM accesses to handle hash collisions, which fur-
ther deteriorates the bandwidth problem.

3 The GPHash Design
We propose GPHash, an efficient hash index for GPU with
persistent memory.

3.1 The Hash Table Structure of GPHash
In the context of GPM systems, an efficient hash table needs
to fully utilize the high parallelism of GPU and minimize

extra PM writes for handling hash collisions. To this end,
we propose a GPU-conscious and PM-friendly hash table
that supports one-shot warp access with minimal uncoalesced
memory accesses while keeping high memory efficiency. As
shown in Figure 2(a), GPHash uses a level-based hash ta-
ble that consists of multiple levels, where level i contains 2i

buckets. GPHash embraces the following design decisions.
1) Slot associativity. Like many hash schemes, in our GPHash,
each bucket contains multiple slots, each of which stores a key-
value item. Figure 2(a) shows an example of GPHash with
4-way slot associativity, where each bucket has 4 slots. By
leveraging slot associativity, each bucket can handle multiple
hash collisions without any movements and extra PM writes.
Moreover, slot associativity is friendly for exploiting GPU’s
parallelism since multiple slots can be concurrently accessed.
2) Inter-level sharing. GPHash leverages inter-level shar-
ing [12,77] to handle more hash collisions for higher memory
efficiency. Only the buckets in the top level can be addressed
by hash functions. The buckets in the other levels are shared
by several buckets in the top level and each bucket in the
top level has multiple sharing buckets. For example, in Fig-
ure 2(a), each bucket in level 5 is shared by 4 buckets in level
7 (i.e., the top level), while each bucket in level 7 has 3 sharing
buckets (in levels 4, 5, 6 respectively). We insert a new item
into the less-loaded bucket among the addressed bucket and
its sharing buckets (e.g., 4 sharing buckets in total for GPHash
with 4 levels). With the aid of inter-level sharing, GPHash
can handle more hash collisions and improve the efficiency
of load balance, thus enabling higher memory efficiency.
3) Multiple hash locations. Prior study [43] reveals that en-
abling each key to have multiple choices for its storage loca-
tions leads to exponential improvements in memory efficiency
over one choice. Based on this observation, GPHash uses sev-
eral hash functions to compute multiple hash locations for
each key. As shown in Figure 2(a), by using 2 hash functions,
there are 8 candidate buckets for each new item to insert,
which further improves memory efficiency.
4) One-shot warp access. By leveraging the parallelism of
the warp, GPHash can access all slots of candidate buckets
for a given key at one time. As mentioned above, GPHash
leverages slot associativity, inter-level sharing, and multiple
hash locations, to achieve higher memory efficiency. However,



an insertion operation needs to probe all candidate buckets
for better load balance while a search operation also has to
access all candidate buckets in the worst case. Therefore,
for CPU-based hash schemes, there is a trade-off between
high memory efficiency and high performance. However, for
GPM systems, hash indexes can exploit the high parallelism
of GPU to achieve both high memory efficiency and high
performance. By using appropriate configurations, we probe
all slots of candidate buckets with one-shot warp access. As
shown in Figure 2(a), 32 threads in a warp can concurrently
access all 32 slots of candidate buckets for a given key. Note
that the one-shot warp access feature is based on the warp-
cooperative execution manner (§3.2.1).
5) In-place key placement. While many hash schemes store
the pointers of keys to reduce storage overheads for empty
slots, these hash schemes exhibit uncoalesced memory ac-
cesses when GPU threads in a warp concurrently access keys,
as shown in Figure 2(b). To address this problem and facili-
tate coalesced memory accesses, GPHash leverages in-place
key placement, which directly stores the keys in slots. The
keys of the same buckets hence can be stored in continuous
coalesced addresses. When the threads in a warp access keys
in the same buckets, these accesses can be coalesced. Since
the values are typically accessed by a dedicated thread in a
warp, we still store the pointer of the value.

Specifically, for the item with the fixed-length key, we store
the key and the pointer of the value. For the item with the
variable-length key, we store the pointer of the key-value pair,
which is consistent with prior schemes [12, 78]. Furthermore,
by employing fingerprints (FP, i.e., a part of hash value) [36,
49], GPHash can avoid the unnecessary reads for full keys
if the fingerprints of keys are different. To support lock-free
and log-free operations on the fixed-length keys, two values
in the key/fingerprint value ranges are reserved as the slot
states, which are used to indicate whether the slot is empty
or under insertion (detailed in §3.2.3). The concern about
in-place key placement is extra storage overheads for empty
slots. Prior works [4,5,71,74] have shown that key-value items
whose sizes are smaller than 128 bytes dominate in large-scale
key-value stores and GPU-specific workloads. Therefore, the
storage overheads of empty slots are limited since GPHash
also provides high load factors.

Put them all together, the structure of GPHash is shown in
Figure 2(a), which contains multi-level buckets with K-way
slot associativity. The blue buckets indicate the shared buckets
while the pink buckets show the candidate buckets in a warp
access. The structure of GPHash is simple and efficient on
GPM systems, exhibiting the following strengths:

• GPU-friendly. GPHash probes all slots of candidate buck-
ets within one-shot warp access, which is beneficial for uti-
lizing GPU’s parallelism. Meanwhile, GPHash facilitates the
coalesced memory accesses with in-place key placement.

• Write-optimized. Each insertion operation in GPHash
only involves a constant number of buckets without any data

movement from/to other buckets or linking new buckets. In
tandem with coalesced memory accesses, GPHash minimizes
PM writes.

• Memory-efficient. By embracing slot associativity, inter-
level sharing, and multiple hash locations, GPHash can tol-
erate more hash collisions with better load balance. GPHash
provides a high load factor that is up to 92% (§4.2)

3.2 Lock-Free Concurrency Control with
Crash Consistency Guarantee

As discussed in §2.2, lock-based designs suffer from severe
contentions among thousands of concurrent GPU threads and
even cause dead-locks. Hence, it is critical for GPM hash
indexes to achieve lock-free concurrency control. Moreover,
GPM hash indexes need to minimize overheads for the crash
consistency guarantee. Since compare-and-swap (CAS) prim-
itive (e.g., atomicCAS() in CUDA [46]) can atomically up-
date an 8-byte content, GPHash leverages its atomicity in
tandem with slot states to enable lock-free concurrency con-
trol with crash consistency guarantee. Besides, to mitigate
warp divergence, GPHash executes index operations in a warp-
cooperative manner.

3.2.1 Warp-cooperative Execution Manner
In order to mitigate the warp divergence, GPHash performs
index operations at the warp granularity. As shown in Fig-
ure 2(a), the index operation assigned to thread 31 is acti-
vated, and all 32 threads in the warp cooperate to complete
this activated index operation. We use CUDA’s warp-level in-
structions [45] to perform intra-warp communication among
threads. Specifically, the ballot instruction is used to find
the threads whose assigned index operations have not been
completed. Among these threads, we then select the thread
with minimal thread number and activate its assigned index
operation, and the thread is called the activated thread. More-
over, we use the shfl instruction to broadcast a variable to
all threads in the warp.

When cooperating to complete the activated operation, the
threads in a warp concurrently perform processes that can
be performed in parallel. For instance, to find the activated
key, the activated thread first broadcasts the activated key
via the shfl instruction, and then all 32 threads in the warp
access the candidate slots in parallel. For other processes
that should be performed in sequence (e.g., writing the key
after locating the target slot), a dedicated thread in the warp
(e.g., the activated thread) is responsible for performing these
processes. Unlike the warp-agnostic execution manner, such
a warp-cooperative execution manner actively controls warp
divergence with intra-warp synchronization and efficiently
exploits the parallelism of warps.

3.2.2 Correctness Challenges
Duplicate items. In rare cases, when concurrently performing
insertion operations with the same key in a lock-free manner,
threads may insert the key into different slots, thus leading to
duplicate items. To tolerate duplicate items, akin to the prior



work [78], GPHash determines the valid item of a key. Given
multiple items of the same key, the valid item is the one having
the maximal level number, the minimal bucket number, and
the minimal slot number. When finding duplicates, GPHash
keeps the valid item and deletes other duplicates.
Concurrency correctness. When threads concurrently per-
form the search and the IDU (i.e., insertion/deletion/update)
operations with the same key, the readers may return the
partial-updated value, which violates the concurrency correct-
ness. To ensure concurrency correctness while providing high
performance, GPHash follows the “no lost key” concurrent
correctness condition akin to prior schemes [38, 78]. Specifi-
cally, when threads concurrently perform the search and the
update operations, the search operations return either the old
or the new values instead of partial-updated values. When
a search and a deletion run in parallel, the search operation
returns either the value or no-key statement.
Crash consistency guarantee. When directly managing data
in persistent memory, a crash would interrupt the ongoing
index operations, which can lead to persistent partial updates
for keys and values. Such data inconsistency causes data loss
and unpredictable errors. To guarantee data consistency in the
presence of crashes, GPHash uses CAS primitive and the slot
state to achieve log-free operations with negligible overhead.

3.2.3 Lock-Free and Log-Free Operations
We introduce the details of lock-free and log-free operations.
Here, we focus on operations of the fixed-length large keys
whose sizes are larger than 8 bytes, while the operations of
fixed-length small keys (i.e., ≤ 8 bytes) and variable-length
keys can be implemented in a similar way using the CAS
primitive. We use system-scoped threadfence [46] to order
the persists for the correct consistency guarantee.
Insertion. Figure 3 illustrates the lock-free and log-free in-
sertions. First, GPHash obtains the fingerprints and the keys
of all candidate slots of the activated key with one-shot warp
access. GPHash then checks if the key exists by comparing
these keys with the activated key, while leveraging the finger-
prints for fast comparison. If the activated key does not exist,
GPHash finds the empty slots, i.e., the slots whose states are
EMPTY2. If there are several empty slots, GPHash inserts the
activated key into the slot belonging to the less-loaded bucket.
After deciding the target slot for insertion, the activated thread
uses CAS primitive to atomically change the slot state (i.e.,
fingerprint region) from EMPTY to INSERT. If the CAS fails,
meaning that the slot is changed by another thread, GPHash
re-executes the insertion from the beginning. If CAS succeeds,
the activated thread writes the item into the target slot. Finally,
the activated thread sets the fingerprint region of the target
slot to the hash value of the activated key.

The insertion can easily recover from crashes. There are
two cases of a slot after crashes. (1) The slot state is INSERT,

2We reserve two 8-byte values in the fingerprint value range, i.e., EMPTY
and INSERT, to indicate the slot is empty or under insertion.
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indicating that the slot is under insertion (i.e., writing a new
item) before crashes. In this case, the slot may be broken, and
thus we need to clear the slot and set the slot state to EMPTY.
(2) The slot state is not INSERT, meaning that the slot is empty
or contains an unbroken item. In this case, we do not need to
do anything since the slot is already in a valid state.
Deletion. For deletion operation, GPHash first locates the tar-
get items whose keys are equal to the activated key, including
duplicate items. Similar to insertion, the activated thread is
responsible for atomically deleting all these items by using
the CAS primitive to set the slot states to EMPTY. Thanks
to the atomicity of the CAS primitive, the deletion does not
introduce any invalid slot state in the presence of crashes.
Update. For the update operation in GPHash, after locating
the target slot and deleting the other duplicates, the activated
thread atomically changes the value pointer to point to the
new value via the CAS primitive. GPHash writes the new
value to the pre-allocated space before updating the value
pointer. After crashes, the value pointer either points to the
old value or the new one, both of which are unbroken.
Search. Since GPHash takes advantage of the atomicity of the
CAS primitive to perform the IDU operations, the lock-free
search operation can be easily implemented. After locating all
slots whose keys are equal to the activated key, the activated
thread reads the value that is pointed by the value pointer of
the valid slot. If the activated key does not exist, the thread
returns a no-key statement. Based on the above introduction
to other operations, the search operation can be proved to
meet the “no lost key” concurrent correctness condition.
Resizing. As the load factor increases, more hash collisions
will occur in hash indexes, which results in performance degra-
dation and insertion failure. Thanks to the one-shot warp ac-
cess, GPHash does not suffer from performance degradation
caused by more hash collisions. However, GPHash still needs
to handle insertion failure to avoid item loss. If failing to
find an empty slot to insert a new item, GPHash has to resize.
Specifically, GPHash first allocates a new level as the new
top one. GPHash then leverages thousands of GPU threads
to scan the bottom level in parallel and rehashes the items.
Each rehashing operation consists of reading the item in the



bottom level, inserting the item into the other levels (includ-
ing the new level), and deleting the item from the bottom
level. GPHash also performs rehashing in a warp-cooperative
execution manner to mitigate warp divergence.

It is worth noting that there is no rehashing failure (mean-
ing that the insertion of a rehashed item fails) in GPHash.
Because the new level can store more items than the bottom
level, and there are fewer hash collisions in the new level than
in the bottom level. Moreover, by leveraging the atomicity
of insertion and deletion operations, the resizing can tolerate
crashes. There are three cases of rehashed items after crashes.
(1) The item has not been inserted into the other levels. (2)
The item has been inserted into the other levels and has not
been deleted from the bottom level. (3) The item has fin-
ished rehashing and has been deleted from the bottom level.
While we do not need to do anything for items in case (3),
the rehashing of items in cases (1) and (2) continues after
recovery. We observe that GPHash can directly continue to
rehash items in the bottom level, i.e., items in cases (1) and
(2), since re-inserting the items in case (2) will simply return
the key-existing statement.
Recovery. To recover from normal shutdowns or system
crashes, GPHash first initializes the GPM system, i.e., map-
ping the PM file onto the GPU’s virtual address space. Then,
GPHash checks the slot states and clears the slots that were
under insertion. Besides, if GPHash was performing resizing
before crashes (indicated by a flag is_resizing), GPHash
continues to rehash the items in the bottom level. In our im-
plementation, we carefully consider all cases during resizing
operation including updating metadata in the presence of
crashes, which are omitted here due to space limits.

3.3 Frozen-Based Bucket Cache
To bridge the bandwidth gap between PM and GPU, we
aim to reduce PM accesses. Previous studies show that real-
world workloads often feature Zipfian popularity distribu-
tion [4, 8, 9, 28, 71]. Under such skewed workloads, hot items
receive extremely frequent accesses. Based on this observa-
tion, GPHash reduces PM accesses by caching hot items in
GPU memory. Traditional caching schemes fetch items in
case of encountering a cache miss (i.e., the accessed item is
not in the cache) and evict items to make room for these newly
fetched items. Unfortunately, in the context of GPM systems,
these caching schemes suffer from high overheads for cache
management. For example, most caching schemes, such as
LRU, use linked-lists to achieve the O(1) time efficiency for
cache management [17, 39]. However, when massive GPU
threads frequently query and update the lists, such list-based
implementations cause high contentions among GPU threads,
which makes these caching schemes inefficient. To address
this problem, we propose BktCache, a frozen-based bucket
cache that minimizes the overhead of cache management.
Bucket granularity. While traditional caches often cache
hot items at the single-item granularity, our BktCache caches

BktCache

Thread 0 ...Thread 1  Thread 31

GPHash

...

...G
PU

PM ...

... ...

Fetch the new bucket2

1 Invalidate the old 
cached bucket

3 Validate the new 
cached bucket

Cache hit

Cache miss

Valid caching

Fetching the 
new bucket

Invalid caching

Figure 4: The overview of concurrent fetching mechanism.

items at the bucket granularity. This is based on the observa-
tion that the items in the same bucket are always accessed con-
currently due to the one-shot warp access feature of GPHash.
Besides, BktCache identifies hot items at the bucket granu-
larity, which reduces storage overhead for the metadata. For
example, when implementing the LFU caching algorithm [39],
we only record the accessed frequencies for buckets. We fur-
ther record mapping relationships between buckets in GPHash
and buckets in BktCache, defined as (1) F(x) = y, which in-
dicates that the bucket x in GPHash is cached into the bucket
y in BktCache, and (2) G(y) = x, which indicates that the
bucket y in BktCache is cached from the bucket x in GPHash.
Frozen-based caching. Since there are thousands of concur-
rent GPU threads, it is important for BktCache to avoid con-
tentions among threads. Inspired by FrozenHot [54], we adopt
the frozen-based design in BktCache. We periodically load
the BktCache, which includes identifying the hot buckets via
caching algorithms (e.g., LFU [39]) and fetching these buck-
ets into the BktCache. The membership of the cached buckets
is unchanged between the two adjacent loading phases. There
are two benefits of the frozen-based caching design. (1) It
significantly decreases the overhead of cache management.
(2) It does not suffer from performance degradation caused by
cache thrashing [54]. The concern about adopting the frozen-
based design comes from the decrease in the hit rate. Since the
real-world workloads often exhibit the scan or repeated access
patterns [55, 71], shuffling cache contents leads to marginal
profits on hit rates when the scan size is larger than the cache
size. In GPHash, the overhead of dynamically evicting and
fetching buckets in BktCache overwhelms the performance
gain of the limited increases in hit rates, which causes severe
performance degradation by several orders of magnitude. In
contrast, the frozen-based cache design minimizes the man-
agement cost while achieving comparable hit rates, hence
enabling higher performance.
Concurrent loading scheme. To mitigate the interference of
the cache loading to ongoing index operations, BktCache con-
currently loads the BktCache. While the concurrent identifica-
tion of hot buckets can be easily implemented, it is non-trivial
to realize concurrent fetching. Figure 4 shows the overview
of concurrent fetching mechanism. To fetch a bucket x to the
bucket y in the BktCache, we first invalidate the old mapping
by setting the F(G(y)) to NOT_CACHED. To avoid inconsis-
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(a) Positive Search, 8-byte
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(b) Negative Search, 8-byte
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(c) Insertion, 8-byte
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(d) Update, 8-byte
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(e) Deletion, 8-byte
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(f) Positive Search, 32-byte
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(g) Negative Search, 32-byte
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(i) Update, 32-byte
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(j) Deletion, 32-byte

Figure 5: The throughputs and latencies of different index operations under various configurations.

tency in the ongoing operations on the bucket y, we wait for
completions of these operations (i.e., waiting for the reference
count of bucket y to become 0) before updating the bucket
y. We then copy the content of the bucket x to the bucket
y. Finally, we validate the new mapping by setting the F(x)
to y and the G(y) to x. The mapping relationships between
buckets are atomically updated by using the CAS primitive,
hence ensuring the concurrency correctness. We implement
the concurrent fetching mechanism by using another GPU
stream to fetch different buckets in parallel.
Operations with caching. For all index operations, GPHash
prioritizes reading keys from the BktCache, which accelerates
accessing the buckets. After locating the target bucket, for
search operations, if the target buckets are cached, GPHash
directly reads the values via the pointers in the cached buckets.
For IDU operations, if the target buckets are cached, GPHash
needs to modify the corresponding buckets in the BktCache
after completing modifications to the buckets in GPHash.

4 Performance Evaluation
4.1 Experimental Setup
Platform. Our experiments are conducted on a Linux server
equipped with two Intel 26-core Xeon Gold 6230R CPUs, one
NVIDIA Tesla V100 GPU, 192 GB DDR4 DRAM, and 768
GB Intel Optane DC PMM (6 × 128 GB PMMs). The Optane
DC PMMs, as a case in point, are configured in the App Direct
mode and mounted with the ext4-DAX file system. The server
is installed with Ubuntu 18.04. The CUDA version is 11.4.
To avoid the impact of NUMA architectures, we conduct all
the experiments on one CPU socket by pinning threads to one
NUMA node consistent with prior works [12, 33].
Comparisons. We evaluate the following data management
approaches using configurations suggested by original papers.
We evaluate the CPU-assisted data management approaches.
For fair evaluation, we also use PM to store the data and
leverage the three representative PM hash indexes to man-

age the data in PM, including Clevel [12], Dash [36], and
SEPH [63]. Moreover, we evaluate the GPM-enabled data
management approaches that leverage GPM hash indexes to
directly manage the data stored in PM, including naive GPM
hash indexes and GPHash. To the best of our knowledge,
there is no existing hash index tailored for GPM, and hence
we implement and evaluate two naive GPM hash indexes
by porting Clevel (which is the closest to GPHash) and a
list-based GPU hash index SlabHash [3] to GPM systems,
i.e., Clevel-GPM and SlabHash-GPM. In Clevel-GPM, each
thread independently performs index operations without intra-
warp communication. For SlabHash-GPM, we use logging to
ensure crash consistency.

Workloads. We leverage widely used YCSB [13] benchmark
and multiple real-world workloads to evaluate the perfor-
mance of GPHash and the compared schemes.

• YCSB workloads. We generate a micro-benchmark
to evaluate the performance of different index operations,
which contains the following types of workloads: Positive
search (the queried keys exist), Negative search (the queried
keys do not exist), Insertion, Update, and Deletion. Besides,
we further generate a macro-benchmark, which contains the
5 YCSB core workloads: A (50% read, 50% update), B (95%
read, 5% update), C (100% read), D (read-the-latest, 95%
read, 5% insertion), F (50% read, 50% read-modify-write)
and LOAD (100% insertion). Since none of the hash indexes
optimizes for the range query, we do not evaluate the YCSB E
workload. The workloads are generated in the Zipfian distri-
bution with the default skewness (θ = 0.99). The experiment
on YCSB workloads consists of load and run phases. In the
load phase, we initialize the hash indexes with 16 million
key-value pairs for micro- and macro-benchmarks. In the run
phase, each hash index performs 16 million and 64 million
operations in the micro- and macro-benchmarks, respectively.
For most experiments, we use 8-byte and 32-byte keys that
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(a) YCSB A
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(b) YCSB B
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(c) YCSB C
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(d) YCSB D
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(e) YCSB F
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(f) YCSB LOAD

Figure 6: The throughputs and latencies under YCSB workloads using 32-byte keys.

are representative of real large-scale key-value store work-
loads [4,71], while the length of values is set to 128 bytes (i.e.,
the size of 32-dimension vector stored in FP32 type).

• Real-world workloads. We leverage the following real-
world workloads for extensive evaluation. (1) DLRM. This
workload is generated by running the deep learning rec-
ommendation model [20] using the Criteo-Kaggle CTR
dataset [30]. The Criteo-Kaggle CTR dataset contains more
than 45 million click feedbacks. (2) PageRank. This workload
is generated by running the PageRank algorithm [7] using
Twitter social graph [61]. The Twitter social graph contains
41.7 million user profiles and 1.5 billion social relations.
Default configurations. Unless otherwise stated, we evaluate
CPU-assisted approaches using 52 threads. For both CPU-
assisted and GPM-enabled approaches, we perform operations
in a batched manner using a default batch size 212 (i.e., the
number of batched operations). By default, GPHash uses 2
hash locations and 2-level buckets with 8-way associativity,
and the size of BktCache (i.e., the ratio of the number of
cached buckets to the number of total buckets) is configured
to 20% while using the LFU algorithm to identify hot buckets.

4.2 Overall Performance
Figures 5 and 6 present the throughput-latency curves of
different data management approaches using 8-byte and 32-
byte keys, respectively. To plot a throughput-latency curve,
we record the throughput and latency of an approach using
various batch sizes.
Search-only workloads (Pos./Neg. Search, YCSB C). For the
search-only workloads, the results show that directly manag-
ing data via GPM hash indexes enables higher throughput and
lower latency than CPU-assisted approaches by up to 13.84×
and 27.62× respectively. This is because these GPM-enabled
approaches eliminate the time-consuming transmission be-
tween GPU and CPU, while leveraging the high parallelism of
GPU. Among three GPM hash indexes, Clevel-GPM obtains
lower latency when batch size is small due to no overheads for
intra-warp communication. However, when the batch size in-
creases, Clevel-GPM suffers from severe warp divergence due
to its unawareness of GPU’s warp-based execution manner,
thus failing to achieve high throughput. In contrast, GPHash
and SlabHash-GPM can offer high throughput by employ-
ing the warp-cooperative execution manner. Moreover, by
leveraging BktCache, GPHash enables up to 4.28× higher
throughput than SlabHash-GPM.

Insertion workloads (Insertion, YCSB D, LOAD). For the
Insertion and YCSB LOAD workloads, GPHash consistently
outperforms other approaches by 5.79×. We attribute these
improvements to the one-shot warp access feature of GPHash,
which exploits the parallelism of a warp and does not intro-
duce any extra data movement. Unlike GPHash, SlabHash-
GPM needs to probe all linked-list nodes of the target bucket
for an insertion, which is time-consuming. Moreover, such a
list-based design fails to achieve efficient load balance, thus
leading to more contentions among threads and performance
degradation. For the YCSB D workload, GPHash provides
2.16× higher throughput than the other two GPM hash in-
dexes due to its warp-oriented optimization.
Update/deletion workloads (Update, Deletion, YCSB A, B,
F). Compared with other approaches, GPHash gains improve-
ments in terms of throughput by up to 9.23× and 10.37× un-
der the Update and the Deletion workloads, respectively. The
improvements stem from the log-free and lock-free operations
of GPHash as discussed in §3.2.3. In contrast, the logging
overheads deteriorate the performance of SlabHash-GPM.
The trends under the YCSB A and B workloads are similar,
where GPHash outperforms other approaches by 4.75×.
Load factor. To evaluate the memory efficiency of different
hash schemes, we record the load factors (i.e., the number of
the inserted keys divided by the capacity of the hash index)
of each scheme after every 16K (i.e., 214) insertions during
the load phase. As shown in Figure 7, by adopting effective
techniques for load factor improvement, Dash, Clevel (and
Clevel-GPM), and SEPH can achieve high load factors of up
to 85%. SlabHash-GPM resizes when the number of inserted
keys approaches the current capacity of the hash table (e.g.,
80%). As a result, the load factor of SlabHash-GPM is up to
82%. GPHash employs slot associativity, inter-level sharing,
and multiple hash locations to handle more hash collisions
and achieve efficient load balance between buckets, hence
offering high load factors of up to 92%.

4.3 Sources of Improvements
Figure 8 presents the latency breakdowns of different schemes.
The results show that the data transmission between GPU and
CPU accounts for over 30.1% end-to-end latency in CPU-
assisted data management approaches. In contrast, GPM-
enabled approaches eliminate the transmission overheads by
leveraging GPM hash indexes to directly manage the data,
thus delivering lower latency. However, Clevel-GPM pas-
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Figure 7: The load factors of different
hash schemes.
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Figure 8: The latency breakdowns of
different hash schemes.
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Figure 9: The factor analysis of GPHash
design.

sively handles warp divergence due to its warp-agnostic exe-
cution manner, failing to fully exploit the high parallelism of
GPU. Moreover, SlabHash-GPM uses logging for the crash
consistency guarantee, which introduces up to 15.2% over-
head and hinders SlabHash-GPM from achieving high per-
formance. By embracing warp-cooperative execution man-
ner and log-free operations, GPHash avoids the drawbacks
of Clevel-GPM and SlabHash-GPM and hence outperforms
other approaches.

4.4 Factor Analysis
To better understand the impacts of the proposed techniques
in GPHash, we evaluate and analyze the performance con-
tributions of these techniques. Figure 9 presents the factor
analysis of GPHash. We start with Baseline that does not
adopt any mentioned techniques. We then apply each pro-
posed technique one by one.

+ Warp-cooperative execution manner. Executing index
operation at the warp granularity mitigates the warp diver-
gence problem and thus improves the performance. The warp-
cooperative execution manner contributes to up to 104.1%
improvement in throughput. Warp cooperation is especially
important for workloads that consist of mixed operations, e.g.,
YCSB A and F. Without warp cooperation, when threads in
a warp concurrently perform different operations, the Base-
line suffers from severe warp divergence. Note that although
YCSB LOAD only contains insertion operations, it also bene-
fits a lot from the warp-cooperative execution manner. This
is because, for insertion operations, GPHash needs to check
whether the activated key exists and re-insert the key if the
CAS primitive fails, which also introduces massive warp di-
vergence among concurrent insertion operations.

+ In-place key placement. The in-place key placement
contributes to all workloads by facilitating coalesced mem-
ory accesses. By adopting the in-place key placement, when
comparing the keys of the slots and the activated key, the
accesses of the keys can be coalesced, thus further increasing
the throughput by up to 13.7%.

+ BktCache. Caching hot items in BktCache enables
higher performance in searching and locating a specific key.
For skewed workloads such as YCSB A, B, and C, BktCache
brings improvements in throughput by up to 40.9%. On the
other hand, for balanced workloads such as YCSB D and
LOAD, BktCache only achieves 7.6% improvements. Besides,
for workloads that contain IDU operations, GPHash needs

to modify the corresponding buckets in the BktCache, which
weakens the performance benefits brought by BktCache.
Specifically, with the same skewness, BktCache achieves
17.6% improvements for YCSB A while offering 35.5% im-
provements for YCSB B because YCSB B contains fewer
update operations.

4.5 Real-World Workloads
To demonstrate the generality of GPHash, we further use
real-world workloads to evaluate GPHash and the compared
schemes. Figure 10 shows the throughputs and latencies of
different schemes under the DLRM and PageRank workloads.
Despite various workloads, GPHash consistently provides up
to 7.09× higher throughput and up to 7.91× lower latency
than other schemes, respectively. The results demonstrate the
efficiency of GPHash across different workloads. For other
approaches except GPHash, their throughputs show trivial
differences across workloads. This is because the access pat-
tern (i.e., workload skewness) has little impact on their perfor-
mance due to the constant-scale query performance of hash
indexes. In contrast, GPHash provides higher throughput on
workloads that exhibit higher skewness, since BktCache can
accelerate more index operations upon these workloads.

4.6 Sensitivity Analysis
In this section, we investigate how caching algorithms, cache
sizes, key size, workload skewness, and configurations of
GPHash affect the performance of GPHash.
Caching algorithm and cache size. To demonstrate the im-
pacts of caching algorithms and cache sizes on GPHash’s
performance, we evaluate the performance of GPHash using
different caching algorithms and cache sizes. As shown in Fig-
ure 11, for both the YCSB A and C workloads, the LFU and
LRU algorithms outperform the Random algorithm for most
cache sizes, while LFU provides slightly higher hit rates and
throughput. However, when the cache size is 0, the Random
algorithm delivers higher throughput since it does not need to
record any extra bucket information for deciding which buck-
ets to cache. On the other hand, the LFU and LRU algorithms
need to record the number and the latest time of access, which
introduces some overheads of recording. For the YCSB A
workload, since GPHash needs to update the cached buckets
in the BktCache for update operations, the BktCache provides
less performance improvement under YCSB A compared to
under YCSB C. Moreover, it is worth noting that the benefits
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Figure 10: The throughputs and latencies of different schemes
under real-world workloads.
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(c) YCSB C

Figure 11: The throughputs (TP) and hit rates (HR) of differ-
ent caching algorithms with various cache sizes.

of BktCache become marginal as the cache size increases. For
example, the LFU-based BktCache brings 45.7% improve-
ments on YCSB C when the cache size increases from 0
to 10%. However, it only provides 16.0% higher throughput
when the cache size increases from 10% to 40%. Therefore,
it would be better to use a suitable cache size (e.g., 20%) to
achieve the sweet point between high performance and low
GPU memory footprint.
Key size. Figure 12(a) shows the throughputs of different
approaches using various key sizes under the YCSB C work-
load. When the key size increases from 8 bytes to 128 bytes,
most approaches only exhibit slight performance degrada-
tion (e.g., 13.1% for GPHash), while SlabHash-GPM expe-
riences a rapid decline in performance by 38.6%. This is
because most approaches employ fingerprinting or similar
technologies to avoid reading the full keys in most cases,
while SlabHash-GPM does not.
Skewness of workloads. Figure 12(b) shows how the skew-
ness of workloads affects the performance of GPHash under
the YCSB C workload. For other approaches except GPHash,
the skewness of workloads has a negligible impact on their
performance. For GPHash, with increasing skewness, Bkt-
Cache can absorb more index operations, thus increasing the
performance.
Configuration of GPHash. Figure 13 presents the through-
puts and the maximum load factors of GPHash under different
configurations of GPHash. To avoid potential impacts on other
design components, we only consider configurations that en-
able the one-shot warp access feature. For clarity, we do not
plot the configurations that neither provide higher maximum
load factors nor offer higher throughput. The results show
that using multiple hash locations and adopting inter-level
sharing can achieve higher load factors. However, while using
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Figure 12: The throughputs under different experimental
configurations.
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Figure 13: A spectrum of GPHash allow users to tradeoff
between load factor and throughput. (2L-2H-8S indicates that
GPHash uses 2 hash locations and 2-level buckets with 8-way
associativity.)

large numbers of hash functions and levels enables extremely
high load factor, the number of slots is limited, which causes
uncoalesced memory accesses and performance degradation.
In GPHash, we use 2L-2H-8S as the default configuration
since it offers high performance while providing a decent
load factor. In practice, users can choose which configura-
tions to use, depending on the specific requirements of the
deployed scenarios.

4.7 Overheads of GPHash
Resizing. Figure 14(a) shows the resizing time with differ-
ent numbers of buckets in GPHash. Since GPHash performs
rehash operations in parallel, the resizing can be completed
within hundreds of milliseconds.
Recovery. As shown in Figure 14(b), GPHash achieves in-
stant recovery and provides recovery time comparable to PM
hash indexes (within hundreds of milliseconds). In fact, GPM
initialization (i.e., mapping PM space onto the GPU’s vir-
tual address space) consumes the most time (> 99%). Since
GPHash leverages thousands of threads to check the states of
buckets, the time consumption of checking is trivial.
Loading BktCache. Figure 15 presents the overheads of
loading BktCache with different cache sizes. Without the con-
current fetching mechanism, the throughput rapidly drops to
0 since the operations stall until the loading is completed. By
adopting concurrent fetching mechanism, the throughput does
not significantly decrease. Although the concurrent fetching
slightly increases the loading time, loading BktCache only
consumes hundreds of milliseconds.
Metadata in BktCache. The storage overheads of metadata
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Figure 14: The time consumptions of resizing and recovery.

in BktCache are limited. When using the LFU algorithm, the
per-bucket counter only introduces a storage overhead of 4
bytes for a bucket, which is negligible compared with the
bucket size (i.e., 384 bytes under default configurations).

5 Discussions
Variable-length key-value pairs. GPHash supports variable-
length key-value pairs by storing the pointers to keys and
values. However, to efficiently support variable-length KVs,
the GPU allocator needs to achieve fast concurrent variable-
length allocation without incurring high memory fragmen-
tation, which is not the main design goal of this work and
is left to our future work. In fact, supporting variable-length
key-value pairs is not a necessity in real-world GPM-enabled
applications. For example, in deep recommendation systems,
since the keys (e.g., product IDs) and values (i.e., embedding
vectors) of embedding vector lookups are fixed-length, the
hash indexes that support fixed-length key-value pairs are
enough to boost the performance in such a scenario.
Concurrent resizing. It is challenging for GPM hash schemes
to support concurrent resizing. During the rehashing opera-
tion, the hash index needs to concurrently perform the ongoing
index operations and insertions for rehashing. As a result, the
insertions for rehashing will interfere with the ongoing index
operations, which decreases the performance. In GPHash, it
is harder to support concurrent resizing since we need to guar-
antee the consistency of BktCache during resizing. Moreover,
concurrent resizing weakens the performance gain of one-shot
warp access since GPHash needs to also probe the new level.
However, since the number and the overhead of resizing are
limited in GPHash, it is well-recognized in the community to
only support static resizing [3, 33, 34, 77].

6 Related Work
Hash indexes for PM. There are many hash indexes [6, 12,
26, 33, 36, 40, 44, 63, 77] tailored for PM to achieve high
performance. Level hashing [77] proposes a two-level hash
table to achieve cost-efficient resizing and constant-scale time
complexity with limited extra PM writes. Based on the level
hashing, Clevel hashing [12] proposes a lock-free multi-level
scheme that supports asynchronous resizing, thus further im-
proving the performance. Dash [36] employs several tech-
niques including balanced insert, displacement, and stashing
to delay segment splitting, to reduce the cache misses and PM
accesses. SEPH [63] introduces a level segment structure as a
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Figure 15: The overheads of loading BktCache.

key to break the dilemma between efficiency and predictabil-
ity. Some designs such as RECIPE [33] and Pronto [40] con-
sider the general-purpose conversion methods that convert
volatile DRAM indexes into persistent counterparts for PM.
However, the above hash indexes are agnostic to the GPU ar-
chitecture, which hence become inefficient for GPM systems.
Unlike these schemes, our GPHash can efficiently leverage
the high parallelism of GPU to achieve high performance.
GPU hash tables. Existing GPU hash tables focus on exploit-
ing the high parallelism of GPU [1, 3, 31, 34, 74]. Stash [31]
uses a compact data structure to support out-of-core GPU
parallel hashing. Mega-KV [74] is an efficient design of GPU-
based cuckoo hashing, which boosts overall performance.
However, these hash tables are designed for the static case
where the data size for insertions is known in advance, and
thus cannot support dynamic workloads. SlabHash [3] is a
dynamic hash table on GPUs, which uses an efficient GPU
allocator to handle concurrent allocations for the hash table.
However, the above GPU hash tables are designed for volatile
GPU memory, hence failing to efficiently guarantee crash con-
sistency in GPM systems. Unlike these schemes, our GPHash
can ensure crash consistency with proper overheads by lever-
aging log-free operations.

7 Conclusion
In this paper, we have designed, implemented, and evaluated
GPHash, which is an efficient hash scheme for GPM systems.
The hash table structure is designed to be GPU-conscious
and PM-friendly, which enables high performance and high
memory efficiency. GPHash adopts a warp-cooperative execu-
tion manner to mitigate warp divergence and support one-shot
warp access. GPHash further leverages lock-free and log-free
operations to achieve lock-free concurrency control with the
crash consistency guarantee. Moreover, GPHash reduces PM
accesses by caching hot buckets in BktCache while mini-
mizing cache management overheads. Evaluation shows that
GPHash outperforms state-of-the-art CPU-assisted data man-
agement approaches and GPM hash indexes by several times.
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